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Preface to the Second Edition

Why did we write a second edition? A minor revision of the first edition
would have been adequate to correct the (admittedly many) typographical
mistakes. However, many of the nice comments that we received from stu-
dents and colleagues alike, ended with a remark of the type: “unfortunately,
you don’t discuss topic x”. And indeed, we feel that, after only five years,
the simulation world has changed so much that the title of the book was no
longer covered by the contents.

The first edition was written in 1995 and since then several new tech-
niques have appeared or matured. Most (but not all) of the major changes
in the second edition deal with these new developments. In particular, we
have included a section on:

� Transition path sampling and diffusive barrier crossing to simulate
rare events

� Dissipative particle dynamic as a course-grained simulation technique

� Novel schemes to compute the long-ranged forces

� Discussion on Hamiltonian and non-Hamiltonian dynamics in the con-
text of constant-temperature and constant-pressure Molecular Dynam-
ics simulations

� Multiple-time-step algorithms as an alternative for constraints

� Defects in solids

� The pruned-enriched Rosenbluth sampling, recoil growth, and con-
certed rotations for complex molecules

� Parallel tempering for glassy Hamiltonians

We have updated some of the examples to include also recent work. Several
new Examples have been added to illustrate recent applications.

We have taught several courses on Molecular Simulation, based on the
first edition of this book. As part of these courses, Dr. Thijs Vlugt prepared
many Questions, Exercises, and Case Studies, most of which have been in-
cluded in the present edition. Some additional exercises can be found on
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the Web. We are very grateful to Thijs Vlugt for the permission to reproduce
this material.

Many of the advanced Molecular Dynamics techniques described in this
book are derived using the Lagrangian or Hamilton formulations of classical
mechanics. However, many chemistry and chemical engineering students
are not familiar with these formalisms. While a full description of classical
mechanics is clearly beyond the scope of the present book, we have added
an Appendix that summarizes the necessary essentials of Lagrangian and
Hamiltonian mechanics.

Special thanks are due to Giovanni Ciccotti, Rob Groot, Gavin Crooks,
Thijs Vlugt, and Peter Bolhuis for their comments on parts of the text. In ad-
dition, we thank everyone who pointed out mistakes and typos, in particular
Drs. J.B. Freund, R. Akkermans, and D. Moroni.



Preface

This book is not a computer simulation cookbook. Our aim is to explain
the physics that is behind the “recipes” of molecular simulation. Of course,
we also give the recipes themselves, because otherwise the book would be
too abstract to be of much practical use. The scope of this book is necessarily
limited: we do not aim to discuss all aspects of computer simulation. Rather,
we intend to give a unified presentation of those computational tools that
are currently used to study the equilibrium properties and, in particular,
the phase behavior of molecular and supramolecular substances. Moreover,
we intentionally restrict the discussion to simulations of classical many-body
systems, even though some of the techniques mentioned can be applied to
quantum systems as well. And, within the context of classical many-body
systems, we restrict our discussion to the modeling of systems at, or near,
equilibrium.

The book is aimed at readers who are active in computer simulation
or are planning to become so. Computer simulators are continuously con-
fronted with questions concerning the choice of technique, because a bewil-
dering variety of computational tools is available. We believe that, to make a
rational choice, a good understanding of the physics behind each technique
is essential. Our aim is to provide the reader with this background.

We should state at the outset that we consider some techniques to be
more useful than others, and therefore our presentation is biased. In fact,
we believe that the reader is well served by the fact that we do not present
all techniques as equivalent. However, whenever we express our personal
preference, we try to back it up with arguments based in physics, applied
mathematics, or simply experience. In fact, we mix our presentation with
practical examples that serve a twofold purpose: first, to show how a given
technique works in practice, and second, to give the reader a flavor of the
kind of phenomena that can be studied by numerical simulation.

The reader will also notice that two topics are discussed in great detail,
namely simulation techniques to study first-order phase transitions, and var-
ious aspects of the configurational-bias Monte Carlo method. The reason
why we devote so much space to these topics is not that we consider them
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to be more important than other subjects that get less coverage, but rather
because we feel that, at present, the discussion of both topics in the literature
is rather fragmented.

The present introduction is written for the nonexpert. We have done so
on purpose. The community of people who perform computer simulations
is rapidly expanding as computer experiments become a general research
tool. Many of the new simulators will use computer simulation as a tool
and will not be primarily interested in techniques. Yet, we hope to convince
those readers who consider a computer simulation program a black box, that
the inside of the black box is interesting and, more importantly, that a better
understanding of the working of a simulation program may greatly improve
the efficiency with which the black box is used.

In addition to the theoretical framework, we discuss some of the practical
tricks and rules of thumb that have become “common” knowledge in the
simulation community and are routinely used in a simulation. Often, it is
difficult to trace back the original motivation behind these rules. As a result,
some “tricks” can be very useful in one case yet result in inefficient programs
in others. In this book, we discuss the rationale behind the various tricks, in
order to place them in a proper context. In the main text of the book we
describe the theoretical framework of the various techniques. To illustrate
how these ideas are used in practice we provide Algorithms, Case Studies
and Examples.

Algorithms

The description of an algorithm forms an essential part of this book. Such
a description, however, does not provide much information on how to im-
plement the algorithm efficiently. Of course, details about the implementa-
tion of an algorithm can be obtained from a listing of the complete program.
However, even in a well-structured program, the code contains many lines
that, although necessary to obtain a working program, tend to obscure the
essentials of the algorithm that they express. As a compromise solution, we
provide a pseudo-code for each algorithm. These pseudo-codes contain only
those aspects of the implementation directly related to the particular algo-
rithm under discussion. This implies that some aspects that are essential for
using this pseudo-code in an actual program have to be added. For exam-
ple, the pseudo-codes consider only the � directions; similar lines have to be
added for the � and � direction if the code is going to be used in a simulation.
Furthermore, we have omitted the initialization of most variables.

Case Studies

In the Case Studies , the algorithms discussed in the main text are combined
in a complete program. These programs are used to illustrate some elemen-
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tary aspects of simulations. Some Case Studies focus on the problems that
can occur in a simulation or on the errors that are sometimes made. The com-
plete listing of the FORTRAN codes that we have used for the Case Studies
is accessible to the reader through the Internet.1

Examples

In the Examples, we demonstrate how the techniques discussed in the main
text are used in an application. We have tried to refer as much as possible to
research topics of current interest. In this way, the reader may get some feel-
ing for the type of systems that can be studied with simulations. In addition,
we have tried to illustrate in these examples how simulations can contribute
to the solution of “real” experimental or theoretical problems.

Many of the topics that we discuss in this book have appeared previ-
ously in the open literature. However, the Examples and Case Studies were
prepared specifically for this book. In writing this material, we could not
resist including a few computational tricks that, to our knowledge, have not
been reported in the literature.

In computer science it is generally assumed that any source code over 200
lines contains at least one error. The source codes of the Case Studies con-
tain over 25,000 lines of code. Assuming we are no worse than the average
programmer this implies that we have made at least 125 errors in the source
code. If you spot these errors and send them to us, we will try to correct
them (we can not promise this!). It also implies that, before you use part of
the code yourself, you should convince yourself that the code is doing what
you expect it to do.

In the light of the previous paragraph, we must add the following dis-
claimer:

We make no warranties, express or implied, that the programs
contained in this work are free of error, or that they will meet
your requirements for any particular application. They should
not be relied on for solving problems whose incorrect solution
could result in injury, damage, or loss of property. The authors
and publishers disclaim all liability for direct or consequential
damages resulting from your use of the programs.

Although this book and the included programs are copyrighted, we au-
thorize the readers of this book to use parts of the programs for their own
use, provided that proper acknowledgment is made.

Finally, we gratefully acknowledge the help and collaboration of many
of our colleagues. In fact, many dozens of our colleagues collaborated with
us on topics described in the text. Rather than listing them all here, we men-
tion their names at the appropriate place in the text. Yet, we do wish to

1http://molsim.chem.uva.nl/frenkel smit
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Chapter 1

Introduction

(Pre)history of Computer Simulation

It usually takes decades rather than years before a fundamentally new in-
vention finds widespread application. For computer simulation, the story is
rather different. Computer simulation started as a tool to exploit the elec-
tronic computing machines that had been developed during and after the
Second World War. These machines had been built to perform the very
heavy computation involved in the development of nuclear weapons and
code breaking. In the early 1950s, electronic computers became partly avail-
able for nonmilitary use and this was the beginning of the discipline of com-
puter simulation. W. W. Wood [1] recalls: “When the Los Alamos MANIAC
became operational in March 1952, Metropolis was interested in having as
broad a spectrum of problems as possible tried on the machine, in order
to evaluate its logical structure and demonstrate the capabilities of the ma-
chine.”

The strange thing about computer simulation is that it is also a discov-
ery, albeit a delayed discovery that grew slowly after the introduction of the
technique. In fact, discovery is probably not the right word, because it does
not refer to a new insight into the working of the natural world but into our
description of nature. Working with computers has provided us with a new
metaphor for the laws of nature: they carry as much (and as little) infor-
mation as algorithms. For any nontrivial algorithm (i.e., loosely speaking,
one that cannot be solved analytically), you cannot predict the outcome of a
computation simply by looking at the program, although it often is possible
to make precise statements about the general nature (e.g., the symmetry) of
the result of the computation. Similarly, the basic laws of nature as we know
them have the unpleasant feature that they are expressed in terms of equa-
tions we cannot solve exactly, except in a few very special cases. If we wish
to study the motion of more than two interacting bodies, even the relatively
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simple laws of Newtonian mechanics become essentially unsolvable. That is
to say, they cannot be solved analytically, using only pencil and the back of
the proverbial envelope. However, using a computer, we can get the answer
to any desired accuracy. Most of materials science deals with the properties
of systems of many atoms or molecules. Many almost always means more
than two; usually, very much more. So if we wish to compute the properties
of a liquid (to take a particularly nasty example), there is no hope of finding
the answer exactly using only pencil and paper.

Before computer simulation appeared on the scene, there was only one
way to predict the properties of a molecular substance, namely by making
use of a theory that provided an approximate description of that material.
Such approximations are inevitable precisely because there are very few sys-
tems for which the equilibrium properties can be computed exactly (exam-
ples are the ideal gas, the harmonic crystal, and a number of lattice models,
such as the two-dimensional Ising model for ferromagnets). As a result,
most properties of real materials were predicted on the basis of approxi-
mate theories (examples are the van der Waals equation for dense gases, the
Debye-Hückel theory for electrolytes, and the Boltzmann equation to de-
scribe the transport properties of dilute gases). Given sufficient information
about the intermolecular interactions, these theories will provide us with
an estimate of the properties of interest. Unfortunately, our knowledge of
the intermolecular interactions of all but the simplest molecules is also quite
limited. This leads to a problem if we wish to test the validity of a particu-
lar theory by comparing directly to experiment. If we find that theory and
experiment disagree, it may mean that our theory is wrong, or that we have
an incorrect estimate of the intermolecular interactions, or both.

Clearly, it would be very nice if we could obtain essentially exact results
for a given model system without having to rely on approximate theories.
Computer simulations allow us to do precisely that. On the one hand, we
can now compare the calculated properties of a model system with those of
an experimental system: if the two disagree, our model is inadequate; that
is, we have to improve on our estimate of the intermolecular interactions.
On the other hand, we can compare the result of a simulation of a given
model system with the predictions of an approximate analytical theory ap-
plied to the same model. If we now find that theory and simulation disagree,
we know that the theory is flawed. So, in this case, the computer simulation
plays the role of the experiment designed to test the theory. This method of
screening theories before we apply them to the real world is called a com-
puter experiment. This application of computer simulation is of tremendous
importance. It has led to the revision of some very respectable theories, some
of them dating back to Boltzmann. And it has changed the way in which we
construct new theories. Nowadays it is becoming increasingly rare that a
theory is applied to the real world before being tested by computer simula-
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���� P
1 1.03 � 0.04
2 1.99 � 0.03
3 2.98 � 0.05
4 4.04 � 0.03
5 5.01 � 0.04

Table 1.1: Simulated equation of state of an ideal gas

tion. The simulation then serves a twofold purpose: it gives the theoretician
a feeling for the physics of the problem, and it generates some “exact” results
that can be used to test the quality of the theory to be constructed. Computer
experiments have become standard practice, to the extent that they now pro-
vide the first (and often the last) test of a new theoretical result.

But note that the computer as such offers us no understanding, only
numbers. And, as in a real experiment, these numbers have statistical errors.
So what we get out of a simulation is never directly a theoretical relation. As
in a real experiment, we still have to extract the useful information. To take
a not very realistic example, suppose we were to use the computer to mea-
sure the pressure of an ideal gas as a function of density. This example is
unrealistic because the volume dependence of the ideal-gas pressure has, in
fact, been well known since the work of Boyle and Gay-Lussac. The Boyle-
Gay-Lussac law states that the product of volume and pressure of an ideal
gas is constant. Now suppose we were to measure this product by computer
simulation. We might, for instance, find the set of experimental results in
Table 1.1. The data suggest that � equals ����, but no more than that. It is
left to us to infer the conclusions.

The early history of computer simulation (see, e.g., ref. [2]) illustrates this
role of computer simulation. Some areas of physics appeared to have little
need for simulation because very good analytical theories were available
(e.g., to predict the properties of dilute gases or of nearly harmonic crys-
talline solids). However, in other areas, few if any exact theoretical results
were known, and progress was much hindered by the lack of unambiguous
tests to assess the quality of approximate theories. A case in point was the
theory of dense liquids. Before the advent of computer simulations, the only
way to model liquids was by mechanical simulation [3–5] of large assem-
blies of macroscopic spheres (e.g., ball bearings). Then the main problem be-
comes how to arrange these balls in the same way as atoms in a liquid. Much
work on this topic was done by the famous British scientist J. D. Bernal, who
built and analyzed such mechanical models for liquids. Actually, it would
be fair to say that the really tedious work of analyzing the resulting three-
dimensional structures was done by his research students, such as the unfor-
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tunate Miss Wilkinson whose research assignment was to identify all distinct
local packing geometries of plastic foam spheres: she found that there were
at least 197. It is instructive to see how Bernal built some of his models. The
following quote from the 1962 Bakerian lecture describes Bernal’s attempt to
build a ball-and-spoke model of a liquid [5]:

. . . I took a number of rubber balls and stuck them together with
rods of a selection of different lengths ranging from 2.75 to 4 inch.
I tried to do this in the first place as casually as possible, work-
ing in my own office, being interrupted every five minutes or so
and not remembering what I had done before the interruption.
However,. . . .

Subsequent models were made, for instance, by pouring thousands of steel
balls from ball bearings into a balloon. It should be stressed that these me-
chanical models for liquids were in some respects quite realistic. However,
the analysis of the structures generated by mechanical simulation was very
laborious and, in the end, had to be performed by computer anyway.

In view of the preceding, it is hardly surprising that, when electronic
computers were, for the first time, made available for unclassified research,
numerical simulation of dense liquids was one of the first problems to be
tackled. In fact, the first simulation of a liquid was carried out by Metropo-
lis, Rosenbluth, Rosenbluth, Teller, and Teller on the MANIAC computer at
Los Alamos [6], using (or, more properly, introducing) the Metropolis Monte
Carlo (MC) method. The name Monte Carlo simulation had been coined ear-
lier by Metropolis and Ulam (see Ref. [7]), because the method makes heavy
use of computer-generated random numbers. Almost at the same time,
Fermi, Pasta, and Ulam [8] performed their famous numerical study of the
dynamics of an anharmonic, one-dimensional crystal. The first proper Mol-
ecular Dynamics (MD) simulations were reported in 1956 by Alder and Wain-
wright [9] at Livermore, who studied the dynamics of an assembly of hard
spheres. The first MD simulation of a model for a “real” material was re-
ported in 1959 (and published in 1960) by the group led by Vineyard at
Brookhaven [10], who simulated radiation damage in crystalline Cu (for a
historical account, see [11]). The first MD simulation of a real liquid (argon)
was reported in 1964 by Rahman at Argonne [12]. After that, computers
were increasingly becoming available to scientists outside the US govern-
ment labs, and the practice of simulation started spreading to other conti-
nents [13–16]. Much of the methodology of computer simulations has been
developed since then, although it is fair to say that the basic algorithms for
MC and MD have hardly changed since the 1950s.

The most common application of computer simulations is to predict the
properties of materials. The need for such simulations may not be immedi-
ately obvious. After all it is much easier to measure the freezing point of wa-
ter than to extract it from a computer simulation. The point is, of course, that
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it is easy to measure the freezing point of water at 1 atmosphere but often
very difficult and therefore expensive to measure the properties of real ma-
terials at very high pressures or temperatures. The computer does not care:
it does not go up in smoke when you ask it to simulate a system at 10,000 K.
In addition, we can use computer simulation to predict the properties of ma-
terials that have not yet been made. And finally, computer simulations are
increasingly used in data analysis. For instance, a very efficient technique
for obtaining structural information about macromolecules from 2D-NMR
is to feed the experimental data into a Molecular Dynamics simulation and
let the computer find the structure that is both energetically favorable and
compatible with the available NMR data.

Initially, such simulations were received with a certain amount of skep-
ticism, and understandably so. Simulation did not fit into the existing idea
that whatever was not experiment had to be theory. In fact, many scientists
much preferred to keep things the way they were: theory for the theoreti-
cians and experiments for the experimentalists and no computers to confuse
the issue. However, this position became untenable, as is demonstrated by
the following autobiographical quote of George Vineyard [11], who was the
first to study the dynamics of radiation damage by numerical simulation:

. . . In the summer of 1957 at the Gordon Conference on Chem-
istry and Physics of Metals, I gave a talk on radiation damage in
metals . . . . After the talk there was a lively discussion . . . . Some-
where the idea came up that a computer might be used to follow
in more detail what actually goes on in radiation damage cas-
cades. We got into quite an argument, some maintaining that it
wasn’t possible to do this on a computer, others that it wasn’t
necessary. John Fisher insisted that the job could be done well
enough by hand, and was then goaded into promising to demon-
strate. He went off to his room to work. Next morning he asked
for a little more time, promising to send me the results soon after
he got home. After about two weeks, not having heard from him,
I called and he admitted that he had given up. This stimulated
me to think further about how to get a high-speed computer into
the game in place of John Fisher. . . .

Finally, computer simulation can be used as a purely exploratory tool.
This sounds strange. One would be inclined to say that one cannot “dis-
cover” anything by simulation because you can never get out what you have
not put in. Computer discoveries, in this respect, are not unlike mathemat-
ical discoveries. In fact, before computers were actually available this kind
of numerical charting of unknown territory was never considered.

The best way to explain it is to give an explicit example. In the mid-
1950s, one of the burning questions in statistical mechanics was this: can
crystals form in a system of spherical particles that have a harsh short-range
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repulsion, but no mutual attraction whatsoever? In a very famous computer
simulation, Alder and Wainwright [17] and Wood and Jacobson [18] showed
that such a system does indeed have a first-order freezing transition. This
is now accepted wisdom, but at the time it was greeted with skepticism.
For instance, at a meeting in New Jersey in 1957, a group of some 15 very
distinguished scientists (among whom were 2 Nobel laureates) discussed
the issue. When a vote was taken as to whether hard spheres can form a
stable crystal, it appeared that half the audience simply could not believe
this result. However, the work of the past 30 years has shown that harsh
repulsive forces really determine the structural properties of a simple liquid
and that attractive forces are in a sense of secondary importance.

Suggested Reading

As stated at the outset, the present book does not cover all aspects of com-
puter simulation. Readers who are interested in aspects of computer simu-
lation not covered in this book are referred to one of the folowing books

� Allen and Tildesley, Computer Simulation of Liquids [19]

� Haile, Molecular Dynamics Simulations: Elementary Methods [20]

� Landau and Binder, A Guide to Monte Carlo Simulations in Statistical
Physics [21]

� Rapaport, The Art of Molecular Dynamics Simulation [22]

� Newman and Barkema, Monte Carlo Methods in Statistical Physics [23]

Also of interest in this context are the books by Hockney and Eastwood [24],
Hoover [25, 26], Vesely [27], and Heermann [28] and the book by Evans and
Morriss [29] for the theory and simulation of transport phenomena. The
latter book is out of print and has been made available in electronic form.1

A general discussion of Monte Carlo sampling (with examples) can be
found in Koonin’s Computational Physics [30]. As the title indicates, this is
a textbook on computational physics in general, as is the book by Gould
and Tobochnik [31]. In contrast, the book by Kalos and Whitlock [32] fo-
cuses specifically on the Monte Carlo method. A good discussion of (quasi)
random-number generators can be found in Numerical Recipes [33], while
Ref. [32] gives a detailed discussion of tests for random-number generators.
A discussion of Monte Carlo simulations with emphasis on techniques rel-
evant for atomic and molecular systems may be found in two articles by
Valleau and Whittington in Modern Theoretical Chemistry [34, 35]. The books
by Binder [36,37] and Mouritsen [38] emphasize the application of MC simu-
lations to discrete systems, phase transitions and critical phenomena. In ad-
dition, there exist several very useful proceedings of summer schools [39–42]
on computer simulation.

1See http://rsc.anu.edu.au/˜evans/evansmorrissbook.htm
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Chapter 2

Statistical Mechanics

The topic of this book is computer simulation. Computer simulation allows
us to study properties of many-particle systems. However, not all properties
can be directly measured in a simulation. Conversely, most of the quantities
that can be measured in a simulation do not correspond to properties that
are measured in real experiments. To give a specific example: in a Molecular
Dynamics simulation of liquid water, we could measure the instantaneous
positions and velocities of all molecules in the liquid. However, this kind
of information cannot be compared to experimental data, because no real
experiment provides us with such detailed information. Rather, a typical
experiment measures an average property, averaged over a large number of
particles and, usually, also averaged over the time of the measurement. If
we wish to use computer simulation as the numerical counterpart of exper-
iments, we must know what kind of averages we should aim to compute.
In order to explain this, we need to introduce the language of statistical me-
chanics. This we shall do here. We provide the reader with a quick (and
slightly dirty) derivation of the basic expressions of statistical mechanics.
The aim of these derivations is only to show that there is nothing mysterious
about concepts such as phase space, temperature and entropy and many of
the other statistical mechanical objects that will appear time and again in the
remainder of this book.

2.1 Entropy and Temperature

Most of the computer simulations that we discuss are based on the assump-
tion that classical mechanics can be used to describe the motions of atoms
and molecules. This assumption leads to a great simplification in almost
all calculations, and it is therefore most fortunate that it is justified in many
cases of practical interest. Surprisingly, it turns out to be easier to derive the
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basic laws of statistical mechanics using the language of quantum mechan-
ics. We will follow this route of least resistance. In fact, for our derivation,
we need only little quantum mechanics. Specifically, we need the fact that a
quantum mechanical system can be found in different states. For the time be-
ing, we limit ourselves to quantum states that are eigenvectors of the Hamil-
tonian � of the system (i.e., energy eigenstates). For any such state �� �, we
have that ��� � = ���� �, where �� is the energy of state �� �. Most exam-
ples discussed in quantum mechanics textbooks concern systems with only
a few degrees of freedom (e.g., the one-dimensional harmonic oscillator or a
particle in a box). For such systems, the degeneracy of energy levels will be
small. However, for the systems that are of interest to statistical mechanics
(i.e., systems with ������� particles), the degeneracy of energy levels is as-
tronomically large. In what follows, we denote by ����� ��� the number of
eigenstates with energy � of a system of � particles in a volume �. We now
express the basic assumption of statistical mechanics as follows: a system
with fixed �, �, and � is equally likely to be found in any of its ���� eigen-
states. Much of statistical mechanics follows from this simple (but highly
nontrivial) assumption.

To see this, let us first consider a system with total energy � that con-
sists of two weakly interacting subsystems. In this context, weakly interacting
means that the subsystems can exchange energy but that we can write the
total energy of the system as the sum of the energies �� and �� of the sub-
systems. There are many ways in which we can distribute the total energy
over the two subsystems such that �� ��� � �. For a given choice of ��, the
total number of degenerate states of the system is ������ � ������. Note
that the total number of states is not the sum but the product of the number
of states in the individual systems. In what follows, it is convenient to have
a measure of the degeneracy of the subsystems that is additive. A logical
choice is to take the (natural) logarithm of the degeneracy. Hence:

ln����� �� ��� � ln������ � ln���� � ���	 (2.1.1)

We assume that subsystems 1 and 2 can exchange energy. What is the most
likely distribution of the energy? We know that every energy state of the total
system is equally likely. But the number of eigenstates that correspond to a
given distribution of the energy over the subsystems depends very strongly
on the value of ��. We wish to know the most likely value of ��, that is, the
one that maximizes ln����� �����. The condition for this maximum is that�
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We introduce the shorthand notation

����� ����

�
� ln����� ���

��

�
���

� (2.1.4)

With this definition, we can write equation (2.1.3) as

����� ��� ��� � ����� ��� ���� (2.1.5)

Clearly, if initially we put all energy in system 1 (say), there will be energy
transfer from system 1 to system 2 until equation (2.1.3) is satisfied. From
that moment on, no net energy flows from one subsystem to the other, and
we say that the two subsystems are in (thermal) equilibrium. When this
equilibrium is reached, ln� of the total system is at a maximum. This sug-
gests that ln� is somehow related to the thermodynamic entropy � of the
system. After all, the second law of thermodynamics states that the entropy
of a system �, �, and � is at its maximum when the system is in thermal
equilibrium. There are many ways in which the relation between ln� and
entropy can be established. Here we take the simplest route; we simply
define the entropy to be equal to ln�. In fact, for (unfortunate) historical
reasons, entropy is not simply equal to ln�; rather we have

����� � ��� 	� ln����� � ��� (2.1.6)

where 	� is Boltzmann’s constant, which in S.I. units has the value 1.38066
10��� J/K. With this identification, we see that our assumption that all de-
generate eigenstates of a quantum system are equally likely immediately
implies that, in thermal equilibrium, the entropy of a composite system is
at a maximum. It would be a bit premature to refer to this statement as the
second law of thermodynamics, as we have not yet demonstrated that the
present definition of entropy is, indeed, equivalent to the thermodynamic
definition. We simply take an advance on this result.

The next thing to note is that thermal equilibrium between subsystems 1
and 2 implies that �� = ��. In everyday life, we have another way to express
the same thing: we say that two bodies brought into thermal contact are in
equilibrium if their temperatures are the same. This suggests that � must
be related to the absolute temperature. The thermodynamic definition of
temperature is


�� �

�
��

��

�
���

� (2.1.7)

If we use the same definition here, we find that

� � 
��	���� (2.1.8)

Now that we have defined temperature, we can consider what happens if we
have a system (denoted by) that is in thermal equilibrium with a large heat
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bath (�). The total system is closed; that is, the total energy � � �� � �� is
fixed (we assume that the system and the bath are weakly coupled, so that
we may ignore their interaction energy). Now suppose that the system � is
prepared in one specific quantum state � with energy ��. The bath then has
an energy �� � � � �� and the degeneracy of the bath is given by ���� �

���. Clearly, the degeneracy of the bath determines the probability �� to find
system � in state �:

�� �
���� � ����
����� � ���

� (2.1.9)

To compute ���� � ���, we expand ln����� ��� around �� � �:

ln���� � ��� � ln����� � ��
� ln�����

��
���	
�� (2.1.10)

or, using equations (2.1.6) and (2.1.7),

ln���� � ��� � ln����� � ��
��� ���	
��� (2.1.11)

If we insert this result in equation (2.1.9), we get

�� �
exp����
�����
� exp����
����

� (2.1.12)

This is the well-known Boltzmann distribution for a system at temperature
�. Knowledge of the energy distribution allows us to compute the average
energy ��� of the system at the given temperature �:

��� �
�

�

���� (2.1.13)

�

�
� �� exp����
�����
� exp����
����

� �
� ln
�

� exp����
����
�	
���

� �
� ln
�	
���

� (2.1.14)

where, in the last line, we have defined the partition function . If we com-
pare equation (2.1.13) with the thermodynamic relation

� �
��
�

�	
�
�

where � is the Helmholtz free energy, we see that � is related to the partition
function :

� � ���� ln � ���� ln

�
�

�

exp����
����

�
� (2.1.15)
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Strictly speaking, � is fixed only up to a constant. Or, what amounts to the
same thing, the reference point of the energy can be chosen arbitrarily. In
what follows, we can use equation (2.1.15) without loss of generality. The re-
lation between the Helmholtz free energy and the partition function is often
more convenient to use than the relation between ln� and the entropy. As
a consequence, equation (2.1.15) is the workhorse of equilibrium statistical
mechanics.

2.2 Classical Statistical Mechanics

Thus far, we have formulated statistical mechanics in purely quantum mech-
anical terms. The entropy is related to the density of states of a system with
energy �, volume �, and number of particles �. Similarly, the Helmholtz
free energy is related to the partition function �, a sum over all quantum
states � of the Boltzmann factor exp�������	�. To be specific, let us consider
the average value of some observable 
. We know the probability that a
system at temperature 	 will be found in an energy eigenstate with energy
�� and we can therefore compute the thermal average of 
 as

�
� �

�
� exp�������	�� ��
�� �
�

� exp�������	�
 (2.2.1)

where � ��
�� � denotes the expectation value of the operator 
 in quan-
tum state �. This equation suggests how we should go about computing
thermal averages: first we solve the Schrödinger equation for the (many-
body) system of interest, and next we compute the expectation value of the
operator 
 for all those quantum states that have a nonnegligible statisti-
cal weight. Unfortunately, this approach is doomed for all but the simplest
systems. First of all, we cannot hope to solve the Schrödinger equation for
an arbitrary many-body system. And second, even if we could, the number
of quantum states that contribute to the average in equation (2.2.1) would
be so astronomically large (������

��

�) that a numerical evaluation of all ex-
pectation values would be unfeasible. Fortunately, equation (2.2.1) can be
simplified to a more workable expression in the classical limit. To this end,
we first rewrite equation (2.2.1) in a form that is independent of the specific
basis set. We note that exp�������	� = � �� exp������	��� �, where � is
the Hamiltonian of the system. Using this relation, we can write

�
� �

�
� � �� exp������	�
�� �
�

� � �� exp������	��� �

�
Tr exp������	�

Tr exp������	�

 (2.2.2)
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where Tr denotes the trace of the operator. As the value of the trace of an
operator does not depend on the choice of the basis set, we can compute
thermal averages using any basis set we like. Preferably, we use simple
basis sets, such as the set of eigenfunctions of the position or the momen-
tum operator. Next, we use the fact that the Hamiltonian � is the sum of
a kinetic part � and a potential part � . The kinetic energy operator is a
quadratic function of the momenta of all particles. As a consequence, mo-
mentum eigenstates are also eigenfunctions of the kinetic energy operator.
Similarly, the potential energy operator is a function of the particle coordi-
nates. Matrix elements of � therefore are most conveniently computed in a
basis set of position eigenfunctions. However, � � � � � itself is not diag-
onal in either basis set nor is exp����� � ���. However, if we could replace
exp����� by exp����� exp�����, then we could simplify equation (2.2.2)
considerably. In general, we cannot make this replacement because

exp����� exp����� � exp����� � � ������� �����

where ���� � is the commutator of the kinetic and potential energy opera-
tors while ������ �� is meant to note all terms containing commutators and
higher-order commutators of� and � . It is easy to verify that the commuta-
tor ���� � is of order �̄ (�̄ � ������, where � is Planck’s constant). Hence, in
the limit �̄� �, we may ignore the terms of order������ ��. In that case, we
can write

Tr exp����� � Tr exp����� exp������ (2.2.3)

If we use the notation �� 	 for eigenvectors of the position operator and �
 	

for eigenvectors of the momentum operator, we can express equation (2.2.3)
as

Tr exp����� �
�
���

� ������ �� 	� � �
 	� 
 ������
 	� 
 �� 	 � (2.2.4)

All matrix elements can be evaluated directly:

� �� exp������� 	� exp
�
����r��

�
�

where ��r�� on the right-hand side is no longer an operator but a function
of the coordinates of all  particles. Similarly,

� 
� exp������
 	� exp

�
��

��
���

��� ������

�
�

where �� � �̄
�, and
� ��
 	� 
 �� 	� �����
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where � is the volume of the system and � the number of particles. Finally,
we can replace the sum over states by an integration over all coordinates and
momenta. The final result is

Tr exp����� �
�

�����

�
dp�dr� exp

Æ
��

��
�

��� ������ � ��r��

��

� 	classical 
 (2.2.5)

where � is the dimensionality of the system and the last line defines the clas-
sical partition function. The factor ���� has been inserted afterward to take
the indistinguishability of identical particles into account. Every �-particle
quantum state corresponds to a volume ��� in classical phase space, but
not all such volumes correspond to distinct quantum states. In particular, all
points in phase space that only differ in the labeling of the particles corre-
spond to the same quantum state (for more details, see, e.g., [43]).

Similarly, we can derive the classical limit for Tr exp������, and finally,
we can write the classical expression for the thermal average of the observ-
able � as

��� �

�
dp�dr� exp

�
��

��
� �

�
� ������ � ��r��

��
��p�
q���

dp�dr� exp
�
��

��
� �

�
� ������ � ��r��

��  (2.2.6)

Equations (2.2.5) and (2.2.6) are the starting point for virtually all classical
simulations of many-body systems.

2.2.1 Ergodicity

Thus far, we have discussed the average behavior of many-body systems in
a purely static sense: we introduced only the assumption that every quan-
tum state of a many-body system with energy � is equally likely to be oc-
cupied. Such an average over all possible quantum states of a system is
called an ensemble average. However, this is not the way we usually think
about the average behavior of a system. In most experiments we perform
a series of measurements during a certain time interval and then determine
the average of these measurements. In fact, the idea behind Molecular Dy-
namics simulations is precisely that we can study the average behavior of
a many-particle system simply by computing the natural time evolution of
that system numerically and averaging the quantity of interest over a suf-
ficiently long time. To take a specific example, let us consider a fluid con-
sisting of atoms. Suppose that we wish to compute the average density of
the fluid at a distance � from a given atom �, �����. Clearly, the instanta-
neous density depends on the coordinates r� of all particles � in the system.
As time progresses, the atomic coordinates will change (according to New-
ton’s equations of motion), and hence the density around atom �will change.
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Provided that we have specified the initial coordinates and momenta of all
atoms (r�����p����) we know, at least in principle, the time evolution of
����� r�����p����� ��. In a Molecular Dynamics simulation, we measure the
time-averaged density ����� of a system of � atoms, in a volume �, at a
constant total energy �:

����� � lim
���

�

�

��
�

d� � ����� �
��	 (2.2.7)

Note that, in writing down this equation, we have implicitly assumed that,
for � sufficiently long, the time average does not depend on the initial con-
ditions. This is, in fact, a subtle assumption that is not true in general (see,
e.g., [44]). However, we shall disregard subtleties and simply assume that,
once we have specified �, �, and �, time averages do not depend on the
initial coordinates and momenta. If that is so, then we would not change
our result for ����� if we average over many different initial conditions; that
is, we consider the hypothetical situation where we run a large number of
Molecular Dynamics simulations at the same values for �, �, and �, but
with different initial coordinates and momenta,

����� �

�
initial conditions

�
lim
���

�

�

��
�

d� � ����� r�����p����� � ��

�

number of initial conditions
	 (2.2.8)

We now consider the limiting case where we average over all initial condi-
tions compatible with the imposed values of �, �, and �. In that case, we
can replace the sum over initial conditions by an integral:�

initial conditions


�r�����p�����

number of initial conditions
�
�
�

dr�dp� 
�r�����p�����

����� � ��
� (2.2.9)

where 
 denotes an arbitrary function of the initial coordinates r�����p����,
while ����� � ��=

�
�

dr�dp� (we have ignored a constant factor1). The sub-
script � on the integral indicates that the integration is restricted to a shell of
constant energy �. Such a “phase space” average, corresponds to the clas-
sical limit of the ensemble average discussed in the previous sections.2 We

1If we consider a quantum mechanical system, then ����� ��� is simply the number of
quantum states of that system, for given �, � , and �. In the classical limit, the number of
quantum states of a d-dimensional system of � distinguishable, structureless particles is given
by����� ��� = �

�
dp�dr������. For� indistinguishable particles, we should divide the latter

expression by a factor ��.
2Here we consider the classical equivalent of the so-called microcanonical ensemble, i.e., the

ensemble of systems with fixed �, � , and �. The classical expression for phase space integrals
in the microcanonical ensemble can be derived from the quantum mechanical expression in-
volving a sum over quantum states in much the same way that we used to derive the classical
constant ��� �� (“canonical”) ensemble from the corresponding quantum mechanical expres-
sion.
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denote an ensemble average by �� � � � to distinguish it from a time average,
denoted by a bar. If we switch the order of the time averaging and the aver-
aging over initial conditions, we find

����� � lim
���

�

�

�
d� � ������ r�����p����� � ������� (2.2.10)

However, the ensemble average in this equation does not depend on the
time � �. This is so, because there is a one-to-one correspondence between the
initial phase space coordinates of a system and those that specify the state
of the system at a later time � � (see e.g., [44, 45]). Hence, averaging over
all initial phase space coordinates is equivalent to averaging over the time-
evolved phase space coordinates. For this reason, we can leave out the time
averaging in equation (2.2.10), and we find

����� � ����������� (2.2.11)

This equation states that, if we wish to compute the average of a function
of the coordinates and momenta of a many-particle system, we can either
compute that quantity by time averaging (the “MD” approach) or by ensem-
ble averaging (the “MC” approach). It should be stressed that the preceding
paragraphs are meant only to make equation (2.2.11) plausible, not as a proof.
In fact, that would have been quite impossible because equation (2.2.11) is
not true in general. However, in what follows, we shall simply assume that
the “ergodic hypothesis”, as equation (2.2.11) is usually referred to, applies
to the systems that we study in computer simulations. The reader, however,
should be aware that many examples of systems are not ergodic in practice,
such as glasses and metastable phases, or even in principle, such as nearly
harmonic solids.

2.3 uestions and Exercises

uestion 1 (Number of Con gurations)

1. Consider a system � consisting of subsystems �� and ��, for which �� �

���� and �� � ����. What is the number of con gurations available to the
combined system? Also, compute the entropies 	, 	�, and 	�.

2. By what factor does the number of available con gurations increase when
�� m� of air at ��� atm and 
�� K is allowed to expand by �����% at constant
temperature?

3. By what factor does the number of available con gurations increase when
��� kJ is added to a system containing ��� mol of particles at constant volume
and  � 
�� K?

Q

Q
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4. A sample consisting of ve molecules has a total energy ��. Each molecule
is able to occupy states of energy ��, with � � ������ � � � ��. Draw up a
table with columns by the energy of the states and write beneath them all
con gurations that are consistent with the total energy. Identify the type of
con guration that is most probable.

uestion 2 (Thermodynamic Variables in the Canonical Ensemble) Start-
ing with an expression for the Helmholtz free energy (�) as a function of��	 � 


� �
� ln �� ���	 � 
��

�

one can derive all thermodynamic properties. Show this by deriving equations for
, �, and �.

uestion 3 (Ideal Gas (Part 1)) The canonical partition function of an ideal gas
consisting of monoatomic particles is equal to

� ���	 � 
� �
�

�����

�
�� exp ����� �

	�

�����

in which � � ��
�
����� and �� � ��� � � ������� � � ����.

Derive expressions for the following thermodynamic properties:

� � ���	 � 
� (hint: ln ���� � � ln ��� ��)

� � ���	 � 
� (which leads to the ideal gas law !!!)

� � ���	 � 
� (which leads to � � �� � �
 ln �)

�  ���	 � 
� and � ���	 � 
�

� �� (heat capacity at constant volume)

� �� (heat capacity at constant pressure)

uestion 4 (Ising Model) Consider a system of� spins arranged on a lattice. In
the presence of a magnetic eld, �, the energy of the system is

 � �

��
���

���� � �
�
���

����

in which � is called the coupling constant (� � �) and �� � ��. The second sum-
mation is a summation over all pairs ( �� for a periodic system, is the dimen-
sionality of the system). This system is called the Ising model.

1. Show that for positive �, and � � �, the lowest energy of the Ising model is
equal to

� � � ��

in which is the dimensionality of the system.

Q

Q
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2. Show that the free energy per spin of a 1D Ising model with zero eld is equal
to

� ���� �

�
� �

ln �� cosh �����

�

when ���. The function cosh ��� is de ned as

cosh ��� �
exp ���� � exp ���

�
� (2.3.1)

3. Derive equations for the energy and heat capacity of this system.

uestion 5 (The Photon Gas) An electromagnetic eld in thermal equilibrium
can be described as a phonon gas. From the quantum theory of the electromagnetic
eld, it is found that the total energy of the system (�) can be written as the sum of
photon energies:

� �

��
���

	�
��̄ �

��
���

	���

in which �� is the characteristic energy of a photon with frequency 
, , 	� �

������ � � � �� is the so-called occupancy number of mode , and � is the number of
eld modes (here we take � to be nite).

1. Show that the canonical partition function of the system can be written as

� �

��
���

�

� � exp ������
� (2.3.2)

Hint: you will have to use the following identity for � � �� �:

����
���

�� �
�

� � �
� (2.3.3)

For the product of partition functions of two independent systems � and �

we can write
�� ��� � ��� (2.3.4)

when � � � � � and � � � � ��.

2. Show that the average occupancy number of state , �	��, is equal to

�	�� �
� ln�

� ������
�

�

exp ����� � �
� (2.3.5)

3. Describe the behavior of �	�� when ��� and when �� �.

Q
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uestion 6 (Ideal Gas (Part 2)) An ideal gas is placed in a constant gravitational
eld. The potential energy of � gas molecules at height � is ���, where � � ��

is the total mass of � molecules. The temperature in the system is uniform and the
system in nitely large. We assume that the system is locally in equilibrium, so we
are allowed to use a local partition function.

1. Show that the grand-canonical partition function of a system in volume � at
height � is equal to

� ���� � 	� �� �

��
���

exp �
���

�����

�
� exp ��
 ��� ������ (2.3.6)

in which �� is the Hamiltonian of the system at � � �.

2. Explain that a change in � is equivalent to a change in chemical potential, �.
Use this to show that the pressure of the gas at height � is equal to

� ��� � � �� � ��� exp ��
���� � (2.3.7)

(Hint: you will need the formula for the chemical potential of an ideal gas.)

Exercise 1 (Distribution of Particles)
Consider an ideal gas of � particles in a volume � at constant energy �.
Let us divide the volume in � identical compartments. Every compartment
contains �� molecules such that

� �

����
���

��� (2.3.8)

An interesting quantity is the distribution of molecules over the � compart-
ments. Because the energy is constant, every possible eigenstate of the
system will be equally likely. This means that in principle it is possible that
one of the compartments is empty.

1. On the book’s website you can find a program that calculates the distri-
bution of molecules among the � compartments. Run the program
for different numbers of compartments (�) and total number of gas
molecules (�). Note that the code has to be completed first (see the
file distribution.f). The output of the program is the probability of find-
ing � particles in a particular compartment as a function of �. This is
printed in the file output.dat.

2. What is the probability that one of the compartments is empty?

3. Consider the case � � � and � even. The probability of finding ��� �

�� molecules in compartment � and ��� � �� molecules in compart-
ment � is given by

� ���� �
��

���� � ��� ������ ������
� (2.3.9)

Q
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Compare your numerical results with the analytical expression for dif-
ferent values of �. Show that this distribution is a Gaussian for small
����. Hint: For � � �� , it might be useful to use Stirling’s approxima-
tion:

�� � ����
�

� ���
�

� exp ���� 	 (2.3.10)

Exercise 2 (Bolt mann Distribution)
Consider a system of � energy levels with energies �
�
��
 � � � 
 ��� �� �

and � � �.

1. Calculate, using the given program, the occupancy of each level for dif-
ferent values of the temperature. What happens at high temperatures?

2. Change the program in such a way that the degeneracy of energy level
� equals �� �. What do you see?

3. Modify the program in such a way that the occupation of the energy
levels as well as the partition function () is calculated for a hetero
nuclear linear rotor with moment of inertia �. Compare your result with
the approximate result

 �
��

��̄�
(2.3.11)

for different temperatures. Note that the energy levels of a linear rotor
are

� � � �� � ��
�̄�

��
(2.3.12)

with � � �
�
�
 � � � 
�. The degeneracy of level � equals �� � �.

Exercise 3 (Coupled Harmonic Oscillators)
Consider a system of � harmonic oscillators with a total energy �. A single
harmonic oscillator has energy levels �
�
��
 � � � 
� (� � �). All harmonic
oscillators in the system can exchange energy.

1. Invent a computational scheme to update the system at constant total
energy (�). Compare your scheme with the scheme that is incorpo-
rated in the computer code that you can find on the book’s website
(see the file harmonic.f).

2. Make a plot of the energy distribution of the first oscillator as a function
of the number of oscillators for a constant value of ��� (output.dat).
Which distribution is recovered when � becomes large? What is the
function of the other �� � harmonic oscillators? Explain.

3. Compare this distribution with the canonical distribution of a single os-
cillator at the same average energy (use the option NVT).

4. How does this exercise relate to the derivation of the Boltzmann distri-
bution for a system at temperature �?
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Exercise 4 (Random alk on a 1D Lattice)
Consider the random walk of a single particle on a line. The particle performs
jumps of fixed length1. Assuming that the probability for forward or backward
jumps is equal, the mean-squared displacement of a particle after � jumps
is equal to �. The probability that, after � jumps, the net distance covered
by the particle equals � is given by

ln �� ���� �� �
�

�
ln
�

�

��

�
�

��

��
�

1. Derive this equation using Stirling’s approximation for ln ��.

2. Compare your numerical result for the root mean-squared displace-
ment with the theoretical prediction (the computed function � ���� �,
see the file output.dat). What is the diffusivity of this system?

3. Modify the program in such a way that the probability to jump in the
forward direction equals 	�
. What happens?

Exercise 5 (Random alk on a 2D Lattice)
Consider the random walk of � particles on a � �� lattice. Two particles
cannot occupy the same lattice site. On this lattice, periodic boundaries are
used. This means that when a particle leaves the lattices it returns on the
opposite side of the lattice; i.e., the coordinates are given modulo �.

1. What is the fraction of occupied sites (�) of the lattice as a function of
� and �?

2. Make a plot of the diffusivity  as a function of � for � � ��. For low
values of �, the diffusivity can be approximated by

 � � �� � �� �

Why is this equation reasonable at low densities? Why does it break
down at higher densities?

3. Modify the program in such a way that the probability to jump in one
direction is larger than the probability to jump in the other direction.
Explain the results.

4. Modify the program in such a way that periodic boundary conditions are
used in one direction and reflecting boundary conditions in the other.
What happens?



Chapter 3

Monte Carlo Simulations

In the present chapter, we describe the basic principles of the Monte Carlo
method. In particular, we focus on simulations of systems of a fixed number
of particles (�) in a given volume (�) at a temperature (�).

3.1 The Monte Carlo Method

In the previous chapter, we introduced some of the basic concepts of (classi-
cal) statistical mechanics. Our next aim is to indicate where the Monte Carlo
method comes in. We start from the classical expression for the partition
function �, equation (2.2.5):

� � �

�
dp�dr� exp����r� p�������� (3.1.1)

where r� stands for the coordinates of all � particles, and p� for the cor-
responding momenta. The function ��q��p�� is the Hamiltonian of the
system. It expresses the total energy of an isolated system as a function of
the coordinates and momenta of the constituent particles: � � ��� , where
� is the kinetic energy of the system and � is the potential energy. Finally,
� is a constant of proportionality, chosen such that the sum over quantum
states in equation (2.1.15) approaches the classical partition function in the
limit �̄� 	. For instance, for a system of � identical atoms, � � 
��������.
The classical equation corresponding to equation (2.2.1) is

��� �

�
dp�dr� ��p�� r�� exp�����p�� r����

dp�dr� exp�����p�� r���
� (3.1.2)

where � � 
����. In this equation, the observable � has been expressed
as a function of coordinates and momenta. As � is a quadratic function of
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the momenta the integration over momenta can be carried out analytically.
Hence, averages of functions that depend on momenta only are usually easy
to evaluate.1 The difficult problem is the computation of averages of func-
tions ��r��. Only in a few exceptional cases can the multidimensional in-
tegral over particle coordinates be computed analytically; in all other cases
numerical techniques must be used.

Having thus defined the nature of the numerical problem that we must
solve, let us next look at possible solutions. It might appear that the most
straightforward approach would be to evaluate ��� in equation (3.1.2) by
numerical quadrature, for instance using Simpson’s rule. It is easy to see,
however, that such a method is completely useless even if the number of
independent coordinates �� (� is the dimensionality of the system) is still
very small ������. Suppose that we plan to carry out the quadrature by
evaluating the integrand on a mesh of points in the ��-dimensional config-
uration space. Let us assume that we take � equidistant points along each
coordinate axis. The total number of points at which the integrand must be
evaluated is then equal to ���. For all but the smallest systems this num-
ber becomes astronomically large, even for small values of �. For instance,
if we take ��� particles in three dimensions, and� � �, then we would have
to evaluate the integrand at ����� points! Computations of such magnitude
cannot be performed in the known universe. And this is fortunate, because
the answer that would be obtained would have been subject to a large sta-
tistical error. After all, numerical quadratures work best on functions that
are smooth over distances corresponding to the mesh size. But for most in-
termolecular potentials, the Boltzmann factor in equation (3.1.2) is a rapidly
varying function of the particle coordinates. Hence an accurate quadrature
requires a small mesh spacing (i.e., a large value of �). Moreover, when
evaluating the integrand for a dense liquid (say), we would find that for the
overwhelming majority of points this Boltzmann factor is vanishingly small.
For instance, for a fluid of ��� hard spheres at the freezing point, the Boltz-
mann factor would be nonzero for � out of every ����� configurations!

The preceding example clearly demonstrates that better numerical tech-
niques are needed to compute thermal averages. One such a technique is
the Monte Carlo method or, more precisely, the Monte Carlo importance-
sampling algorithm introduced in 1953 by Metropolis et al. [6]. The applica-
tion of this method to the numerical simulation of dense molecular systems
is the subject of the present chapter.

3.1.1 Importance Sampling

Before discussing importance sampling, let us first look at the simplest Mon-
te Carlo technique, that is, random sampling. Suppose we wish to evaluate

1This is not the case when hard constraints are used, see section 11.2.1.
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numerically a one-dimensional integral �:

� �

��
�

d� ����� (3.1.3)

Instead of using a conventional quadrature where the integrand is evaluated
at predetermined values of the abscissa, we could do something else. Note
that equation (3.1.3) can be rewritten as

� � ��� �� ������ � (3.1.4)

where ������ denotes the unweighted average of ���� over the interval ���� �.
In brute force Monte Carlo, this average is determined by evaluating ���� at
a large number (say, �) of � values randomly distributed over the interval
���� �. It is clear that, as ���, this procedure should yield the correct value
for �. However, as with the conventional quadrature procedure, this method
is of little use to evaluate averages such as in equation (3.1.2) because most of
the computing is spent on points where the Boltzmann factor is negligible.
Clearly, it would be much preferable to sample many points in the region
where the Boltzmann factor is large and few elsewhere. This is the basic
idea behind importance sampling.

How should we distribute our sampling through configuration space?
To see this, let us first consider a simple, one-dimensional example. Suppose
we wish to compute the definite integral in equation (3.1.3) by Monte Carlo
sampling, but with the sampling points distributed nonuniformly over the
interval ���� � (for convenience we assume � � � and � � 	), according to
some nonnegative probability density 
���. Clearly, we can rewrite equa-
tion (3.1.3) as

� �

��
�

d� 
���
����


���
� (3.1.5)

Let us assume that we know that 
��� is the derivative of another (non-
negative, nondecreasing) function ����, with ���� � � and ��	� � 	 (these
boundary conditions imply that 
��� is normalized). Then � can be written
as

� �

��
�

d�
�������


������
� (3.1.6)

In equation (3.1.6) we have written ���� to indicate that, if we consider � as
the integration variable, then � must be expressed as a function of �. The
next step is to generate � random values of � uniformly distributed in the
interval ���	 �. We then obtain the following estimate for �:

� �
	

�

��
���

��������


�������
� (3.1.7)
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What have we gained by rewriting � in this way? The answer depends cru-
cially on our choice for ����. To see this, let us estimate ��� , the variance in
��, where �� denotes the estimate for � obtained from equation (3.1.7) with �

random sample points:

��� �
�

��

��
���

��
���

��
��������

��������
� �����

��
��������

��������
� �����

��
	 (3.1.8)

where the angular brackets denote the true average, that is, the one that
would be obtained in the limit 
 � �. As different samples � and � are
assumed to be totally independent, all cross terms in equation (3.1.8) vanish,
and we are left with

��� �
�

��

��
���

��
��������

��������
� �����

��
�

�
�

�

��
������

�
� �����

�
	
 (3.1.9)

Equation (3.1.9) shows that the variance in � still goes as ���, but the mag-
nitude of this variance can be reduced greatly by choosing ���� such that
��������� is a smooth function of �. Ideally, we should have ��������� con-
stant, in which case the variance would vanish altogether. In contrast, if ����

is constant, as is the case for the brute force Monte Carlo sampling, then the
relative error in � can become very large. For instance, if we are sampling
in a (multidimensional) configuration space of volume �, of which only a
small fraction � is accessible (for instance, � � ������, see previous section),
then the relative error that results in a brute force MC sampling will be of
order ������. As the integrand in equation (3.1.2) is nonzero only for those
configurations where the Boltzmann factor is nonzero, it would clearly be
advisable to carry out a nonuniform Monte Carlo sampling of configuration
space, such that the weight function � is approximately proportional to the
Boltzmann factor. Unfortunately, the simple importance sampling scheme
described previously cannot be used to sample multidimensional integrals
over configuration space, such as equation (3.1.2). The reason is simply that
we do not know how to construct a transformation such as the one from
equation (3.1.5) to equation (3.1.6) that would enable us to generate points
in configuration space with a probability density proportional to the Boltz-
mann factor. In fact, a necessary (but not nearly sufficient) condition for the
solution to the latter problem is that we must be able to compute analytically
the partition function of the system under study. If we could do that for the
systems of interest to us, there would be hardly any need for computer sim-
ulation.
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3.1.2 The Metropolis Method

The closing lines of the previous section suggest that it is in general not pos-
sible to evaluate an integral, such as

�
dr� exp�����r���, by direct Monte

Carlo sampling. However, in many cases, we are not interested in the con-
figurational part of the partition function itself but in averages of the type

��� �

�
dr� exp�����r�����r���

dr� exp�����r���
� (3.1.10)

Hence, we wish to know the ratio of two integrals. What Metropolis et al. [6]
showed is that it is possible to devise an efficient Monte Carlo scheme to
sample such a ratio.2 To understand the Metropolis method, let us first look
more closely at the structure of equation (3.1.10). In what follows we denote
the configurational part of the partition function by �:

� �

�
dr� exp�����r���� (3.1.11)

Note that the ratio exp������� in equation (3.1.10) is the probability den-
sity of finding the system in a configuration around r�. Let us denote this
probability density by

� �r�� �
exp�����r���

�
�

Clearly, � �r�� is nonnegative.
Suppose now that we are somehow able to randomly generate points in

configuration space according to this probability distribution � �r��. This
means that, on average, the number of points �� generated per unit volume
around a point r� is equal to �� �r��, where � is the total number of points
that we have generated. In other words,

��� �
�

�

��
���

����r�
�
�� (3.1.12)

By now the reader is almost certainly confused about the difference, if any,
between equation (3.1.12) and equation (3.1.7) of section 3.1.1. The difference
is that in the case of equation (3.1.7) we know a priori the probability of sam-
pling a point in a (hyper)volume dr� around r�. In other words we know
both exp�����r��� and �. In contrast, in equation (3.1.12) we know only
exp�����r���; that is, we know only the relative but not the absolute prob-
ability of visiting different points in configuration space. This may sound

2An interesting account of the early history of the Metropolis method may be found in
refs. [1, 46].
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Nile

Nile

Figure 3.1: Measuring the depth of the Nile: a comparison of conventional
quadrature (left), with the Metropolis scheme (right).

rather abstract: let us therefore try to clarify the difference with the help of
a simple example (see Figure 3.1). In this figure, we compare two ways of
measuring the depth of the river Nile, by conventional quadrature (left) and
by Metropolis sampling; that is, the construction of an importance-weighted
random walk (right). In the conventional quadrature scheme, the value of
the integrand is measured at a predetermined set of points. As the choice
of these points does not depend on the value of the integrand, many points
may be located in regions where the integrand vanishes. In contrast, in the
Metropolis scheme, a random walk is constructed through that region of
space where the integrand is nonnegligible (i.e., through the Nile itself). In
this random walk, a trial move is rejected if it takes you out of the water and
is accepted otherwise. After every trial move (accepted or not), the depth of
the water is measured. The (unweighted) average of all these measurements
yields an estimate of the average depth of the Nile. This, then, is the essence
of the Metropolis method. In principle, the conventional quadrature scheme
would also give results for the total area of the Nile. In the importance sam-
pling scheme, however, information on the total area cannot be obtained
directly, since this quantity is similar to �.

Let us next consider how to generate points in configuration space with
a relative probability proportional to the Boltzmann factor. The general ap-
proach is first to prepare the system in a configuration r�, which we denote
by � (old), that has a nonvanishing Boltzmann factor exp��������. This
configuration, for example, may correspond to a regular crystalline lattice
with no hard-core overlaps. Next, we generate a new trial configuration r ��,
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which we denote by � (new), by adding a small random displacement �
to �. The Boltzmann factor of this trial configuration is exp��������. We
must now decide whether we will accept or reject the trial configuration.
Many rules for making this decision satisfy the constraint that on average
the probability of finding the system in a configuration � is proportional to
� ���. Here we discuss only the Metropolis scheme, because it is simple and
generally applicable.

Let us now “derive” the Metropolis scheme to determine the transition
probability ��� � �� to go from configuration � to �. It is convenient to
start with a thought experiment (actually a thought simulation). We carry
out a very large number (say�) Monte Carlo simulations in parallel, where
� is much larger than the total number of accessible configurations. We
denote the number of points in any configuration � by ����. We wish that,
on average, ���� is proportional to � ���. The matrix elements ��� � ��

must satisfy one obvious condition: they do not destroy such an equilibrium
distribution once it is reached. This means that, in equilibrium, the average
number of accepted trial moves that result in the system leaving state �must
be exactly equal to the number of accepted trial moves from all other states �
to state �. It is convenient to impose a much stronger condition; namely, that
in equilibrium the average number of accepted moves from � to any other
state � is exactly canceled by the number of reverse moves. This detailed
balance condition implies the following:

� ������� �� � � ������� ��� (3.1.13)

Many possible forms of the transition matrix ��� � �� satisfy equation
(3.1.13). Let us look how ��� � �� is constructed in practice. We recall that
a Monte Carlo move consists of two stages. First, we perform a trial move
from state � to state �. We denote the transition matrix that determines the
probability of performing a trial move from � to � by ��� � ��, where � is
usually referred to as the underlying matrix of the Markov chain [47]. The
next stage is the decision to either accept or reject this trial move. Let us
denote the probability of accepting a trial move from � to � by acc�� � ��.
Clearly,

���� �� � ���� ��� acc��� ��� (3.1.14)

In the original Metropolis scheme, � is chosen to be a symmetric matrix
(��� � �� � ��� � ��). However, in later sections we shall see several
examples where � is not symmetric. If � is symmetric, we can rewrite equa-
tion (3.1.13) in terms of the acc��� ��:

� ���� acc��� �� � � ���� acc��� ��� (3.1.15)

From equation (3.1.15) follows

acc��� ��

acc��� ��
�
� ���

� ���
� exp�������� � ������� (3.1.16)
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Again, many choices for acc�� � �� satisfy this condition (and the obvious
condition that the probability acc�� � �� cannot exceed �). The choice of
Metropolis et al. is

acc��� �� � � ����� ��� if � ��� � � ���

� � if � ��� � � ����
(3.1.17)

Other choices for acc�� � �� are possible (for a discussion, see for instance
[19]), but the original choice of Metropolis et al. appears to result in a more
efficient sampling of configuration space than most other strategies that have
been proposed.

In summary, then, in the Metropolis scheme, the transition probability
for going from state � to state � is given by

���� �� � ���� �� � ��� � � ���

� ���� ���� ����� ���� � ��� � � ���

���� �� � � �
�

� ��� ���� ���
(3.1.18)

Note that we still have not specified the matrix �, except for the fact that it
must be symmetric. This reflects considerable freedom in the choice of our
trial moves. We will come back to this point in subsequent sections.

One thing that we have not yet explained is how to decide whether a
trial move is to be accepted or rejected. The usual procedure is as follows.
Suppose that we have generated a trial move from state � to state �, with
���� � ����. According to equation (3.1.16) this trial move should be ac-
cepted with a probability

acc��� �� � exp��	����� � ������ � ��

In order to decide whether to accept or reject the trial move, we generate
a random number, denoted by Ranf, from a uniform distribution in the in-
terval �
�� �. Clearly, the probability that Ranf is less than acc�� � �� is
equal to acc�� � ��. We now accept the trial move if Ranf � acc�� � ��

and reject it otherwise. This rule guarantees that the probability to accept a
trial move from � to � is indeed equal to acc�� � ��. Obviously, it is very
important that our random-number generator does indeed generate num-
bers uniformly in the interval �
�� �. Otherwise the Monte Carlo sampling
will be biased. The quality of random-number generators should never be
taken for granted. A good discussion of random-number generators can be
found in Numerical Recipes [33] and in Monte Carlo Methods by Kalos and
Whitlock [32].

Thus far, we have not mentioned another condition that ���� �� should
satisfy, namely that it is ergodic (i.e., every accessible point in configuration
space can be reached in a finite number of Monte Carlo steps from any other
point). Although some simple MC schemes are guaranteed to be ergodic,
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these are often not the most efficient schemes. Conversely, many efficient
Monte Carlo schemes have either not been proven to be ergodic or, worse,
been proven to be nonergodic. The solution is usually to mix the efficient,
nonergodic scheme with an occasional trial move of the less-efficient but
ergodic scheme. The method as a whole will then be ergodic (at least, in
principle).

At this point, we should stress that, in the present book, we focus on
Monte Carlo methods to model phenomena that do not depend on time. In
the literature one can also find dynamic Monte Carlo schemes. In such dy-
namic algorithms, Monte Carlo methods are used to generate a numerical
solution of the master equation that is supposed to describe the time evolu-
tion of the system under study. These dynamic techniques fall outside the
scope of this book. The reader interested in dynamic MC schemes is referred
to the relevant literature, for example Ref. [48] and references therein.

3.2 A Basic Monte Carlo Algorithm

It is difficult to talk about Monte Carlo or Molecular Dynamics programs in
abstract terms. The best way to explain how such programs work is to write
them down. This will be done in the present section.

Most Monte Carlo or Molecular Dynamics programs are only a few hun-
dred to several thousand lines long. This is very short compared to, for
instance, a typical quantum-chemistry code. For this reason, it is not un-
common that a simulator will write many different programs that are tailor-
made for specific applications. The result is that there is no such thing as a
standard Monte Carlo or Molecular Dynamics program. However, the cores
of most MD/MC programs are, if not identical, at least very similar. Next,
we shall construct such a core. It will be very rudimentary, and efficiency
has been traded for clarity. But it should demonstrate how the Monte Carlo
method works.

3.2.1 The Algorithm

The prime purpose of the kind of Monte Carlo or Molecular Dynamics pro-
gram that we shall be discussing is to compute equilibrium properties of
classical many-body systems. From now on, we shall refer to such programs
simply as MC or MD programs, although it should be remembered that there
exist many other applications of the Monte Carlo method (and, to a lesser ex-
tent, of the Molecular Dynamics method). Let us now look at a simple Monte
Carlo program.

In the previous section, the Metropolis method was introduced as a Mar-
kov process in which a random walk is constructed in such a way that the
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probability of visiting a particular point r� is proportional to the Boltzmann
factor exp�����r���. There are many ways to construct such a random walk.
In the approach introduced by Metropolis et al. [6], the following scheme is
proposed:

1. Select a particle at random, and calculate its energy ��r��.

2. Give the particle a random displacement, � � � � � �, and calculate its
new energy ��r ���.

3. Accept the move from r� to r �� with probability

acc��� �� � min
�
�� exp������r ��� � ��r����

�
� (3.2.1)

An implementation of this basic Metropolis scheme is shown in Algorithms
1 and 2.

3.2.2 Technical Details

In this section, we discuss a number of computational tricks that are of great
practical importance for the design of an efficient simulation program. It
should be stressed that most of these tricks, although undoubtedly very use-
ful, are not unique and have no deep physical significance. But this does not
imply that the use of such computational tools is free of risks or subtleties.
Ideally, schemes to save computer time should not affect the results of a sim-
ulation in a systematic way. Yet, in some cases, time-saving tricks do have
a measurable effect on the outcome of a simulation. This is particularly true
for the different procedures used to avoid explicit calculation of intermolec-
ular interactions between particles that are far apart. Fortunately, once this
is recognized, it is usually possible to estimate the undesirable side effect of
the time-saving scheme and correct for it.

Boundary Conditions

Monte Carlo and Molecular Dynamics simulations of atomic or molecular
systems aim to provide information about the properties of a macroscopic
sample. Yet, the number of degrees of freedom that can be conveniently han-
dled in present-day computers ranges from a few hundred to a few million.
Most simulations probe the structural and thermodynamical properties of a
system of a few hundred to a few thousand particles. Clearly, this number
is still far removed from the thermodynamic limit. To be more precise, for
such small systems it cannot be safely assumed that the choice of the bound-
ary conditions (e.g., free or hard or periodic) has a negligible effect on the
properties of the system. In fact, in a three-dimensional �-particle system
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Algorithm 1 (Basic Metropolis Algorithm)

PROGRAM mc basic Metropolis algorithm

do icycl=1,ncycl perform ncycl MC cycles
call mcmove displace a particle
if (mod(icycl,nsamp).eq.0)

+ call sample sample averages
enddo
end

Comments to this algorithm:

1. Subroutine mcmove attempts to displace a randomly selected particle
(see Algorithm 2).

2. Subroutine sample samples quantities every nsampth cycle.

Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle

o=int(ranf()*npart)+1 select a particle at random
call ener(x(o),eno) energy old configuration
xn=x(o)+(ranf()-0.5)*delx give particle random displacement
call ener(xn,enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (3.2.1)

+ *(enn-eno)) x(o)=xn accepted: replace x(o) by xn
return
end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.

2. Note that, if a con guration is rejected, the old con guration is retained.

3. The ranf() is a random number uniform in ���� �.
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Figure 3.2: Schematic representation of periodic boundary conditions.

with free boundaries, the fraction of all molecules that is at the surface is
proportional to �����. For instance, in a simple cubic crystal of 1000 atoms,
some 49% of all atoms are at the surface, and for ��� atoms this fraction has
decreased to only 6%.

In order to simulate bulk phases it is essential to choose boundary condi-
tions that mimic the presence of an infinite bulk surrounding our �-particle
model system. This is usually achieved by employing periodic boundary
conditions. The volume containing the � particles is treated as the primitive
cell of an infinite periodic lattice of identical cells (see Figure 3.2). A given
particle (�, say) now interacts with all other particles in this infinite periodic
system, that is, all other particles in the same periodic cell and all particles
(including its own periodic image) in all other cells. For instance, if we as-
sume that all intermolecular interactions are pairwise additive, then the total
potential energy of the � particles in any one periodic box is

�tot �
�

�

�

����n

����r�� � n����

where � is the diameter of the periodic box (assumed cubic, for convenience)
and n is an arbitrary vector of three integer numbers, while the prime over
the sum indicates that the term with � � � is to be excluded when n � 0.
In this very general form, periodic boundary conditions are not particularly
useful, because to simulate bulk behavior, we had to rewrite the potential
energy as an infinite sum rather than a finite one.3 In practice, however, we

3In fact, in the first MC simulation of three-dimensional Lennard-Jones particles, Wood and
Parker [49] discuss the use of such infinite sums in relation to the now conventional approach
discussed here.
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are often dealing with short-range interactions. In that case it is usually per-
missible to truncate all intermolecular interactions beyond a certain cutoff
distance ��. How this is done in practice is discussed next.

Although the use of periodic boundary conditions proves to be a sur-
prisingly effective method for simulating homogeneous bulk systems, one
should always be aware that the use of such boundary conditions may lead
to spurious correlations not present in a truly macroscopic bulk system. In
particular, one consequence of the periodicity of the model system is that
only those fluctuations are allowed that have a wavelength compatible with
the periodic lattice: the longest wavelength that still fits in the periodic box
is the one for which � � �. If long wavelength fluctuations are expected to
be important (as, for instance, in the vicinity of a continuous phase transi-
tion), then one should expect problems with the use of periodic boundary
conditions. Another unphysical effect that is a manifestation of the use of
periodic boundary conditions is that the radial distribution function ���� of
a dense atomic fluid is found to be not exactly isotropic [50].

Finally, it is useful to point out one common misconception about peri-
odic boundary conditions, namely, the idea that the boundary of the periodic
box itself has any special significance. It has none. The origin of the periodic
lattice of primitive cells may be chosen anywhere, and this choice will not
affect any property of the model system under study. In contrast, what is
fixed is the shape of the periodic cell and its orientation.

Truncation of Interactions

Let us now consider the case that we perform a simulation of a system with
short-range interactions. In this context, short-ranged means that the total po-
tential energy of a given particle � is dominated by interactions with neigh-
boring particles that are closer than some cutoff distance ��. The error that
results when we ignore interactions with particles at larger distances can be
made arbitrarily small by choosing �� sufficiently large. If we use periodic
boundary conditions, the case that �� is less than ��� (half the diameter of the
periodic box) is of special interest because in that case we need to consider
the interaction of a given particle � only with the nearest periodic image of
any other particles � (see the dotted box in Figure 3.2). If the intermolecular
potential is not rigorously zero for � � ��, truncation of the intermolecular
interactions at �� will result in a systematic error in � tot. If the intermolec-
ular interactions decay rapidly, one may correct for the systematic error by
adding a tail contribution to � tot:

� tot �
�

���

������� �
	


�

�
�

��

d� �������� (3.2.2)
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where �� stands for the truncated potential energy function and � is the
average number density. In writing down this expression, it is implicitly
assumed that the radial distribution function ���� � � for � � ��. Clearly, the
nearest periodic image convention can be applied only if the tail correction
is small. From equation (3.2.2) it can be seen that the tail correction to the
potential energy is infinite unless the potential energy function ���� decays
more rapidly than ��� (in three dimensions). This condition is satisfied if the
long-range interaction between molecules is dominated by dispersion forces.
However, for the very important case of Coulomb and dipolar interactions,
the tail correction diverges and hence the nearest-image convention cannot
be used for such systems. In such cases, the interactions with all periodic
images should be taken into account explicitly. Ways to do this are described
in Chapter 12.1.

Several factors make truncation of the potential a tricky business. First of
all, it should be realized that, although the absolute value of the potential en-
ergy function decreases with interparticle separation �, for sufficiently large
�, the number of neighbors is a rapidly increasing function of �. In fact, the
number of particles at a distance � of a given atom increases asymptotically
as ����, where � is the dimensionality of the system. As an example, let us
compute the effect of truncating the pair potential for a simple example —
the three-dimensional Lennard-Jones fluid. The pair potential for this rather
popular model system is given by

�lj��� � ��

��	
�

���
�
�	
�

���

 (3.2.3)

The average potential energy (in three dimensions) of any given atom � is
given by

�� � ����

�
�

�

d���� ����������

where ���� denotes the average number density at a distance � from a given
atom �. The factor (1/2) has been included to correct for double counting of
intermolecular interactions. If we truncate the potential at a distance ��, we
ignore the tail contribution �tail:

�tail
� ����

�
�

��

d���� ���������� (3.2.4)

where we have dropped the subscript �, because all atoms in the system are
identical. To simplify the calculation of �tail, we assume that for � � ��, the
density ���� is equal to the average number density �. If ���� is the Lennard-
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Jones potential, we find for �tail

�tail �
�

�
���

�
�

��

d� ������

�
�

�
�����

�
�

��

d� ��
��	

�

���
�
�	
�

���

�



�
���	�

�
�

�

�
	

��

��

�

�
	

��

��
�
� (3.2.5)

For a cutoff distance �� = 2.5 	 the potential has decayed to a value that is
about 1/60th of the well depth. This seems to be a very small value, but
in fact the tail correction is usually nonnegligible. For instance, at a density
�	� � �, we find �tail � ������. This number is certainly not negligible
compared to the total potential energy per atom (almost 10% at a typical
liquid density); hence although we can truncate the potential at 2.5 	, we
cannot ignore the effect of this truncation.

There are several ways to truncate potentials in a simulation. Although
the methods are designed to yield similar results, it should be realized that
they yield results that may differ significantly, in particular in the vicinity of
critical points [51–53] (see Figure 3.3). Often used methods to truncate the
potential are

1. Simple truncation

2. Truncation and shift

3. Minimum image convention.

Simple Truncation The simplest method to truncate potentials is to ignore
all interaction beyond ��, the potential that is simulated is

�trunc��� �

�
�lj��� � � ��
 � � ��

� (3.2.6)

As already explained, this may result in an appreciable error in our estimate
of the potential energy of the true Lennard-Jones potential (3.2.3). Moreover,
as the potential changes discontinuously at ��, a truncated potential is not
particularly suitable for a Molecular Dynamics simulation. It can, however,
be used in Monte Carlo simulations. In that case, one should be aware that
there is an “impulsive” contribution to the pressure due to the discontinuous
change of the potential at ��. That contribution can by no means be ignored.
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Figure 3.3: Vapor-liquid coexistence curves of various three-dimensional
Lennard-Jones fluids: effect of the truncation of the potential on the loca-
tion of the critical point (large black dots). The upper curve gives the phase
envelope for the full Lennard-Jones potential (i.e., a truncated potential with
tail correction); the lower curve gives the envelope for the potential that is
used in most Molecular Dynamics simulations (truncated and shifted poten-
tial with �� � ����), data from [53].

For instance, for the three-dimensional Lennard-Jones system,
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It is rare, however, to see this impulsive correction to the pressure applied
in simulations of systems with truncated potentials. Usually, it is simply as-
sumed that we can correct for the truncation of the intermolecular potential
by adding the correction given by equation (3.2.5) to the potential energy.
The corresponding correction to the pressure is

��tail � ������
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� (3.2.8)

But, as is immediately obvious from a comparison of equations (3.2.7) and
(3.2.8), the impulsive correction to the pressure is not equivalent to the tail
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correction. Rather, the impulsive pressure is the contribution that must be
included if one wishes to compute the true pressure of a system with a trun-
cated potential, whereas the tail correction should be included to obtain an
estimate of the pressure in a system with untruncated interactions.

Truncated and Shifted In Molecular Dynamics simulations, it is common
to use another procedure: the potential is truncated and shifted, such that
the potential vanishes at the cutoff radius:

�
tr�sh��� �

�
�lj��� � �lj���� � � ��

� � � ��
� (3.2.9)

In this case, there are no discontinuities in the intermolecular potential and
hence no impulsive corrections to the pressure. The advantage of using
such a truncated and shifted potential is that the intermolecular forces are
always finite.4 This is important because impulsive forces cannot be han-
dled in those Molecular Dynamics algorithms to integrate the equations of
motion that are based on a Taylor expansion of the particle positions. Of
course, the potential energy and pressure of a system with a truncated and
shifted potential differ from the corresponding properties of both the mod-
els with untruncated and with truncated but unshifted pair potentials. But,
as before, we can approximately correct for the effect of the modification of
the intermolecular potential on both the potential energy and the pressure.
For the pressure, the tail correction is the same as in equation (3.2.8). For the
potential energy, we must add to the long-range correction (3.2.5) a contri-
bution equal to the average number of particles that are within a distance ��

from a given particle, multiplied by half the value of the (untruncated) pair
potential at ��. The factor one-half is included to correct for overcounting
of the intermolecular interactions. One should be extremely careful when
applying truncated and shifted potentials in models with anisotropic inter-
actions. In that case, truncation should not be carried out at a fixed value of
the distance between the molecular centers of mass but at a point where the
pair potential has a fixed value, because otherwise the potential cannot be
shifted to � at the point where it is truncated. For Monte Carlo simulations,
this is not serious, but for Molecular Dynamics simulations this would be
quite disastrous, as the system would no longer conserve energy, unless the
impulsive forces due to the truncating and shifting are taken into account
explicitly.

Minimum Image Convention Sometimes the minimum image convention
is used. The truncation is in this case not at a spherical cutoff; instead the

4The first derivative of the force is discontinuous at the cutoff radius; some authors remove
this discontinuity as well (for more details, see [19]).
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interaction with the (nearest image) of all the particles in the simulation box
is calculated. As a consequence, the potential is not a constant on the surface
of a cube around a given particle. Hence, for the same reasons as mentioned
in the previous paragraph, the simple minimum image convention should
never be used in Molecular Dynamics simulations.

In the preceding, we described some details on how the energy should be
calculated. The implementation of a simple, order-��, algorithm to compute
the energy will be discussed in section 4.2.2 in the context of a Molecular Dy-
namics simulation (see Algorithm 5). More advanced schemes to simulate
large systems efficiently are described in Appendix F.

Initiali ation

To start the simulation, we should assign initial positions to all particles in
the system. As the equilibrium properties of the system do not (or, at least,
should not) depend on the choice of initial conditions, all reasonable initial
conditions are in principle acceptable. If we wish to simulate the solid state
of a particular model system, it is logical to prepare the system in the crystal
structure of interest. In contrast, if we are interested in the fluid phase, we
simply prepare the system in any convenient crystal structure. This crys-
tal subsequently melts, because at the temperature and density of a typical
liquid-state point, the solid state is not thermodynamically stable. Actually,
one should be careful here, because the crystal structure may be metastable,
even if it is not absolutely stable. For this reason, it is unwise to use a crystal
structure as the starting configuration of a liquid close to the freezing curve.
In such cases, it is better to use the final (liquid) configuration of a system at
a higher temperature or lower density, where the solid is unstable and has
melted spontaneously. In any event, it is usually preferable to use the final
(well-equilibrated) configuration of an earlier simulation at a nearby state
point as the starting configuration for a new run and adjust the temperature
and density to the desired values.

The equilibrium properties of a system should not depend on the initial
conditions. If such a dependence nevertheless is observed in a simulation,
there are two possibilities. The first is that our results reflect the fact that the
system that we simulate really behaves nonergodically. This is the case, for
instance, in glassy materials or low-temperature, substitutionally disordered
alloys. The second (and much more likely) explanation is the system we
simulate is ergodic but our sampling of configuration space is inadequate;
in other words, we have not yet reached equilibrium.

Reduced Units

In simulations it is often convenient to express quantities such as tempera-
ture, density, pressure, and the like in reduced units. This means that we
choose a convenient unit of energy, length and mass and then express all
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other quantities in terms of these basic units. In the example of a Lennard-
Jones system, we use a pair potential that is of the form ���� � ������� (see
equation (3.2.3)). A natural (though not unique) choice for our basic units is
the following:

� Unit of length, �

� Unit of energy, �

� Unit of mass, � (the mass of the atoms in the system)

and from these basic units, all other units follow. For instance, our unit of
time is

�
�
���

and the unit of temperature is
�����

In terms of these reduced units, denoted with superscript *, the reduced
pair potential �� � ��� is a dimensionless function of the reduced distance
�� � ���. For instance, the reduced form for the Lennard-Jones potential is

��
lj
���� � 	

��



��

���

�

�



��

��
�
� (3.2.10)

With these conventions we can define the following reduced units: the po-
tential energy �� � ����, the pressure �� � ������, the density � � ��,
and the temperature �� � ����

��.
One may wonder why it is convenient to introduce reduced units. The

most important reason is that (infinitely) many combinations of �� � �, and
� all correspond to the same state in reduced units. This is the law of corre-
sponding states: the same simulation of a Lennard-Jones model can be used
to study Ar at 60 K and a density of 840 kg/m� and Xe at 112 K and a density
of 1617 kg/m�. In reduced units, both simulations correspond to the state
point � � ���, �� � ���. If we had not used reduced units, we might have
easily missed the equivalence of these two simulations. Another, practical,
reason for using reduced units is the following: when we work with real (SI)
units, we find that the absolute numerical values of the quantities that we
are computing (e.g., the average energy of a particle or its acceleration) are
either much less or much larger than 1. If we multiply several such quanti-
ties using standard floating-point multiplication, we face a distinct risk that,
at some stage, we will obtain a result that creates an overflow or under-
flow. Conversely, in reduced units, almost all quantities of interest are of
order 1 (say, between 
��� and 
��). Hence, if we suddenly find a very large
(or very small) number in our simulations (say, 
���), then there is a good
chance that we have made an error somewhere. In other words, reduced
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Quantity Reduced units Real units
temperature ��

� � � � � ����� K
density �� � ��� � � � ���� kg/m�

time �	� � ����
 � �	 � ���� � ����� s
pressure �� � � � � � ���� MPa

Table 3.1: Translation of reduced units to real units for Lennard-Jones argon
(��� � ����� K, � � ����
 � �����m, � � ������� kg/mol)

units make it easier to spot errors. Simulation results that are obtained in
reduced units can always be translated back into real units. For instance, if
we wish to compare the results of a simulation on a Lennard-Jones model
at ��

� � and �� � � with experimental data for argon (��� � ����� K,
� � ����
 � ����� m, � � ������� kg/mol), then we can use the translation
given in Table 3.1 to convert our simulation parameters to real SI units.5

3.2.3 Detailed Balance versus Balance

Throughout this book we use the condition of detailed balance as a test
of the validity of a Monte Carlo scheme. However, as stated before, the
detailed-balance condition is sufficient, but not necessary. Manousiouthakis
and Deem [54] have shown that the weaker ”balance condition” is a neces-
sary and sufficient requirement. A consequence of this proof is that one has
more freedom in developing Monte Carlo moves. For example, in the simple
Monte Carlo scheme shown in Algorithm 2 we select a particle at random
and give it a random displacement. During the next trial move, the a pri-
ori probability to select the same particle is the same. Thus the reverse trial
move has the same a priori probability and detailed balance is satisfied. An
alternative scheme is to attempt moving all particles sequentially, i.e., first an
attempt to move particle one, followed by an attempt to move particle two,
etc. In this sequential scheme, the probability that a single-particle move is
followed by its reverse is zero. Hence, this scheme clearly violates detailed
balance. However, Manousiouthakis and Deem have shown that such a se-
quential updating scheme does obey balance and does therefore (usually —
see Ref. [54]) result in correct MC sampling.

We stress that the detailed-balance condition remains an important guid-
ing principle in developing novel Monte Carlo schemes. Moreover, most al-
gorithms that do not satisfy detailed balance are simply wrong. This is true
in particular for ”composite” algorithms that combine different trial moves.
Therefore, we suggest that it is good practice to impose detailed balance

5In what follows we will always use reduced units, unless explicitly indicated otherwise.
We, therefore, omit the superscript * to denote reduced units.
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when writing a code. Of course, if subsequently it turns out that the per-
formance of a working program can be improved considerably by using a
”balance-only” algorithm, then it is worth implementing it. At present, we
are not aware of examples in the literature where a ”balance-only” algorithm
is shown to be much faster than its ”detailed-balance” counterpart.

3.3 Trial Moves

Now that we have specified the general structure of the Metropolis algo-
rithm, we should consider its implementation. We shall not go into the
problem of selecting intermolecular potentials for the model system under
study. Rather, we shall simply assume that we have an atomic or molecular
model system in a suitable starting configuration and that we have specified
all intermolecular interactions. We must now set up the underlying Markov
chain, that is, the matrix �. In more down to earth terms: we must decide
how we are going to generate trial moves. We should distinguish between
trial moves that involve only the molecular centers of mass and those that
change the orientation or possibly even the conformation of a molecule.

3.3.1 Translational Moves

We start our discussion with trial moves of the molecular centers of mass.
A perfectly acceptable method for creating a trial displacement is to add
random numbers between ���� and ���� to the ��� , and � coordinates of
the molecular center of mass:

� �

�
� �� � � �Ranf � �	
�

� �

�
� �� � � �Ranf � �	
�

� �

�
� �� � � �Ranf � �	
�� (3.3.1)

where Ranf are random numbers uniformly distributed between � and �.
Clearly, the reverse trial move is equally probable (hence, � is symmetric).6

We are now faced with two questions: how large should we choose �? and
should we attempt to move all particles simultaneously or one at a time?
In the latter case we should pick the molecule that is to be moved at ran-
dom to ensure that the underlying Markov chain remains symmetric. All

6Although almost all published MC simulations on atomic and molecular systems generate
trial displacements in a cube centered around the original center of mass position, this is by
no means the only possibility. Sometimes, it is more convenient to generate trial moves in a
spherical volume, and it is not even necessary that the distribution of trial moves in such a
volume be uniform, as long as it has inversion symmetry. For an example of a case where
another sampling scheme is preferable, see ref. [55].
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other things being equal, we should choose the most efficient sampling pro-
cedure. But, to this end, we must first define what we mean by ef cient sam-
pling. In very vague terms, sampling is efficient if it gives you good value
for money. Good value in a simulation corresponds to high statistical ac-
curacy, and “money” is simply money: the money that buys your computer
time and even your own time. For the sake of the argument, we assume
the average scientific programmer is poorly paid. In that case we have to
worry only about your computer budget.7 Then we could use the following
definition of an optimal sampling scheme: a Monte Carlo sampling scheme
can be considered optimal if it yields the lowest statistical error in the quan-
tity to be computed for a given expenditure of computing budget. Usually,
computing budget is equivalent to CPU time.

From this definition it is clear that, in principle, a sampling scheme may
be optimal for one quantity but not for another. Actually, the preceding def-
inition is all but useless in practice (as are most definitions). For instance,
it is just not worth the effort to measure the error estimate in the pressure
for a number of different Monte Carlo sampling schemes in a series of runs
of fixed length. However, it is reasonable to assume that the mean-square
error in the observables is inversely proportional to the number of uncorre-
lated configurations visited in a given amount of CPU time. And the number
of independent configurations visited is a measure for the distance covered
in configuration space. This suggests a more manageable, albeit rather ad
hoc, criterion to estimate the efficiency of a Monte Carlo sampling scheme:
the sum of the squares of all accepted trial displacements divided by com-
puting time. This quantity should be distinguished from the mean-squared
displacement per unit of computing time, because the latter quantity goes to
� in the absence of diffusion (e.g., in a solid or a glass), whereas the former
does not.

Using this criterion it is easy to show that for simulations of condensed
phases it is usually advisable to perform random displacements of one par-
ticle at a time (as we shall see later, the situation is different for correlated
displacements). To see why random single-particle moves are preferred,
consider a system of � spherical particles, interacting through a potential
energy function ��r��. Typically, we expect that a trial move will be rejected
if the potential energy of the system changes by much more than ���. At
the same time, we try to make the Monte Carlo trial steps as large as is pos-
sible without having a very low acceptance. A displacement that would, on
average, give rise to an increase of the potential energy by ��� would still
have a reasonable acceptance. In the case of a single-particle trial move, we

7Still, we should stress that it is not worthwhile to spend a lot of time developing a fancy
computational scheme that will be only marginally better than existing, simpler schemes, unless
your program will run very often and speed is crucial.
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then have
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� � � �������� ������� (3.3.2)

where the angle brackets denote averaging over the ensemble and the hori-
zontal bar denotes averaging over random trial moves. The second deriva-
tive of � has been absorbed into the function ����, the precise form of which
does not concern us here. If we now equate ���� on the left-hand side of
equation (3.3.2) to ��	, we find the following expression for ���� :

���� � ��	
����� (3.3.3)

If we attempt to move � particles, one at a time, most of the computation
involved is spent on the evaluation of the change in potential energy. As-
suming that we use a neighbor list or a similar time-saving device (see Ap-
pendix F), the total time spent on evaluating the potential energy change is
proportional to �, where  is the average number of interaction partners
per molecule. The sum of the mean-squared displacements will be propor-
tional to ���� � ���	
����. Hence, the mean-squared displacement per
unit of CPU time will be proportional to ��	
� �����. Now suppose that we
try to move all particles at once. The cost in CPU time will still be propor-
tional to �. But, using the same reasoning as in equations (3.3.2) and (3.3.3),
we estimate that the sum of the mean-squared displacements is smaller by a
factor �
�. Hence the total efficiency will be down by this same factor. This
simple argument explains why most simulators use single-particle, rather
than collective trial moves. It is important to note that we have assumed that
a collective MC trial move consists of � independent trial displacements of
the particles. As will be discussed in section 14.2, efficient collective MC
moves can be constructed if the trial displacements of the individual parti-
cles are not chosen independently.

Next, consider the choice of the parameter � which determines the size
of the trial move. How large should � be? If it is very large, it is likely
that the resulting configuration will have a high energy and the trial move
will probably be rejected. If it is very small, the change in potential energy
is probably small and most moves will be accepted. In the literature, one
often finds the mysterious statement that an acceptance of approximately
50% should be optimal. This statement is not necessarily true. The opti-
mum acceptance ratio is the one that leads to the most efficient sampling of
configuration space. If we express efficiency as mean-squared displacement
per CPU time, it is easy to see that different Monte Carlo codes will have
different optimal acceptance ratios. The reason is that it makes a crucial dif-
ference whether the amount of computing required to test whether a trial
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Figure 3.4: (left) Typical dependence of the mean-squared displacement of a
particle on the average size � of the trial move. (right) Typical dependence
of the computational cost of a trial move on the step-size �. For continuous
potentials, the cost is constant, while for hard-core potentials it decreases
rapidly with the size of the trial move.

move is accepted depends on the magnitude of the move (see Figure 3.4). In
the conventional Metropolis scheme, all continuous interactions have to be
computed before a move can be accepted or rejected. Hence, for continuous
potentials, the amount of computation does not depend on the size of a trial
move. In contrast, for simulations of molecules with hard repulsive cores, a
move can be rejected as soon as overlap with any neighbor is detected. In
that case, a rejected move is cheaper than an accepted one, and hence the av-
erage computing time per trial move goes down as the step size is increased.
As a result, the optimal acceptance ratio for hard-core systems is apprecia-
bly lower than for systems with continuous interactions. Exactly how much
depends on the nature of the program, in particular on whether it is a scalar
or a vector code (in the latter case, hard-core systems are treated much like
continuous systems), on how the information about neighbor lists is stored,
and even on the computational “cost” of random numbers and exponenti-
ation. The consensus seems to be that for hard-core systems the optimum
acceptance ratio is closer to 20 than to 50%, but this is just another rule of
thumb that should be checked.8

A distinct disadvantage of the efficiency criterion discussed previously
is that it does not allow us to detect whether the sampling of configuration
space is ergodic. To take a specific example, suppose that our system consists
of a number of particles that are trapped in different potential energy min-

8In section 14.3.1, we show how, even in the case of continuous potentials, it is possible to
reject trial moves before all interactions have been evaluated. With such a sampling scheme, the
distinction between the sampling of hard-core and continuous potentials all but disappears.
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ima. Clearly, we can sample the vicinity of these minima quite well and still
have totally inadequate sampling of the whole of the configuration space. A
criterion that would detect such nonergodicity has been proposed by Moun-
tain and Thirumalai [56]. These authors consider the difference between the
variance of the time average of the (potential) energy of all particles. Let us
denote the time average of the energy of particle � in time interval � by �����:

����� �
�

�

��
�

d� � ����
���

And the average single-particle energy for this interval is

���� �
�

�

��
���

������

The variance of interest is

������ �
�

�

��
���

������ � �����
�
�

If all particles sample the whole of configuration space, ������ will approach
zero as ���:

��������
�
����� 	���


where 	� is a measure for the characteristic time to obtain uncorrelated sam-
ples. However, if the system is nonergodic, as in a (spin) glass, �� will not
decay to �. The work of Mountain and Thirumalai suggests that a good
method for optimizing the efficiency of a Monte Carlo scheme is to minimize
the product of 	� and the computer time per trial move. Using this scheme,
Mountain and Thirumalai concluded that, even for the Lennard-Jones sys-
tem, a trial move acceptance of 50% is far from optimal. They found that an
acceptance probability of 20% was twice as efficient.

Of course, a scheme based on the energy fluctuations of a particle is not
very useful to monitor the rate of convergence of simulations of hard-core
systems. But the essence of the method is not that one measures the en-
ergy but any quantity that is sensitive to the local environment of a particle.
For instance, a robust criterion would look at the convergence of the time-
averaged Voronoi signature of a particle. Different environments yield dif-
ferent signatures. Only if every particle samples all environments will the
variance of Voronoi signatures decay to �.

Of course, in some situations an efficiency criterion based on ergodicity
is not useful. By construction, it cannot be used to optimize simulations of
glasses. But also when studying interfaces (e.g., solid-liquid or liquid-vapor)
the ergodicity criterion would suggest that every particle should have ample
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time to explore both coexisting phases. This is clearly unnecessary: ice can
be in equilibrium with water, even though the time of equilibration is far too
short to allow complete exchange of the molecules in the two phases.

3.3.2 Orientational Moves

If we are simulating molecules rather than atoms we must also generate trial
moves that change the molecular orientation. As we discussed already, it
almost requires an effort for generating translational trial moves with a dis-
tribution that does not satisfy the symmetry requirement of the underlying
Markov chain. For rotational moves, the situation is very different. It is
only too easy to introduce a systematic bias in the orientational distribution
function of the molecules by using a nonsymmetrical orientational sampling
scheme. Several different strategies to generate rotational displacements are
discussed in [19]. Here we only mention one possible approach.

Rigid Linear Molecules

Consider a system consisting of � linear molecules. We specify the orien-
tation of the �th molecule by a unit vector �u�. One possible procedure to
change �u� by a small, random amount is the following. First, we generate a
unit vector �v with a random orientation. This is quite easy to achieve (see
Algorithm 42). Next we multiply this random unit vector �v by a scale factor
�. The magnitude of � determines the magnitude of the trial rotation. We
now add ��v to �u�. Let us denote the resulting sum vector by t: t � ��v � �u�.
Note that t is not a unit vector. Finally, we normalize t, and the result is our
trial orientation vector �u �

�
. We still have to fix �, which determines the ac-

ceptance probability for the orientational trial move. The optimum value of
� is determined by essentially the same criteria as for translational moves.
We have not yet indicated whether the translational and orientational trial
moves should be performed simultaneously. Both procedures are accept-
able. However, if rotation and translation correspond to separate moves,
then the selection of the type of move should be probabilistic rather than
deterministic.

Rigid Nonlinear Molecules

Only slightly more complex is the case of a nonlinear, rigid molecule. It is
conventional to describe the orientation of nonlinear molecules in terms of
the Eulerian angles ������ �. However, for most simulations, use of these
angles is less convenient because all rotation operations should then be ex-
pressed in terms of trigonometric functions, and these are computationally
expensive. It is usually better to express the orientation of such a molecule
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in terms of quaternion parameters (for a discussion of quaternions in the
context of computer simulation, see [19]). The rotation of a rigid body can
be specified by a quaternion of unit norm . Such a quaternion may be
thought of as a unit vector in four-dimensional space:

� ���� ��� ��� ��� with ��
�
� ��

�
� ��

�
� ��

�
� �� (3.3.4)

There is a one-to-one correspondence between the quaternion components
�� and the Eulerian angles,
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and the rotation matrix R, which describes the rotation of the molecule-fixed
vector in the laboratory frame, is given by (see, e.g., [57])
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(3.3.6)
To generate trial rotations of nonlinear, rigid bodies, we must rotate the vec-
tor ���� ��� ��� ��� on the four-dimensional (�	) unit sphere. The procedure
just described for the rotation of a 
	 unit vector is easily generalized to �	.
An efficient method for generating random vectors uniformly on the �	 unit
sphere has been suggested by Vesely [57].

Nonrigid Molecules

If the molecules under consideration are not rigid then we must also con-
sider Monte Carlo trial moves that change the internal degrees of freedom
of a molecule. In practice, it makes an important difference whether we
have frozen out some of the internal degrees of freedom of a molecule by
imposing rigid constraints on, say, bond lengths and possibly even some
bond angles. If not, the situation is relatively simple: we can carry out nor-
mal trial moves on the Cartesian coordinates of the individual atoms in the
molecule (in addition to center-of-mass moves). If some of the atoms are
strongly bound, it is advisable to carry out small trial moves on those par-
ticles (no rule forbids the use of trial moves of different size for different
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atoms, as long as the moves for one particular atom are always sampled
from the same distribution).

However, when the bonds between different atoms become very stiff,
this procedure does not sample conformational changes of the molecule effi-
ciently. In Molecular Dynamics simulations it is common practice to replace
very stiff intramolecular interactions with rigid constraints (see Chapter 15).
For Monte Carlo simulations this is also possible. In fact, elegant techniques
have been developed for this purpose [58]. However, the corresponding MD
techniques [59] are so much easier to use, in particular for large molecules,
that we cannot recommend the use of the Monte Carlo technique for any but
the smallest flexible molecules with internal constraints.

To understand why Monte Carlo simulations of flexible molecules with
a number of stiff (or even rigid) bonds (or bond angles) can become compli-
cated, let us return to the original expression (3.1.2) for a thermal average of
a function ��r��:

��� �

�
dp�dr� ��r�� exp�����p�� r����

dp�dr� exp�����p�� r���
�

If we are dealing with flexible molecules, it is convenient to perform
Monte Carlo sampling not on the Cartesian coordinates r� but on the gen-
eralized coordinates q�, where � may be, for instance, a bond length or an
internal angle. We must now express the Hamiltonian in equation (3.1.2) in
terms of these generalized coordinates and their conjugate momenta. This
is done most conveniently by first considering the Lagrangian � � � � � ,
where � is the kinetic energy of the system (� �

�
������	̇�) and � the

potential energy. When we transform from Cartesian coordinates r to gener-
alized coordinates q, � changes to

� �

��

���

�

�
��


r�

��


r�

��

�̇��̇� � ��q��

�
�

�
q̇ �G � q̇ � ��q��� (3.3.7)

In the second line of equation (3.3.7) we have defined the matrix G. The
momenta conjugate to q� are easily derived using

�� �

�


�̇�
�

This yields �� � G���̇�. We can now write down the Hamiltonian � in
terms of the generalized coordinates and conjugate momenta:

��p�q� �
�

�
p �G�� � p � ��q��� (3.3.8)
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If we now insert this form of the Hamiltonian into equation (3.1.2), and carry
out the (Gaussian) integration over the momenta, we find that

��� �

�
dq� exp�����q�����q��

�
dp� exp���p � G�� � p���

�
dq�dp� exp�����

�

�
dq� exp�����q�����q���G�

�

�

�
dq�dp� exp�����

� (3.3.9)

The problem with equation (3.3.9) is the term �G�
�

� . Although the determi-
nant �G� can be computed fairly easily for small flexible molecules, its evalu-
ation can become quite an unpleasant task in the case of larger molecules.

Thus far we have considered the effect of introducing generalized co-
ordinates only on the form of the expression for thermal averages. If we
are considering a situation where some of the generalized coordinates are
actually constrained to have a fixed value, then the picture changes again,
because such hard constraints are imposed at the level of the Lagrangian
equations of motion. Hard constraints therefore lead to a different form
for the Hamiltonian in equation (3.3.8) and to another determinant in equa-
tion (3.3.9). Again, all this can be taken into account in the Monte Carlo sam-
pling (see [58]). An example of such a Monte Carlo scheme is the concerted
rotation algorithm that has been developed by Theodorou and co-workers
[60] to simulate polymer melts and glasses (see section 13.4.4). The idea of
this algorithm is to select a set of adjacent skeletal bonds in a chain (up to
seven bonds). These bonds are given a collective rotation while the rest of
the chain is unaffected. By comparison, Molecular Dynamics simulations
of flexible molecules with hard constraints have the advantage that these
constraints enter directly into the equations of motion (see [59]). The dis-
tinction between Molecular Dynamics and Monte Carlo, however, is more
apparent than real, since it is possible to use MD techniques to generate col-
lective Monte Carlo moves (see section 14.2). In Chapter 13, we shall discuss
other Monte Carlo sampling schemes that are particularly suited for flexible
molecules.

3.4 Applications

In this section we give several case studies using the basic ���Monte Carlo
algorithm.

Case Study 1 (Equation of State of the Lennard-Jones Fluid)
One of the more important applications of molecular simulation is to com-
pute the phase diagram of a given model system. In fact, in Chapter 8 sev-
eral numerical techniques that have been developed specifically to study
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phase transitions will be discussed. It may not be immediately obvious to
the reader, however, that there is any need for the sophisticated numerical
schemes presented in Chapter 8. In this Case Study, we illustrate some of
the problems that occur when we use standard Monte Carlo simulation to
determine a phase diagram. As an example, we focus on the vapor-liquid
curve of the Lennard-Jones fluid. Of course, as was already mentioned in
section 3.2.2, the phase behavior is quite sensitive to the detailed form of the
intermolecular potential that is used. In this Case Study, we approximate the
full Lennard-Jones potential as follows:

���� �

�
�lj��� � � ��
� � � ���

where the cutoff radius �� is set to half the box length. The contribution of
the particles beyond this cutoff is estimated with the usual tail corrections;
that is, for the energy
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�
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The equation of state of the Lennard-Jones fluid has been investigated by
many groups using Molecular Dynamics or Monte Carlo simulations starting
with the work of Wood and Parker [49]. A systematic study of the equation of
state of the Lennard-Jones fluid was reported by Verlet [13]. Subsequently,
many more studies have been published. In 1979, the data available at that
time were compiled by Nicolas et al. [61] into an accurate equation of state.
This equation has been refitted by Johnson et al. [62] in the light of more
recent data. In the present study we compare our numerical results with the
equation of state by Johnson et al.

We performed several simulations using Algorithms 1 and 2. During the
simulations we determined the energy per particle and the pressure. The
pressure was calculated using the virial


 �
�

�
�

vir
�

� (3.4.1)

where the virial is defined by

vir �
	

�

�
�

�
���

f�r��� � r��� (3.4.2)
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Figure 3.5: Equation of state of the Lennard-Jones fluid. (left) Isotherm at
� � ���. (right) Isotherm below the critical temperature (� � ���); the hori-
zontal line is the saturated vapor pressure and the filled circles indicate the
densities of the coexisting vapor and liquid phases. The solid curve repre-
sents the equation of state of Johnson et al. [62] and the circles are the results
of the simulations (� � ���). The errors are smaller than the symbol size.

where f�r��� is the intermolecular force. Figure 3.5 (left) compares the pres-
sure as obtained from a simulation above the critical temperature with the
equation of state of Johnson et al. [62]. The agreement is excellent (as is to
be expected).

Figure 3.5 (right) shows a typical isotherm below the critical tempera-
ture. If we cool the system below the critical temperature, we should expect
to observe vapor-liquid coexistence. However, conventional Monte Carlo or
Molecular Dynamics simulations of small model systems are not suited to
study the coexistence between two phases. Using the Johnson equation of
state, we predict how the pressure of a macroscopic Lennard-Jones system
would behave in the two-phase region (see Figure 3.5). For densities inside
the coexistence region the pressure is expected to be constant and equal to
the saturated vapor pressure. If we now perform a Monte Carlo simulation
of a finite system (500 LJ particles), we find that the computed pressure is
not at all constant in the coexistence region (see Figure 3.5). In fact we ob-
serve that, over a wide density range, the simulated system is metastable
and may even have a negative pressure. The reason is that, in a finite sys-
tem, a relatively important free-energy cost is associated with the creation
of a liquid-vapor interface. So much so that, for sufficiently small systems,
it is favorable for the system not to phase separate at all [63]. Clearly these
problems will be most severe for small systems and in cases where the in-
terfacial free energy is large. For this reason, standard ���-simulations are
not recommended to determine the vapor-liquid coexistence curve or, for
that matter, any strong first-order phase transition.
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To determine the liquid-vapor coexistence curve we should determine the
equation of state for a large number of state points outside the coexistence
region. These data can then be fitted to an analytical equation of state. With
this equation of state we can determine the vapor-liquid curve (this is exactly
the procedure used by Nicolas et al. [61] and Johnson et al. [62]).

Of course, if we simulate a system consisting of a very large number of
particles, it is possible to simulate a liquid phase in coexistence with its vapor.
However, such simulations are quite time consuming, because it takes a long
time to equilibrate a two-phase system.

Case Study 2 (Importance of Detailed Balance)
For a Monte Carlo simulation to sample points in configuration space accord-
ing to their correct Boltzmann weight, it is sufficient, but not necessary, to im-
pose the detailed-balance condition on the sampling algorithm. Of course,
as the condition of detailed balance is stronger than strictly necessary, it is
not excluded that correct sampling schemes exist that violate detailed bal-
ance. However, unless one can actually prove that a non-detailed-balance
scheme yields the correct distribution, the use of such schemes is strongly
to be discouraged. Even seemingly reasonable schemes may give rise to
serious, systematic errors.

Here we give an example of such a scheme. Consider an ordinary �,�,�
move; a new position is generated by giving a randomly selected particle,
say �, a random displacement:

����� � ����� � ���Ranf � �����

where �� is twice the maximum displacement. We now make a small error
and generate a new position using

����� � ����� � ���Ranf � ���� wrong�

We give the particles only a positive displacement. With such a move de-
tailed balance is violated, since the reverse move — putting the particle back
at �� — is not possible.

For the Lennard-Jones fluid we can use the program of Case Study 1
to compare the two sampling schemes. The results of these simulations
are shown in Figure 3.6. Note that, at first sight, the results of the incor-
rect scheme look reasonable; in fact, at low densities the results of the two
schemes do not show significant differences. But at high densities the wrong
scheme overestimates the pressure. It is important to note that the incorrect
scheme leads to a systematic error that does not disappear when we per-
form longer simulations.

This example illustrates that one can generate numerical results that look
reasonable, even with an incorrect sampling scheme. For this reason, it is
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Figure 3.6: Equation of state of the Lennard-Jones fluid (� � ���); compari-
son of a displacement scheme that obeys detailed balance (circles) and one
that does not (squares). Both simulations have been performed with 500
particles. The solid curve is the equation of state of Johnson et al. [62]. The
figure at the left corresponds to the low-pressure regime. The high-pressure
regime is shown in the right-hand figure.

important always to compare the results obtained with a new Monte Carlo
program with known numerical results or, better still, with exact results that
may be known in some limiting case (dilute vapor, dense solid, etc.).

In the present example, the error due to the neglect of detailed balance is
quite obvious. In many cases, the effects are less clear. The most common
source of non-detailed-balance sampling schemes is the following: in many
programs, we can choose from a repertoire of trial moves (e.g., translation,
rotation, volume changes). It is recommended that these trial moves are not
carried out in fixed order, because then the reverse sequence is impossible
and detailed balance is no longer satisfied.9

In practice one often does not know a priori the optimal maximum dis-
placement in a Monte Carlo simulation. A practical solution is to adjust during
the simulation the maximum displacement in such a way that the optimum
acceptance probability is obtained. The ideal situation is to determine this
optimum during the equilibration. However, if one would keep adjusting the
maximum step-size during a production run, then one would violate detailed
balance [65]. For example, if from one move to the next, the maximum dis-
placement is decreased, then the a priori probability for a particle to return
to its previous position could be zero. Hence, if one would change the max-
imum displacement after every Monte Carlo step serious errors are to be
expected. Of course, if one changes the maximum displacement only a few

9It has been shown [64] that in this case the detailed-balance condition is indeed sufficient
but not necessary to maintain equilibrium.
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times during the simulation, then the error will be negligible. Yet, it is better to
stay on the safe side and never change the maximum displacement during
the projection run.

Case Study 3 ( hy Count the Old Con guration Again )
A somewhat counterintuitive feature of the Metropolis sampling scheme is
that, if a trial move is rejected, we should once again count the contributions
of the old configuration to the average that we are computing (see accep-
tance rule (3.1.18)). The aim of this Case Study is to show that this recount-
ing is really essential. In the Metropolis scheme the acceptance rule for a
move from � to � is

acc��� �� � exp�������� � ������ ���� � ����

� � ���� � �����

These acceptance rules lead to a transition probability

���� �� � exp�������� � ������ ���� � ����

� � ���� � �����

Note that this transition probability must be normalized:

�
�

���� �� � ��

From this normalization it follows that the probability that we accept the old
configuration again is by definition

���� �� � � �
�
� ���

���� ���

This last equation implies that we should count the contribution of the old
configuration again.

It is instructive to use the Lennard-Jones program from Case Study 1 to
investigate numerically the error that is made when we only include accepted
configurations in our averaging. In essence, this means that in Algorithm 2
we continue attempting to displace the selected particle until a trial move
has been accepted.10 In Figure 3.7 we compare the results of the correct
scheme with those obtained by the scheme in which we continue to displace
a particle until a move is accepted. Again the results look reasonable, but
the figure shows that large, systematic errors are being made.

10It is easy to see that this approach leads to the wrong answer if we try to compute the
average energy of a two-level system with energy levels �� and ��. If we include only accepted
trial moves in our averaging, we would find that ���=���������, independent of temperature.
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Figure 3.7: Equation of state of the Lennard-Jones fluid (� � ���); compar-
ison of a scheme in which particles are displaced until a move is accepted
(squares) with the conventional scheme (circles). Both simulations have been
performed with 108 particles. The solid curve is the equation of state of
Johnson et al. [62]. The left figure is at low pressure and the right one at high
pressure.

One of the important disadvantages of the Monte Carlo scheme is that
it does not reproduce the natural dynamics of the particles in the system.
However, sometimes this limitation of the method can be made to work to
our advantage. In Example 1 we show how the equilibration of a Monte
Carlo simulation can be speeded up by many orders of magnitude through
the use of unphysical trial moves.

Example 1 (Mixture of Hard Disks)
In a Molecular Dynamics simulation of, for instance, a binary (���) mixture
of hard disks (see Figure 3.8), the efficiency with which configuration space
is sampled is greatly reduced by the fact that concentration fluctuations de-
cay very slowly (typically the relaxation time � � ����	

�, where ��� is the
mutual diffusion coefficient and 	 is the wavelength of the concentration fluc-
tuation). This implies that very long runs are needed to ensure equilibration
of the local composition of the mixture. In solids, equilibration may not take
place at all (even on time scales accessible in nature). In contrast, in a Monte
Carlo simulation, it is permissible to carry out trial moves that swap the iden-
tities of two particles of species � and �. Such moves, even if they have only
a moderate rate of acceptance (a few percent will do), greatly speed up the
sampling of concentration fluctuations.
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Figure 3.8: A mixture of hard disks, where the identities of two particles are
swapped.

3.5 uestions and Exercises

uestion 7 (Reduced Units) Typical sets of Lennard-Jones parameters for argon
and krypton are ��� � ���� ß�, ������ � ��	�
 K and ��� � ���
 ß�, ������ �
����� K [19].

1. At the reduced temperature �
� ���, what is the temperature in kelvin of

argon and krypton?

2. A typical time step for MD is ��� � �����. What is this in SI units for argon
and krypton?

3. If we simulate argon at  � ��
 K and density � � ���� kg/m� with a
Lennard-Jones potential, for which conditions of krypton can we use the same
data? If we assume ideal gas behavior, compute the pressure in reduced and
normal units.

4. List the main reasons to use reduced units.

uestion 8 (Heat Capacity) Heat capacity can also be calculated from uctua-
tions in the total energy in the canonical ensemble:

�� �

�
��

�
� ���

�

���
� (3.5.1)

1. Derive this equation.

2. In a MC �� simulation, one does not calculate uctuations in the total
energy but in the potential energy. Is it then still possible to calculate the heat
capacity? Explain.

3. Heat capacity can be also calculated from differentiating the total energy of a
system with respect to temperature. Discuss the advantages or disadvantages
of this approach.

Q

Q

Q
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uestion 9 (A Ne Potential) On the planet Krypton, the pair potential between
two Gaia atoms is given by the Lennard-Jones ��-� potential

���� � ��

���
�

���
�
��
�

���
�

Kryptonians are notoriously lazy and it is therefore up to you to derive the tail
corrections for the energy, pressure, and chemical potential. If we use this potential
in an MD simulation in the truncated and shifted form we still have a discontinuity
in the force. Why? If you compare this potential with the Lennard-Jones potential,
will there be any difference in ef ciency of the simulation? (Hint: there are two
effects!)

Exercise 6 (Calculation of �)
Consider a circle of diameter 	 surrounded by a square of length 
 (
 � 	).
Random coordinates are generated within the square. The value of � can
be calculated from the fraction of points that fall within the circle.

1. How can � be calculated from the fraction of points that fall in the circle?
Remark: the “exact” value of � can be computed numerically using
� � �� arctan ���.

2. Complete the small Monte Carlo program to calculate � using this
method.

3. How does the accuracy of the result depend on the ratio 
�	 and the
number of generated coordinates? Derive a formula to calculate the
relative standard deviation of the estimate of �.

4. Why is this not a very efficient method for computing � accurately?

Exercise 7 (The Photon Gas)
The average occupancy number of state  of the photon gas, ����, can be
calculated analytically; see equation (2.3.5). It is possible to estimate this
quantity using a Monte Carlo scheme. In this exercise, we will use the fol-
lowing procedure to calculate ����:

(i) Start with an arbitrary ��.

(ii) Decide at random to perform a trial move to increase or decrease ��

by �.

(iii) Accept the trial move with probability

acc �o� n� � min ��� exp ��� �� �n� �� �o���� �

Of course, �� cannot become negative!

1. Does this scheme obey detailed balance when �� � �?

Q
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2. Is the algorithm still correct when trial moves are performed that change
�� with a random integer from the interval ����� �? What happens when
only trial moves are performed that change �� with either �� or ��?

3. Assume that � � � and �� � �. Write a small Monte Carlo program
to calculate ���� as a function of ��. Compare your result with the
analytical solution.

4. Modify the program in such a way that the averages are not updated
when a trail move is rejected. Why does this lead to erroneous results?
At which values of � does this error become more pronounced?

5. Modify the program in such a way that the distribution of �� is calcu-
lated as well. Compare this distribution with the analytical expression.

Exercise 8 (Monte Carlo Simulation of a Lennard-Jones System)
In this exercise, we study a 3D Lennard-Jones system. See also Case
Study 1.

1. In the code that you can find on the book’s website, the pressure of
the system is not calculated. Modify the code in such a way that the
average pressure can be calculated. You will only have to make some
changes in the subroutine ener.f.

2. Perform a simulation at � � 	
� and at various densities. Up to what
density is the ideal gas law

�� �  (3.5.2)

a good approximation?

3. The program produces a sequence of snapshots of the state of the sys-
tem. Try to visualize these snapshots using, for example, the program
MOLMOL.

4. For the heat capacity at constant volume one can derive

�� �

�
��

�
� ���

�

����

in which � is the total energy of the system. Derive a formula for the
dimensionless heat capacity. Modify the program (only in mc nvt.f) in
such a way that �� is calculated.

5. Instead of performing trial moves in which one particle at a time is dis-
placed, one can make trial moves in which all particles are displaced.
Compare the maximum displacements of these moves when 50% of
all displacements are accepted.

6. Instead of using a uniformly distributed displacement, one can also
use a Gaussian displacement. Does this increase the efficiency of the
simulation?
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Exercise 9 (Scaling as a Monte Carlo Move)
Consider a system in which the energy is a function of one variable (�) only,

exp ���� ���� � � ��� � �� � �� �

in which � ��� is the Heaviside step function: � �� � �� � � and � �� � �� � �.
We wish to calculate the distribution of � in the canonical ensemble. We will
consider two possible algorithms (we will use Æ � �):

(i) Generate a random change in � between ��Æ�Æ �. Accept or reject the new
� according to its energy.

(ii) Generate a random number 	 between ���� � Æ�. With a probability of
�
�, invert the value 	 thus obtained. The new value of � is obtained
by multiplying � with 	.

1. Derive the correct acceptance/rejection rules for both schemes.

2. Complete the computer code to calculate the probability density of �.
The program writes this distribution to distri.dat.

3. What happens when the acceptance rule of method (i) is used in the
algorithm of method (ii)?
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Chapter 4

Molecular Dynamics
Simulations

Molecular Dynamics simulation is a technique for computing the equilib-
rium and transport properties of a classical many-body system. In this con-
text, the word classical means that the nuclear motion of the constituent par-
ticles obeys the laws of classical mechanics. This is an excellent approxima-
tion for a wide range of materials. Only when we consider the translational
or rotational motion of light atoms or molecules (He, H�, D�) or vibrational
motion with a frequency � such that ��� �� should we worry about quan-
tum effects.

Of course, our discussion of this vast subject is necessarily incomplete.
Other aspects of the Molecular Dynamics techniques can be found in [19,
39–41].

4.1 Molecular Dynamics: The Idea

Molecular Dynamics simulations are in many respects very similar to real
experiments. When we perform a real experiment, we proceed as follows.
We prepare a sample of the material that we wish to study. We connect this
sample to a measuring instrument (e.g., a thermometer, manometer, or vis-
cosimeter), and we measure the property of interest during a certain time
interval. If our measurements are subject to statistical noise (as most mea-
surements are), then the longer we average, the more accurate our measure-
ment becomes. In a Molecular Dynamics simulation, we follow exactly the
same approach. First, we prepare a sample: we select a model system con-
sisting of � particles and we solve Newton’s equations of motion for this
system until the properties of the system no longer change with time (we
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equilibrate the system). After equilibration, we perform the actual measure-
ment. In fact, some of the most common mistakes that can be made when
performing a computer experiment are very similar to the mistakes that can
be made in real experiments (e.g., the sample is not prepared correctly, the
measurement is too short, the system undergoes an irreversible change dur-
ing the experiment, or we do not measure what we think).

To measure an observable quantity in a Molecular Dynamics simulation,
we must first of all be able to express this observable as a function of the posi-
tions and momenta of the particles in the system. For instance, a convenient
definition of the temperature in a (classical) many-body system makes use
of the equipartition of energy over all degrees of freedom that enter quadrat-
ically in the Hamiltonian of the system. In particular for the average kinetic
energy per degree of freedom, we have

�
�

�
���

�

�
�

�

�
���� (4.1.1)

In a simulation, we use this equation as an operational definition of the tem-
perature. In practice, we would measure the total kinetic energy of the sys-
tem and divide this by the number of degrees of freedom �� (= �� � � for
a system of � particles with fixed total momentum1). As the total kinetic
energy of a system fluctuates, so does the instantaneous temperature:

��	� �

��

���

���
�

�
�	�

����

� (4.1.2)

The relative fluctuations in the temperature will be of order �

�
��. As ��

is typically on the order of ���–���, the statistical fluctuations in the temper-
ature are on the order of 5–10%. To get an accurate estimate of the tempera-
ture, one should average over many fluctuations.

4.2 Molecular Dynamics: A Program

The best introduction to Molecular Dynamics simulations is to consider a
simple program. The program we consider is kept as simple as possible to
illustrate a number of important features of Molecular Dynamics simula-
tions.

The program is constructed as follows:

1. We read in the parameters that specify the conditions of the run (e.g.,
initial temperature, number of particles, density, time step).

1Actually, if we define the temperature of a microcanonical ensemble through �����
�� =

�� ln�����, then we find that, for a �-dimensional system of� atoms with fixed total momen-
tum, ��� is equal to �������� 	� � ��.
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Algorithm 3 (A Simple Molecular Dynamics Program)

program md simple MD program

call init initialization
t=0
do while (t.lt.tmax) MD loop

call force(f,en) determine the forces
call integrate(f,en) integrate equations of motion
t=t+delt
call sample sample averages

enddo
stop
end

Comment to this algorithm:

1. Subroutines init, force, integrate, and sample will be described in
Algorithms 4, 5, and 6, respectively. Subroutine sample is used to calculate
averages like pressure or temperature.

2. We initialize the system (i.e., we select initial positions and velocities).

3. We compute the forces on all particles.

4. We integrate Newton’s equations of motion. This step and the previ-
ous one make up the core of the simulation. They are repeated until we
have computed the time evolution of the system for the desired length
of time.

5. After completion of the central loop, we compute and print the aver-
ages of measured quantities, and stop.

Algorithm 3 is a short pseudo-algorithm that carries out a Molecular Dy-
namics simulation for a simple atomic system. We discuss the different op-
erations in the program in more detail.

4.2.1 Initiali ation

To start the simulation, we should assign initial positions and velocities to all
particles in the system. The particle positions should be chosen compatible
with the structure that we are aiming to simulate. In any event, the particles
should not be positioned at positions that result in an appreciable overlap
of the atomic or molecular cores. Often this is achieved by initially placing
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Algorithm 4 (Initiali ation of a Molecular Dynamics Program)

subroutine init initialization of MD program
sumv=0
sumv2=0
do i=1,npart

x(i)=lattice pos(i) place the particles on a lattice
v(i)=(ranf()-0.5) give random velocities
sumv=sumv+v(i) velocity center of mass
sumv2=sumv2+v(i)**2 kinetic energy

enddo
sumv=sumv/npart velocity center of mass
sumv2=sumv2/npart mean-squared velocity
fs=sqrt(3*temp/sumv2) scale factor of the velocities
do i=1,npart set desired kinetic energy and set

v(i)=(v(i)-sumv)*fs velocity center of mass to zero
xm(i)=x(i)-v(i)*dt position previous time step

enddo
return
end

Comments to this algorithm:

1. Function lattice pos gives the coordinates of lattice position � and
ranf() gives a uniformly distributed random number. We do not use a
Maxwell-Boltzmann distribution for the velocities; on equilibration it will be-
come a Maxwell-Boltzmann distribution.

2. In computing the number of degrees of freedom, we assume a three-di-
mensional system (in fact, we approximate �� by ��).

the particles on a cubic lattice, as described in section 3.2.2 in the context of
Monte Carlo simulations.

In the present case (Algorithm 4), we have chosen to start our run from
a simple cubic lattice. Assume that the values of the density and initial tem-
perature are chosen such that the simple cubic lattice is mechanically un-
stable and melts rapidly. First, we put each particle on its lattice site and
then we attribute to each velocity component of every particle a value that
is drawn from a uniform distribution in the interval ��������� �. This initial
velocity distribution is Maxwellian neither in shape nor even in width. Sub-
sequently, we shift all velocities, such that the total momentum is zero and
we scale the resulting velocities to adjust the mean kinetic energy to the de-
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sired value. We know that, in thermal equilibrium, the following relation
should hold: �

���
�
� ������ (4.2.1)

where �� is the � component of the velocity of a given particle. We can use
this relation to define an instantaneous temperature at time � ����:

�������

N�

���

���������

��

	 (4.2.2)

Clearly, we can adjust the instantaneous temperature ���� to match the de-
sired temperature � by scaling all velocities with a factor �����������. This
initial setting of the temperature is not particularly critical, as the tempera-
ture will change anyway during equilibration.

As will appear later, we do not really use the velocities themselves in
our algorithm to solve Newton’s equations of motion. Rather, we use the
positions of all particles at the present (x) and previous (xm) time steps,
combined with our knowledge of the force (f) acting on the particles, to
predict the positions at the next time step. When we start the simulation,
we must bootstrap this procedure by generating approximate previous po-
sitions. Without much consideration for any law of mechanics but the con-
servation of linear momentum, we approximate x for a particle in a direc-
tion by xm(i) = x(i) - v(i)*dt. Of course, we could make a better
estimate of the true previous position of each particle. But as we are only
bootstrapping the simulation, we do not worry about such subtleties.

4.2.2 The Force Calculation

What comes next is the most time-consuming part of almost all Molecular
Dynamics simulations: the calculation of the force acting on every particle.
If we consider a model system with pairwise additive interactions (as we
do in the present case), we have to consider the contribution to the force on
particle 
 due to all its neighbors. If we consider only the interaction between
a particle and the nearest image of another particle, this implies that, for a
system of � particles, we must evaluate �� �� � ���� pair distances.

This implies that, if we use no tricks, the time needed for the evaluation of
the forces scales as ��. There exist efficient techniques to speed up the eval-
uation of both short-range and long-range forces in such a way that the com-
puting time scales as �, rather than ��. In Appendix F, we describe some
of the more common techniques to speed up the simulations. Although the
examples in this Appendix apply to Monte Carlo simulations, the same tech-
niques can also be used in a Molecular Dynamics simulation. However, in
the present, simple example (see Algorithm 5) we will not attempt to make
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Algorithm 5 (Calculation of the Forces)

subroutine force(f,en) determine the force
en=0 and energy
do i=1,npart

f(i)=0 set forces to zero
enddo
do i=1,npart-1

do j=i+1,npart loop over all pairs
xr=x(i)-x(j)
xr=xr-box*nint(xr/box) periodic boundary conditions
r2=xr**2
if (r2.lt.rc2) then test cutoff

r2i=1/r2
r6i=r2i**3
ff=48*r2i*r6i*(r6i-0.5) Lennard-Jones potential
f(i)=f(i)+ff*xr update force
f(j)=f(j)-ff*xr
en=en+4*r6i*(r6i-1)-ecut update energy

endif
enddo

enddo
return
end

Comments to this algorithm:

1. For ef ciency reasons the factors 4 and 48 are usually taken out of the force
loop and taken into account at the end of the calculation for the energy.

2. The term ecut is the value of the potential at � � ��; for the Lennard-Jones
potential, we have

ecut � �

�
�

���
�

�

�

��
�

�
�

the program particularly efficient and we shall, in fact, consider all possible
pairs of particles explicitly.

We first compute the current distance in the �, �, and � directions between
each pair of particles i and j. These distances are indicated by xr. As in the
Monte Carlo case, we use periodic boundary conditions (see section 3.2.2). In
the present example, we use a cutoff at a distance �� in the explicit calculation
of intermolecular interactions, where �� is chosen to be less than half the
diameter of the periodic box. In that case we can always limit the evaluation
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of intermolecular interactions between i and j to the interaction between i
and the nearest periodic image of j.

In the present case, the diameter of the periodic box is denoted by box. If
we use simple cubic periodic boundary conditions, the distance in any direc-
tion between i and the nearest image of j should always be less (in absolute
value) than box/2. A compact way to compute the distance between i and
the nearest periodic image of j uses the nearest integer function (nint(x)
in FORTRAN). The nint function simply rounds a real number to the near-
est integer.2 Starting with the �-distance (say) between i and any periodic
image of j, xr, we compute the �-distance between i and the nearest image
of j as xr=xr-box*nint(xr/box). Having thus computed all Cartesian
components of r��, the vector distance between i and the nearest image of
j, we compute ���� (denoted by r2 in the program). Next we test if ���� is
less than ���, the square of the cutoff radius. If not, we immediately skip to
the next value of j. It perhaps is worth emphasizing that we do not com-
pute ����� itself, because this would be both unnecessary and expensive (as it
would involve the evaluation of a square root).

If a given pair of particles is close enough to interact, we must compute
the force between these particles, and the contribution to the potential en-
ergy. Suppose that we wish to compute the �-component of the force

����� � �
�����

��

� �
��
�

�������

��

�
�

For a Lennard-Jones system (in reduced units),

����� �
���

��

�
�

���
� 	�
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4.2.3 Integrating the Equations of Motion

Now that we have computed all forces between the particles, we can inte-
grate Newton’s equations of motion. Algorithms have been designed to do
this. Some of these will be discussed in a bit more detail. In the program
(Algorithm 6), we have used the so-called Verlet algorithm. This algorithm
is not only one of the simplest, but also usually the best.

To derive it, we start with a Taylor expansion of the coordinate of a par-
ticle, around time �,

���� ��� � ���� � ������
����

��
��� �

���

��

���
� �����	��

2Unfortunately, many FORTRAN compilers yield very slow nint functions. It is often
cheaper to write your own code to replace the nint library routine.
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Algorithm 6 (Integrating the Equations of Motion)

subroutine integrate(f,en) integrate equations of motion
sumv=0
sumv2=0
do i=1,npart MD loop

xx=2*x(i)-xm(i)+delt**2*f(i) Verlet algorithm (4.2.3)
vi=(xx-xm(i))/(2*delt) velocity (4.2.4)
sumv=sumv+vi velocity center of mass
sumv2=sumv2+vi**2 total kinetic energy
xm(i)=x(i) update positions previous time
x(i)=xx update positions current time

enddo
temp=sumv2/(3*npart) instantaneous temperature
etot=(en+0.5*sumv2)/npart total energy per particle
return
end

Comments to this algorithm:

1. The total energy etot should remain approximately constant during the sim-
ulation. A drift of this quantity may signal programming errors. It therefore
is important to monitor this quantity. Similarly, the velocity of the center of
mass sumv should remain zero.

2. In this subroutine we use the Verlet algorithm (4.2.3) to integrate the equa-
tions of motion. The velocities are calculated using equation (4.2.4).

similarly,

���� ��� � ���� � ������ �
����
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Summing these two equations, we obtain
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����
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����

�
��

�
� (4.2.3)

The estimate of the new position contains an error that is of order ���,
where �� is the time step in our Molecular Dynamics scheme. Note that the
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Verlet algorithm does not use the velocity to compute the new position. One,
however, can derive the velocity from knowledge of the trajectory, using

���� ��� � ���� ��� � ������� �����
��

or

���� �
���� ��� � ��� � ���

���
�����

��� (4.2.4)

This expression for the velocity is only accurate to order ��
�. However, it

is possible to obtain more accurate estimates of the velocity (and thereby
of the kinetic energy) using a Verlet-like algorithm (i.e., an algorithm that
yields trajectories identical to that given by equation (4.2.3)). In our program,
we use the velocities only to compute the kinetic energy and, thereby, the
instantaneous temperature.

Now that we have computed the new positions, we may discard the po-
sitions at time ����. The current positions become the old positions and the
new positions become the current positions.

After each time step, we compute the current temperature (temp), the
current potential energy (en) calculated in the force loop, and the total en-
ergy (etot). Note that the total energy should be conserved.

This completes the introduction to the Molecular Dynamics method. The
reader should now be able to write a basic Molecular Dynamics program for
liquids or solids consisting of spherical particles. In what follows, we shall
do two things. First of all, we discuss, in a bit more detail, the methods avail-
able to integrate the equations of motion. Next, we discuss measurements
in Molecular Dynamics simulations. Important extensions of the Molecular
Dynamics technique are discussed in Chapter 6.

4.3 Equations of Motion

It is obvious that a good Molecular Dynamics program requires a good al-
gorithm to integrate Newton’s equations of motion. In this sense, the choice
of algorithm is crucial. However, although it is easy to recognize a bad algo-
rithm, it is not immediately obvious what criteria a good algorithm should
satisfy. Let us look at the different points to consider.

Although, at first sight, speed seems important, it is usually not very rel-
evant because the fraction of time spent on integrating the equations of mo-
tion (as opposed to computing the interactions) is small, at least for atomic
and simple molecular systems.

Accuracy for large time steps is more important, because the longer the
time step that we can use, the fewer evaluations of the forces are needed per
unit of simulation time. Hence, this would suggest that it is advantageous
to use a sophisticated algorithm that allows use of a long time step.
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Algorithms that allow the use of a large time step achieve this by storing
information on increasingly higher-order derivatives of the particle coordi-
nates. As a consequence, they tend to require more memory storage. For
a typical simulation, this usually is not a serious drawback because, unless
one considers very large systems, the amount of memory needed to store
these derivatives is small compared to the total amount available even on a
normal workstation.

Energy conservation is an important criterion, but actually we should
distinguish two kinds of energy conservation, namely, short time and long
time. The sophisticated higher-order algorithms tend to have very good en-
ergy conservation for short times (i.e., during a few time steps). However,
they often have the undesirable feature that the overall energy drifts for long
times. In contrast, Verlet-style algorithms tend to have only moderate short-
term energy conservation but little long-term drift.

It would seem to be most important to have an algorithm that accurately
predicts the trajectory of all particles for both short and long times. In fact,
no such algorithm exists. For essentially all systems that we study by MD
simulations, we are in the regime where the trajectory of the system through
phase space (i.e., the ��-dimensional space spanned by all particle coor-
dinates and momenta) depends sensitively on the initial conditions. This
means that two trajectories that are initially very close will diverge expo-
nentially as time progresses. We can consider the integration error caused by
the algorithm as the source for the initial small difference between the “true”
trajectory of the system and the trajectory generated in our simulation. We
should expect that any integration error, no matter how small, will always
cause our simulated trajectory to diverge exponentially from the true trajec-
tory compatible with the same initial conditions. This so-called Lyapunov
instability (see section 4.3.4) would seem to be a devastating blow to the
whole idea of Molecular Dynamics simulations but we have good reasons to
assume that even this problem need not be serious.

Clearly, this statement requires some clarification. First of all, one should
realize that the aim of an MD simulation is not to predict precisely what will
happen to a system that has been prepared in a precisely known initial con-
dition: we are always interested in statistical predictions. We wish to predict
the average behavior of a system that was prepared in an initial state about
which we know something (e.g., the total energy) but by no means every-
thing. In this respect, MD simulations differ fundamentally from numerical
schemes for predicting the trajectory of satellites through space: in the latter
case, we really wish to predict the true trajectory. We cannot afford to launch
an ensemble of satellites and make statistical predictions about their destina-
tion. However, in MD simulations, statistical predictions are good enough.
Still, this would not justify the use of inaccurate trajectories unless the tra-
jectories obtained numerically, in some sense, are close to true trajectories.

This latter statement is generally believed to be true, although, to our
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knowledge, it has not been proven for any class of systems that is of in-
terest for MD simulations. However, considerable numerical evidence (see,
e.g., [66]) suggests that there exist so-called shadow orbits. A shadow orbit
is a true trajectory of a many-body system that closely follows the numerical
trajectory for a time that is long compared to the time it takes the Lyapunov
instability to develop. Hence, the results of our simulation are representa-
tive of a true trajectory in phase space, even though we cannot tell a priori
which. Surprisingly (and fortunately), it appears that shadow orbits are bet-
ter behaved (i.e., track the numerical trajectories better) for systems in which
small differences in the initial conditions lead to an exponential divergence
of trajectories than for the, seemingly, simpler systems that show no such
divergence [66]. Despite this reassuring evidence (see also section 4.3.5 and
the article by Gillilan and Wilson [67]), it should be emphasized that it is just
evidence and not proof. Hence, our trust in Molecular Dynamics simulation
as a tool to study the time evolution of many-body systems is based largely
on belief. To conclude this discussion, let us say that there is clearly still a
corpse in the closet. We believe this corpse will not haunt us, and we quickly
close the closet. For more details, the reader is referred to [27, 67, 68].

Newton’s equations of motion are time reversible, and so should be our
algorithms. In fact, many algorithms (for instance the predictor-corrector
schemes, see Appendix E, and many of the schemes used to deal with con-
straints) are not time reversible. That is, future and past phase space coor-
dinates do not play a symmetric role in such algorithms. As a consequence,
if one were to reverse the momenta of all particles at a given instant, the
system would not trace back its trajectory in phase space, even if the sim-
ulation would be carried out with infinite numerical precision. Only in
the limit of an infinitely short time step will such algorithms become re-
versible. However, what is more important, many seemingly reasonable al-
gorithms differ in another crucial respect from Hamilton’s equation of mo-
tion: true Hamiltonian dynamics leaves the magnitude of any volume ele-
ment in phase space unchanged, but many numerical schemes, in particu-
lar those that are not time reversible, do not reproduce this area-preserving
property. This may sound like a very esoteric objection to an algorithm, but
it is not. Again, without attempting to achieve a rigorous formulation of the
problem, let us simply note that all trajectories that correspond to a partic-
ular energy � are contained in a (hyper) volume � in phase space. If we
let Hamilton’s equation of motion act on all points in this volume (i.e., we
let the volume evolve in time), then we end up with exactly the same vol-
ume. However, a non-area-preserving algorithm will map the volume �
on another (usually larger) volume � �. After sufficiently long times, we ex-
pect that the non-area-preserving algorithm will have greatly expanded the
volume of our system in phase space. This is not compatible with energy
conservation. Hence, it is plausible that nonreversible algorithms will have
serious long-term energy drift problems. Reversible, area-preserving algo-
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rithms will not change the magnitude of the volume in phase space. This
property is not sufficient to guarantee the absence of long-term energy drift,
but it is at least compatible with it. It is possible to check whether an al-
gorithm is area preserving by computing the Jacobian associated with the
transformation of old to new phase space coordinates.

Finally, it should be noted that even when we integrate a time-reversible
algorithm, we shall find that the numerical implementation is hardly ever
truly time reversible. This is so, because we work on a computer with finite
machine precision using floating-point arithmetic that results in rounding
errors (on the order of the machine precision).

In the remainder of this section, we shall discuss some of these points in
more detail. Before we do so, let us first consider how the Verlet algorithm
scores on these points. First of all, the Verlet algorithm is fast. But we had
argued that this is relatively unimportant. Second, it is not particularly accu-
rate for long time steps. Hence, we should expect to compute the forces on
all particles rather frequently. Third, it requires about as little memory as is at
all possible. This is useful when we simulate very large systems, but in gen-
eral it is not a crucial advantage. Fourth, its short-term energy conservation
is fair (in particular in the versions that use a more accurate expression for
the velocities) but, more important, it exhibits little long-term energy drift.
This is related to the fact that the Verlet algorithm is time reversible and area
preserving. In fact, although the Verlet algorithm does not conserve the total
energy of this system exactly, strong evidence indicates that it does conserve
a pseudo-Hamiltonian approaching the true Hamiltonian in the limit of in-
finitely short time steps (see section 4.3.3). The accuracy of the trajectories
generated with the Verlet algorithm is not impressive. But then, it would
hardly help to use a better algorithm. Such an algorithm may postpone the
unavoidable exponential growth of the error in the trajectory by a few hun-
dred time steps (see section 4.3.4), but no algorithm is good enough that it
will keep the trajectories close to the true trajectories for a time comparable
to the duration of a typical Molecular Dynamics run.3

4.3.1 Other Algorithms

Let us now briefly look at some alternatives to the Verlet algorithm. The
most naive algorithm is based simply on a truncated Taylor expansion of the
particle coordinates:

���� ��� � ���� � �������
����
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3Error-free integration of the equations of motion is possible for certain discrete models, such
as lattice-gas cellular automata. But these models do not follow Newton’s equation of motion.
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If we truncate this expansion beyond the term in���, we obtain the so-called
Euler algorithm. Although it looks similar to the Verlet algorithm, it is much
worse on virtually all counts. In particular, it is not reversible or area pre-
serving and suffers from a (catastrophic) energy drift. The Euler algorithm
therefore is not recommended.

Several algorithms are equivalent to the Verlet scheme. The simplest
among these is the so-called Leap Frog algorithm [24]. This algorithm evalu-
ates the velocities at half-integer time steps and uses these velocities to com-
pute the new positions. To derive the Leap Frog algorithm from the Verlet
scheme, we start by defining the velocities at half-integer time steps as fol-
lows:
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From the latter equation we immediately obtain an expression for the new
positions, based on the old positions and velocities:

���� ��� � ���� � ������ ������ (4.3.1)

From the Verlet algorithm, we get the following expression for the update of
the velocities:

��� � ����� � ��� � ����� � ��
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As the Leap Frog algorithm is derived from the Verlet algorithm, it gives rise
to identical trajectories. Note, however, that the velocities are not defined
at the same time as the positions. As a consequence, kinetic and potential
energy are also not defined at the same time, and hence we cannot directly
compute the total energy in the Leap Frog scheme.

It is, however, possible to cast the Verlet algorithm in a form that uses
positions and velocities computed at equal times. This velocity Verlet algo-
rithm [69] looks like a Taylor expansion for the coordinates:
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However, the update of the velocities is different from the Euler scheme:
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Note that, in this algorithm, we can compute the new velocities only after we
have computed the new positions and, from these, the new forces. It is not
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immediately obvious that this scheme, indeed, is equivalent to the original
Verlet algorithm. To show this, we note that
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���� ���
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and equation (4.3.3) can be written as
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By addition we get
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Substitution of equation (4.3.4) yields
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which, indeed, is the coordinate version of the Verlet algorithm.
Let us end the discussion of Verlet-like algorithms by mentioning two

schemes that yield the same trajectories as the Verlet algorithm, but provide
better estimates of the velocity. The first is the so-called Beeman algorithm.
It looks quite different from the Verlet algorithm:
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However, by eliminating ���� from equation (4.3.5), using equation (4.3.6),
it is easy to show that the positions satisfy the Verlet algorithm. However,
the velocities are more accurate than in the original Verlet algorithm. As a
consequence, the total energy conservation looks somewhat better. A dis-
advantage of the Beeman algorithm is that the expression for the velocities
does not have time-reversal symmetry. A very simple solution to this prob-
lem is to use the so-called velocity-corrected Verlet algorithm for which the
error both in the positions and in the velocities is of order������.

The velocity-corrected Verlet algorithm is derived as follows. First write
down a Taylor expansion for ���� ����, ���� ���, ���� ��� and ���� ����:
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By combining these equations, we can write
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or, equivalently,
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Note that this velocity can be computed only after the next time step (i.e., we
must know the positions and forces at � � �� to compute ����).

4.3.2 Higher-Order Schemes

For most Molecular Dynamics applications, Verlet-like algorithms are per-
fectly adequate. However, sometimes it is convenient to employ a higher-
order algorithm (i.e., an algorithm that employs information about higher-
order derivatives of the particle coordinates). Such an algorithm makes it
possible to use a longer time step without loss of (short-term) accuracy or,
alternatively, to achieve higher accuracy for a given time step. But, as men-
tioned before, higher-order algorithms require more storage and are, more
often than not, neither reversible nor area preserving. This is true in partic-
ular of the so-called predictor-corrector algorithms, the most popular class
of higher-order algorithms used in Molecular Dynamics simulations. For
the sake of completeness, the predictor-corrector scheme is described in Ap-
pendix E.1. We refer the reader who wishes to know more about the relative
merits of algorithms for Molecular Dynamics simulations to the excellent
review by Berendsen and van Gunsteren [70].

4.3.3 Liouville Formulation of Time-Reversible Algorithms

Thus far we have considered algorithms for integrating Newton’s equations
of motion from the point of view of applied mathematics. However, re-
cently Tuckerman et al. [71] have shown how to systematically derive time-
reversible, area-preserving MD algorithms from the Liouville formulation of
classical mechanics. The same approach has been developed independently
by Sexton and Weingarten [72] in the context of hybrid Monte Carlo simula-
tions (see section 14.2). As the Liouville formulation provides considerable
insight into what makes an algorithm a good algorithm, we briefly review
the Liouville approach.

Let us consider an arbitrary function 	 that depends on all the coordi-
nates and momenta of the 
 particles in a classical many-body system. The
term 	�p����� r����� depends on the time � implicitly, that is, through the
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dependence of �p�� r�� on �. The time derivative of � is �̇:

�̇ � ṙ
��

�r
� ṗ

��

�p
(4.3.8)

� i���

where we have used the shorthand notation r for r� and p for p�. The last
line of equation (4.3.8) defines the Liouville operator

i� � r
�

�r
� p

�

�p
� (4.3.9)

We can formally integrate equation (4.3.8) to obtain

�
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p����� r����

�
� exp�i����

�
p����� r����

�
� (4.3.10)

In all cases of practical interest, we cannot do much with this formal solu-
tion, because evaluating the right-hand side is still equivalent to the exact
integration of the classical equations of motion. However, in a few simple
cases the formal solution is known explicitly. In particular, suppose that our
Liouville operator contained only the first term on the right-hand side of
equation (4.3.9). We denote this part of i� by i��:

i�� � ṙ���
�

�r
� (4.3.11)

where ṙ��� is the value of ṙ at time � � �. If we insert i�� in equation (4.3.10)
and use a Taylor expansion of the exponential on the right-hand side, we get

���� � ���� � i������� �
�i�����

��
���� � � � �

� exp
�

ṙ����
�

�r

�
����

�

��

���

�ṙ������

��

��

�r�
����

� �
�
p����� �r � ṙ������

�
� (4.3.12)

Hence, the effect of exp�i���� is a simple shift of coordinates. Similarly, the
effect of exp�i����, with i�� defined as

i�� � ṗ���
�

�p
� (4.3.13)

is a simple shift of momenta. The total Liouville operator, i�, is equal to i��
+ i��. Unfortunately, we cannot replace exp�i��� by exp�i���� � exp�i����,
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because i�� and i�� are noncommuting operators. For noncommuting oper-
ators � and �, we have

exp��� �� �� exp��� exp���� (4.3.14)

However, we do have the following Trotter identity:

e����� � lim
���

�
e����e���e����

��
� (4.3.15)

In the limit ���, this relation is formally correct, but of limited practical
value. However, for large but finite �, we have

e����� �
�

e����e���e����
��

e�����
��� (4.3.16)

Now let us apply this expression to the formal solution of the Liouville equa-
tion. To this end, we make the identification

�

�
�

i���
�

� ��ṗ���
�

�p

and
�

�
�

i���
�
� ��ṙ���

�

�r
	

where �� = �
�. The idea is now to replace the formal solution of the Liou-
ville equation by the discretized version, equation (4.3.16). In this scheme,
one time step corresponds to applying the operator

ei��	
��ei��	
ei��	
��

once. Let us see what the effect is of this operator on the coordinates and
momenta of the particles. First, we apply exp�i����
�� to � and obtain

ei��	
���
�
p����	 r����

�
� �

Æ�
p��� �

��

�
ṗ���

��
	 r����

�
�

Next, we apply exp�i����� to the result of the previous step

ei��	
 �

Æ�
p��� �

��

�
ṗ���

��
	 r����

�

� �

Æ�
p��� �

��

�
ṗ���

��
	 �r��� � ��ṙ���
����

�
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and finally we apply exp�i������� once more, to obtain

�

Æ�
p��� �

��

�
ṗ��� �

��

�
p����

��
� �r��� � ��ṙ��������

�
�

Note that every step in the preceding sequence corresponds to a simple shift
operation in either r� or p�. It is of particular importance to note that the
shift in r is a function of p only (because r � p�	), while the shift in p
is a function of r only (because p � F�r��). The Jacobian of the transfor-
mation from �p����� r����� to �p������ r������ is simply the product of the
Jacobians of the three elementary transformations. But, as each of these Ja-
cobians is equal to 1, the overall Jacobian is also equal to 1. In other words,
the algorithm is area preserving.

If we now consider the overall effect of this sequence of operations on
the positions and momenta, we find the following:

p��� � p��� �
��

�
�F��� � F����� (4.3.17)

r��� � r��� � ��ṙ������

� r��� � ��ṙ��� �
���

�	
F���� (4.3.18)

But these are precisely the equations of the Verlet algorithm (in the velocity
form). Hence, we have shown that the Verlet algorithm is area preserving.
That it is reversible follows directly from the fact that past and future coor-
dinates enter symmetrically in the algorithm.

Finally, let us try to understand the absence of long-term energy drift in
the Verlet algorithm. When we use the Verlet algorithm, we replace the true
Liouville operator exp�i��� by exp�i������� exp�i����� exp�i�������. In do-
ing so, we make an error. If all (
th-order) commutators of �� and �� exist
(i.e., if the Hamiltonian is an infinitely differentiable function of p� and r�)
then, at least in principle, we can evaluate the error that is involved in this
replacement:

exp�i������� exp�i����� exp�i������� � exp�i��� � ��� (4.3.19)

where � is an operator that can be expressed in terms of the commutators of
�� and ��:

� �

��
���

�������������� (4.3.20)

where �� denotes a combination of 	th-order commutators. For instance,
the leading term is

������
�
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�i��� �i��� i���� �



�
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Now the interesting thing to note is that, if the expansion in equation (4.3.20)
converges, then we can define a pseudo-Liouville operator

i�pseudo � i� � �����

This pseudo-Liouville operator corresponds to a pseudo-Hamiltonian, and
the remarkable thing is that this pseudo-Hamiltonian (�pseudo) is rigorously
conserved by Verlet style (or generalized multi-time-step) algorithms [73–
75]. The difference between the conserved pseudo-Hamiltonian and the true
Hamiltonian of the system is of order ������ (where � depends on the order
of the algorithm). Clearly, by choosing �� small (and, if necessary, � large),
we can make the difference between the true and the pseudo-Hamiltonian
as small as we like. As the true Hamiltonian is forced to remain close to a
conserved quantity, we can now understand why there is no long-term drift
in the energy with Verlet-style algorithms. In some cases, we can explicitly
compute the commutators (for instance, for a harmonic system) and can ver-
ify that the pseudo-Hamiltonian is indeed conserved [68]. And, even if we
cannot compute the complete series of commutators, the leading term will
give us an improved estimate of the pseudo-Hamiltonian. Toxvaerd [68] has
verified that even for a realistic many-body system, such an approximate
pseudo-Hamiltonian is very nearly a constant of motion.

The Liouville formalism allows us to derive the Verlet algorithm as a
special case of the Trotter expansion of the time-evolution operator. It should
be realized that the decomposition of i� as a sum of i�� and i�� is arbitrary.
Other decompositions are possible and may lead to algorithms that are more
convenient.

4.3.4 Lyapunov Instability

To end this discussion of algorithms, we wish to illustrate the extreme sen-
sitivity of the trajectories to small differences in initial conditions. Let us
consider the position (r�) of one of the � particles at time �. This position is
a function of the initial positions and momenta at � � 	:

r��� � 

�
r��	��p��	�� �

�
�

Let us now consider the position at time � that would result if we perturbed
the initial conditions (say, some of the momenta) by a small amount �. In
that case, we would obtain a different value for � at time �:

r ���� � 

�
r��	��p��	� � �� �

�
�

We denote the difference between r��� and r ���� by �r���. For sufficiently
short times, �r��� is linear in �. However, the coefficient of the linear depen-
dence diverges exponentially; that is,

��r���� � � exp���� (4.3.21)
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This so-called Lyapunov instability of the trajectories is responsible for our
inability to accurately predict a trajectory for all but the shortest simula-
tions. The exponent � is called the Lyapunov exponent (more precisely, the
largest Lyapunov exponent; there are more such exponents, 6N in fact, but
the largest dominates the long-time exponential divergence of initially close
trajectories). Suppose that we wish to maintain a certain bound �max on
��r����, in the interval � � � � �max. How large an initial error (�) can we
afford? From equation (4.3.21), we deduce

� � �max exp����max��

Hence, the acceptable error in our initial conditions decreases exponentially
with �max, the length of the run. To illustrate that this effect is real, we show
the result of two almost identical simulations: the second differs from the
first in that the � components of the velocities of 2 particles (out of 1000)
have been changed by ������ and ������ (in reduced units). We monitor
the sum of the squares of the differences of the positions of all particles:

��

���

�r���� � r �

�����
�
�

As can be seen in Figure 4.1, this measure of the distance does indeed grow
exponentially with time.

After 1000 time steps, the two systems that were initially very close have
become very nearly uncorrelated. It should be stressed that this run was
performed using perfectly normal parameters (density, temperature, time
step). The only unrealistic thing about this simulation is that it is extremely
short. Most Molecular Dynamics simulations do require many thousands of
time steps.

4.3.5 One More ay to Look at the Verlet Algorithm...

In Molecular Dynamics simulations, the Newtonian equations of motion are
integrated approximately. An alternative route would be to rst write down
a time-discretized version of the action. (See Appendix A, and then find the
set of coordinates (i.e., the discretized trajectory) that minimizes this action.
This approach is discussed in some detail in a paper by Gillilan and Wil-
son [67].) Let us start with the continuous-time version of the action

	 �
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and discretize it as follows:

	discr �
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Figure 4.1: Illustration of the Lyapunov instability in a simulation of a
Lennard-Jones system. The figure shows the time dependence of the sum
of squared distances between two trajectories that were initially very close
(see text). The total length of the run in reduced units was 5, which corre-
sponds to 1000 time steps. Note that, within this relatively short time, the
two trajectories become essentially uncorrelated.

where �b � ���� and �e � ����. As in the continuous case, we can determine
the set of values of the coordinates �� for which �discr is stationary. At sta-
tionarity, the derivative of �discr with respect to all �� vanishes. It is easy to
verify that this implies that

�

�
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��

�
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� 	
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which is, of course, the Verlet algorithm. This illustrates that the trajectories
generated by the Verlet algorithms have an interesting “shadow” property
(see ref. [67] and section 4.3): a ”Verlet trajectory” that connects point ���
and ��� in a time interval �� � �� will tend to lie close to the true trajectory
that connects these two points. However, this true trajectory is not at all the
one that has the same initial velocity as the Verlet trajectory. That is,�

d�����
d�

�
true

��

�
����� � �����

���

�
Verlet

�

Nevertheless, as discussed in section 4.3, the Verlet algorithm is a good algo-
rithm in the sense that it follows from a minimization principle that forces it
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to approximate a true dynamical trajectory of the system under considera-
tion.

This attractive feature of algorithms that can be derived from a discretized
action has inspired Elber and co-workers to construct a novel class of MD
algorithms that are designed to yield reasonable long-time dynamics with
very large time steps [76, 77]. In fact, Elber and co-workers do not base their
approach on the discretization of the classical action but on the so-called
Onsager-Machlup action [78]. The reason for selecting this more general ac-
tion is that the Onsager-Machlup action is a minimum for the true trajectory,
while the Lagrangian action is only an extremum. It would carry too far to
discuss the practical implementation of the algorithm based on the Onsager-
Machlup action. For details, we refer the reader to refs. [76, 77].

4.4 Computer Experiments

Now that we have a working Molecular Dynamics program, we wish to use
it to “measure” interesting properties of many-body systems. What proper-
ties are interesting? First of all, of course, those quantities that can be com-
pared with real experiments. Simplest among these are the thermodynamic
properties of the system under consideration, such as the temperature �, the
pressure �, and the heat capacity ��. As mentioned earlier, the temperature
is measured by computing the average kinetic energy per degree of freedom.
For a system with � degrees of freedom, the temperature � is given by

��� �
����

�
� (4.4.1)

There are several different (but equivalent) ways to measure the pressure of
a classical �-body system. The most common among these is based on the
virial equation for the pressure. For pairwise additive interactions, we can
write (see, e.g., [79])

� � ���� �
	


�

�
�

���

f�r��� � r��

�
� (4.4.2)

where 
 is the dimensionality of the system, and f�r��� is the force between
particles  and � at a distance r��. Note that this expression for the pressure
has been derived for a system at constant �, �, and �, whereas our simula-
tions are performed at constant �, �, and �. In fact, the expression for the
pressure in the microcanonical ensemble (constant ��� � �) is not identical
to the expression that applies to the canonical (constant ��� � �) ensemble.
Lebowitz et al. [80] have derived a general procedure to convert averages
from one ensemble to another. A more recent (and more accessible) descrip-
tion of these interensemble transformations has been given by Allen and
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Tildesley [41]. An example of a relation derived by such a transformation is
the expression for the heat capacity at constant volume, as obtained from the
fluctuations in the kinetic energy in the microcanonical ensemble:

�
��

�
���

� ���
�

���
�

���
�
��

��

�
� �

���

���

�
� (4.4.3)

However, one class of thermodynamic functions cannot be measured di-
rectly in a simulation, in the sense that these properties cannot be expressed
as a simple average of some function of the coordinates and momenta of all
the particles in the system. Examples of such properties are the entropy �,
the Helmholtz free energy 	, and the Gibbs free energy 
. Separate tech-
niques are required to evaluate such thermal quantities in a computer simu-
lation. Methods to calculate these properties are discussed in Chapter 7.

A second class of observable properties are the functions that character-
ize the local structure of a fluid. Most notable among these is the so-called
radial distribution function ����. The radial distribution function is of in-
terest for two reasons: first of all, neutron and -ray scattering experiments
on simple fluids, and light-scattering experiments on colloidal suspensions,
yield information about ����. Second, ���� plays a central role in theories of
the liquid state. Numerical results for ���� can be compared with theoretical
predictions and thus serve as a criterion to test a particular theory. In a simu-
lation, it is straightforward to measure ����: it is simply the ratio between the
average number density ���� at a distance � from any given atom (for sim-
plicity we assume that all atoms are identical) and the density at a distance
� from an atom in an ideal gas at the same overall density. In Algorithm 7
an implementation to compute the radial distribution function is described.
By construction, ���� � � in an ideal gas. Any deviation of ���� from unity
reflects correlations between the particles due to the intermolecular interac-
tions.

Both the thermodynamic properties and the structural properties men-
tioned previously do not depend on the time evolution of the system: they
are static equilibrium averages. Such averages can be obtained by Molecular
Dynamics simulations or equally well by Monte Carlo simulations. How-
ever, in addition to the static equilibrium properties, we can also measure
dynamic equilibrium properties in a Molecular Dynamics simulation (but
not with a Monte Carlo simulation). At first sight, a dynamic equilibrium
property appears to be a contradiction: in equilibrium all properties are in-
dependent of time; hence any time dependence in the macroscopic prop-
erties of a system seems to be related to nonequilibrium behavior. This
is true, but it turns out that the time-dependent behavior of a system that
is only weakly perturbed is completely described by the dynamic equilib-
rium properties of the system. Later, we shall provide a simple introduc-
tion to the quantities that play a central role in the theory of time-dependent
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Algorithm 7 (The Radial Distribution Function)

subroutine gr(switch) radial distribution function
switch = 0 initialization,
= 1 sample, and = 2 results

if (switch.eq.0) then initialization
ngr=0
delg=box/(2*nhis) bin size
do i=0,nhis nhis total number of bins

g(i)=0
enddo

else if (switch.eq.1) then sample
ngr=ngr+1
do i=1,npart-1

do j=i+1,npart loop over all pairs
xr=x(i)-x(j)
xr=xr-box*nint(xr/box) periodic boundary conditions
r=sqrt(xr**2)
if (r.lt.box/2) then only within half the box length

ig=int(r/delg)
g(ig)=g(ig)+2 contribution for particle � and �

endif
enddo

enddo
else if (switch.eq.2) then determine ����

do i=1,nhis
r=delg*(i+0.5) distance �

vb=((i+1)**3-i**3)*delg**3 volume between bin i+1 and i
nid=(4/3)*pi*vb*rho number of ideal gas part. in vb
g(i)=g(i)/(ngr*npart*nid) normalize ����

enddo
endif
return
end

Comments to this algorithm:

1. For ef ciency reasons the sampling part of this algorithm is usually combined
with the force calculation (for example, Algorithm 5).

2. The factor pi = 3.14159� � � .
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processes near equilibrium, in particular the so-called time-correlation func-
tions. However, we shall not start with a general description of nonequi-
librium processes. Rather we start with a discussion of a simple specific
example that allows us to introduce most of the necessary concepts.

4.4.1 Diffusion

Diffusion is the process whereby an initially nonuniform concentration pro-
file (e.g., an ink drop in water) is smoothed in the absence of flow (no stir-
ring). Diffusion is caused by the molecular motion of the particles in the
fluid. The macroscopic law that describes diffusion is known as Fick’s law,
which states that the flux j of the diffusing species is proportional to the
negative gradient in the concentration of that species:

j � ����� (4.4.4)

where �, the constant of proportionality, is referred to as the diffusion coef-
cient . In what follows, we shall be discussing a particularly simple form
of diffusion, namely, the case where the molecules of the diffusing species
are identical to the other molecules but for a label that does not affect the
interaction of the labeled molecules with the others. For instance, this label
could be a particular polarization of the nuclear spin of the diffusing species
or a modified isotopic composition. Diffusion of a labeled species among
otherwise identical solvent molecules is called self-diffusion.

Let us now compute the concentration profile of the tagged species, un-
der the assumption that, at time � = 0, the tagged species was concentrated
at the origin of our coordinate frame. To compute the time evolution of the
concentration profile, we must combine Fick’s law with an equation that ex-
presses conservation of the total amount of labeled material:

������ �

��
�� � j���� � � �� (4.4.5)

Combining equation (4.4.5) with equation (4.4.4), we obtain

������ �

��
��������� � � �� (4.4.6)

We can solve equation (4.4.6) with the boundary condition

����� � � Æ���

(Æ��� is the Dirac delta function) to yield
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As before, � denotes the dimensionality of the system. In fact, for what fol-
lows we do not need ����� � itself, but just the time dependence of its second
moment:

�
�����

�
�

�
dr ����� ����

where we have used the fact that we have imposed
�

dr ����� � � ��

We can directly obtain an equation for the time evolution of ������� by mul-
tiplying equation (4.4.6) by �� and integrating over all space. This yields

�

��

�
dr ������� � � �

�
dr ��������� �� (4.4.7)

The left-hand side of this equation is simply equal to
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Applying partial integration to the right-hand side, we obtain
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� 	��� (4.4.8)

Equation (4.4.8) relates the diffusion coefficient � to the width of the con-
centration profile. This relation was first derived by Einstein. It should be
realized that, whereas � is a macroscopic transport coefficient, ������� has a
microscopic interpretation: it is the mean-squared distance over which the
labeled molecules have moved in a time interval �. This immediately sug-
gests how to measure � in a computer simulation. For every particle �, we
measure the distance traveled in time �, �r����, and we plot the mean square
of these distances as a function of the time �:
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This plot would look like the one that will be shown later in Figure 4.6. We
should be more specific about what we mean by the displacement of a par-
ticle in a system with periodic boundary conditions. The displacement that
we are interested in is simply the time integral of the velocity of the tagged
particle:

�r��� �
��
�

d� � v�� ���

In fact, there is a relation that expresses the diffusion coefficient directly in
terms of the particle velocities. We start with the relation

�� � lim
���

�
�
�����

�
��

� (4.4.9)

where, for convenience, we consider only one Cartesian component of the
mean-squared displacement. If we write ���� as the time integral of the �

component of the tagged-particle velocity, we get
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The quantity �����
������

���� is called the velocity autocorrelation function. It
measures the correlation between the velocity of a particle at times � � and
� ��. The velocity autocorrelation function (VACF) is an equilibrium property
of the system, because it describes correlations between velocities at differ-
ent times along an equilibrium trajectory. As equilibrium properties are in-
variant under a change of the time origin, the VACF depends only on the
difference of � � and � ��. Hence,
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���� � �����
� � � ��������� �

Inserting equation (4.4.10) in equation (4.4.9), we obtain
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d	 ����	������� � (4.4.11)

In the last line of equation (4.4.11) we introduced the coordinate 	 � � � � ��.
Hence, we see that we can relate the diffusion coefficient � to the integral
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of the velocity autocorrelation function. Such a relation between a trans-
port coefficient and an integral over a time-correlation function is called a
Green-Kubo relation (see Appendix C for some details). Green-Kubo relations
have been derived for many other transport coefficients, such as the shear
viscosity �,

� �
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the thermal conductivity ��,
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and electrical conductivity �


�
 �
�

����

�
�

�

d�
�
�e�� ����

e�
� ���

�
(4.4.16)

with

�e�� �
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���

��	
�
� � (4.4.17)

For details, see, for example, [79]. Time-correlation functions can easily be
measured in a Molecular Dynamics simulation. It should be emphasized
that for classical systems, the Green-Kubo relation for � and the Einstein
relation are strictly equivalent. There may be practical reasons to prefer
one approach over the other, but the distinction is never fundamental. In
Algorithm 8 an implementation of the calculation of the mean-squared dis-
placement and velocity autocorrelation function is described.

4.4.2 Order-� Algorithm to Measure Correlations

The calculation of transport coefficients from the integral of a time-correla-
tion function, or from a (generalized) Einstein relation, may require a lot
of memory and CPU time, in particular if fluctuations decay slowly. As
an example, we consider again the calculation of the velocity autocorrela-
tion function and the measurement of the diffusion coefficient. In a dense
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Algorithm 8 (Diffusion)

subroutine dif(switch,nsamp) diffusion; switch = 0 init.
= 1 sample, and = 2 results

if (switch.eq.0) then Initialization
ntel=0 time counter
dtime=dt*nsamp time between two samples
do i=1,tmax tmax total number of time step

ntime(i)=0 number of samples for time �

vacf(i)=0
r2t(i)=0

enddo
else if (switch.eq.1) then sample

ntel=ntel+1
if (mod(ntel,it0).eq.0) then decide to take a new � � �

t0 = t0 + 1 update number of � � �

tt0=mod(t0-1,t0max)+1 see note 1
time0(tt0)=ntel store the time of � � �

do i=,npart
x0(i,tt0)=x(i) store position for given � � �

vx0(i,tt0)=vx(i) store velocity for given � � �

enddo
endif
do t=1,min(t0,t0max) update vacf and r2, for � � �

delt=ntel-time0(t)+1 actual time minus � � �

if (delt.lt.tmax) then
ntime(delt)=ntime(delt)+1
do i=1,npart

vacf(delt)=vacf(delt)+ update velocity autocorr.
+ vx(i)*vx0(i,t)

r2t(delt)=r2t(delt)+ update mean-squared displ.
+ (x(i)-x0(i,t))**2

enddo
endif

enddo
else if (switch.eq.2) then determine results
do i=1,tmax

time=dtime*(i+0.5) time
vacf(i)=vacf(i) volume velocity autocorr.

+ /(npart*ntime(i))
r2t(i)=r2t(i) mean-squared displacement

+ /(npart*ntime(i))
enddo

endif
return
end
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Comments to this algorithm:

1. We de ne a new � � � after each it0 times this subroutine has been called.
For each � � �, we store the current positions and velocities. The term t0max
is the maximum number of � � � we can store. If we sample more, the rst
� � � will be removed and replaced by a new one. This limits the maximum
time we collect data to t0max*it0; this number should not be smaller than
tmax, the total number of time steps we want to sample.

2. Because nsamp gives the frequency at which this subroutine is called, the
time between two calls is nsamp*delt, where delt is the time step.

medium, the velocity autocorrelation function changes rapidly on typically
microscopic time scales. It therefore is important to have an even shorter
time interval between successive samples of the velocity. Yet, when probing
the long-time decay of the velocity autocorrelation function, it is not nec-
essary to sample with the same frequency. The conventional schemes for
measuring correlation functions do not allow for such adjustable sampling
frequencies. Here, we describe an algorithm that allows us to measure fast
and slow decay simultaneously at minimal numerical cost. This scheme can
be used to measure the correlation function itself, but in the example that we
discuss, we show how it can be used to compute the transport coefficient.

Let us denote by �� the time interval between successive measurements
of the velocity of the particles in the system. We can define block sums of the
velocity of a given particle as follows:

v������ �
���

����������

v�������� (4.4.18)

with

v������ � v���� (4.4.19)

where v��� is the velocity of a particle at time �. Equation (4.4.18) is a re-
cursive relation between block sums of level � and � � �. The variable �

determines the number of terms in the summation. For example, v������ can
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Figure 4.2: Coarse graining the velocities.

be written as

v������ �

���

�����������

v�������

�

���

�������������

����

��������������

����

��������������

v����

�

����

�����������

v���

�

�

��

����
�����������

d� v��� �
r����� � r����� � �� � ��

��
�

Clearly, the block sum of the velocity is related to the displacement of the
particle in a time interval ����. In Figure 4.2 the blocking operation is illus-
trated. From the preceding block sums, it is straightforward to compute the
velocity autocorrelation function with a resolution that decreases with in-
creasing time. At each level of blocking, we need to store ��� block sums,
where � is the number of particles (in practice, it will be more convenient to
store the block-averaged velocities).

The total storage per particle for a simulation of length � � ���� is � �

�. This should be compared to the conventional approach where, to study
correlations over the same time interval, the storage per particle would be
��. In the conventional calculation of correlation functions, the number of
floating-point operations scales at �� (or � ln �, if the fast Fourier technique is
used). In contrast, in the present scheme the number of operations scales as �.
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At each time step we have to update v������ and correlate it with all � entries
in the v���-array. The next block sum has to be updated and correlated once
every � time steps, the third every every �� steps, etc. This yields, for the
total number of operations,

�

��
� �

�
� �

�

�
�

�

��
� � � ��

�

��

�
�

�

��
�

�

� � �
�

Using this approach, we can quickly and efficiently compute a wide variety
of correlation functions, both temporal and spatial. However, it should be
stressed that each blocking operation leads to more coarse graining. Hence,
any high-frequency modulation of long-time behavior of such correlation
functions will be washed out.

Interestingly enough, even though the velocity autocorrelation function
itself is approximate at long times, we can still compute the integral of the
velocity autocorrelation function (i.e., the diffusion coefficient), with no loss
in numerical accuracy. Next, we discuss in some detail this technique for
computing the diffusion coefficient.

Let us define

�r̄������ �
��

���

v�������� � r���� � r���� (4.4.20)

The square of the displacement of the particle in a time interval ���� can be
written as

��r̄�������� �
�
r���� � r���

��
� �r̄������ � �r̄������� (4.4.21)

To compute the diffusion coefficient, we should follow the time dependen-
ce of the mean-squared displacement. As a first step, we must determine
�r̄������ for all 	 and all �. In fact, to improve the statistics, we wish to use
every sample point as a new time origin. To achieve this, we again create
arrays of length �. However, these arrays do not contain the same block
sums as before, but partial block sums (see Algorithm 9).

1. At every time interval ��, the lowest-order blocking operation is per-
formed through the following steps:

(a) We first consider the situation that all lowest-order accumulators
have already been filled at least once (this is true if �
��� ). The
value of the current velocity ���� is added to

vsum���� � � vsum���� � �� � v���

for j = 1,n-1, and

vsum���� � � v���

for j = n.
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Algorithm 9 (Diffusion: Order-� Algorithm)

subroutine dif(switch,nsamp) diffusion
switch = 0 initialization,
= 1 sample, and = 2 results

if (switch.eq.0) then initialization
ntel=0 time counter for this subroutine
dtime=dt*nsamp time between two samples
do ib=1,ibmax ibmax max. number of blocks
ibl(ib)=0 length of current block
do j=1,n n number of steps in a block
tel(ib,j)=0 counter number of averages
delr2(ib,j)=0 running average mean-sq. displ.
do i=1,npart
vxsum(ib,j,i)=0 coarse-grained velocity particle �

enddo
enddo

enddo
else if (switch.eq.2) then print results

do ib=1,max(ibmax,iblm)
do j=2,min(ibl(ib),n)
time=dtime*j*n**(ib-1) time
r2=delr2(ib,j)*dtime**2 mean-squared displacement

/tel(ib,j)
enddo

enddo
...(continue)....

(b) These operations yield

vsum���� � �

����

�������

v����

The equation allow us to update the accumulators for the mean-
squared displacement (4.4.21) for � � �� �� � � � � � :

��r̄�������� � ��r̄�������� � v�sum���� �����

2. If the current time step is a multiple of �, we perform the first blocking
operation, if it is a multiple of �� the second, etc. Performing blocking
operation 	 involves the following steps:
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...(continue)....
else if (switch.eq.1) then sample
ntel=ntel+1
iblm=MaxBlock(ntel,n) maximum number of possible

blocking operations
do ib=1,iblm
if (mod(ntel,n**(ib-1)) test if ntel is a multiple of ���

+ .eq.0) then
ibl(ib)=ibl(ib)+1 increase current block length
inm=max(ibl(ib),n) set maximum block length to �
do i=1,npart
if(ib.eq.1) then

delx=vx(i) 0th block: ordinary velocity
else

delx=vxsum(ib-1,1,i) previous block velocity
endif
do in=1,inm

if (inm.ne.n) then test block length equal to �
inp=in

else
inp=in+1

endif
if (in.lt.inm) then
vxsum(ib,in,i)=

+ vxsum(ib,inp,i)+delx eqns. (4.4.22) or (4.4.25)
else
vxsum(ib,in,i)=delx eqns. (4.4.23) or (4.4.26)

endif
enddo
do in=1,inm
tel(ib,in)=tel(ib,in)+1 counter number of updates
delr2(ib,in)=delr2(ib,in) update equation (4.4.24)

+ +vxsum(ib,inm-in+1,i)**2
enddo

enddo
endif

enddo
endif
return
end

Comment to this algorithm:

1. MaxBlock(ntel,n) gives the maximum number of blocking operations
that can be performed on the current time step ntel.
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(a) As before, we first consider the situation that all �th-order accu-
mulators have already been filled at least once (i.e., � � ����).
Using the �� �th block sum (vsum�� � ��� �), we update

vsum��� �� � vsum��� �� �� � vsum�� � ��� � (4.4.22)

for j = 1,n-1, and

vsum��� �� � vsum�� � ��� � (4.4.23)

for j = n.
(b) These operations yield

vsum��� �� �

����

�������

vsum��� ��� �	

The equations allows us to update the accumulators for the mean-
squared displacement, equation (4.4.21), for � � �� 
� 	 	 	 � � :

��r�������� � ��r�������� � v�sum��� ����
�	 (4.4.24)

3. Finally, we must consider how to handle arrays that have not yet been
completely filled. Consider the situation that only nmax of the � loca-
tions of the array that contains the �th-level sums have been initialized.
In that case, we should proceed as follows:

(a) Update the current block length: nmax = nmax+1 (nmax � �).
(b) For j = 1,nmax-1

vsum��� �� � vsum��� �� � vsum�� � ��� �	 (4.4.25)

(c) For j = nmax
vsum��� �� � vsum��� ��� �	 (4.4.26)

The update of equation (4.4.21) remains the same.

In Case Study 6, a detailed comparison is made between the present al-
gorithm and the conventional algorithm for the diffusion of the Lennard-
Jones fluid.

4.5 Some Applications

Let us illustrate the results of the previous sections with an example. Like in
the section on Monte Carlo simulations we choose the Lennard-Jones fluid
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as our model system. We use a truncated and shifted potential (see also
section 3.2.2):

�t������� �

�
�lj��� � �lj���� � � ��
� � � ��

�

where �lj��� is the Lennard-Jones potential and for these simulations �� �

���� is used.

Case Study 4 (Static Properties of the Lennard-Jones Fluid)
Let us start a simulation with 108 particles on a simple cubic lattice. We give
the system an initial temperature 	 � ��
�� and density � � ����, which is
close to the triple (gas-liquid-solid) point of the Lennard-Jones fluid [81–83].

In Figure 4.3 the evolution of the total energy, kinetic energy, and potential
energy is shown. It is important to note that the total energy remains constant
and does not show a (slow) drift during the entire simulation. The kinetic
and potential energies do change initially (the equilibration period) but during
the end of the simulation they oscillate around their equilibrium value. This
figure shows that, for the calculation of the average potential energy or kinetic
energy, we need approx. 1000 time steps to equilibrate the simulation. The
figure also shows significant fluctuations in the potential energy, some of
which may take several (100) time steps before they disappear.

Appendix D shows in detail how to calculate statistical error in the data
of a simulation. In this example, we use the method of Flyvbjerg and Pe-
tersen [84]. The following operations on the set of data points are performed:
we start by calculating the standard deviation of all the data points, then we
group two consecutive data points and determine again the standard devia-
tion of the new, blocked, data set. This new data set contains half the number
of data points of the original set. The procedure is repeated until there are
not enough data points to compute a standard deviation; the number of times
we perform this operation is called �. What do we learn from this?

First of all, let us assume that the time between two samples is so large
that the data points are uncorrelated. If the data are uncorrelated the stan-
dard deviation (as calculated according to the formula in Appendix D, i.e.,
correcting for the fact we have fewer data points) should be invariant to this
blocking operation and we should get a standard deviation that is indepen-
dent of �. In a simulation, however, the time between two data points is
usually too short to obtain a statistically independent sample; as a conse-
quence consecutive data points would be (highly) correlated. If we would
calculate a standard deviation using these data, this standard deviation will
be too optimistic. The effect of the block operation will be that after group-
ing two consecutive data points, the correlation between the two new data
points will be less. This, however, will increase the standard deviation; the
data will have more noise since consecutive data points no longer resemble
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Figure 4.3: Total, potential, and kinetic energy per particle ��� as a func-
tion of the number of time steps �time.

each other that closely. This decrease of accuracy as a function of the num-
ber of blocking operations will continue until we have grouped so many data
points that two consecutive points are really uncorrelated. This is exactly
the standard deviation we want to determine. It is important to note that we
have to ensure that the standard deviations we are looking at are significant;
therefore, we have to determine the standard deviation of the error at the
same time.

The results of this error calculation for the potential energy are shown
in Figure 4.4, as expected, for a low value of �; the error increases until a
plateau is reached. For high values of �, we have only a few data points,
which results in a large standard deviation in the error. The advantage of this
method is that we have a means of finding out whether we have simulated
enough; if we do not find such a plateau, the simulation must have been too
short. In addition we find a reliable estimate of the standard deviation. The
figure also shows the effect of increasing the total length of the simulation by
a factor of 4; the statistical error in the potential energy has indeed decreased
by a factor of 2.

In this way we obtained the following results. For the potential energy
� � ������� � �����	 and for the kinetic energy 
 � 	�	��� � �����	, the
latter corresponds to an average temperature of  � �������������. For the
pressure, we have obtained ���� � ���	.

In Figure 4.5, the radial distribution function is shown. To determine this
function we used Algorithm 7. This distribution function shows the charac-
teristics of a dense liquid. We can use the radial distribution function to
calculate the energy and pressure. The potential energy per particle can be
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Figure 4.4: The standard deviation � in the potential energy as a function
of the number of block operations � for a simulation of 150,000 and 600,000
time steps. This variance is calculated using equation (D.3.4).

calculated from

��� �

�

�
�

�
�

�

dr ��	�
�	�

� ���

�
�

�

d	 	���	�
�	� (4.5.1)

and for the pressure from

� � ��� �
�

�

�

�
��

�
�

�

dr
d��	�

d	
	
�	�

� ��� �
�

�
���

�
�

�

d	
d��	�

d	
	�
�	�� (4.5.2)

where ��	� is the pair potential.
Equations (4.5.1) and (4.5.2) can be used to check the consistency of

the energy and pressure calculations and the determination of the radial
distribution function. In our example, we obtained from the radial distribution
function for the potential energy ��� � ������ and for the pressure � �

�����, which is in good agreement with the direct calculation.

Case Study 5 (Dynamic Properties of the Lennard-Jones Fluid)
As an example of a dynamic property we have determined the diffusion coef-
ficient. As shown in the previous section, the diffusion coefficient can be de-
termined from the mean-squared displacement or from the velocity autocor-
relation function. We have determined these properties using Algorithm 8.
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Figure 4.5: Radial distribution function of a Lennard-Jones fluid close to the
triple point: � � ������ � ������ and � � �����	.

In Figure 4.6 the mean-squared displacement is shown as a function of
the simulation time. From the mean-squared displacement we can determine
the diffusion using equation (4.4.9). This equation, however, is valid only in
the limit 
 � �. In practice this means that we have to verify that we have
simulated enough that the mean-squared displacement is really proportional
to 
 and not to another power of 
.

The velocity autocorrelation function can be used as an independent
route to test the calculation of the diffusion coefficient. The diffusion co-
efficient follows from equation (4.4.11). In this equation we have to integrate
to 
��. Knowing whether we have simulated sufficiently to perform this in-
tegration reliably is equivalent to determining the slope in the mean-squared
displacement. A simple trick is to determine the diffusion coefficient as a
function of the truncation of the integration; if a plateau has been reached
over a sufficient number of integration limits, the calculation is probably reli-
able.

Case Study 6 (Algorithms to Calculate the Mean-Squared Displacement)
In this case study, a comparison is made between the conventional (Al-
gorithm 8) and the order-� methods (Algorithm 9) to determine the mean-
squared displacement. For this comparison we determine the mean-squared
displacement of the Lennard-Jones fluid.

In Figure 4.7 the mean-squared displacement as a function of time as
computed with the conventional method is compared with that obtained from
the order-� scheme. The calculation using the conventional scheme could
not be extended to times longer than 
 � �� without increasing the number of
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Figure 4.6: (left) Mean-squared displacement ������ as a function of the
simulation time �. Note that for long times, ������ varies linearly with �.
The slope is then given by ���, where � is the dimensionality of the system
and � the self-diffusion coefficient. (right) Velocity autocorrelation function
�v��� � v���� as a function of the simulation time �.
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Figure 4.7: Mean-squared displacement as a function of time for the
Lennard-Jones fluid (� � ��	

, � � ��	, and  � ����); comparison of
the conventional method with the order-� scheme .

time steps between two samples because of lack of memory. With the order-
� scheme the calculation could be extended to much longer times with no
difficulty. It is interesting to compare the accuracy of the two schemes. In the
conventional scheme, the velocities of the particles at the current time step
are used to update the mean-squared displacement of all time intervals. In
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Figure 4.8: Relative error in the mean-squared displacement as a function of
the number of data blocks as defined by Flyvbjerg and Petersen. The figures
compare the conventional scheme (solid squares) with the order-� method
(open circles) to determine the mean-squared displacement. The right figure
is for � � ��� and the left figure for � � ���.

the order-� scheme the current time step is only used to update the lowest-
order array of vsum (see Algorithm 9). The block sums of level � are updated
only once every �� time step. Therefore, for a total simulation of � time
steps, the number of samples is much less for the order-� scheme; for the
conventional scheme, we have � samples for all time steps, whereas the
order-� scheme has ���� samples for the �th block velocity. Naively, one
would think that the conventional scheme therefore is more accurate. In the
conventional scheme, however, the successive samples will have much more
correlation and therefore are not independent. To investigate the effect of
these correlations on the accuracy of the results, we have used the method
of Flyvbjerg and Petersen [84] (see Appendix D.3 and Case Study 4). In this
method, the standard deviation is calculated as a function of the number of
data blocks. If the data are correlated, the standard deviation will increase as
a function of the number of blocks until the number of blocks is sufficient that
the data in a data block are uncorrelated. If the data are uncorrelated, the
standard deviation will be independent of the number of blocks. This limiting
value is the standard deviation of interest.

In these simulations the time step was �� � ����� and the block length
was set to � � ��. For both methods the total number of time steps was
equal. To calculate the mean-squared displacement, we have used 100,000
samples for all times in the conventional scheme. For the order-� scheme,
we have used 100,000 samples for � � ��	���� �, 10,000 for � � �����	��� �,
1,000 for for � � ����	� �, etc. This illustrates that the number of samples in the
order-� scheme is considerably less than in the conventional scheme. The
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Figure 4.9: Percentage increase of the total CPU time as a function of the total
time for which we determine the mean-squared displacement; comparison
of the conventional scheme with the order-� scheme for the same system as
is considered in Figure 4.7

accuracy of the results, however, turned out to be the same. This is shown
in Figure 4.8 for � � ��� and � � ���. Since the total number of data blocking
operations that can be performed on the data depends on the total number
of samples, the number of blocking operations is less for the order-� method.
Figure 4.8 shows that for � � ��� the order-� scheme yields a standard devi-
ation that is effectively constant after three data blocking operations, indicat-
ing the samples are independent, whereas the standard deviation using the
conventional method shows an increase for the first six to eight data blocking
operations. For � � ��� the order-� method is independent of the number of
data blocks, the conventional method only after 10 data blocks. This implies
that one has to average over �

��
� ���� successive samples to have two

independent data points. In addition, the figure shows that the plateau value
of the standard deviation is essentially the same for the two methods, which
implies that for this case the two methods are equally accurate.

In Figure 4.9 we compare the CPU requirements of the two algorithms
for simulations with a fixed total number of time steps. This figure shows the
increase of the total CPU time of the simulation as a function of the total time
for which the mean-squared displacement has been calculated. With the
order-� scheme the CPU time should be (nearly) independent of the total
time for which we determine the mean-squared displacement, which is in-
deed what we observe. For the conventional scheme, however, the required
CPU time increases significantly for longer times. At � � ��� the order-�
scheme gives an increase of the total CPU time of 17%, whereas the con-
ventional scheme shows an increase of 130%.
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This example illustrates that the saving in memory as well as in CPU time
of the order-� scheme can be significant, especially if we are interested in
the mean-squared displacement at long times.

4.6 uestions and Exercises

uestion 10 (Integrating the Equations of Motion)

1. If you do an MD simulation of the Lennard-Jones potential with a time step
that is much too large you will nd an energy drift. This drift is towards a
higher energy. Why?

2. Why don t we use Runga-Kutta methods to integrate the equations of motion
of particles in MD?

3. Which of the following quantities are conserved in the MD simulation of Case
Study 4: potential energy, total momentum, position of the center of mass of
the system, or total angular momentum?

4. Show that the Verlet and velocity Verlet algorithms lead to identical trajecto-
ries.

5. Derive the Leap-Frog Algorithm by using Taylor expansions for �
�
�� ��

�

�
,

�
�
�� ��

�

�
, � ��� ���, and � ���.

uestion 11 (Correlation Functions)

1. The value of the velocity autocorrelation function (vacf) at � � � is related to
an observable quantity. Which one?

2. Calculate the limit of the vacf for ���.

3. What is the physical signi cance of vacf � �?

4. When you calculate the mean-squared displacement for particles in a system
in which periodic boundary conditions are used and in which particles are
placed back in the box, you should be very careful in calculating the displace-
ment. Why?

5. What is more dif cult to calculate accurately: the self-diffusion coef cient or
the viscosity? Explain.

Exercise 10 (Molecular Dynamics of a Lennard-Jones System)
On the book’s website you can find a Molecular Dynamics (MD) program
for a Lennard-Jones fluid in the ��� ensemble. Unfortunately, the program
does not conserve the total energy because it contains three errors.

1. Find the three errors in the code. Hint: there are two errors in integrate.f
and one in force.f. See the file system.inc for documentation about some
of the variables used in this code.

Q

Q

Q
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2. How is one able to control the temperature in this program? After all,
the total energy of the system should be constant (not the tempera-
ture).

3. To test the energy drift �� of the numerical integration algorithm for a
given time step �� after � integration steps, one usually computes [85]

�� ���� �
�

�

����

���

����
� ��� �� �����

� ���

���� �

In this equation, � ��� is the total energy (kinetic + potential) of the
system at time �. Change the program (only in mdloop.f) in such a way
that �� is computed and make a plot of �� as a function of the time
step. How does the time step for a given energy drift change with the
temperature and density?

4. One of the most time-consuming parts of the program is the calculation
of the nearest image of two particles. In the present program, this
calculation is performed using an if-then-else-endif construction. This
works only when the distance between two particles is smaller than
��	 and larger than ���	 times the size of the periodic box. A way to
overcome this problem is to use a function that calculates the nearest
integer nint

� � �� 
�� � nint �� � �
��� �

in which �
�� � ���
��. Which expression is faster? (Hint: You only
have to make some modifications in force.f.) Which expression will be
faster on a vector computer like a Cray C90? Because the nint func-
tion is usually slow, you can write your own nint function. For exam-
ple, when � � ����, we can use

nint ��� � ��� ��� ����	� � ���� (4.6.1)

What happens with the speed of the program when you replace the
standard nint function? Do you have an explanation for this? 4

5. In equation (4.6.1), �
�� is used instead of �
��. Why?

6. An important quantity of a liquid or gas is the so-called self-diffusivity
�. There are two methods to calculate �:

(a) by integrating the velocity autocorrelation function:

� �
�

�

�
�

�

�
v ��� � v

�
�� �

�

��
��

�

�

�
�

�

����

���

�
v ��� �� � v

�
�� �� �

�

��
��

�

��
(4.6.2)

4The result will strongly depend on the computer/compiler that is used.



4.6 Questions and Exercises 107

in which � is the number of particles and v ��� �� is the velocity
of particle � at time �. One should choose � in such a way that
independent time origins are taken, i.e., � � ����, � � ���� � � � ��

and �v ��� � v ��� ����� � 0.
(b) by calculating the mean-squared displacement:

� � lim
�

�

��

����x��� �
�

�
� x ���

����
�

��
�

	 (4.6.3)

One should be very careful with calculation of the mean-squared
displacement when periodic boundary conditions are used. Why?

Modify the program in such a way that the self-diffusivity can be calcu-
lated using both methods. Only modifications in subroutine sample diff.f
are needed. Why is it sufficient to use only independent time origins
for the calculation of the means-squared displacement and the velocity
autocorrelation function? What is the unit of � in SI units? How can
one transform � into dimensionless units?

7. For Lennard-Jones liquids, Naghizadeh and Rice [86] report the fol-
lowing equation for self-diffusivity (dimensionless units, 
� � �	� and
� ��	� ):

10log ���� � �	�� � �	��� �
�	�� � �	��


�

	 (4.6.4)

Try to verify this equation with simulations. How can one translate ��

to a diffusivity in SI units?

8. Instead of calculating the average energy ��� directly, one can use the
radial distribution function � ���. Derive an expression for ��� using
� ���. Compare this calculation with a direct calculation of the aver-
age energy. A similar method can be used to compute the average
pressure.

9. In the current version of the code, the equations of motion are inte-
grated by the Verlet algorithm. Make a plot of the energy drift �� for
the following integration algorithms:

� Verlet
� Velocity Verlet
� Euler (never use this algorithm in real simulations).
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Chapter 5

Monte Carlo Simulations in
Various Ensembles

In a conventional Molecular Dynamics simulation, the total energy � and
the total linear momentum � are constants of motion. Hence, Molecular
Dynamics simulations measure (time) averages in an ensemble that is very
similar to the microcanonical (see [87]); namely, the constant-���-� ensem-
ble. In contrast, a conventional Monte Carlo simulation probes the canoni-
cal (i.e., constant-���) ensemble. The fact that these ensembles are differ-
ent leads to observable differences in the statistical averages computed in
Molecular Dynamics and Monte Carlo simulations. Most of these differ-
ences disappear in the thermodynamic limit and are already relatively small
for systems of a few hundred particles. However, the choice of ensemble
does make a difference when computing the mean-squared value of fluctu-
ations in thermodynamic quantities. Fortunately, techniques exist to relate
fluctuations in different ensembles [80]. Moreover, nowadays it is common
practice to carry out Molecular Dynamics simulations in ensembles other
than the microcanonical. In particular, it is possible to do Molecular Dynam-
ics at constant pressure, at constant stress, and at constant temperature (see
Chapter 6). The choice of ensembles for Monte Carlo simulations is even
wider: isobaric-isothermal, constant-stress-isothermal, grand canonical (i.e.,
constant ��� ), and even microcanonical [88–93]. A more recent addition
to this list is a Monte Carlo method that employs the Gibbs ensemble tech-
nique [94], which was developed to study phase coexistence in moderately
dense (multicomponent) fluids. The Gibbs ensemble method is discussed in
detail in Chapter 8.

As explained in section 3.1 the principal idea of importance sampling is
to use a Monte Carlo procedure to generate a random walk in those regions
of phase space that have an important contribution to the ensemble aver-
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ages. The acceptance rules are chosen such that these configurations occur
with a frequency prescribed by the desired probability distribution. In sec-
tion 3.1 it is shown that such a procedure indeed yields the correct distribu-
tion of configurations. Essential in the demonstration that our Monte Carlo
scheme samples the desired distribution is the condition of detailed balance.
To be more precise, detailed balance, in fact, is too strong a condition, but
if detailed balance is obeyed we are guaranteed to have a correct sampling
scheme. It may very well be possible that a scheme that does not obey de-
tailed balance still samples the correct distribution. In a Monte Carlo scheme
errors are easily introduced, so one should be extremely careful. We will give
some examples where we can show that detailed balance is not obeyed and
the results show systematic errors. We have found that we could demon-
strate that detailed balance was not obeyed in all cases where we observed
strange results.

5.1 General Approach

In the following sections, we will use the following procedure to demon-
strate the validity of our Monte Carlo algorithms:

1. Decide which distribution we want to sample. This distribution, de-
noted � ; will depend on the details of the ensemble.

2. Impose the condition of detailed balance,

���� �� � ���� ��� (5.1.1)

where ���� �� is the flow of configuration � to �. This flow is given
by the product of the probability of being in configuration �, the prob-
ability of generating configuration �, and the probability of accepting
this move,

���� �� � � ���� ���� ��� acc��� ��� (5.1.2)

3. Determine the probabilities of generating a particular configuration.

4. Derive the condition that needs to be fulfilled by the acceptance rules.

5.2 Canonical Ensemble

It is instructive to apply the preceding recipe to the ordinary Metropolis
scheme. In the canonical ensemble, the number of particles, temperature,
and volume are constant (see Figure 5.1). The partition function is
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N, V, T

Figure 5.1: Canonical ensemble. The number of particles, volume, and tem-
perature are constant. Shown is a Monte Carlo move in which a particle is
displaced.

����� � ���
�

�����

�
dr� exp�����r���� (5.2.1)

where � �
�
��	�
����� is the thermal de Broglie wavelength. From the

partition function it follows that the probability of finding configuration r�

is given by
� �r�� � exp�����r���� (5.2.2)

Equations (5.2.1) and (5.2.2) are the basic equations for a simulation in the
canonical ensemble.

5.2.1 Monte Carlo Simulations

In the canonical ensemble, we have to sample distribution (5.2.2). This can
be done using the following scheme:

1. Select a particle at random and calculate the energy of this configura-
tion ����.

2. Give this particle a random displacement (see Figure 5.1),

r���� r��� � ��Ranf � �����

where �	
 is the maximum displacement. The value of � should be
chosen such that the sampling scheme is optimal (see section 3.3). The
new configuration is denoted � and its energy ����.

3. The move is accepted with a probability (see equation (3.1.17))

acc��� �� � min ��� exp�������� � ������� � (5.2.3)
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If rejected, the old configuration is kept.

An implementation of this basic Metropolis scheme is shown in Section 3.2
(Algorithms 1 and 2).

5.2.2 Justi cation of the Algorithm

The probability of generating a particular configuration is constant and in-
dependent of the conformation of the system

���� �� � ���� �� � ��

Substitution of this equation in the condition of detailed balance (5.1.1) and
substitution of the desired distribution (5.2.2) gives as condition for the ac-
ceptance rules

acc��� ��

acc��� ��
� exp�������� � ������� (5.2.4)

It is straightforward to demonstrate that acceptance rule (5.2.3) obeys this
condition.

5.3 Microcanonical Monte Carlo

Most experimental observations are performed at constant�,�,�; sometimes
at constant �	
 	 �; and occasionally at constant �,
,�. Experiments at con-
stant �	
 	 � are very rare, to say the least. Under what circumstances, then,
would anyone wish to perform Monte Carlo simulations at constant �	
 ,
and �? We suppose that, if you are interested in the simulation of dense liq-
uids or solids, the answer would be “hardly ever”. Still there are situations
where a microcanonical Monte Carlo method, first suggested by Creutz [93],
may be of use. In particular, you might be worried that a poor random-
number generator may introduce a bias in the sampling of the Boltzmann
distribution or in the unlikely case that the exponentiation of the Boltzmann
factor exp�������� ������� may account for a nonnegligible fraction of the
computing time.

The microcanonical Monte Carlo method uses no random numbers to
determine the acceptance of a move. Rather, it uses the following procedure.
We start with the system in a configuration q�. Denote the potential energy
for this state by ��q��. We now fix the total energy of the system at a value
�  �. To this end, we introduce an additional degree of freedom that carries
the remainder of the energy of the system: �� � � ��. �� must always be
nonnegative. Now we start our Monte Carlo run.
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1. After each trial move we compute the change in potential energy of
the system,

�� � ��q ��� ���q���

2. If ���� , we accept the move and increase the energy carried by the
demon by ����. If �� � � , we test if the demon carries enough energy
to make up the difference. Otherwise, we reject the trial move.

Note that no random numbers were used in this decision. Using elementary
statistical mechanics it is easy to see that, after equilibration, the probability
density to find the demon with an energy �� is given by the Boltzmann
distribution:

� ���� � �����
�� exp����	�����

Hence, the demon acts as a thermometer. Note that this method does not re-
ally simulate the microcanonical ensemble. What is kept (almost) constant is
the total potential energy. We can, however, mimic the real 
�� � � ensemble
by introducing a demon for every quadratic term in the kinetic energy. We
then apply the same rules as before, randomly selecting a demon to pay or
accept the potential energy change for every trial move.

Microcanonical Monte Carlo is rarely, if ever, used to simulate molecular
systems.

5.4 Isobaric-Isothermal Ensemble

The isobaric-isothermal (constant-
�) ensemble is widely used in Monte
Carlo simulations. This is not surprising because most real experiments are
also carried out under conditions of controlled pressure and temperature.
Moreover, constant-
� simulations can be used to measure the equation of
state of a model system even if the virial expression for the pressure cannot
be readily evaluated. This may be the case, for instance, for certain models
of nonspherical hard-core molecules, but also for the increasingly important
class of models where the (nonpairwise additive) potential energy function
is computed numerically for each new configuration. Finally, it is often con-
venient to use constant-
� Monte Carlo to simulate systems in the vicinity
of a first-order phase transition, because at constant pressure the system is
free (given enough time, of course) to transform completely into the state of
lowest (Gibbs) free energy, whereas in a constant-
�� simulation the sys-
tem may be kept at a density where it would like to phase separate into two
bulk phases of different density but is prevented from doing so by finite-size
effects.

Monte Carlo simulations at constant pressure were first described by
Wood [88] in the context of a simulation study of two-dimensional hard
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disks. Although the method introduced by Wood is very elegant, it is not
readily applicable to systems with arbitrary continuous potentials. McDon-
ald [89] was the first to apply constant-��� simulations to a system with con-
tinuous intermolecular forces (a Lennard-Jones mixture), and the constant-
pressure method of McDonald is now being used almost universally and
that is discussed next.

5.4.1 Statistical Mechanical Basis

We will derive the basic equations of constant-pressure Monte Carlo in a
way that may appear unnecessarily complicated. However, this derivation
has the advantage that the same framework can be used to introduce some of
the other non-���Monte Carlo methods to be discussed later. For the sake
of convenience we shall initially assume that we are dealing with a system
of � identical atoms. The partition function for this system is given by

����� � �� �
�

�����

��
�

� � �

��
�

dr� exp�����r���	 (5.4.1)

It is convenient to rewrite equation (5.4.1) in a slightly different way. We
have assumed that the system is contained in a cubic box with diameter

 � ����. We now define scaled coordinates s� by

r� � 
s� f��  � ���� � � � � �	 (5.4.2)

If we now insert these scaled coordinates in equation (5.4.1), we obtain

����� � �� �
��

�����

��
�

� � �

��
�

ds� exp�����s�� 
��	 (5.4.3)

In equation (5.4.3), we have written ��s�� 
� to indicate that � depends on
the real rather than the scaled distances between the particles. The expres-
sion for the Helmholtz free energy of the system is

����� � �� � ���� ln�

� ���� ln
�

��

�����

�
� ��� ln

�
ds� exp�����s�� 
��

� �id���� � ��� �ex���� � ��	 (5.4.4)

In the last line of this equation we have identified the two contributions to
the Helmholtz free energy on the previous line as the ideal gas expression
plus an excess part. Let us now assume that the system is separated by a
piston1 from an ideal gas reservoir (see Figure 5.2). The total volume of the

1Actually, there is no need to assume a real piston. The systems with volume � and ��� �
may both be isolated systems subject to their individual (periodic) boundary conditions. The
only constraint that we impose is that the sum of the volumes of the two systems equals ��.
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Figure 5.2: Ideal gas (� particles, volume ����) can exchange volume with
an �-particle system (volume �).

system plus reservoir is fixed at a value ��. The total number of particles
is �. Hence, the volume accessible to the � � � ideal gas molecules is
�� � �. The partition function of the total system is simply the product of
the partition functions of the constituent subsystems:

������� ���� �� �
�����������

�����������

�
ds���

�
ds� exp�����s�� 	��


(5.4.5)
Note that the integral over the s��� scaled coordinates of the ideal gas
yields simply �. For the sake of compactness, we have assumed that the ther-
mal wavelength of the ideal gas molecules is also equal to �. The total free
energy of this combined system is �tot � ��� ln������� ���� ��. Now
let us assume that the piston between the two subsystems is free to move,
so that the volume � of the �-particle subsystem can fluctuate. Of course,
the most probable value of � will be the one that minimizes the free energy
of the combined system. The probability density � ��� that the �-particle
subsystem has a volume � is given by 2

� ��� �
�����������

�
ds� exp�����s�� 	�����

�
d� �� ������ � �����

�
ds� exp�����s�� 	 ���


 (5.4.6)

We now consider the limit that the size of the reservoir tends to infinity
2Actually, this step is hard to justify. The reason is that there is no natural “metric” for the

volume integration. Unlike the degeneracy of energy levels or the number of particles in a
system, we cannot count volume. This problem has been addressed by several authors [95, 96].
Attard [95] approaches the problem from an information-theory point of view and concludes
that the integration variable should be ln� , rather than � . In contrast, Koper and Reiss [96]
aim to reduce the problem to one of counting the number of quantum states compatible with a
give volume. They end up with an expression that is almost identical to the one discussed here.
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(��� �, � � �, �� ������� �). In that limit, a small volume change
of the small system does not change the pressure � of the large system. In
other words, the large system works as a manostat for the small system. In
that case, we can simplify equations (5.4.5) and (5.4.6). Note that in the limit
����� �, we can write

��������� � ����� �� � �������
��� � ����� exp�������������

Note that for � � � � �, exp���� � ������� � exp�����. But, as the
reservoir contains an ideal gas, � can be written as 	�. With these substitu-
tions, the combined partition function (5.4.5) can be written as


���� � ���
	�

����

�
d��� exp��	���

�
ds� exp��	��s�� ���� (5.4.7)

where we have included a factor 	� to make 
���� � �� dimensionless (this
choice is not obvious —see footnote 2). This gives, for equation (5.4.6),

��������� �
�� exp��	���

�
ds� exp��	��s�� ������

�
d� � � �� exp��	����

�
ds� exp��	��s�� � ���

� (5.4.8)

In the same limit, the difference in free energy between the combined system
and the ideal gas system in the absence of the �-particle subsystem is the
well-known Gibbs free energy �:

����� � �� � ���� ln
���� � ��� (5.4.9)

Equation (5.4.8) is the starting point for constant-��� Monte Carlo sim-
ulations. The idea is that the probability density to find the small system
in a particular configuration of the � atoms (as specified by s�) at a given
volume � is given by

� �� � s�� � �� exp��	��� exp��	��s�� ���

� exp��	���s�� ��� ����	�	 ln���� (5.4.10)

We can now carry out Metropolis sampling on the reduced coordinates s�

and the volume �.
In the constant-��� Monte Carlo method, � is simply treated as an ad-

ditional coordinate, and trial moves in � must satisfy the same rules as trial
moves in s (in particular, we should maintain the symmetry of the under-
lying Markov chain). Let us assume that our trial moves consist of an at-
tempted change of the volume from � to � � � � � ��, where �� is a ran-
dom number uniformly distributed over the interval ����max����max�. In
the Metropolis scheme such a random, volume-changing move will be ac-
cepted with the probability

acc��� �� � min
�
�� exp��	���s�� � �� � ��s�� ��

� ���� �����	�	 ln�� ������
�
� (5.4.11)
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Instead of attempting random changes in the volume itself, one might con-
struct trial moves in the box length � [89] or in the logarithm of the vol-
ume [97]. Such trial moves are equally legitimate, as long as the symmetry
of the underlying Markov chain is maintained. However, such alternative
schemes result in a slightly different form for equation (5.4.11). The partition
function (5.4.7) can be rewritten as

����� � �� �
��

�����

�
d�ln������ exp������

�
ds� exp�����s�� ���	

(5.4.12)
This equation shows that, if we perform a random walk in ln�, the proba-
bility of finding volume � is given by

� �� � s�� � ���� exp������ exp�����s�� ���	 (5.4.13)

This distribution can be sampled with the following acceptance rule:

acc�
� �� � min
�
�� exp������s�� � �� � ��s�� ��

� ���� ����� �� ����� ln�� �����
�
	 (5.4.14)

5.4.2 Monte Carlo Simulations

The frequency with which trial moves in the volume should be attempted
is dependent on the efficiency with which volume space is sampled. If, as
before, we use as our criterion of efficiency

sum of squares of accepted volume changes
�C��

�

then it is obvious that the frequency with which we attempt moves depends
on their cost. In general, a volume trial move will require that we recom-
pute all intermolecular interactions. It therefore is comparable in cost to
carrying out � trial moves on the molecular positions. In such cases it is
common practice to perform one volume trial move for every cycle of posi-
tional trial moves. Note that, to guarantee the symmetry of the underlying
Markov chain, volume moves should not be attempted periodically after
a fixed number (say �) positional trial moves. Rather, at every step there
should be a probability �� to attempt a volume move instead of a particle
move. The criteria determining the optimal acceptance of volume moves are
no different than those for particle moves.

In one class of potential energy functions, volume trial moves are very
cheap, namely, those for which the total interaction energy can be written as
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a sum of powers of the interatomic distances,

�� �

�

���

��������
�

�
�

���

�����������
�� (5.4.15)

or, possibly, a linear combination of such sums (the famous Lennard-Jones
potential is an example of the latter category). Note that �� in equation
(5.4.15) changes in a trivial way if the volume is modified such that the linear
dimensions of the system change for � to � �:

����
�� �

�
�

� �

��
������ (5.4.16)

Clearly, in this case, computing the probability of acceptance of a volume-
changing trial move is extremely cheap. Hence such trial moves may be
attempted with high frequency, for example, as frequent as particle moves.
One should be very careful when using the scaling property (5.4.16) if at
the same time one uses a cutoff (say ��) on the range of the potential. Use
of equation (5.4.16) implicitly assumes that the cutoff radius �� scales with
�, such that � �

� � ����
����. The corresponding tail correction to the poten-

tial (and the virial) should also be recomputed to take into account both the
different cutoff radius and the different density of the system.

Algorithms 2, 10, and 11 show the basic structure of a simulation in the
	
� ensemble.

Finally, it is always useful to compute the virial pressure during a con-
stant pressure simulation. On average, the virial pressure should always be
equal to the applied pressure. This is easy to prove as follows. First of all,
note that the virial pressure 
���� of an 	-particle system at volume � is
equal to


���� ��

�
�

�

�
��

� (5.4.17)

In an isothermal-isobaric ensemble, the probability-density ���� of finding
the system with volume � is equal to exp��������� 
������	
��, where

��	
��� �


�
d� exp��������� 
����
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Algorithm 10 (Basic NPT-Ensemble Simulation)

PROGRAM mc npt basic NPT ensemble simulation

do icycl=1,ncycl perform ncycl MC cycles
ran=ranf()*(npart+1)+1
if (ran.le.npart) then

call mcmove perform particle displacement
else

call mcvol perform volume change
endif
if (mod(icycl,nsamp).eq.0)

+ call sample sample averages
enddo
end

Comments to this algorithm:

1. This algorithm ensures that, after each MC step, detailed balance is obeyed and
that per cycle we perform (on average) npart attempts to displace particles
and one attempt to change the volume.

2. Subroutine mcmove attempts to displace a randomly selected particle (Al-
gorithm 2), and subroutine mcvol attempts to change the volume (Al-
gorithm 11), and subroutine sample updates ensemble averages every
nsampth cycle.

Let us now compute the average value of the virial pressure:

���� � �
��

������

�
d� ����������exp��������� ����

�
��

������

�
d���� �� exp������������exp������

�
��

������

�
d��exp��������� ����

� �	 (5.4.18)

The third line in this equation follows from partial integration.
Thus far we have limited our discussion of Monte Carlo at constant pres-

sure to pure, atomic systems. Extension of the technique to mixtures is
straightforward. The method is also easily applicable to molecular systems.
However, in the latter case, it is crucial to note that only the center-of-mass
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Algorithm 11 (Attempt to Change the Volume)

SUBROUTINE mcvol attempts to change
the volume

call toterg(box,eno) total energy old conf.
vo=box**3 determine old volume
lnvn=log(vo)+(ranf()-0.5)*vmax perform random walk in ln�
vn=exp(lnvn)
boxn=vn**(1/3) new box length
do i=1,npart

x(i)=x(i)*boxn/box rescale center of mass
enddo
call toterg(boxn,enn) total energy new conf.
arg=-beta*((enn-eno)+p*(vn-vo)

+ -(npart+1)*log(vn/vo)/beta) appropriate weight function!
if (ranf().gt.exp(arg)) then acceptance rule (5.2.3)

do i=1,npart REJECTED
x(i)=x(i)*box/boxn restore the old positions

enddo
endif
return
end

Comments to this algorithm:

1. A random walk in ln� is performed using acceptance rule (5.4.14).

2. The subroutine toterg calculates the total energy. Usually the energy of the
old con guration is known; therefore this subroutine is called only once.

positions of the molecules should be scaled in a volume move, never the
relative positions of the constituent atoms in the molecule. This has one
practical consequence, namely, that the simple scaling relation (5.4.16) can
never be used in molecular systems with site-site interactions. The reason
is that, even if the center-of-mass separations between molecules scale as a
simple power of the system size, the site-site separations do not.

5.4.3 Applications

Case Study 7 (Equation of State of the Lennard-Jones Fluid)
Simulations at constant pressure can be used also to determine the equation
of state of a pure component. In such a simulation the density is determined
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Figure 5.3: Equation of state of the Lennard-Jones fluid as obtained from
�,�,� simulations; isotherms at � � ���. The solid line is the equation of
state of Johnson et al. [62] and the squares are the results from the simulations
(� � ���).

as a function of the applied pressure and temperature. Figure 5.3 shows
that, for the Lennard-Jones fluid, the results of an �,�,� simulation compare
very well with those obtained in Case Study 1. In simulations of models
of real molecules one would like to know whether under atmospheric con-
ditions the model fluid has the same density as the real fluid. One would
need to perform several �,�,� simulations to determine the density at which
the pressure is approximately 1 atm. In an �,�,� simulation one would ob-
tain this result in a single simulation. Furthermore, 1 atm is a relatively low
pressure, and one would need long simulations to determine the pressure
from an �,�,� simulation, whereas the density in general is determined ac-
curately from an �,�,� simulation.

Case Study 8 (Phase Equilibria from Constant-Pressure Simulations)
In Case Studies 1 and 7 �,�,� or �,�,� simulations are used to determine
the equation of state of a pure component. If these equation-of-state data are
fitted to an analytical equation of state (for example, the van der Waals equa-
tion of state or more sophisticated forms of this equation), the vapor-liquid
coexistence curve can be determined from Maxwell’s equal area construc-
tion. Although this way of determining a coexistence curve is guaranteed to
work for all systems, it requires many simulations and, therefore, is a rather
cumbersome route. Alternative routes have been developed to determine
vapor-liquid coexistence from a single simulation. In this case study we in-
vestigate one of them: zero pressure simulation.

A zero pressure simulation provides a quick (and dirty) way to obtain an



124 Chapter 5. Monte Carlo Simulations in Various Ensembles

0.0 0.2 0.4 0.6 0.8 1.0
ρ

0.6

0.8

1.0

1.2

T

Figure 5.4: Vapor-liquid coexistence of the Lennard-Jones fluid; for each
temperature the solid lines give at a given temperature the coexisting gas
density (left curve) and the coexisting liquid density (right curve). The cir-
cles are the average densities obtained from �,�,� simulations at zero pres-
sure. Important to note is that for � � ��� the zero pressure method fails to
predict coexistence.

estimate of the liquid coexistence density. If we perform a simulation at zero
pressure and start with a density greater than the liquid density, the average
density obtained from a simulation that is not too long will be close to the
coexistence density. Such a simulation should not be too long because the
probability exists that the system will undergo a large fluctuation in density.
If this fluctuation is towards a lower density the system size can become
infinitely large, since the equilibrium density that corresponds to zero pres-
sure is exactly zero. Figure 5.4 shows the results for the Lennard-Jones
fluid. Not too close to the critical temperature, a reasonable estimate of the
liquid density can be obtained via a single simulation. Important to note is
that this estimate deviates systematically from the true coexistence densities
and this technique should not be used to determine the coexistence curve.
This technique is very useful for obtaining a first estimate of the coexistence
curve.

As explained below equation (5.4.17), ����, the probability density of
finding a system with volume � is proportional to exp�������������. This
probability density can be obtained from a constant-pressure simulation by
constructing a histogram of the number of times a certain volume � is ob-
served during the simulation. Once we know ���� as a function of �, we
can locate the coexistence points. In contrast to the zero pressure simula-
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tions used in Case Study 8, this histogram technique does lead to a correct
estimate of the coexistence density. One of the important applications of this
technique is the investigation of finite-size effects. In practice this scheme for
deriving ���� from ���� only works near the critical point [98–101] unless
special sampling techniques are used (see section 7.4).

5.5 Isotension-Isothermal Ensemble

The ���-MC method is perfectly adequate for homogeneous fluids. How-
ever, for inhomogeneous systems, in particular crystalline solids, it may not
be sufficient that the simulation box can change size. Often we are interested
in the transformation of a crystal from one structure to another or even in the
change of the shape of the crystalline unit cell with temperature or with ap-
plied stress. In such cases it is essential that the shape of the simulation box
has enough freedom to allow for such changes in crystal structure without
creating grain boundaries or other highly stressed configurations. This prob-
lem was first tackled by Parrinello and Rahman [102, 103], who developed
an extension of the constant-pressure Molecular Dynamics technique intro-
duced by Andersen [104]. The extension of the Parrinello-Rahman method
to Monte Carlo simulations is straightforward (actually, the method is quite
a bit simpler in Monte Carlo than in Molecular Dynamics).

To our knowledge, the first published account of constant-stress Monte
Carlo is a paper by Najafabadi and Yip [90]. At the core of the constant-
stress Monte Carlo method lies the transformation from the scaled coordi-
nates s to the real coordinates q. If the simulation box is not cubic and not
orthorhombic, the transformation between s and r is given by a matrix h:
�� � h����. The volume of the simulation box � is equal to �det h�. Without
loss of generality we can choose h to be a symmetric matrix. In the constant-
stress Monte Carlo procedure certain moves consist of an attempted change
of one or more of the elements of h. Actually, it would be equally realistic
(but not completely equivalent) to sample the elements of the metric tensor
G � h�h, where h� is the transpose of h. If only hydrostatic external pressure
is applied, the constant-stress Monte Carlo method is almost equivalent to
constant-pressure Monte Carlo.3 Under nonhydrostatic pressure (e.g., uni-
axial stress), there is again some freedom of choice in deciding how to apply
such deforming stresses. Probably the most elegant method (and the method
that reflects most closely the statistical thermodynamics of deformed solids)

3Except that one should never use the constant-stress method for uniform fluids, because
the latter offer no resistance to the deformation of the unit box and very strange (flat, elongated,
etc.) box shapes may result. This may have serious consequences because simulations on sys-
tems that have shrunk considerably in any one dimension tend to exhibit appreciable finite-size
effects.
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Figure 5.5: Adsorbent (for example, a zeolite) in direct contact with a gas.

is to express all external deforming stresses in terms of the so-called thermo-
dynamic tension (see, e.g., [105]).

5.6 Grand-Canonical Ensemble

The ensembles we have discussed so far have the total number of particles
imposed. For some systems, however, one would like to obtain information
on the average number of particles in a system as a function of the exter-
nal conditions. For example, in adsorption studies one would like to know
the amount of material adsorbed as a function of the pressure and temper-
ature of the reservoir with which the material is in contact. A naive but
theoretically valid approach would be to use the Molecular Dynamics tech-
nique (microcanonical ensemble) and simulate the experimental situation;
an adsorbent in contact with a gas (see Figure 5.5). Such a simulation is pos-
sible for only very simple systems. In real experiments, equilibration may
take minutes or even several hours, depending on the type of gas molecules.
These equilibration times would be reflected in a Molecular Dynamics sim-
ulation, the difference being that a minute of experimental time takes on the
order of ��

� seconds on a computer. Furthermore, in most cases, we are
not interested in the properties of the gas phase, yet a significant amount of
CPU time will be spent on the simulation of this phase, and finally, in such
a simulation, there is an interface between the gas phase and the adsorbent.
In the interfacial region the properties of the system are different from the
bulk properties in which we are interested. Since in a simulation the system
is relatively small, we have to simulate a very large system to minimize the
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Figure 5.6: Adsorbent in contact with a reservoir that imposes constant
chemical potential and temperature by exchanging particles and energy.

influence of this interfacial region.4

Most of these problems can be solved by a careful choice of ensembles.
For adsorption studies, a natural ensemble to use is the grand-canonical en-
semble (or �,�,� ensemble). In this ensemble, the temperature, volume, and
chemical potential are fixed. In the experimental setup, the adsorbed gas is
in equilibrium with the gas in the reservoir. The equilibrium conditions are
that the temperature and chemical potential of the gas inside and outside
the adsorbent must be equal.5 The gas that is in contact with the adsorbent
can be considered as a reservoir that imposes a temperature and chemical
potential on the adsorbed gas (see Figure 5.6). We therefore have to know
only the temperature and chemical potential of this reservoir to determine
the equilibrium concentration inside the adsorbent. This is exactly what is
mimicked in the grand-canonical ensemble: the temperature and chemical
potential are imposed and the number of particles is allowed to fluctuate
during the simulation. This makes these simulations different from the con-
ventional ensembles, where the number of molecules is fixed.

5.6.1 Statistical Mechanical Basis

In section 3.1.2, we introduced the Metropolis sampling scheme as a method
for computing thermal averages of functions ��r�� that depend explicitly
on the coordinates of the molecules in the �-body system under study. Ex-
amples of such mechanical properties are the potential energy or the virial
contribution to the pressure. However, the Metropolis method could not be
used to determine the integral

�
dr� exp�����r��� itself. The latter quan-

4Such a simulation, of course, would be appropriate if the interest is in just this region.
5Note that the pressure is not defined inside the zeolite; therefore, the pressure cannot be an

equilibrium quantity. However, the pressure is related to the chemical potential via an equation
of state, and it is always possible to calculate the pressure of the gas that corresponds to a given
chemical potential and vice versa.
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Figure 5.7: Ideal gas (��� particles, volume ����) can exchange particles
with a �-particle system (volume �).

tity measures the effective volume in configuration space that is accessible
to the system. Hence, the original Metropolis scheme could not be used to
determine those thermodynamic properties of a system that depend explic-
itly on the configurational integral. Examples of such thermal properties
are the Helmholtz free energy �, the entropy �, and the Gibbs free energy
�. However, although the Metropolis method cannot be used to measure,
for instance, free energies directly, it can be used to measure the difference
in free energy between two possible states of an �-body system. This fact
is exploited in the grand-canonical Monte Carlo method first implemented
for classical fluids by Norman and Filinov [91], and later extended and im-
proved by a number of other groups [92, 106–113]. The basic idea of the
grand-canonical Monte Carlo method is explained next.

To understand the statistical mechanical basis for the grand-canonical
Monte Carlo technique, let us return to equation (5.4.5) of section 5.4. This
equation gives the partition function of a combined system of � interacting
particles in volume � and ��� ideal gas molecules in volume ��� �:

������� ���� �� �
�����������

	����������

�
ds���

�
ds� exp��
��s����

Now, instead of allowing the two systems to exchange volume, let us see
what happens if the systems can also exchange particles (see Figure 5.7). To
be more precise, we assume that the molecules in the two subvolumes are
actually identical particles. The only difference is that when they find them-
selves in volume �, they interact and, when they are in volume ����, they
do not. If we transfer a molecule � from a reduced coordinate s� in the vol-
ume ���� to the same reduced coordinate in volume �, then the potential
energy function � changes from ��s�� to ��s����. The expression for the
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total partition function of the system, including all possible distributions of
the � particles over the two subvolumes is

����� ���� �� �

��

���

������ �����

�����������

�
ds���

�
ds� exp�����s����

(5.6.1)
Following the approach of section 5.4, we now write the probability den-
sity to find a system with � � � particles at reduced coordinates s��� in
volume � � � ���� and � particles at reduced coordinates s� in volume �:

� �s���� �
��� ����

����� ���� �������������
exp�����s���� (5.6.2)

Let us now consider a trial move in which a particle is transferred from � �

to the same scaled coordinate in �. First we should make sure that we con-
struct an underlying Markov chain that is symmetric. Symmetry, in this case,
implies that the a priori probability to move a particle from � � to � should
be equal to the a priori probability of the reverse move. The probability of
acceptance of a trial move in which we move a particle to or from volume �
is determined by the ratio of the corresponding probability densities (5.6.2):

	��� �� 
� �
������

� ��� � 
�
exp������s���� � ��s���� (5.6.3)

	��� 
� �� �
� ��� � 
�

������
exp������s�� � ��s������� (5.6.4)

Now let us consider the limit that the ideal gas system is very much larger
than the interacting system: � � �� � � � �� ���� �� � �. Note that for
an ideal gas the chemical potential  is related to the particle density � by

 � ��� ln����

Therefore, in the limit �������, the partition function (5.6.1) becomes

���� � ���

��
���

exp������

�����

�
ds� exp�����s���� (5.6.5)

and the corresponding probability density

�����s���� �
exp������

�����
exp�����s���� (5.6.6)

Equations (5.6.5) and (5.6.6) are the basic equations for Monte Carlo simu-
lations in the grand-canonical ensemble. Note that, in these equations, all
explicit reference to the ideal gas system has disappeared.
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5.6.2 Monte Carlo Simulations

In a grand-canonical simulation, we have to sample the distribution (5.6.6).
Acceptable trial moves are

1. Displacement of particles. A particle is selected at random and given a
new conformation (for example, in the case of atoms a random dis-
placement). This move is accepted with a probability

acc��� � �� � min
�
�� exp������s ��� � ��s����

�
� (5.6.7)

2. Insertion and removal of particles. A particle is inserted at a random po-
sition or a randomly selected particle is removed. The creation of a
particle is accepted with a probability

acc��� � � �� � min
�
��

�

����� ��
exp����� ��� � �� � ������

�

(5.6.8)
and the removal of a particle is accepted with a probability

acc��� � � �� � min
�
��
���

�
exp������ ��� � �� � ������

�
�

(5.6.9)

Appendix G demonstrates how the chemical potential of the reservoir can
be related to the pressure of the reservoir. Algorithm 12 shows the basic
structure of a simulation in the grand-canonical ensemble.

5.6.3 Justi cation of the Algorithm

It is instructive to demonstrate that the acceptance rules (5.6.7)–(5.6.9) indeed
lead to a sampling of distribution (5.6.6). Consider a move in which we
start with a configuration with � particles and move to a configuration with
� � � particles by inserting a particle in the system. Recall than we have to
demonstrate that detailed balance is obeyed:

	��� �� �� � 	��� �� ���

with

	��� � � �� � � ��� � 
��� �� ��� acc��� �� ���

In Algorithm 12 at each Monte Carlo step the probability that an attempt is
made to remove a particle is equal to the probability of attempting to add
one:


gen��� �� �� � 
gen�� � �� ���



5.6 Grand-Canonical Ensemble 131

Algorithm 12 (Basic Grand-Canonical Ensemble Simulation)

PROGRAM mc gc basic �VT ensemble
simulation

do icycl=1,ncycl perform ncycl MC cycles
ran=int(ranf()*(npav+nexc))+1
if (ran.le.npart) then
call mcmove displace a particle

else
call mcexc exchange a particle

endif with the reservoir
if (mod(icycl,nsamp).eq.0)

+ call sample sample averages
enddo
end

Comments to this algorithm:

1. This algorithm ensures that, after each MC step, detailed balance is obeyed.
Per cycle we perform on average npav attempts6 to displace particles and
nexc attempts to exchange particles with the reservoir.

2. Subroutine mcmove attempts to displace a particle (Algorithm 2), subroutine
mcexc attempts to exchange a particle with a reservoir (Algorithm 13), and
subroutine sample samples quantities every nsamp cycle.

where the subscript “gen” refers to the fact that � measures the probabil-
ity to generate this trial move. Substitution of this equation together with
equation (5.6.6) into the condition of detailed balance gives

acc��� � � ��

acc��� �� ��
�

exp����� � ������� exp�����s�����
���������� ���

�
����� exp����s���

exp�������

�
exp�����
����� ��

exp������s���� � ��s�����

It is straightforward to show that acceptance rules (5.6.8) and (5.6.9) obey
this condition.

6In the corresponding algorithm in the first edition of this book, we suggested that one could
use the (fluctuating) actual number of particles npart rather than a preset number equal to the
expected average number of particles npav. However, the resulting scheme violates detailed
balance!
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Algorithm 13 (Attempt to Exchange a Particle ith a Reservoir)

SUBROUTINE mcexc attempt to exchange a particle
with a reservoir

if (ranf().lt.0.5) then decide to remove or add a particle
if (npart.eq.0) return test whether there is a particle
o=int(npart*ranf())+1 select a particle to be removed
call ener(x(o),eno) energy particle o
arg=npart*exp(beta*eno) acceptance rule (5.6.9)

+ /(zz*vol)
if (ranf().lt.arg) then
x(o)=x(npart) accepted: remove particle o
npart=npart-1

endif
else

xn=ranf()*box new particle at a random position
call ener(xn,enn) energy new particle
arg=zz*vol*exp(-beta*enn) acceptance rule (5.6.8)

+ /(npart+1)
if (ranf().lt.arg) then
x(npart+1)=xn accepted: add new particle
npart=npart+1

endif
endif
return
end

Comment to this algorithm:

1. We have de ned: z� � exp�������. The subroutine ener calculates the
energy of a particle at a given position.

The most salient feature of the grand-canonical Monte Carlo technique is
that in such simulations the chemical potential � is imposed, while the num-
ber of particles � is a fluctuating quantity. During the simulation we may
measure other thermodynamic quantities, such as the pressure �, the aver-
age density ���, or the internal energy ��� . As we know �, we can derive all
other thermal properties, such as the Helmholtz free energy or the entropy.
This may seem surprising. After all, in section 3.1 we stated that Metropolis
sampling cannot be used to sample absolute free energies and related quan-
tities. Yet, with grand-canonical Monte Carlo we seem to be doing precisely
that. The answer is that, in fact, we do not. What we measure is not an
absolute but a relative free energy. In grand-canonical Monte Carlo, we are
equating the chemical potential of a molecule in an ideal gas at density � (for
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the ideal gas case we know how to compute �) and the chemical potential of
the same species in an interacting system at density � �.

Grand-canonical Monte Carlo works best if the acceptance of trial moves
by which particles are added or removed is not too low. For atomic fluids,
this condition effectively limits the maximum density at which the method
can be used to about twice the critical density. Special tricks are needed to
extend the grand-canonical Monte Carlo method to somewhat higher densi-
ties [111]. Grand-canonical Monte Carlo is easily implemented for mixtures
and inhomogeneous systems, such as fluids near interfaces. In fact, some
of the most useful applications of the grand-canonical Monte Carlo method
are precisely in these areas of research. Although the grand-canonical Monte
Carlo technique can be applied to simple models of nonspherical molecules,
special techniques are required since the method converges very poorly for
all but the smallest polyatomic molecules. In section 13.6.1 some of these
techniques are discussed.

5.6.4 Applications

Case Study 9 (Equation of State of the Lennard-Jones Fluid)
In Case Studies 1 and 7, we used �,�,� simulations and �,�,� simulations
to determine the equation of state of the Lennard-Jones fluid. A third way to
determine the equation of state is to impose the temperature and chemical
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Figure 5.8: Equation of state of the Lennard-Jones fluid; isotherm at � � ���.
The solid line is the equation of state of Johnson et al. [62] and the squares
are the results from grand-canonical simulations (with volume � � �	���
�).
The dotted line is the excess chemical potential as calculated from the equa-
tion of state of Johnson et al. and the circles are the results of the simulations.
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potential and calculate the density and pressure. An example of such a
calculation is shown in Figure 5.8. This is not a very convenient method since
both the pressure and density are fluctuating quantities; hence we will have
an error in both quantities, while in the�,�,� ensemble either the pressure or
density is imposed and therefore known without a statistical error. Of course,
a grand-canonical simulation is useful if we want to have information on the
chemical potential of our system.

Example 2 (Adsorption Isotherms of eolites)
Zeolites are crystalline inorganic polymers that form a three-dimensional net-
work of micropores (see Figure 5.9). These pores are accessible to various
guest molecules. The large internal surface, the thermal stability, and the
presence of thousands of acid sites make zeolites an important class of cat-
alytic materials for petrochemical applications. For a rational use of zeolites,
it is essential to have a detailed knowledge of the behavior of the adsorbed
molecules inside the pores of the zeolites. Since this type of information is
very difficult to obtain experimentally, simulations are an attractive alterna-
tive. One of the first attempts to study the thermodynamic properties of a
molecule adsorbed in a zeolite was made by Stroud et al. [114]. Reviews
of the various applications of computer simulations of zeolites can be found
in [115].

Besides zeolites many other porous materials exist with many interest-
ing properties. In ref. [116] a review is given of phase separations in these
materials.

Figure 5.9: Example of a zeolite structure (Theta-1), the pore size is approx.
4.4� 5.5 Å�. The Si atoms have four bonds and the O atoms two.
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Figure 5.10: Adsorption isotherms of methane in silicalite, showing the
amount of methane adsorbed as a function of the external pressure. The
black symbols are experimental data (see [124] for details). The open squares
are the results of grand-canonical simulations using the model of [119].

For small absorbents such as methane or the noble gases, grand-ca-
nonical Monte Carlo simulations can be applied to calculate the adsorption
isotherms in the various zeolites [117–123]. An example of an adsorption
isotherm of methane in the zeolite silicalite is shown in Figure 5.10. These
calculations are based on the model of Goodbody et al. [119]. The agree-
ment with the experimental data is very good, which shows that for these
well-characterized systems simulations can give data that are comparable
with experiments.

For long-chain alkanes (butane and longer) it is very difficult to perform a
successful insertion; in almost all attempts one of the atoms of the molecule
will overlap with one of the atoms of the zeolite. As a consequence the
number of attempts has to be astronomically large to have a reasonable
number of successful exchanges with the reservoir. In Chapter 13 we show
how this problem can be solved.

5.7 uestions and Exercises

uestion 12 (Trial Moves)

1. If one uses a very large fraction of particle swap trial moves in the grand-
canonical ensemble, one can increase the number of accepted insertions and
deletions. However, is this an ef cient approach? (Hint: assume that during

Q

Q
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these swap moves one has at least a successful deletion of a particle from the
system, before the positions of the other particles are changed.)

2. Which trial move, particle displacement, change of the volume, or particle
insertion or deletion will be computationally most expensive? Why?

3. In a simulation of a molecule that consists of more than one interaction site,
a trial move that rotates the molecule around its center of mass is usually
included. Why? What is the acceptance/rejection rule for this trial move?

4. When a particle is added in the grand-canonical ensemble, the tail corrections
to the potential energy may result in an energy change. Derive an expression
for this energy change when a Lennard-Jones potential is used.

uestion 13 (Multicomponent Simulation) We consider developing a grand-
canonical Monte Carlo scheme for a mixture of two components. Assume the tem-
perature is � and the chemical potential of the components �� and ��.

1. To add or remove particles the following scheme is used:

� Select at random to add or remove a particle.
� Select at random a component.
� Add or remove a particle of this component.

Derive the acceptance rules for these trial moves.

2. An alternative scheme would be:

� Select at random to add or remove a particle.
� Select at random a particle, independent of its identity.

Is this scheme obeying detailed balance if the previous acceptance rules are
used? If not can this be corrected ? Hint: you might want to see ref. [125].

Exercise 11 (Monte Carlo in the ��� Ensemble)
On the book’s website you can find a program to simulate hard spheres
(diameter �) in the ��� ensemble using the Monte Carlo technique.

1. What problems would arise if you tried to calculate the virial for this
system directly?

2. In the current code, a random walk is performed in ln ��� instead of �.
Change the code in such a way that a random walk in � is performed.
Check that the average densities calculated by both algorithms are
equal.

3. Make a plot of the acceptance probability for volume displacements as
a function of the maximum volume displacement for both algorithms.

Q
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Exercise 12 (Ising Model)
In this exercise we consider a 2D Ising model. In this model, � spins �

(��) are arranged on a square lattice. Every spin (�) has � neighbors (� �
������� ). The total energy of the system equals

� � �
	

�

����

���

�

��nn�

�����

in which �� � �� and 	 
 �. The second summation is a summation over
all nearest neighbors of spin � (nn�). The total magnetization � equals the
sum over all spins:

� �

����

���

�� (5.7.1)

The 2D Ising model has a critical point close to �� � ���.

1. Complete the given simulation code for this system (see ising.f).

2. Calculate the distribution of � for � � �� � �� and � � �� in the
canonical ensemble. This distribution should be symmetrical:

� ��� � � ����  (5.7.2)

The simulation does not appear to yield such a symmetric distribution.
Why not?

3. Instead of a simulation in the canonical ensemble, one can perform a
biased simulation using a distribution function

� � exp ���� �� ����  (5.7.3)

The average value of an observable � in the canonical ensemble is
related to the “�-average”, through

��� �
�� exp ��� �����

�

�exp ��� �����
�

�

in which �� � � �� denotes an ensemble average in the biased system.
Derive this relation.

4. Perform simulations with some given distributions � ��� (for example,
the files w.type1.dat and w.type2.dat on the book’s website). Explain
your results. How should one choose the function � ��� to obtain the
optimal efficiency?

5. What happens when � ��� is a Gaussian,

� ��� � � exp

�
�

�
�

�

��
�

with � 
 �?

6. What happens when � ��� �� ��� � ��?
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Chapter 6

Molecular Dynamics in
Various Ensembles

The Molecular Dynamics technique discussed in Chapter 4 is a scheme for
studying the natural time evolution of a classical system of � particles in
volume �. In such simulations, the total energy � is a constant of motion. If
we assume that time averages are equivalent to ensemble averages, then the
(time) averages obtained in a conventional MD simulation are equivalent to
ensemble averages in the microcanonical (constant-���) ensemble. How-
ever, as was discussed in Chapter 5, it is often more convenient to perform
simulations in other ensembles (e.g.,�,�,�or �,�,�). At first sight, it would
seem that it is impossible to perform MD simulations in ensembles other
than the microcanonical. Fortunately, it turns out that this is not the case.
Two rather different solutions to this problem have been proposed. One is
based on the idea that dynamical simulation of other ensembles is possible
by mixing Newtonian MD with certain Monte Carlo moves. The second ap-
proach is completely dynamical in origin: it is based on a reformulation of
the Lagrangian equations of motion of the system.

Both approaches occur time and again in many areas of MD simulation,
and we will not attempt to list them all. In particular, the extended La-
grangian method, first introduced by Andersen in the context of constant-
pressure MD simulations [104], has become one of the most important tricks
to extend the applicability of MD simulations. To name but a few of the more
conspicuous examples, the method is used in the Parrinello-Rahman scheme
to simulate crystalline solids under conditions of constant stress [102, 103].
In this approach, both the volume and the shape of the crystal unit cell are
allowed to fluctuate. As a consequence, the Parrinello-Rahman scheme is
particularly useful for studying displacive phase transitions in solids.
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In this chapter, we do not attempt to give a comprehensive, or even his-
torical, presentation of non-���MD simulations. Rather, we have selected a
single (but important) case that will be discussed in detail, namely, constant
temperature simulations. This example allows us to illustrate the main fea-
tures of the different approaches. The extension of this method to constant-
pressure and -temperature simulations is discussed in less detail. With this
background, the relevant literature on other applications of these Molecular
Dynamics methods should be more accessible to the reader.

6.1 Molecular Dynamics at Constant Temperature

Before considering different schemes to perform Molecular Dynamics sim-
ulations at constant temperature, we should first specify what we mean by
constant temperature. From a statistical mechanical point of view, there is
no ambiguity: we can impose a temperature on a system by bringing it
into thermal contact with a large heat bath (see section 2.1). Under those
conditions, the probability of finding the system in a given energy state is
given by the Boltzmann distribution and, for a classical system, the Maxwell-
Boltzmann velocity distribution follows:

���� �

�
�

���

����

exp
�
���������

�
� (6.1.1)

In particular, we then obtain the simple relation between the imposed tem-
perature 	 and the (translational) kinetic energy per particle:


�	 � �
�
���

�
�

where � is the mass of the particle and �� is the th component of its ve-
locity. As discussed in Chapter 4, this relation is often used to measure the
temperature in a (microcanonical) MD simulation. However, the condition
of constant temperature is not equivalent to the condition that the kinetic en-
ergy per particle is constant. To see this, consider the relative variance of the
kinetic energy per particle in a canonical ensemble. If we constrain the ki-
netic energy to be always equal to its average, then the variance vanishes by
construction. Now consider a system that is in thermal equilibrium with a
bath. The relative variance in the kinetic energy of any given particle is sim-
ply related to the second and fourth moments of the Maxwell-Boltzmann
distribution. For the second moment, �� �

�
� �

�
�, we have

�
��

�
�

�
dp������ �

��

�

and for the fourth moment, �� �
��

� �
�
�

��, we can write

�
��

�
�

�
dp������ � ��

�
�

�

��
�
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The relative variance of the kinetic energy of that particle is
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If we would use the kinetic energy per particle as a measure of the instan-
taneous temperature, then we would find that, in a canonical ensemble, this
temperature (denoted by 
�) fluctuates. Its relative variance is
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So indeed, in a canonical ensemble of a finite system, the instantaneous ki-
netic temperature 
� fluctuates. In fact, if we were to keep the average ki-
netic energy per particle rigorously constant, as is done in the so-called isoki-
netic MD scheme [29] or the more naive velocity-scaling schemes, then we
would not simulate the true constant-temperature ensemble. In practice, the
difference between isokinetic and canonical schemes is often negligible. But
problems can be expected if isokinetic simulations are used to measure equi-
librium averages that are sensitive to fluctuations. Moreover, one should
distinguish between the isokinetic scheme of [29] and other, more or less ad
hoc velocity-scaling methods. The isokinetic scheme of Evans and Morriss
is well behaved in the sense that it yields the correct canonical ensemble
averages for all properties that depend only on the positions of the parti-
cles [29, 126].

The ad hoc methods yield only the desired kinetic energy per particle but
otherwise do not correspond to any known ensemble. Of course, any kind
of temperature regulation, no matter how unphysical, can be used while
preparing the system at a desired temperature (i.e., during equilibration).
But, as efficient MD schemes exist that do generate a true canonical distribu-
tion, there is little need to use more suspect techniques to fix the temperature.
Here we discuss two of the most widely used canonical MD schemes.

6.1.1 The Andersen Thermostat

In the constant-temperature method proposed by Andersen [104] the system
is coupled to a heat bath that imposes the desired temperature. The coupling
to a heat bath is represented by stochastic impulsive forces that act occasion-
ally on randomly selected particles. These stochastic collisions with the heat
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bath can be considered as Monte Carlo moves that transport the system from
one constant-energy shell to another. Between stochastic collisions, the sys-
tem evolves at constant energy according to the normal Newtonian laws of
motion. The stochastic collisions ensure that all accessible constant-energy
shells are visited according to their Boltzmann weight.

Before starting such a constant-temperature simulation, we should first
select the strength of the coupling to the heat bath. This coupling strength is
determined by the frequency of stochastic collisions. Let us denote this fre-
quency by �. If successive collisions are uncorrelated, then the distribution
of time intervals between two successive stochastic collisions, ������, is of
the Poisson form [127, 128]

������ � � exp������ (6.1.2)

where ������d� is the probability that the next collision will take place in the
interval ���� � d��.

A constant-temperature simulation now consists of the following steps:

1. Start with an initial set of positions and momenta �r����, p����� and
integrate the equations of motion for a time ��.

2. A number of particles are selected to undergo a collision with the heat
bath. The probability that a particle is selected in a time step of length
�� is ���.

3. If particle � has been selected to undergo a collision, its new velocity
will be drawn from a Maxwell-Boltzmann distribution corresponding
to the desired temperature �. All other particles are unaffected by this
collision.

The mixing of Newtonian dynamics with stochastic collisions turns the Mo-
lecular Dynamics simulation into a Markov process [47]. As shown in [104],
a canonical distribution in phase space is invariant under repeated appli-
cation of the Andersen algorithm. Combined with the fact that the Markov
chain is also irreducible and aperiodic [104,127,128], this implies that the An-
dersen algorithm does, indeed, generate a canonical distribution. In Algo-
rithms 14 and 15, we show how the Andersen method can be implemented
in a Molecular Dynamics simulation.

Case Study 10 (Lennard-Jones: Andersen Thermostat)
In the present case study, we illustrate some of the strong and weak points of
the Andersen thermostat. The first, and most important, thing to show is that
this thermostat does produce a canonical distribution. Unfortunately, we can
show this only indirectly: we can check whether the Andersen thermostat re-
produces known properties of a canonical ensemble. In Figure 6.1 we com-
pare the velocity distribution of a Lennard-Jones fluid as generated by the
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Algorithm 14 (Molecular Dynamics: Andersen Thermostat)

program md Andersen MD at constant temperature
call init(temp) initialization
call force(f,en) determine the forces
t=0
do while (t.lt.tmax) MD loop

call integrate(1,f,en,temp) first part of the eqs. of motion
call force(f,en) determine the forces
call integrate(2,f,en,temp) second part of eqs. of motion
t=t+dt
call sample sample averages

enddo
stop
end

Comments to this algorithm:

1. This part of the algorithm is very similar to the simple Molecular Dynam-
ics program (Algorithm 3). The difference is that we use the velocity Verlet
algorithm (see section 4.3) for the integration of the equations of motion:

���� ��� � ���� � �������
����

��
��

�

��� � ��� � ���� �
���� ��� � ����

��
���

This algorithm is implemented in two steps, in step 1, call inte-
grate(1,f,en,temp), we know the forces and velocities at time �, and
we update ���� and determine

�
� � ���� �

����

��
���

Then, in call force(f,en)we determine the forces at ����; and nally
we determine in step 2, call integrate(2,f,en,temp), the veloci-
ties at time �� ��,

��� � ��� � �
� �

���� ���

��
���

The subroutine integrate is described in Algorithm 15.

2. Subroutines init and force are described in Algorithms 4 and 5, respec-
tively. Subroutine sample is used to calculate ensemble averages.



144 Chapter 6. Molecular Dynamics in Various Ensembles

Algorithm 15 (Equations of Motion: Andersen Thermostat)

subroutine integrate(switch,f integrate equations of motion:
,en,temp) with Andersen thermostat

if (switch.eq.1) then first step velocity Verlet
do i=1,npart

x(i)=x(i)+dt*v(i)+ update positions current time
+ dt*dt*f(i)/2

v(i)=v(i)+dt*f(i)/2 first update velocity
enddo

else if (switch.eq.2) then second step velocity Verlet
tempa=0
do i=1,npart

v(i)=v(i)+dt*f(i)/2 second update velocity
tempa=tempa+v(i)**2

enddo
tempa=tempa/(s*npart) instantaneous temperature
sigma=sqrt(temp) Andersen heat bath
do i=1,npart

if (ranf().lt.nu*dt) then test for collision with bath
v(i)=gauss(sigma) give particle Gaussian velocity

endif
enddo

endif
return
end

Comments to this algorithm:

1. In this subroutine we use the velocity Verlet algorithm [69] (see notes to Al-
gorithm 14).

2. The function gauss(sigma) returns a value taken from a Gaussian distri-
bution with zero mean and standard deviation sigma (see Algorithm 44);
ranf() is a uniform random number � ���� �.

3. The collisions with the heat bath are Poisson distributed (6.1.2). The collision
frequency nu is set at the beginning of the simulation.

4. In this algorithm, neither the total energy nor the total momentum is con-
served. s depends on the mass of the particles � � ���.
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Figure 6.1: Velocity distribution in a Lennard-Jones fluid (� � ���, � �

������, and � � ���). The solid line is the Maxwell-Boltzmann distribu-
tion (6.1.1), and the symbols are from a simulation using 	 � ���� and
	 � ����� as collision rates.

Andersen thermostat, with the exact Maxwell-Boltzmann distribution (6.1.1).
The figure illustrates that the desired distribution is generated independent
of the value of the collision frequency 	.

The results of constant �,
,� Molecular Dynamics simulations should
be identical to those of canonical Monte Carlo simulations as presented in
Figure 3.5. In making this comparison, we should be a bit careful because
the Monte Carlo simulations were performed on a model with a truncated and
shifted Lennard-Jones potential — the appropriate tail correction was added
afterward. In our Molecular Dynamics program we simulate the Lennard-
Jones model with a truncated and shifted potential. Again, the appropriate
tail correction is added afterward (see section 3.2.2). For the Lennard-Jones
fluid, the tail correction to the pressure is

�tail
�

��


������

�
�



�
�

��

��

�

�
�

��

��
�
�

In Figure 6.2 the results of the Molecular Dynamics and Monte Carlo simu-
lations are compared. In addition, we also compare them with the analytical
equation-of-state data of [62]. Clearly, the canonical MD and MC simulations
yield the same answer and agree with the equation-of-state data of [62].
This case study shows that the Andersen thermostat yields good results for
time-independent properties, such as the equation of state. However, as the
method is based on a stochastic scheme, one may wonder whether it can
also be used to determine dynamic properties, such as the diffusion coeffi-
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Figure 6.2: Equation of state of the Lennard-Jones fluid (� � ��� and
� � ���); comparison of the Molecular Dynamics results using the Ander-
sen thermostat (open symbols) with the results of Monte Carlo simulations
(closed symbols) and the equation of state of Johnson et al. [62].

cient. In general, the answer to this question is no. The stochastic collisions
disturb the dynamics in a way that is not realistic — it leads to sudden random
decorrelation of particle velocities. This effect will result in an enhanced de-
cay of the velocity autocorrelation function, and hence the diffusion constant
(i.e., the time integral of the velocity autocorrelation function) is changed.
Clearly this effect will be more pronounced as the collision frequency � is
increased. In fact, Tanaka et al. [129] have measured the diffusion coeffi-
cient of the Lennard-Jones fluid for various values of the collision frequency
�. They observed that the diffusion coefficient is independent of � in a rather
narrow frequency range. This effect is also illustrated in Figure 6.3. In practi-
cal cases, � is usually chosen such that the decay rate of energy fluctuations
in the simulation is comparable to that of energy fluctuations in a system
of the same size embedded in an infinite heat bath. Typically, this can be
achieved with relatively small collision rates and hence the effect of colli-
sions on the dynamics may be small [104]. Nevertheless, one should always
bear in mind that the dynamics generated by the Andersen thermostat is
unphysical. It therefore is risky to use the Andersen method when study-
ing dynamical properties. Figure 6.3 shows that the frequency of stochastic
collisions has a strong effect on the time dependence of the mean-squared
displacement. The mean-squared displacement becomes only independent
of � in the limit of very low stochastic collision rates. Yet, all static properties
such as the pressure or potential energy are rigorously independent of the
stochastic collision frequency.
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Figure 6.3: Mean-squared displacement as a function of time for various
values of the collision frequency � of the Lennard-Jones fluid (� � ��� and
� � ���).

6.1.2 Nose-Hoover Thermostat

In the Andersen approach to isothermal Molecular Dynamics simulation,
constant temperature is achieved by stochastic collisions with a heat bath.
Nosé has shown that one also can perform deterministic Molecular Dynam-
ics at constant temperature [126, 130]. The approach of Nosé is based on the
clever use of an extended Lagrangian; that is, a Lagrangian that contains ad-
ditional, artificial coordinates and velocities. The extended-Lagrangian ap-
proach was introduced by Andersen [104] in the context of constant-pressure
MD simulations. However, at present, extended Lagrangian methods are
widely used not only for simulations in ensembles other than constant ��	,
but also as a stable and efficient approach to perform simulations in which
an expensive optimization has to be carried out at each time step. We discuss
the Nosé thermostat as an illustration of an extended-Lagrangian method.
However, for constant-temperature MD simulations, it is now more com-
mon to use the Nosé scheme in the formulation of Hoover [131, 132]. We
therefore also discuss the so-called Nosé-Hoover thermostat.

In this section we assume that the reader is familiar with the Lagrangian
and Hamiltonian formulation of classical mechanics. In Appendix A a re-
view of these concepts is given.
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Extended-Lagrangian Formulation

To construct isothermal Molecular Dynamics, Nosé introduced an additional
coordinate � in the Lagrangian of a classical �-body system:

�Nose �

��

���

��

�
��ṙ�

�
� ��r�� �

�

�
�̇� �

�

�
ln �� (6.1.3)

where � is a parameter that will be fixed later. � is an effective “mass”
associated to �. The momenta conjugate to r� and � follow directly from
equation (6.1.3):

p� �
��

�ṙ�
� ���

� ṙ� (6.1.4)

	� �
��

��̇
� ��̇
 (6.1.5)

This gives for the Hamiltonian of the extended system of the � particles plus
additional coordinate �:
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 (6.1.6)

We consider a system containing � atoms. The extended system generates a
microcanonical ensemble of �� � � degrees of freedom. The partition func-
tion of this ensemble1 is
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�
�

��

�
d	�d�dp ��dr����

�Æ

�
��
���

p ��

�

���

� ��r�� �
	�
�

��
�

�

�
ln � � 

�
� (6.1.7)

in which we have introduced

p � � p��


Let us define

��p �� r� �
��
���

p ��

�

���

� ��r��
 (6.1.8)

1We assume implicitly that conservation of energy is the only conservation law; in Ap-
pendix B.2 the more general case is considered.
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For a Æ function of a function ����, we can write

Æ������ � Æ��� ������ �������

where ���� is a function that has a single root at ��. If we substitute this
expression into equation (6.1.7) and use equation (6.1.8), we find, for the
partition function,
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If we perform a simulation in this extended ensemble, the average of a quan-
tity that depends on p �� r is given by

�̄ � lim
���

�

�

��
�

d� ��p��������� r���� � ���p��� r��Nose � (6.1.10)

With the choice 	 � �� � �, this ensemble average reduces to the canonical
average:

���p��� r��Nose �
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� ���p �� r��
���

� (6.1.11)

It is instructive to consider the role of the variable � in some detail. In the
ensemble average in equation (6.1.11), the phase space is spanned by the co-
ordinates r and the scaled momenta p �. As the scaled momentum is related
most directly to observable properties, we refer to p � as the real momentum,
while p is interpreted as a virtual momentum. We make a similar distinction
between real and virtual for the other variables. Real variables are indicated
by a prime, to distinguish them from their unprimed virtual counterparts.
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The real and virtual variables are related as follows:

� �
� � (6.1.12)

� �
� ��� (6.1.13)

� �
� � (6.1.14)

�� �
� ����� (6.1.15)

From equation (6.1.15) it follows that � can be interpreted as a scaling
factor of the time step. This implies that the real time step fluctuates during
a simulation. The sampling in equation (6.1.10) is done at integer multiples
of the (virtual) time step ��, which corresponds to real time steps that are not
constant. It is also possible to sample at equal intervals in real time. In that
case, we measure a slightly different average. Instead of equation (6.1.10) we
define
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Equation (6.1.15) shows that the real and virtual measuring times � � and �,
respectively, are related through
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This gives, for equation (6.1.16),
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If we consider again the partition function (6.1.9), we can write for the en-
semble average,
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In the last step we have assumed that � � ��. Therefore, if we use a sam-
pling scheme based on equal time steps in real time, we have to use a differ-
ent value for �.

From the Hamiltonian (6.1.6), we can derive the equations of motion for
the virtual variables p, r, and �:
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In terms of the real variables, these equations of motion can be written as
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For these equations of motion, the following quantity is conserved:
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It should be stressed, however, that this  �

Nose is not a Hamiltonian, since
the equations of motion cannot be derived from it.

Implementation

In the previous section we showed how the introduction of an additional
dynamical variable (�) in the Lagrangian can be used to perform MD simu-
lations subject to a constraint (in this case, constant temperature). We stress
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once again that the importance of such extended Lagrangian techniques
transcends the specific application. In addition, the problems encountered
in the numerical implementation of the Nosé scheme are representative of a
wider class of algorithms (namely, those where forces depend explicitly on
velocities). It is for this reason that we discuss the numerical implementation
of the Nosé thermostat in some detail (see also Appendix E.2).

The Nosé equations of motion can be written in terms of virtual variables
or real variables. In a simulation it is not convenient to work with fluctuat-
ing time intervals. Therefore the real-variable formulation is recommended.
Hoover [132] has shown that the equations derived by Nosé can be further
simplified [133]. In equations (6.1.20), (6.1.21), and (6.1.22), the variables � �,
� �

�, and � occur only as � �� �

���. To simplify these equations, we can intro-
duce the thermodynamic friction coefficient � � � �� �

���. The equations of
motion then become (dropping the primes and using dots to denote time
derivatives)

ṙ� � p���� (6.1.24)

ṗ� � �
���r��
�r�

� �p� (6.1.25)

�̇ �

�
�

�

p�� ��� �
�

�

�
�� (6.1.26)

�̇�� �
d ln �

d	
� �
 (6.1.27)

Note that the last equation, in fact, is redundant, since equations (6.1.24)–
(6.1.26) form a closed set. However, if we solve the equations of motion for
� as well, we can use equation (6.1.23) as a diagnostic tool, since � � has to be
conserved during the simulation. In terms of the variables used in equations
(6.1.24)–(6.1.27),� reads

�Nose �

��

���

p�
�

���

� ��r�� �
���

�
� �

ln �
�


 (6.1.28)

As we use the real-variable formulation in this set of equations, we have to
take � � �.

An important implication of the Nosé equations is that in the Lagrangian
(6.1.3) a logarithmic term (ln �) is needed to have the correct scaling of time.
Any other scheme that does not have such a logarithmic term will fail to
describe the canonical ensemble correctly.

An important result obtained by Hoover [132] is that the equations of
motion (6.1.24)–(6.1.26) are unique, in the sense that other equations of the
same form cannot lead to a canonical distribution. In Appendix E.2 we dis-
cuss an efficient way of implementing the Nosé-Hoover scheme.
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The equations of motion of the Nosé-Hoover scheme cannot be derived
from a Hamiltonian. This implies that one cannot use the standard methods
(see Appendix A) to make the connection of the dynamics generated by solv-
ing these equations of motion with Statistical Mechanics. In Appendix B we
discuss how one can analyze such non-Hamiltonian dynamics. The result
of this analysis is that the conventional Nosé-Hoover algorithm only gener-
ates the correct distribution if there is a single constant of motion. Normally,
the total energy defined by �Nose, see equation (6.1.28), is always conserved.
This implies that one should not have any other conserved quantity. In most
conventional simulations this is the case if the momentum is not conserved,
for example, if their is an external force; i.e., the sum of the forces

�
�

F� �� �.
If we simulate a system without external forces,

�
�

F� � �, which implies
we have an additional conservation law, the Nosé-Hoover scheme is still
correct provided that the center of mass remains fixed. This condition can
be fulfilled easily if we ensure that during the equilibration the velocity of
the center of mass is set to �. If we simulate a system using no external field
and in which the center of mass is not fixed or if we have more than one
conservation law, we have to use Nosé-Hoover chains to obtain the correct
canonical distribution. This method will be discussed in section 6.1.3.

Application

We illustrate some of the points discussed above in a Nosé-Hoover simula-
tion of the Lennard-Jones fluid.

Case Study 11 (Lennard-Jones: Nose-Hoover Thermostat)
As in Case Study 10, we start by showing that the Nosé-Hoover method re-
produces the behavior of a system at constant ���. In Figure 6.4 we com-
pare the velocity distribution generated by the Nosé-Hoover thermostat with
the correct Maxwell-Boltzmann distribution for the same temperature (6.1.1).
The figure illustrates that the velocity distribution indeed is independent of
the value chosen for the coupling constant �.

It is instructive to see how the system reacts to a sudden increase in the
imposed temperature. Figure 6.5 shows the evolution of the kinetic temper-
ature of the system. After 12,000 time steps the imposed temperature is
suddenly increased from � � � to � � ���. The figure illustrates the role of
the coupling constant �. A small value of � corresponds to a low inertia of
the heat bath and leads to rapid temperature fluctuations. A large value of �
leads to a slow, ringing response to the temperature jump.

Next, we consider the effect of the Nosé-Hoover coupling constant � on
the diffusion coefficient. As can be seen in Figure 6.6, the effect is much
smaller than in Andersen’s method. However, it would be wrong to conclude
that the diffusion coefficient is independent of �. The Nosé-Hoover method
simply provides a way to keep the temperature constant more gentle than
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Figure 6.4: Velocity distribution in a Lennard-Jones fluid (� � ���, � � ����,
and � � ��	). The solid line is the Maxwell-Boltzmann distribution (6.1.1)
the symbols were obtained in a simulation using the Nosé-Hoover thermo-
stat.
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Figure 6.5: Response of the system to a sudden increase of the imposed tem-
perature. The various lines show the actual temperature of the system (a
Lennard-Jones fluid � � ����, and � � ��	) as a function of the number of
time steps for various values of the Nosé-Hoover coupling constant 
.

Andersen’s method where particles suddenly get new, random velocities.
For the calculations of transport properties, we prefer simple �,�,� simula-
tions.
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Figure 6.6: Effect of the coupling constant � on the mean-squared displace-
ment for a Lennard-Jones fluid (� � ���, � � ����, and � � 	�
).

6.1.3 Nose-Hoover Chains

In the preceding examples, we have applied the Andersen and Nosé-Hoover
thermostats to the Lennard-Jones fluid. For the Nosé-Hoover thermostat
we have shown that for a system in which there are no external forces and
the center of mass remains fixed, a canonical distribution will be generated.
However, even though for systems with external forces the Nosé-Hoover
thermostat generates the desired distribution, there can be exceptional cases
in which we do not find the expected behavior. To illustrate this, we consider
a particularly pathological case, namely, the one-dimensional harmonic os-
cillator.

Case Study 12 (Harmonic Oscillator (I))
As the equations of motion of the harmonic oscillator can be solved analyt-
ically, this model system is often used to test algorithms. However, the har-
monic oscillator is also a rather atypical dynamical system. This will show
up clearly when we apply our thermostating algorithms to this simple model
system.

The potential energy function of the harmonic oscillator is

���� �
�

	
���

The Newtonian equations of motion are

�̇ � 

̇ � ���
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Figure 6.7: Trajectories of the harmonic oscillator: (from left to right) in the
microcanonical ensemble, using the Andersen method, and using the Nosé-
Hoover method. The � axis is the velocity and the � axis is the position.

If we solve the equations of motion of the harmonic oscillator for a given set
of initial conditions, we can trace the trajectory of the system in phase space.
Figure 6.7 shows a typical phase space trajectory of the harmonic oscillator,
in a closed loop, which is characteristic of periodic motion. It is straight-
forward to simulate a harmonic oscillator at constant temperature using the
Andersen thermostat (see section 6.1.1). A trajectory is shown in Figure 6.7.
In this case the trajectories are points that are not connected by lines. This
is due to the stochastic collisions with the bath. In this example, we allowed
the oscillator to interact with the heat bath at each time step. As a result, the
phase space density is a collection of discrete points. The resulting veloc-
ity distribution is Gaussian by construction; also for the positions we find a
Gaussian distribution.

We can also perform a constant-temperature Nosé-Hoover simulation us-
ing the algorithm described in Appendix E.2. A typical trajectory of the har-
monic oscillator generated with the Nosé-Hoover scheme is shown in Fig-
ure 6.7. The most striking feature of Figure 6.7 is that, unlike the Andersen
scheme, the Nosé-Hoover method does not yield a canonical distribution in
phase space. Even for very long simulations, the entire trajectory would lie
in the same ribbon shown in Figure 6.7. Moreover, this band of trajectories
depends on the initial configuration. This nonergodic behavior of the Nosé-
Hoover algorithm was first discovered by Hoover [131]. Toxvaerd and Olson
have shown that similar effects can also be observed in the simulation of a
realistic model for butane [134]. The reason why we do not find a canonical
distribution is that conservation of energy is not the only conservation law.
Tuckerman et al. [135] have shown that an additional conservation law ex-
ists. In Appendix B.2.1 we show that in the presence of such an additional
conservation law the algorithm does not generate the desired distribution.

In the previous section it is argued that the Nosé-Hoover algorithm only
generates a correct canonical distribution for molecular systems in which
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there in only one conserved quantity or if there are no external forces and the
center of mass remains fixed. The last condition can be obeyed in most prac-
tical systems by initializing the system with a zero center-of-mass velocity.
However, if one is interested in simulating more general systems one cannot
rely on the simple Nosé-Hoover algorithm. At this point it is important to
note that the Andersen thermostat does not suffer from such problems, but
its dynamics is less realistic.

To alleviate the restriction for the Nosé-Hoover thermostat, Martyna et
al. [136] proposed a scheme in which the Nosé-Hoover thermostat is coupled
to another thermostat or, if necessary, to a whole chain of thermostats. As
we show in Appendix B.2.2 these chains take into account additional con-
servation laws. In [136] it is shown that this generalization of the original
Nosé-Hoover method still generates a canonical distribution (provided that
it is ergodic).

The equations of motion for a system of � particles coupled with �

Nosé-Hoover chains are given (in real variables, hence � � ��) by

ṙ� �

p�

��

(6.1.29)

ṗ� � F� �
���
��

p� (6.1.30)

�̇� �
���
��

� � 	
 � � � 
� (6.1.31)

�̇�� �

�
�

�

p��
��

� ����

�
�
���
��

��� (6.1.32)

�̇�� �

�
������
����

� ���

�
�
�����
����

��� (6.1.33)

�̇�� �

�
������
����

� ���

�
� (6.1.34)

For these equations of motion the conserved energy is

N�� � ��r
p� �
��

���

����
���

� �������

��

���

������ (6.1.35)

We can use this conserved quantity to check the integration scheme. It is im-
portant to note that the additional �� 	 equations of motion form a simple
one-dimensional chain and therefore are relatively simple to implement. In
Appendix E.2, we describe an algorithm for a system with a Nosé-Hoover
chain thermostat.
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Figure 6.8: Test of the phase space trajectory of a harmonic oscillator, cou-
pled to a Nosé-Hoover chain thermostat. The left-hand side of the figure
shows part of a trajectory: the dots correspond to consecutive points sepa-
rated by 10,000 time steps. The right-hand side shows the distributions of
velocity and position. Due to our choice of units, both distributions should
be Gaussians of equal width.

Case Study 13 (Harmonic Oscillator (II))
The harmonic oscillator is the obvious model system on which we test the
Nosé-Hoover chain thermostat. If we use a chain of two coupling parame-
ters, the equations of motion are

�̇ � �

�̇ � ��� ���

�̇� �

�� � �

��

� ����

�̇� �

���
�

�
� �

��

�

A typical trajectory generated with the Nosé-Hoover chains is shown in Fig-
ure 6.8. The distribution of the velocity and position of the oscillator are also
shown in Figure 6.8. Comparison with the results obtained using the Ander-
sen thermostat (see Case Study 12) shows that the Nosé-Hoover chains do
generate a canonical distribution, even for the harmonic oscillator.

6.2 Molecular Dynamics at Constant Pressure

Most experiments are performed at constant pressure instead of constant
volume. If one is interested in simulating the effect of, for example, the com-
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position of the solvent on the properties of a system one has to adjust the
volume of an�,�,� simulation to ensure that the pressure remains constant.
For such a system it is therefore much more convenient to simulate at con-
stant pressure. To simulate at constant pressure in a Molecular Dynamics
simulation the volume is considered as a dynamical variable that changes
during the simulation.

In Chapter 5 we have seen that one can perform Monte Carlo simulations
at constant pressure by changing the volume of the simulation box. Here we
consider the equivalent for a Molecular Dynamics simulation. Similar to the
Monte Carlo case, this is an excellent method for homogeneous fluids. For
inhomogeneous systems, however, one may need to change the shape of the
simulation box as well [102, 103].

In Appendix B we have shown that the correct thermostating of a Molec-
ular Dynamics simulation has many subtleties related to the conservation
laws and whether a simulation is performed with a fixed center of mass.
Similar problems arise with the isothermal-isobaric ensemble. The earlier
scheme of Hoover [132] can only approximate the desired distribution [137].
Since the scheme of Martyna et al. does give the desired distribution, we fo-
cus on this scheme. All these schemes are based on the extended ensemble
approach pioneered by Andersen [104].

The equations of motion proposed by Martyna et al. [138] for the posi-
tions and the momenta are

ṙ� �

p�

��

�
��

�
r� (6.2.1)

ṗ� � F� �
�
� �

�

��

�
��

�
p� �

���
��

p�	 (6.2.2)

where � is the number of particles. In these equations of motion we recog-
nize a thermostat that is introduced via the variables 
�, ��� , and��, similar
to the �,�,� version of the Nosé-Hoover chain algorithm. A barostat is in-
troduced via the variables �, ��, and �. � is defined as the logarithm of the
volume � of the system

� � ln�������	

where ��� is the volume at � � , � is the mass parameter associated to �,
and �� is the momentum conjugate to �.

The equations of motion (6.2.1) and (6.2.2) are complemented with an
equation of motion for the volume, which reads in � dimensions

�̇ �
����

�
(6.2.3)

�̇� � �� ��int � �ext� �
�

�

��

���

p��
��

�
���
��

��� (6.2.4)
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In these equations �ext is the external pressure, which is imposed (like the
temperature). �int is the internal pressure, which can be calculated during
the simulation

�int �
�

��

�
��

���

�
p��
��

� r� � F�

�
� ��

�����

��

�
�

where � is the potential. This equation differs from the conventional virial
equation for a constant-volume simulation.

The equations of the chain of length � are2

	̇� �
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for � � ��    �� (6.2.5)
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The conserved quantity for these equations of motion is
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In Appendix B.3 we demonstrate that this method indeed generates the cor-
rect distribution. The implementation of this algorithm is described in Ap-
pendix E.2.2.

6.3 uestions and Exercises

uestion 14 (Andersen Thermostat)

1. Why is it that the static properties calculated by ���-MD using the Ander-
sen thermostat do not depend on �?

2Here we give the equations of motion in which the particles and the barostat are coupled to
the same Nosé-Hoover chain. The more general case is to couple the particle and the barostat
to two different thermostats. The advantage of having two different chains is that they can
be optimized to the different time scales associated with temperature and volume fluctuations.
Since in practice these times scales can be very different it is advised to use two different chains.
The equations of motion can be found in Ref. [137].

Q

Q
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2. Why does the diffusivity decrease with increasing �?

uestion 15 (Nose-Hoover Thermostat)

1. Explain when do we have to use � � ��� � and � � �� in the Nos«e-Hoover
thermostat.

2. Instead of a single Nos«e-Hoover thermostat, one can also use a chain of ther-
mostats. Does this lead to a signi cant increase of the total CPU time for the
simulation of a large system?

3. Another widely used thermostat is the temperatur e coupling of Berendsen
et al. [139]. This method, however, does not generate the canonical ensem-
ble exactly. In this algorithm, the temperature of the system is controlled by
scaling the velocities to every time step with a factor �

� �

�
� �

��

��

�
	�

	
� �

�� �
�


 (6.3.1)

in which 	� is the desired temperature, 	 is the actual temperature, �� is the
time step of the integration algorithm and �� is a constant.

� Show that this scaling is equivalent to a temperature coupling of the
system with a heat bath at 	 � 	�

� � � �	�� 	� 
 (6.3.2)

in which � is the heat ux and � is the heat transfer coef cient.
� What is the relation between � and ��?

Exercise 13 (Barrier Crossing (Part 1))
Consider the movement of a single particle that moves on a 1D potential
energy surface with the following functional form:

 ��� �

��
�

���� � � �

� �� � cos ������ � � � � ��

�� ��� ��
�

� � �

The energy, force, and the derivative of the force are continuous functions of
the position � and � � �.

1. Derive an expression for �. Make a sketch of the potential energy
landscape.

2. You can find a program on the book’s website that integrates the equa-
tion of motion of the particle starting at � �� � �� � � using several
methods:
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(a) No thermostat (��� ensemble). What do you expect the phase
space trajectories to look like?

(b) Andersen thermostat. In this method, the velocity of the particle
is coupled to a stochastic heat bath, which leads to a canonical
distribution.

(c) A Nosé-Hoover chain. In this method, the motion of the particle
is coupled to a chain of thermostats. The equations of motion are
integrated using an explicit time-reversible algorithm that might
look a little bit complicated at first sight (see Appendix E.2.1), see
integrate res.f. One can prove that this method yields a canonical
distribution provided that the system is ergodic.

(d) No molecular dynamics, but a simple Monte Carlo scheme.

The Andersen thermostat and the ��� integration algorithm are not
implemented yet, so you will have to do this yourself (see integrate nve.f
and integrate and.f). Try to use all methods for a low temperature,
� � ����, for which the system behaves like a harmonic oscillator. Pay
special attention to the following:

(a) Why does the distribution of the MC scheme look so much differ-
ent at low temperatures?

(b) Why does the phase space distribution of the ��� scheme look
like a circle (or ellipse)?

(c) Compare the phase space distributions of the Nosé-Hoover chain
method with distribution generated by the Andersen thermostat.
How long should the Nosé-Hoover chain be to generate a canon-
ical distribution?

3. Investigate at which temperature the probability that the particle cros-
ses the energy barrier becomes nonnegligible.

4. Another widely used algorithm is the “temperature coupling” of Berend-
sen et al. [139]. This method does not produce a true canonical en-
semble. In this algorithm, the temperature of the system is controlled
by scaling the velocities every time step with a factor �

� �

�
� �
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�
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in which �� is the desired temperature, � is the actual temperature,
	
 is the time step of the integration algorithm, and �� is a constant.
The temperature coupling algorithm can be used in combination with a
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Leap-Frog Algorithm
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Compare the distributions of the Berendsen et al. temperature bath
with the canonical distributions.

5. Modify the program in such a way that the potential energy function

	 � 
 �� � cos ������ (6.3.5)

is used. Calculate the diffusion coefficient as a function of the tempera-
ture. Why is it impossible to calculate the diffusivity at low temperatures
using ordinary molecular dynamics? Why is the diffusion coefficient
obtained by using the Andersen thermostat a function of the collision
frequency?
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Free Energies and Phase
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Chapter 7

Free Energy Calculations

One of the aims of computer simulation is to predict the phase behavior of a
given substance. The techniques that can be used to study phase diagrams
numerically depend on the character of the phase transitions. In particular,
there is quite a difference between the tools used to study first-order phase
transitions and those applied to analyze critical phenomena near continuous
phase transitions. In this chapter, which is devoted to free energy calcula-
tions, we discuss only first-order phase transitions. Continuous transitions
are, from a computational point of view, no less challenging than first-order
phase transitions (see e.g., [21,36–38,140]). However, the technical problems
are not free energy related.

The most straightforward way to study phase behavior by computer sim-
ulation is to change the temperature or pressure of a given model system and
then to simply wait for a phase transformation to occur. For instance, we can
prepare a system in a stable crystalline phase, and then heat it until it melts.
This approach can be used (and has been, in some cases [82,83,141–145]). But
in general it suffers from a serious drawback: first-order phase transitions
usually exhibit appreciable hysteresis. Hence, the transformation to the new
stable phase, if it happens at all, will proceed irreversibly well beyond the
coexistence point. The reason why hysteresis is common in first-order phase
transitions is that a large free energy barrier separates the two phases at, or
near, coexistence. The height of this barrier is determined by the interfacial
free energy of the interface separating the two coexisting phases. The larger
the area of this interface, the higher is the free energy barrier. Direct simula-
tions of first-order phase transitions therefore either start with a system that
has been prepared such that the interface is already present or by eliminating
the interface altogether.

There exist several schemes to study phase coexistence without creating
an interface. In fluids, the best-known method is the Gibbs ensemble method
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of Panagiotopoulos [94, 146–148], which is discussed in Chapter 8. For what
follows, it is important to point out the main limitation of the Gibbs ensem-
ble method: it breaks down when at least one of the two phases becomes
so dense that it becomes effectively impossible to exchange particles. This
happens for instance, when one of the coexisting phases is a dense liquid or,
a fortiori, a solid.

A direct method for studying phase coexistence that does not suffer from
this drawback is the so-called Gibbs-Duhem integration method of Kofke
[149–151] (see section 9.2). This method is designed to trace out a two-phase
coexistence curve, once one point on that curve is known. As a consequence,
the Kofke method can be used only in combination with another method that
generates the initial point on the coexistence curve.

In the early 1980s, Parrinello and Rahman [102,103] designed a powerful
Molecular Dynamics scheme specifically for studying solid-solid transitions
(see section 5.5). This technique can be applied to those transitions that cause
the crystal unit cell to deform without much other rearrangement of the
molecules within the unit cell. Even if these conditions are met, the Parrinel-
lo-Rahman method suffers from some hysteresis. More important, when the
two solids have very different unit cells then the Parrinello-Rahman method
cannot be used.

From this discussion it is clear that there is a great need for robust meth-
ods to compute free energies. In what follows, we shall briefly review sev-
eral such techniques. A detailed comparison of the various methods and
their optimization can be found in Ref. [152].

7.1 Thermodynamic Integration

Let us briefly recall why free energies are important when we are interested
in the relative stability of several phases. The second law of thermodynam-
ics states that for a closed system with energy �, volume �, and number
of particles �, the entropy � is at a maximum when the system is in equi-
librium. From this formulation of the second law it is simple to derive the
corresponding equilibrium conditions for systems that can exchange heat,
particles, or volume with a reservoir. In particular, if a system is in contact
with a heat bath, such that its temperature �, volume �, and number of par-
ticles� are fixed, then the Helmholtz free energy � � ���� is at a minimum
in equilibrium. Analogously, for a system of � particles at constant pressure
� and temperature �, the Gibbs free energy � � � � �� is at a minimum.

If we wish to know which of two phases (denoted by � and 	) is stable at
a given temperature and density, we should simply compare the Helmholtz
free energies �� and �� of these phases. It would seem that the obvious
thing to do is simply to measure �� and �� by computer simulation. Unfor-
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tunately, it is not possible to measure the free energy (or entropy) directly in
a simulation (see section 3.1.2). Entropy, free energy, and related quantities
are not simply averages of functions of the phase space coordinates of the
system. Rather they are directly related to the volume in phase space that
is accessible to a system. For instance, in classical statistical mechanics, the
Helmholtz free energy � is directly related to the canonical partition function
����� � ��, (see equation (2.1.15)) :

� � ���� ln����� � ��� ���� ln
��

dp�dr� exp �����p�� r���

�����

�
�

(7.1.1)
where 	 is the dimensionality of the system. It is clear that ����� � �� is not
of the form of a canonical average over phase space. And this is why � or, for
that matter, 
 or � cannot be measured directly in a simulation. We call such
quantities that depend directly on the available volume in phase thermal
quantities.

Nothing is strange about the fact that thermal quantities cannot be mea-
sured directly in a simulation: the same problem occurs in the real world
—thermal quantities cannot be measured directly in real experiments either.
When considering numerical schemes to determine the free energy, there-
fore, it is instructive to see how this problem is solved in the real world.
Experiments always determine a derivative of the free energy, such as the
derivative with respect to volume � or temperature �:

�
��

��

�
��

� � (7.1.2)

and �
����

����

�
��

� �� (7.1.3)

As the pressure  and the energy � are mechanical quantities, they can be
measured in a simulation. To compute the free energy of a system at given
temperature and density, we should find a reversible path in the �-� plane
that links the state under consideration to a state of known free energy. The
change in � along that path can then simply be evaluated by thermodynamic
integration, that is, integration of equations (7.1.2) and (7.1.3). There are only
very few thermodynamic states for which the free energy of a substance is
known. One state is the ideal gas phase; the other is the low-temperature
harmonic crystal. A well-known example of the thermodynamic integration
method is the calculation of the free energy of a liquid through integration
of the equation of state. In this case the reference state is the ideal gas.

In computer simulations, the situation is quite similar. To compute the
free energy of a dense liquid, one may construct a reversible path to the
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very dilute gas phase. It is not really necessary to go all the way to the
ideal gas. But at least one should reach a state that is sufficiently dilute to
ensure that the free energy can be computed accurately, from knowledge
either of the first few terms in the virial expansion of the compressibility
factor ������B�� or that the chemical potential can be computed by other
means (see, for example, sections 7.2.1 and 7.2.3). For the solid, the ideal gas
reference state is less useful and another approach is called for. This problem
is discussed in detail in Chapter 10.

In a simulation we are not limited to using a physical thermodynamic
integration path, that is, a path that can also be followed in experiments.
Rather, we can use all parameters in the potential energy function as thermo-
dynamic variables. For example, if we know the free energy of the Lennard-
Jones fluid, we can determine the free energy of the Stockmayer fluid1 by
calculating the reversible work required to switch on the dipolar interac-
tions in the Lennard-Jones fluid [153]. The formalism used to calculate this
free energy difference is Kirkwood’s coupling parameter method [154]. Let
us consider an �-particle system with a potential energy function � . We as-
sume that � depends linearly on a coupling parameter � such that, for � � �,
� corresponds to the potential energy of our reference system (denoted by
I), while for � � �, we recover the potential energy of the system of interest
(denoted by II):

���� � �� � ���I � ��II

� �I � ���II � �I�	 (7.1.4)

In our example, system I corresponds to the Lennard-Jones fluid, while sys-
tem II refers to the Stockmayer fluid. In what follows, we assume that the
free energy of system I is known (either analytically or numerically). The
partition function for a system with a potential energy function that corre-
sponds to a value of � between � and � is


���� � �� �� �
�

�����

�
dr� exp�������	

The derivative of the Helmholtz free energy ���� with respect to � can be
written as an ensemble average:
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� (7.1.5)

1A Stockmayer fluid consists of Lennard-Jones particles with an embedded point dipole.
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where �� � ��� denotes an ensemble average for a system with a potential en-
ergy function ���� (7.1.4).

The free energy difference between systems II and I can be obtained by
integrating equation (7.1.5):

��� � �� � ��� � �� �

����
���

d�
�
�����

��

�
�

� (7.1.6)

The importance of this result is that it expresses a free energy difference in
terms of an ensemble average, which, unlike a free energy, can be calculated
directly in a simulation. In principle, we could perform the thermodynamic
integration using any (in general, nonlinear) function ����, as long as this
function is differentiable and satisfies the boundary condition: ��� � �� � �I

and ��� � �� � �II. However, the linear interpolation (7.1.4) is particularly
convenient because in that case we know the sign of �������. Straightfor-
ward differentiation of equation (7.1.5) shows that�
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���
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� ��
��
��II � �I�
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�
�
� ��II � �I�

�

�

�
� ��

In words, ������� can never increase with increasing �. This (Gibbs-Bogoli-
ubov) inequality can be used to test the validity or accuracy of the simulation
results. In practice, the integration in equation (7.1.6) must be carried out nu-
merically, such as, by Gaussian quadrature. Of course, such a numerical in-
tegration will work only if the integrand in equation (7.1.6) is a well-behaved
function of �. Occasionally, however, a linear parameterization of ���� may
lead to a weak (and relatively harmless) singularity in equation (7.1.6) for
� � �. This point is discussed in more detail in section 10.3.1. Examples
of applications of the thermodynamic integration technique can be found
in [155–168].

Artificial thermodynamic integration is often used to compute the differ-
ence in excess free energy of similar but distinct molecules. Such calcula-
tions are of particular importance in biomolecular modeling (see e.g., [169]).
For instance, one can thus compute the effect of a chemical substitution on
the binding strength of a molecule to an enzyme. In such calculations, the
thermodynamic integration involves a gradual replacement of part of the
molecule by another building block (for instance, an H could be transformed
into a CH� group).

It should be noted that the thermodynamic integration method based on
equation (7.1.6) is intrinsically static; that is, the derivative of the free energy
is obtained in a series of equilibrium simulations (either by the Monte Carlo
technique or by Molecular Dynamics). An intrinsically dynamic scheme for
performing free energy computations was suggested by Watanabe and Rein-
hardt [170]. This method also relies on the existence of a reversible path be-
tween the state point of interest and a simple reference system. However,
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the approach of [170] is based on the concept of adiabatic changes. If the
Hamiltonian of a closed system is changed sufficiently slowly (compared
to the slowest natural time scale in the system under consideration), then
the entropy of the system does not change. Actually, the relation between
adiabatic transformations in mechanics and in thermodynamics is subtle.
A time-dependent external perturbation of the Hamiltonian of a classical
many-body system will not change the total volume in phase space that is
occupied by the system. However, if the external perturbation proceeds too
rapidly, then the final energy of the system will depend on the initial con-
ditions. As a consequence, a system that was initially characterized by the
thermodynamic variables ��� , and � ends up in a state that does not cor-
respond to any known ensemble. In contrast, if the change of the Hamilto-
nian is truly adiabatic, then the energy of the system is a unique function of
time (����). The system can then be characterized at every time � by a set
of parameters ��� � ����, while the entropy of the system remains constant
(because of the conservation of phase space volume).

The requirement that an adiabatic transformation converts a microcano-
nical system characterized by variables �, �, and �� into another system
characterized by �, �, and �� can be used as a diagnostic tool in a simu-
lation. Ideally, different configurations having an energy �� should on ap-
plication of this adiabatic transformation all end up with the same energy
��. If this condition is not satisfied the transformation has been carried out
too rapidly and the transformation, strictly speaking, is not adiabatic. How-
ever, Watanabe and Reinhardt point out that, in practice, this condition is too
strong. Rather one should verify that the average final energy �� becomes
independent of the switching procedure.

Clearly, the method of Watanabe and Reinhardt is designed for Molec-
ular Dynamics, rather than for Monte Carlo, simulations. However, the
method is not limited to the microcanonical ensemble. It can be extended to
other ensembles (e.g., ���), in which case it becomes a technique for com-
puting free energy changes [170]. It should be noted that several authors
have used Molecular Dynamics simulations with a time-dependent Hamil-
tonian to compute free energy changes [171]. These simulations are close
in spirit to the Monte Carlo scheme, although, as pointed out in [170], they
can be derived from the adiabatic transformation scheme. All these ”slow-
growth” methods can be considered as special cases of the more general
nonequilibrium method for measuring free energy changes that is described
in section 7.4.1.

7.2 Chemical Potentials

In the previous section we discussed several direct, and usually robust, tech-
niques for computing the thermal properties of a many-body system. How-
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ever, in many cases computationally cheaper ways to arrive at the same
result are available. In particular, there exist several techniques for “mea-
suring” the chemical potential of a given species in a single Monte Carlo
or Molecular Dynamics simulation. This seems to contradict the statement
made in section 7.1 that thermal properties cannot be measured directly in a
simulation. However, on closer inspection, it will appear that what we mea-
sure is not the chemical potential itself but the excess chemical potential, that
is, the difference between the chemical potential of a given species and that of
an ideal gas under the same conditions.

7.2.1 The Particle Insertion Method

A particularly simple and elegant method for measuring the chemical po-
tential � of a species in a pure fluid or in a mixture is the particle insertion
method (often referred to as the Widom method [172]). The statistical me-
chanics that is the basis for this method is quite simple. Consider the defini-
tion of the chemical potential �� of a species �. From thermodynamics, we
know that � is defined as
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���

�
���� ���

�
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��
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� (7.2.1)

where �, �, and � are the Gibbs free energy, the Helmholtz free energy, and
the entropy, respectively. Here and in the next few paragraphs we focus on
a one-component system; hence we drop the subscript �. Moreover, to keep
the notation compact, we shall initially assume that we deal with a system of
� atoms in a cubic volume with diameter 	 and volume 
= 	�, at constant
temperature �. The classical partition function of such a system is given by

����
 � �� �

�

�����

�
�

�

� � �

�
�

�

ds� exp����s�� 	��� (7.2.2)

in which the scaled coordinates s� � r��	 are introduced. In equation
(7.2.2), we have written ��s�� 	� to indicate that � depends on the real rather
than the scaled distances between the particles. The expression for the Helm-
holtz free energy of the system is
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� ��B� ln
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�����

�
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��
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 � ��� �ex���
 � ��� (7.2.3)
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In the last line of this equation we have identified the two contributions to
the Helmholtz free energy on the previous line as the ideal gas expression
plus an excess part. It is obvious from equation (7.2.1) that, for sufficiently
large�, the chemical potential is given by

� � ���� ln����������

If we use the explicit form, equation (7.2.3) for ��, we find that

� � ���� ln���������

� ���� ln
�
����

�� 	

�
� �B� ln

��
ds��� exp��
��s������

ds� exp��
��s���

�

� �id��� � �ex� (7.2.4)

In the last line of equation (7.2.4), we have separated the chemical potential
in an ideal gas contribution �id and the excess part �ex. As �id��� can be eval-
uated analytically, we focus on �ex. We now separate the potential energy of
the �� 	-particle system into the potential energy function of the �-particle
system, ��s��, and the interaction energy of the �� � 	�th particle with the
rest: �� �� �s���� � ��s��. Using this separation, we can write �ex as

�ex � ��B� ln
�

ds��� �exp��
����
�
 (7.2.5)

where �� � ��
�

denotes canonical ensemble averaging over the configuration
space of the �-particle system. The important point to note is that equa-
tion (7.2.5) expresses �ex as an ensemble average that can be sampled by
the conventional Metropolis scheme [6]. One aspect of the average in equa-
tion (7.2.5) makes it different from the quantities usually sampled in a com-
puter simulation: we have to compute the average of an integral over the
position of particle � � 	. This last integral can be sampled by brute force
(unweighted) Monte Carlo sampling. In practice the procedure is as fol-
lows: we carry out a conventional constant-���Monte Carlo simulation on
the system of � particles. At frequent intervals during this simulation, we
randomly generate a coordinate s���, uniformly over the unit cube. For
this value of s���, we then compute exp��
���. By averaging the latter
quantity over all generated trial positions, we obtain the average that ap-
pears in equation (7.2.5). So, in effect, we are computing the average of the
Boltzmann factor associated with the random insertion of an additional par-
ticle in an �-particle system, but we never accept any such trial insertions,
because then we would no longer be sampling the average needed in equa-
tion (7.2.5). The Widom method provides us with a very powerful scheme
for computing the chemical potential of (not too dense) atomic and simple
molecular liquids. In Algorithm 16, we demonstrate how this method can
be implemented in a simulation.
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Algorithm 16 ( idom Test Particle Insertion)

subroutine Widom excess chemical potential
via the addition of test particles

xtest=box*ranf() generate a random position
call ener(xtest,entest) determine energy
wtest=wtest update Boltzmann factor in (7.2.5)
+ +exp(-beta*entest)
return
end

Comments to this algorithm:

1. This algorithm shows the basic structure of the Widom test particle method
for the �,�,� ensemble. This subroutine is usually called in the sampling
step of a Monte Carlo simulation, for example, in subroutine sample in
Algorithm 1. Usually, many such test particle insertions are needed to obtain
reliable statistics.

2. The excess chemical potential follows from ��ex � � ln�wtest���, where
� is the total number of test particle insertions. The accuracy of ��ex can be
estimated using ���ex � �wtest�wtest.

3. Subroutine ener calculates the energy of the test particle. Note that the test
particle insertion is virtual and is never accepted.

4. For pairwise additive interactions, we can approximately correct for the ef-
fect of the truncation of the intermolecular interactions on the value of the
chemical potential by evaluating a tail correction. This correction turns out
to be a factor of 2 larger than that for the potential energy per particle (see
Case Study 14).

These equations were derived for a spatially homogeneous system. Wid-
om [173] also considered the case of a spatially inhomogeneous system. In
that case, �ex depends explicitly on the position r. However, in equilibrium
the chemical potential itself is constant throughout the system. In other
words

� � �B� ln
�

��r�
�exp ���	��r���

�

�

is constant.

Case Study 14 (Chemical Potential: idom Method)
In this case study, we use the Widom test particle insertion method to de-
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termine the excess chemical potential of the Lennard-Jones fluid. The algo-
rithm we use is a combination of the basic algorithm for performing Monte
Carlo simulations in the ��� ensemble (Algorithms 1 and 2) and determin-
ing the excess chemical potential (Algorithm 16).

We stress that the tail correction for the chemical potential is similar, but
not identical, to that for the potential energy. In the Widom test particle
method we determine the energy difference:

�� � ��s���� � ��s���

The tail correction is

��tail � ��s����tail � ��s��tail

� ��� ���tail��� � ��	�����tail��	��

�

�
��� ��

� � �

�
��

�

�

�
�



��

�
�

��

d ����

�

�

�

�



��

�
�

��

d ����

� 
�tail���� (7.2.6)

In Case Study 9, we performed a grand-canonical Monte Carlo simulation
to determine the equation of state of the Lennard-Jones fluid. In the grand-
canonical ensemble the chemical potential and the temperature are imposed
(the density is determined during the simulation). Of course, we can also cal-
culate the chemical potential during the simulation, using the Widom method.
Figure 7.1 shows a comparison of the imposed and measured chemical po-
tentials.

7.2.2 Other Ensembles

The extension of the Widom method to other ensembles, in particular ���
and ���, is relatively straightforward. However, it would be incorrect sim-
ply to apply equation (7.2.5) to these other ensembles. As this point is not
always fully appreciated in the literature, we shall briefly discuss the appli-
cation of the Widom method to the ��� ensemble (see [174, 175]) and to the
��� ensemble (see [156,176,177]). To derive the expression for the chemical
potential in the ��� ensemble, we start from the expression for the Gibbs
free energy:

����� � �� � ��B� ln
��

d�
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ds� exp
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Figure 7.1: Excess chemical potential of the Lennard-Jones fluid (� � ���) as
calculated from the equation of state, grand-canonical Monte Carlo, and the
test particle insertion method.

We must evaluate � � ���������. Entirely analogous to the �	� case,
we find that � � ���� 
�� � �������� � �� equals

� � �B� ln
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� �id��� � �ex���� (7.2.7)

Two points should be noted. First of all, we now define the ideal gas refer-
ence state at the same pressure, rather than at the same average density as
the system under study. And second, the fluctuating quantity that we are av-
eraging is no longer exp������, but 	 exp������. In practice, one should
only expect the fluctuating volume term in equation (7.2.7) to be important if
large volume fluctuations are possible, for instance, in the vicinity of critical
points. But chemical potentials are often calculated precisely to locate phase
transitions near such points.

In the constant-�	� ensemble, that is, the one probed by conventional
Molecular Dynamics simulations, we start from the relation

��� � �� ���������

In the microcanonical ensemble, the entropy � is related to ����	 � ��, the
total number of accessible states, by � � � ln����	 � ��. The classical ex-
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pression for ����� � �� is

����� � �� �
�

�����

�
dp�dr�Æ���p�� r�� � ��� (7.2.8)

Again the derivation proceeds much as before, but that we must now com-
pute ������� � �������� � ��. This is slightly more cumbersome (see [156]),
and we quote only the final result:

	
ex � � ln
�
���

����
�
���� exp�����B��

��
� (7.2.9)

where � is the (fluctuating) temperature (as determined from the instanta-
neous kinetic energy of the particles). Such fluctuations tend to be large
where the heat capacity of the system is large (see [80]).

Extensive numerical studies of the excess chemical potential of finite pe-
riodic systems have shown that this quantity is rather strongly dependent on
the size of the system [92, 178]. Computer simulations are typically carried
out for periodic systems in which the fundamental cell contains on order of
��� to ��� particles, and the correction needed to give the infinite system re-
sult therefore can be large. Of course, it is possible to estimate the finite-size
correction empirically by carrying out simulations for different values of �
(the number of particles), but this is very time consuming. It clearly would
be much more convenient if the finite-size correction could be estimated di-
rectly, since it would then be possible to estimate the chemical potential in
the thermodynamic limit on the basis of results obtained from simulations
of relatively small systems. In fact, Siepmann et al. [179] have derived an
expression for the leading (������) system-size dependence of the excess
chemical potential:
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As shown in [179], this expression agrees with the exact result for hard rods
in one dimension and is in excellent agreement with numerical results for
hard disks in two dimensions.

The particle insertion method can be modified to measure the difference
in chemical potential between two species � and 	 in a mixture. In this case
a trial move consists of an attempt to transform a particle of species � into
species 	 (without, of course, ever accepting such trial moves). For more
details, the reader is referred to [175, 180]. Finally it should be stressed that
particle insertion and swapping techniques are not limited to the measure-
ment of chemical potentials. In fact, a wide class of partial molar quantities
(such as the partial molar enthalpy �� or the partial molar volume ��) can
be measured in this way. For details, see [175, 181].
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7.2.3 Overlapping Distribution Method

The reader may wonder why, in the previous section, we have been dis-
cussing only a trial move that attempts to add a particle to the system and
not the reverse move. After all, the chemical potential can also be written as

� � ��B� ln���������
� �id � �B� ln �exp�������

���
� (7.2.11)

where �� denotes the interaction energy of particle � � 	 with the remain-
ing � particles. It would seem that equation (7.2.11) can be sampled by
straightforward Metropolis Monte Carlo. In general, however, this is not
true. The reason is that the function exp�����, in principle, is not bounded.
It can become arbitrarily large, as �� grows. (Incidentally, this is not true
for exp������, because one of the conditions that a system must satisfy to
be describable by classical statistical mechanics is that its potential energy
function has a lower bound.) The problem with equation (7.2.11) is that very
large values of the integrand coincide with very small values ��exp�������
of the Boltzmann factor (which determines how often a configuration is sam-
pled during a Monte Carlo run). As a consequence, an appreciable con-
tribution to the average in equation (7.2.11) comes from a part of config-
uration space that is hardly ever, or indeed never, sampled during a run.
Hard spheres offer a good illustration. As the potential energy function of
nonoverlapping hard spheres is always zero, a simple Monte Carlo sampling
of equation (7.2.11) for a dense fluid of hard spheres would always yield the
nonsensical estimate �ex � 
 (whereas, in fact, at freezing, �ex��B� � 	�).
The correct way to obtain chemical potentials from simulations involving
both particle insertions and particle removals has been indicated by Shing
and Gubbins [182,183]. However, we find it convenient to discuss this prob-
lem in the context of a more general technique for measuring free energy
differences, first introduced by Bennett [184], called the overlapping distribu-
tion method.

Consider two�-particle systems, labeled 
 and 	with partition functions
�� and ��. For convenience we assume that both systems have the same
volume �, but this is not essential. From equation (5.4.4) it follows that the
free energy difference � � � � � can be written as

� � ��B� ln�������

� ��B� ln
��

ds� exp������s����
ds� exp������s���

�
� (7.2.12)

Suppose that we are carrying out a (Metropolis) sampling of the configura-
tion space of system 	. For every configuration visited during this sampling
of system 	 we can compute the potential energy of system 
 (���s��) for
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the same configuration and, hence, the potential energy difference �� �

���s�� � ���s��. We use this information to construct a histogram that
measures the probability density for the potential energy difference �� . Let
us denote this probability density by ������. In the canonical ensemble,
������ is given by

������ �

�
ds� exp������ Æ��� � �� � ���

��
� (7.2.13)

where we have denoted the scaled, configurational part of the partition func-
tion by a � (e.g., �� �

�
ds� exp������s���). The Æ-function in equation

(7.2.13) allows us to substitute ����� for �� in the Boltzmann factor; hence,
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where ������ is the probability density of finding a potential energy differ-
ence �� between systems � and �, while Boltzmann sampling the available
configurations of system �. As the free energy difference between systems �
and � is simply �� � ��B	 ln���
���, we find from equation (7.2.14) that

ln������ � ���� � ��� � ln������� (7.2.15)

To obtain �� from equation (7.2.15) in practical cases, it is convenient to de-
fine two functions �� and �� by

������ � ln������ �
���



and

������ � ln������ �
���



such that
������ � ������ � ����

Suppose that we have measured �� and �� in two separate simulations (one
sampling system �, the other system �). We can then obtain �� by fitting
the functions �� and �� to two polynomials in �� that are identical but for
the constant term. The constant offset between the two polynomials yields
our estimate for ��. Note that, to perform such a fit, it is not necessary
that there even exists a range of �� where both �� and �� can be measured.
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However, in the absence of such a range of overlap, the statistical accuracy
of the method is usually poor.

Now consider the particle insertion-removal problem. Let us assume
that system � is a system with � interacting particles, while system � con-
tains � � � interacting particles and � ideal gas particle. The difference in
free energy between these two systems is obviously equal to �ex. Applying
equation (7.2.15) to this particular case, we find that

��ex � ������ � ������� (7.2.16)

Equation (7.2.16) is equivalent to the result obtained by Shing and Gubbins.
Using the overlapping distribution method it is possible to combine the re-
sults of simulations with trial insertions and trial removals to arrive at a more
accurate estimate for the chemical potential. In section 7.3.1, we discuss the
extension of the Bennett method to multiple histograms and indicate the re-
lation with recent developments in this field [37, 185].

Case Study 15 (Chemical Potential: Overlapping Distribution)
In Case Study 14, we used the Widom test particle method to determine the
chemical potential of the Lennard-Jones fluid. This method breaks down at
high densities, where most of the test particles have such a high energy that
the Boltzmann factor in equation (7.2.5) is negligible. Once in a while, a
hole in the fluid is found that gives a nonzero contribution to this Boltzmann
factor. However, since these nonzero contributions are only rarely observed,
the statistical accuracy with which we sample the excess chemical potential
will be low. The overlapping distribution method provides a good diagnostic
tool for detecting such sampling problems.

For the overlapping distribution method, we have to perform two simu-
lations: one simulation using a system of � � � particles (system 1) and
a system with � particles and one ideal gas particle (system 0). For each
of these systems we determine the distribution of energy differences, equa-
tions (7.2.13) and (7.2.14). For system 1, this energy difference �� is de-
fined as the change of the total energy of the system when one of the par-
ticles would be transformed into an ideal gas particle. We have to make a
histogram of the energies of the particles in this system. This can be done
conveniently using Algorithm 2, in which the energy of a randomly selected
particle is calculated before an attempt is made to displace this particle; the
distribution of these energies yields ������.

For system 0, we have to determine the energy difference �� , which
is the difference in total energy when the ideal gas particle would be turned
into an interacting particle. This energy difference equals the energy of a test
particle in the Widom method (section 7.2.1). When we determine ������,
at the same time we can obtain an estimate of the excess chemical potential
from the Widom particle insertion method.
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Figure 7.2: Comparison of the overlapping distribution function method
and the Widom particle insertion scheme for measuring the chemical po-
tential of the Lennard-Jones fluid at � � ���. The solid curve is the particle-
insertion result, the dashed curve was obtained using the overlapping distri-
bution method (��ex � �����). The units for ��ex are the same as for �����.
The figure on the left corresponds to a moderately dense liquid (� � 	�
).
In this case, the distributions overlap and the two methods yield identical
results. The right-hand figure corresponds to a dense liquid (� � ��		). In
this case, the insertion probability is very low. The distributions �� and ��
hardly overlap, and the two different estimates of ��ex do not coincide.

In Figure 7.2 we have plotted the functions ������, ������, and �ex����

(as defined by equation (7.2.16)) as a function of �� for the Lennard-Jones
fluid at � � 	�
 and � � ��		. For the sake of comparison, we have also
plotted the results obtained using the Widom particle insertion method. The
figure shows that at � � 	�
 there is a sufficiently large range of energy
differences for which the two functions overlap (��	 � �� � ��). The
result of the overlapping distribution function therefore is in good agreement
with the results from the Widom method. At � � ��		, the range of overlap
is limited to the wings of the histograms � and �, where the statistical
accuracy is low. As a consequence, our estimate for �ex���� is not constant
(as it should) but appears to depend on �� . Moreover, the results from
the overlapping distribution method are not consistent with the result of the
Widom particle insertion method.

Note that two separate simulations are needed to determine the excess
chemical potential from the overlapping distribution method. One might think
that the particle addition and particle removal histograms could be measured
in a single simulation of an �-particle system. This would indeed be correct
if there were no difference between the histograms for particle removal from
� and �� � particle systems. However, the overlapping distribution method
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normally is used for systems of only a few hundred particles and at relatively
high densities. Under those conditions, the system-size dependence of �ex
can be appreciable. Nevertheless, it is useful to keep track of both ������

and ������ in a single simulation, simply by checking whether overlap be-
tween the two distributions is sufficient.

7.3 Other Free Energy Methods

The present section describes free energy methods of particular importance
for barrier crossing problems (see also Chapter 16). By this we mean either
the computation of the free energy barrier between two states (phases, con-
formations) or the computation of the free energy of a system that cannot be
equilibrated by conventional means because its free energy landscape con-
sists of many valleys separated by high barriers. The numerical techniques
described in this section therefore are not designed exclusively for free en-
ergy calculations but also for equilibration of glassy systems. This is a rather
common problem and deserves special attention. We start, however, with
a simple extension of the overlapping distribution method of section 7.2.3.
In that section, we focused on the application of the technique for comput-
ing the free energy difference between two systems. Now we will discuss the
method, in its generalized form, in a different context, namely, as a technique
for studying high free energy barriers. Such barriers cannot be studied using
conventional Monte Carlo or Molecular Dynamics simulations because the
probability that a spontaneous fluctuation will bring the system to the top of
the barrier is vanishingly small.

7.3.1 Multiple Histograms

As was shown in section 7.2.3, the overlapping distribution function method
can work even if the two distributions do not really overlap. However, they
should not be too far apart. In case there is a large gap between �� and ��, it is
often useful to perform additional simulations for intermediate values of the
Hamiltonian. We thus obtain a sequence of distribution functions ��, ��, ��,
� � � ��, such that �� overlaps with ��, �� with ��, etc. The free energy differ-
ence between system 0 and system � can then be obtained by adding �����
+ ����� + � � � + �������. The problem with a naive implementation of this
approach is that the statistical errors in the individual free energy differences
������� add up quadratically in the final result. Fortunately, techniques exist
that prevent such error propagation. One approach, proposed by Ferren-
berg and Swendsen [185], is based on the idea that it is possible to construct
a self-consistent estimate for the histograms without assuming any specific
functional form.
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For what follows, it is convenient to define the distributions that we are
considering in a slightly more general form. We assume that the original
system that we are studying is characterized by a potential energy function
��. We now define a sequence of � related models characterized by a poten-
tial energy function �� � �� ��� (� � �� � � � � �). For example, �� could be
����� � ���, with � � �� � �. Alternatively, �� could be a function of some
order parameter or reaction coordinate ��r��. For the sake of generality, we
take the latter point of view, because �� = ����� � ��� can be interpreted
as a function of the order parameter ��r�� � �� � ��. We now consider
histograms 	���� defined as follows:

	���� �

�
dr� exp��
��� �����Æ�� ���r���

��
�

where �� is given by

�� �

�
dr� exp��
��� ������ (7.3.1)

The original system is characterized by an order parameter distribution

	���� �

�
dr� exp��
���Æ�����r���

��
�

In some cases, we are interested in the ratio ����, because that determines
the free energy difference between systems � and �. But, often, the distribu-
tion function 	���� itself is of central interest, because it allows us to com-
pute the Landau free energy of the original system as a function of the order
parameter �:

�Landau��� � ��B� ln	�����

Self-Consistent Histogram Method

In a simulation, the histograms 	���� are estimated by measuring �����,
the number of times that a system with potential energy function �� ���

has a value on the order of the parameter between� and����. If the total
number of points collected in histogram � is denoted by ��, then

	������ � ������� ���

where the �� � � � denotes ensemble averaging. Of course, in a simulation of
finite length, the ratio ������� will fluctuate around 	������. If we as-
sume that the number of points in bin � is determined by a Poisson distribu-
tion, then it follows that the variance in 	est

�
�����, that is, our estimate of
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�������, is given by

�
��

�
���

�
� �������

�

��

�

�
�������

��

�

�
�������

��

� (7.3.2)

In what follows, we shall assume, without loss of generality, that our units
are chosen such that �� � �. This choice is not essential, of course, but it
simplifies the notation and does not affect the final results. Once we have
measured a set of histograms, we can try to combine this information to
arrive at an estimate of ����� or, equivalently, of �Landau���. First of all,
we should note that, in principle, although not in practice, �� can be recon-
structed from every individual histogram �����:

����� � exp���	��

�


�
������ (7.3.3)

In practice, this approach will hardly ever work because the range of �
values where ����� and ����� differ significantly from zero need not over-
lap. Hence the most important contribution to ����� would come from a
range of � values where exp���	�� is very large but ����� is vanishingly
small. We therefore shall attempt to construct our estimate �est

�
��� by a lin-

ear combination of the estimates based on the different histograms:

�est
� ��� �

��

���

����� exp���	��

�


�
�est
� ���� (7.3.4)

where ����� is an as-yet undetermined weight function, subject to the con-
dition

��

���

����� � �� (7.3.5)

Note that, at this stage, the values of the ratios 
�
� are also still unknown.
Let us now choose the weights ����� such that the estimated variance in
�est
�
��� is minimized. Using the fact that fluctuations in different simulations
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are uncorrelated, this variance is given by
�
�est
� ����

�
�
�
�est
� ���

��

�

��

���

��
� ��� exp�������

�
��

��

�� �
�est
� ����

�
�
�
�est
� ���

��

�

��

���

��
� ��� exp�������

�
��

��

��
��������

� �����

��

���

��
� ��� exp������

��

��
���	 (7.3.6)

where, in the last line, we have used equations (7.3.2) and (7.3.3). Next we
must determine the values for ����� that minimize the variance of �est

� ���.
Differentiating equation (7.3.2), under the constraint given by equation (7.3.5),
yields

����� � 
 exp��������

��

��
	 (7.3.7)

where 
 is an undetermined multiplier, fixed by the condition that ����� is
normalized:


 �
���

��� exp�������������
� (7.3.8)

Inserting equation (7.3.7) in equation (7.3.4) yields

�est
� ��� �

��

���������

��� exp�������������
� (7.3.9)

Finally, we must determine ��. We do this by inserting equations (7.3.9) and
(7.3.3) in the definition of �� (equation (7.3.1)):

�� �

�
dr� exp������ �����

�

�
d�������� exp������

�

�
d� exp������

��

���������

��� exp�����������
� (7.3.10)

This is an implicit equation for �� that must be solved self-consistently. In
fact, we cannot determine the absolute value of all �� but only their ratio.
Therefore, we can arbitrarily fix one of the �� (e.g., ��) at a constant value.
The (nonlinear) set of equations (7.3.10) is then solved for the remaining ��
until self-consistency is reached. The free energy difference between system
� and system � then simply can be computed as

�� � ���� ln��������
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To give a specific example, assume that we have simulated only two systems
� and �, with potential energy functions �� and �� � �� � �� . Moreover,
let us assume, for the sake of simplicity, that both simulations resulted in the
same number of histogram entries (� � �� � ��). Then equation (7.3.10)
becomes

�� �

�
d�� exp������

������ �������

������ � exp����������
��

��
�

�
d�� exp������

������ � ������

�� � exp��������������
	 (7.3.11)

Using ��
 � � ln�������, we can rewrite equation (7.3.11) as
�

d��
������

� � exp������ � �
��
�

�
d��

������

� � exp�����
 � ����
�

which is equivalent to the equation that must be solved self-consistently
for �
 in Bennett’s acceptance ratio method [184], to be discussed in sec-
tion 7.3.2. This is somewhat surprising because the acceptance ratio method
was devised to minimize the estimated error in the free energy difference
between two systems. In contrast, equation (7.3.10) minimizes the error in
our estimate of �����. If the number of histograms is larger than �, this
expression is not completely equivalent to the one obtained by minimizing
the error in the free energy difference between system 1 and  (say). But it
is straightforward to derive the equations for the set ���� that minimize the
error in the estimate of a particular free energy difference.

Example 3 (Ideal Gas Molecule in an External Field)
To illustrate the self-consistent histogram method, let us consider a trivial
example, namely, the simulation of an ideal gas molecule in an external field:

���� �

�
� � � �� � � �

	

For this system, the probability of finding an ideal gas molecule at a position
� is given by the barometric distribution:

����� � � exp��������	

The Landau free energy as a function of the coordinate � is, in this case,
simply equal to the potential energy:


��� � ���� ln������� � ���� � ��

where we have chosen our reference point at � � �. A direct simulation of
the barometric height distribution yields poor statistics if ����� � �. This is
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Figure 7.3: The probability of finding an ideal gas particle at position �. The
figure on the left shows the results for the various windows, and the right
figure shows the reconstructed distribution function as obtained from the
self-consistent histogram method.

why we use the self-consistent histogram method. For window � we use the
following window potential:

����� �

��
�
� � � �min

�

� �min
�

� � � �max
�� � � �max

�

�

We allow only neighboring windows to overlap:

�max
��� � �min

�
� �max

���

�min
���

� �max
�

� �min
���

�

For each window we perform � samples to estimate the probability �����
to find an ideal gas particle at a position �. The results of such a simulation
are shown in Figure 7.3. The self-consistent histogram method is used to
reconstruct the desired distribution �����. According to equations (7.3.9)
and (7.3.1) this distribution is given by

�est
� ��� �

��

���
�������

���
exp��	���
��
�

�
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with

�� �

�
d� exp������

��

��� �������

��� exp���������

�

��max
�

�min
�

d�

��

��� �������

��� exp���������

� ��

������

���� � ��
� ��� � ���� � 	�

������

���� � ��



We therefore obtain the following recursive relation for ����

���� � �
�������� � ������� � �������

������ � ����� � ����� � ����� � ���	�

� ���

in which ��, ��, and 	� are defined as

�� �

��max
���

�min
�

d� �������� � ������

�� � �� �

��min
���

�max
���

d� �����

	� �

��max
�

�min
���

d� ������ � �������� 


If we take �� � � and assume that the first window overlaps only with window
2 (�� � ) then from equation (a) it follows that �� can be written as

�� � �
��

�� � 	�




This result can be substituted into equation (a) to give ��, which can in its
turn be used to calculate ��, etc. The result of this calculation is shown in
Figure 7.3.

For this example, it is easy to verify that, if we use the analytical expres-
sions for ��, ��, and 	�, we do indeed recover �	��� exactly. In practice, the
histograms (and hence ��, ��, and 	�) will be subject to statistical fluctua-
tions. Moreover, more than two windows may be overlapping simultaneously.
In this more general case equation (7.3.1) needs to be solved iteratively.
Still, an initial estimate for the various �� may be obtained with the recursive
scheme just described.

7.3.2 Acceptance Ratio Method

The acceptance ratio method is a scheme, derived by Bennett [184], for esti-
mating the free energy difference between two systems (0 and 1) from two
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simulations: one of system 0 and one of system 1. To derive this scheme,
consider the following identity:

��

��

�

��

��

�
dr���r�� exp������ � �����
dr���r�� exp������ � ����

�
�� exp��������
�� exp��������

� (7.3.12)

Equation (7.3.12) is valid for an arbitrary�. The question is this: what choice
of � yields the highest statistical accuracy for ��� � ln�������? Let us first
write �� in terms of �:

��� � ln �� exp�������� � ln �� exp�������� � (7.3.13)

Next we compute the estimated statistical error in ��� from the variance
in the two terms on the right-hand side of equation (7.3.13), divided by the
number of (statistically independent) samples (�� and ��, respectively):

����� �

�
�� exp��������

�
�
� �� exp�������

�

�

�� �� exp�������
�

�

�

�
�� exp��������

�
�
� �� exp�������

�

�

�� �� exp�������
�

�

�

�
dr� ��������� exp������ � ������� exp�������

� �� exp ������ � ����
�

�
	��

dr�� exp������ � ����
�� �

	

��
�

	

��
� (7.3.14)

Note that the right-hand side of equation (7.3.14) does not change if we mul-
tiply � by a constant factor. Therefore, without loss of generality, we can
choose the following normalization for �:�

dr�� exp������ � ���� � constant� (7.3.15)

Next, we minimize the statistical error in ��� with respect to �, with the
constraint (7.3.15). This is done most conveniently using Lagrange multipli-
ers:


 � �������� exp������ � ������� exp������� exp������ � �����Æ�

� � exp������ � ����Æ� (7.3.16)

or
� �

constant
������� exp������ � ������� exp������

� (7.3.17)
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If we now insert this expression for � in equation (7.3.12), we obtain

��

��

�

�
�� � exp����� � �� � ������

�

��� � exp����� � �� � �������
exp����� (7.3.18)

where we have defined exp���� � �������������. We can express equa-
tion (7.3.18) in terms of the Fermi-Dirac function ��	� � ���� � exp��	��:

��

��

�
����� � �� � ���

�

����� � �� � ���
�

exp����
 (7.3.19)

Note that equation (7.3.19) is valid for any choice of �. However, the choice
� � ln��������������� is optimal.

At first sight this choice of � seems problematic because it presupposes
knowledge of the very quantity we wish to compute, �������. In practice,
� is determined by a self-consistency requirement, described next.

Suppose that we have obtained numerical estimates for ����� � �� � ���
�

and ����� � �� � ���
�

for a range of values of �:

����� � �� � ���
�

�
�

��

�

�

����� � �� � ��

����� � �� � ���
�

�
�

��

�

� �

�� ���� � �� � ��� (7.3.20)

where
�
�

(
�
� �) stands for the sum over all configurations sampled in

a Monte Carlo simulation of system 1 (0). Inserting equations (7.3.20) and
(7.3.19) in equation (7.3.13), we obtain

��� � ln
�
�
���� � �� � ���

�
���� � �� � ��

� ln������� � ��� (7.3.21)

while the optimal choice for � can be rewritten as

��� � � ln������� � ��
 (7.3.22)

Clearly, equations (7.3.21) and (7.3.22) are consistent only if

�

�

���� � �� � �� �
�

� �

���� � �� � ��
 (7.3.23)

In practical situations, � will be treated as an adjustable parameter that is
varied until equation (7.3.23) is satisfied. For that value of �, ��� then fol-
lows immediately from equation (7.3.22).
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7.4 Umbrella Sampling

In section 7.2.3, the distribution functions ������ and ������ were intro-
duced. The functions measure the probability of finding system 0 (1) in an
equilibrium configuration s� where the potential energy of system 1 and 0
differ by an amount �� . At first sight it would seem that knowledge of ei-
ther �� or �� is sufficient for estimating the free energy difference between
systems 0 and 1. After all, equation (7.2.15) states that

������ � ������ exp����� � �����

If we integrate over �� on both sides of this equation, we obtain
�
�

��

d�� ������ � exp�����
�
�

��

d�� ������ exp������

� � exp����� �exp�������
�
� (7.4.1)

or
exp������ � �exp�������

�
�

Although equation (7.4.1) is very useful to estimate free energy differences
between two systems that are not too dissimilar, its applicability is limited.
The problem is that, in many cases of practical interest, the largest contribu-
tions to the average �exp�������

�
come from the region of configuration

space, where ������ is very small while exp������ is very large. As a
result, the statistical error in �� is large.

One method to achieve a more accurate estimate of �� is the “umbrella
sampling” scheme suggested by Torrie and Valleau [186]. The basic idea
behind umbrella sampling is that, to obtain an accurate estimate of the free
energy difference between two systems (0 and 1), one should sample both
the part of configuration space accessible to system 1 and the part accessible
to 0. To achieve this in a single simulation, one should modify the Markov
chain that governs the sampling of configuration space. This is achieved
by replacing the Boltzmann factor of the system by a nonnegative weight
function ��r�). As a result, the probability of visiting a point r� in configu-
ration space is now proportional to ��r��. The expression for �exp�������

�

becomes (see equation (7.2.12))

�exp�������
�
�

�
dr���r�� exp������r������r���
dr���r�� exp������r������r��

� (7.4.2)

or introducing the notation �� � ��
�

to denote an average over a probability
distribution proportional to ��r��,

�exp�������
�
�

�exp����������
�exp����������

� (7.4.3)
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For both the numerator and the denominator in this equation to be non-
zero, ��r�� should have an appreciable overlap with both regions of con-
figuration space that are sampled by system � and system �. This bridging
property of � is responsible for the name umbrella sampling.

At first sight, it might seem advantageous to refine the computation of
� in such a way that all relevant configurations can be sampled in one run.
Surprisingly, this is not the case. It is usually better to perform several um-
brella sampling runs in (partially overlapping) windows. To see this, let us
define an order parameter� that is a measure for the location of a given con-
figuration between systems � and �. For instance, � might be the potential
energy or (in constant-pressure simulations) the density. Let us denote the
average value of � in system � by�max and the value in � by�min. Let us as-
sume that we sample an interval �max ��min � �� in � umbrella sampling
simulations. The optimum choice of � is clearly the one that samples the
complete � interval in the minimum computing time. To estimate this time,
let us assume that the system performs a random walk in � space within the
window ����. Associated with the random walk in � space is a diffusion
constant ��. The characteristic time needed to sample one interval ���� is

	� �
�������

��



Clearly, the total time to sample all � windows is

	tot � �	� �
�����

���



The important point to note is that the computing time decreases with in-
creasing �. It would be incorrect, however, to assume that � should be cho-
sen as large as possible. The actual equilibration time of a run in one of the
� windows also depends on the rate at which all coordinates orthogonal to
� are sampled. Let us denote this time by 	�. Clearly, once 	� becomes
appreciably larger than 	�, the total computation will scale as � � 	�. This
suggests that the optimum choice of � is the one for which 	� � 	�. For a
more detailed discussion, see [187].

The following simple example is meant to demonstrate the power of the
umbrella sampling technique. Consider a model for n-butane, where all
bond lengths and bond angles are fixed, except the torsional angle �. Let
us assume that we know the intramolecular energy function �intra��� asso-
ciated with changes of the conformation of the molecule. In the dilute gas,
the probability of finding a value of the torsion angle � is proportional to
exp����intra����. For n-butane, this distribution has a maximum at � � ��

(the trans conformation) and two lower maxima at � � ���, corresponding
to the gauche conformation. Let us suppose that we wish to know what hap-
pens to the probability of finding a molecule at the transition state between
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the two gauche conformations, when the molecule is dissolved in an atomic
liquid. The total potential energy function for the molecule plus solvent is

�tot � �inter�r�� ��� � �intra�����

The probability density ���� of finding a particular value of the angle � is
given by2

���� �

�
exp����tot�Æ�� � ���dr�d���

exp����tot�dr�d��
�

Let us now choose the weighting function � equal to exp����intra�. With
this choice, we can rewrite ���� as

���� �

�
exp����tot���Æ�� �������dr�d���

exp����tot�����dr�d��

�

�
exp����inter��Æ�� � ��� exp����intra��dr�d���

exp����inter� exp����intra�dr�d��

�
�Æ��� ��� exp����intra��inter

�exp����intra��inter
� (7.4.4)

But, as �intra depends only on �, we can rewrite equation (7.4.4) as

���� �
exp����intra����

�exp����intra�����inter
�inter����

where �inter��� is the probability of finding a conformation with internal an-
gle � in the absence of the intramolecular torsion barrier. �inter��� can be
computed accurately, even for values of � that are very unlikely in the real
system, due to the presence of the internal potential energy barrier �intra.

Although umbrella sampling, in principle, is a powerful technique, one
drawback is that the function � is not known a priori. Rather, it must be
constructed using the available information about the Boltzmann weights of
systems 0 and 1. Constructing a good sampling distribution used to require
skill and patience. However, during the past few years, several develop-
ments should have taken some of the black magic out of umbrella sampling.
In fact, a fairly large number of independent papers arrive at similar results.
Next, we briefly review some of these developments.

First of all, Valleau [188–190] has proposed a systematic scheme for com-
puting the weight function � that is needed if umbrella sampling is used to
compute the properties of a system over a wide range of densities and tem-
peratures. This problem was already considered in 1967 by McDonald and

2For convenience we ignore that a Jacobian is associated with the transformation from Carte-
sian to generalized coordinates (see Chapter 15).
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Singer [15, 191, 192], who developed a precursor of the umbrella sampling
scheme.

In the case of temperature scaling alone, the umbrella sampling scheme
is fairly straightforward. Suppose that we wish to gather statistics on the
configurational properties of a system in a temperature range between upper
and lower limits �� and ��. We can then use, as our sampling function, a
linear combination of Boltzmann weights at a discrete set of points in the
temperature interval of interest:

��r�� �
���

����

�� exp
�
�����r��

�
� (7.4.5)

where �� � ������ and �� is a nonnegative weight that remains to be spec-
ified. To get the sampling as uniform as possible, a logical choice for ��

is
�� � exp�����ex���� 	���

because this choice ensures that every term equation (7.4.5) yields the same
contribution to the configuration space integral of �. Of course, we do not
know �ex���� 	� a priori and hence we have to make a reasonable guess (on
basis of the equation of state). But this is not particularly difficult.

Things become more subtle when we try to apply the same approach to
include sampling over a range of densities. At first sight, it would seem that
we can use almost the same expression as in equation (7.4.5) (but for the
need to use scaled coordinates, s � r�	���). The weight function � would
then become

��s�� �
���	��

�����	�	�

���	 exp
�
������	

���

	 s���
�
� (7.4.6)

where 		 is a volume between the limits 	� and 	�. Again, we could choose

���	 � exp�����ex���� 		���

but this approach will not always work. The reason is that the sampling
function is too tolerant, in the sense that it allows particles to approach one
another up to a distance that corresponds to a hard-core diameter in the sys-
tem with the lowest density. Let us call this distance 
min = ���	

���

� �. If we
sample configuration space with the function given in equation (7.4.6), then
for all but the smallest systems, there will be at least one pair of particles with
a separation near 
min. For systems with a volume 	 �	 �, this separation
will correspond to a very high-energy configuration because the real pair
distance would be min � ��	�	��

���. As a consequence, the distribution �

is not really a bridging distribution. Valleau [188] has suggested taking care
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of this problem by making the weight function ��r�� depend explicitly on
the shortest pair distance in the system. Although this solution works for
the example discussed by Valleau, it is not a general purpose solution, and
other tricks may be needed in other situations.

Umbrella sampling is a very general technique and, in principle, will
give the correct answer independently of the umbrella potential that is used.
However, the efficiency of this method does depend very much on a clever
choice of this umbrella potential. Here, we describe a class of algorithms that
achieve essentially the same as umbrella sampling but are more robust (i.e.,
require less thought).

7.4.1 Nonequilibrium Free Energy Methods

Above, we discussed a range of techniques for computing free energy dif-
ferences. All these techniques assume either that the system under study
is in thermodynamic equilibrium or, at least, that the system is changing
slowly in time. Surprisingly, it is also possible to relate the free energy dif-
ference between two systems to the nonequilibrium work needed to trans-
form one system into the other in an arbitrarily short ”switching” time ��.
In what follows, we briefly describe the nonequilibrium free energy expres-
sion due to Jarzynski [193, 194] and some of the generalizations proposed
by Crooks [195–197]. As before, we consider two �-particle systems: one
with a Hamiltonian ����� and the other with a Hamiltonian �����, where
� � �p�� r�� represents the phase space coordinates of the system. We as-
sume that we can switch the Hamiltonian of the �-particle system from ��

to �� — that is, we introduce a Hamiltonian �� that is a function of a time-
dependent switching parameter ����, such that for � � �, ���� � ��, while
for � � �, ���� � ��. Clearly, we can then write

��������� � �������� �

���
�

d� �̇
	��������

	�

 (7.4.7)

Clearly, �
��

�

d� �̇
	��������

	�

is equal to the work � performed on the system due to the switching of the
Hamiltonian. If the switching takes place very slowly, the system remains
in equilibrium during the transformation, and � reduces to the reversible
work needed to transform system � into system �. Hence ���� � �� �

�� � �� � �. However, for a finite switching time, the average amount of
work � that must be expended to transform the system from state � to state
� is larger than the free energy difference �

����� � �
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The work ����� depends on the path through phase space and, for a Hamil-
tonian system, this path itself depends on the initial phase space coordinate
���� (later we shall consider more general situations where many paths con-
nect ����with �����). Let us next consider the average of exp���������. The
work ����� is a function of the initial phase space position ����. We assume
that at time � � �, the system is in thermal equilibrium. Then the proba-
bility of finding the system � with phase space position ���� is given by the
canonical distribution

�������� �
exp������������

��

�

where �� is the canonical partition function of the system �. The average of
exp��������� is then given by

exp���������

�

�
d���� �������� exp�������� ������

�

�
d����

exp������������

��

exp�������� ������

�

�
d����

exp������������

��

exp������������� �����������

�

�
d����

exp�������������

��

� (7.4.8)

where we have used the fact that ����� � ��������� � ��������. Finally, we
use the fact that the Hamiltonian equations of motion are area preserving.
This implies that d����� � d����. We then obtain Jarzynski’s central result

exp��������� �

�
d�����

exp�������������

��

�
��

��

� exp���	
�� (7.4.9)

This is a surprising result, because it tells us that we can obtain information
about equilibrium free energy differences from a nonequilibrium simulation.
In fact, we already know two limiting cases of this result. First of all, in the
limit of infinitely slow switching, we recover the relation between 	
 and
the reversible work ��, written in the form

exp���Æ
� � exp�������

The other limit is instantaneous switching. In that case,� is simply equal to
����������������� and we get

exp���	
� � �exp���	��� �
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Crooks [195] has given a more general derivation of equation (7.4.9) that is
not limited to Hamiltonian systems. In fact, Crooks has shown that equa-
tion (7.4.9) is valid, provided that the dynamics of the system is Markovian
and microscopically reversible. This implies that equation (7.4.9) is also valid
if the ”time-evolution” of the system is determined by a Metropolis Monte
Carlo scheme.

Although equation (7.4.9) is both surprising and elegant, it would be
wrong to conclude that it necessarily leads to great reductions in the cost
of computing free energy differences. In science, as in life, there is no such
thing as a free lunch. The problem is that, for strongly nonequilibrium trans-
formations, the statistical accuracy of equation (7.4.9) may be poor. This we
already know for the limit of instantaneous switching. The dominant contri-
bution to the average that we wish to compute may come from initial con-
figurations that are rarely sampled. This was the reason why, for the mea-
surement of chemical potentials, the ”particle-removal” method was not a
viable alternative to the ”particle-insertion” scheme. For instance, we could
consider a change in the Hamiltonian of the system that does not change
the free energy of the system. An example would be a Monte Carlo move
that displaces one molecule in a liquid over a distance ��. If � is not small
compared to the typical molecular dimensions, then the displacement of the
particle will most likely require positive work to be performed. The same
holds for the reverse situation where we move the particle back over a dis-
tance �� from its new position to its starting point. However, the free en-
ergies of the initial and final situations are the same. Hence, �� should be
zero. This implies that the very small fraction of all configurations for which
the work is negative makes a large contribution to the average of exp�����.
In fact, as in the particle-insertion/particle-removal case, the resolution of
the problem lies in a combination of the forward and reverse schemes. We
illustrate this by considering the Hamiltonian system. However, the result
is general. We now consider two nonequilibrium processes: one transforms
the Hamiltonian from �� to �� in a time interval ��, and the other process
does the reverse. For both processes, we can make a histogram of the work
that is expended during the transformation. For the forward process, we can
write

����� �

�
d��	�

exp��������	���


�

Æ���������� (7.4.10)

If we multiply both sides of this equation by exp����� and use the fact that



7.5 Questions and Exercises 199

����� � ��������� ���������, we get

exp���������� �

�
d����

exp������������

��

exp�����Æ���������

�

�
d����

exp������������

��

� exp������������ ����������Æ���������

�

�
d����

exp�������������

��

Æ���������

�
��

��

�
d�����

exp�������������

��

Æ���������

� exp����	�������
 (7.4.11)

In the last line, we have used the fact that the work that is performed on
going from � to � is equal to ������������������ � ������. Hence, just as in
the overlapping distribution method (7.2.3), we can obtain �	 reliably if the
histograms of the forward and reverse work show some overlap. This illus-
trates that the approach of Jarzynski and Crooks provides us not only with
a correct statistical mechanical procedure to determine free energy changes
in nonequilibrium processes, but also with a powerful diagnostic tool for
testing the reliability of the numerical results.

7.5 uestions and Exercises

uestion 16 (Free Energy)

1. Why does equation (7.2.11) not work for hard spheres?

2. Derive an expression for the error in estimate of the chemical potential ob-
tained by Widom s test particle method for a system of hard spheres. Assume
that the probability of generating a trail position with at least one overlap is
equal to �.

3. An alternative method for calculating the free energy difference between state
� and state  is to use an expression involving the difference of the two
Hamiltonians:

	� � 	� �
� ln

�
�exp ��� ��� �������������

�

�

 (7.5.1)

Derive this equation. What are the limitations of this method? Show that the
Widom s test particle method is just a special case of this equation.

Q
Q
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uestion 17 (Ghost Volume) The virial equation is not very convenient for com-
puting the pressure of a hard sphere uid. Why? It is more convenient to perform
a constant-pressure simulation and compute the density. An alternative way to
compute the pressure of a hard sphere uid is to use a trial volume change. In this
method, a virtual displacement of the volume is performed and the probability that
such a (virtual) move is accepted has to be computed. Derive that this is indeed a
correct way of calculating the pressure. (Hint: consider the analogy of Widom s test
particle method.)

Consider now a system of hard-core chain molecules. Can we still use the same
scheme to compute the pressure?

Q



Chapter 8

The Gibbs Ensemble

In many respects, computer simulations resemble experiments. Yet, in the
study of first-order phase transitions, there seems to be a difference. In ex-
periments, a first-order phase transition is easy to locate: at the right density
and temperature, we will observe that an initially homogeneous system will
separate into two distinct phases, divided by an interface. Measurement of
the properties of the coexisting phases is then quite straightforward. In con-
trast, in a simulation we often locate a first-order phase transition by com-
puting the thermodynamic properties of the individual phases, then finding
the point where the temperature, pressure, and chemical potential(s) of the
two bulk phases are equal.

The reason we are usually forced to follow this more indirect route in a
simulation is related to the small size of the system studied. If two phases
coexist in such systems, a relatively large fraction of all particles resides in
or near the interface dividing the phases. To estimate this effect, consider
the idealized case that we have a cubic domain of one phase, surrounded
by the other. We assume that the outermost particles in the cube belong to
the interface and that the rest is bulk-like. The fraction of particles in the
interface depends on the system size. As can be seen in Table 8.1, systems
with fewer than 1000 particles are interface dominated. And, even for quite
large systems, the fraction of particles in the interface is nonnegligible. It is
essential therefore to use relatively large systems to calculate reliable coex-
istence properties. Unfortunately, for large systems long equilibration times
are needed, not only because the systems contain many particles, but also be-
cause equilibration times in two-phase systems tend to be longer than those
in homogeneous systems.
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� 125 1,000 64,000 1,000,000
�int 78% 49% 14% 6%

Table 8.1: Percentage of particles ��int� in the interface of a cubic domain
containing � particles. Only the outermost particles are assumed to belong
to the interface.

Direct simulations of first-order phase coexistence therefore often are
computationally rather expensive.1 However, in the mid-1980s, Panagioto-
poulos [94] devised a new computational scheme for studying first-order
phase transitions. This scheme has many of the advantages of a direct sim-
ulation of coexistence yet few of its disadvantages. Where applicable, this
scheme (usually referred to as the Gibbs ensemble method) results in a very sig-
nificant reduction of the computer time required for phase equilibrium cal-
culations. With this method, phase equilibria can be studied in a single sim-
ulation. At present, the Gibbs ensemble method has become the technique
par excellence to study vapor-liquid and liquid-liquid equilibria. However,
like simulations in the grand-canonical ensemble, the method does rely on a
reasonable number of successful particle insertions to achieve compositional
equilibrium. As a consequence, the Gibbs ensemble method is not very effi-
cient for studying equilibria involving very dense phases. However, there is
a technique that greatly facilitates the numerical study of phase equilibria of
dense phases. This is the so-called semigrand ensemble method of Kofke and
Glandt [198], which is discussed in Chapter 9.

The success of the Gibbs ensemble method relies on the possibility of
exchanging particles between the two coexisting phases. If one of the coex-
isting phases is a crystal, one would need to find a vacancy in order to insert
a particle. However, the equilibrium concentration of such defects is usually
so low that the conventional Gibbs ensemble method becomes impractical.
Tilwani and Wu [199] suggested an alternative approach in which an atom
is added to the unit box of the solid and this new unit box is used to fill up
(tile) space. In this way particles can be added or removed from the system,
while the crystal structure is maintained. Tilwani and Wu showed that for
the two-dimensional square-well fluid, their method agrees well with the
results from free energy calculations [200].

1It should be pointed out, though, that, as computers become more powerful, the direct
method becomes increasingly attractive because of its simplicity.
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8.1 The Gibbs Ensemble Technique

The condition for coexistence of two or more phases ����� � � � is that the pres-
sure of all coexisting phases must be equal (�� � ��� � � � � � �), as must
be the temperature (�� � ��� � � � � � �) and the chemical potentials of
all species (��

�
� ��

��
� � � � � ��). Hence, one might be inclined to think

that the best ensemble for studying would be the “constant-��� ensemble”.
The quotation marks around the name of this “ensemble” are intentional,
because, strictly speaking, no such ensemble exists. The reason is simple:
if we specify only intensive parameters, such as �, �, and �, the extensive
variables (such as �) are unbounded. Another way to say the same thing is
that the set �� �� � is linearly dependent. To get a decent ensemble, we must
fix at least one extensive variable. In the case of constant-pressure Monte
Carlo simulations this variable is the number of particles �, while in grand-
canonical Monte Carlo the volume � of the system is fixed.

After this introduction, it may come as a surprise that the Gibbs ensemble
method of Panagiotopoulos [94, 147] comes very close to achieving the im-
possible: simulating phase equilibria under conditions where the pressure,
temperature, and chemical potential(s) of the coexisting phases are equal.
The reason this method can work is that, although the difference between
chemical potentials in different phases is fixed (namely, at �� � �), the abso-
lute values are still undetermined. Here, we show how the Gibbs ensemble
method can be derived, following the approach developed in the previous
chapters.

At this stage, we focus on the version of the Gibbs ensemble where the
total number of particles and the total volume of the two boxes remain con-
stant; that is, the total system is at ��� � � conditions. The description of the
��� � � version can be found in [147]. This constant-� method can be ap-
plied only to systems containing two or more components because in a one-
component system, the two-phase region is a line in the �-� plane. Hence,
the probability that any specific choice of � and �will actually be at the phase
transition is vanishingly small. In contrast, for two-component systems, the
two-phase region corresponds to a finite area in the �-� plane.

Note that in either formulation of the Gibbs method, the total number
of particles is fixed. The method can be extended to study inhomogeneous
systems [146] and is particularly suited to study phase equilibria in multi-
component mixtures [147]. A review of applications of the Gibbs ensemble
technique is given in [201]. The great advantage of the Gibbs method over
the conventional techniques for studying phase coexistence is that, in the
Gibbs method, the system spontaneously “finds” the densities and compo-
sitions of the coexisting phases. Hence, there is no need to compute the rel-
evant chemical potentials as a function of pressure at a number of different
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compositions and then construct the coexistence line.

8.2 The Partition Function

In his original article [94], Panagiotopoulos introduced the Gibbs ensemble
as a combination of the ��� � � ensemble, ��� � � ensemble, and ��� � � en-
semble. In the previous section we stated that the Gibbs ensemble is not a
“constant-��� � � ensemble”, but we did not say what ensemble it actually
corresponds to. This point is considered in detail in Appendix H, where
we demonstrate that, in the thermodynamic limit, the (constant-�) Gibbs
ensemble is rigorously equivalent to the canonical ensemble.

We start our discussion with the expression for the partition function for
a system of � particles distributed over two volumes �� and �� � � � ��,
where the particles interact with each other in volume � but behave like an
ideal gas in volume � (see equation (5.6.1)):

����� �� ��� �� �

��

����

���

�
��� ���

����

	��
����� 
���

�
ds����

�

�
ds��

�
exp�����s��

�
���

To derive the partition function of the grand-canonical ensemble (section
5.6), we assumed that the particles in volume �� behaved as ideal gas mol-
ecules. Now we consider the case that the particles in both volumes are
subject to the same intermolecular interactions and that the volumes �� and
�� can change in such a way that the total volume � � �� � �� remains
constant (see Figure 8.1). In this case, we have to integrate over the volume
��, which gives, for the partition function [201–203],
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(8.2.1)

From the preceding expressions, it follows that the probability of finding a
configuration with 
� particles in box 1 with a volume �� and positions s��

�

and s����
�

is given by

� �
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�
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(8.2.2)
We shall use equation (8.2.2) to derive the acceptance rules for trial moves in
Gibbs ensemble simulations.
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Figure 8.1: Schematic sketch of the “Gibbs ensemble” in which two systems
can exchange both volume and particles in such a way that total volume �
and the total number of particles � are fixed.

8.3 Monte Carlo Simulations

Equation (8.2.2) suggests the following Monte Carlo scheme for sampling all
possible configurations of two systems that can exchange particles and vol-
ume. In this scheme, we consider the following trial moves (see Figure 8.2):

1. Displacement of a randomly selected particle.

2. Change of the volume in such a way that the total volume remains
constant.

3. Transfer of a randomly selected particle from one box to the other.

The acceptance rules for these steps in the Gibbs ensemble can be derived
from the condition of detailed balance

���� �� � ���� ���

where ��� � �� is the flow of configuration � to �, which is equal to the
product of the probability of being in configuration �, the probability of gen-
erating configuration �, and the probability of accepting this move:

���� �� � � ���� ���� ��� acc��� ���

8.3.1 Particle Displacement

We assume that state � is obtained from state � via the displacement of a
randomly selected particle in box 1. The ratio of the statistical weights of
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Figure 8.2: Monte Carlo steps in the Gibbs ensemble method: particle dis-
placement, volume change, and exchange of particles.

these two configurations is given by

� ���

� ���
�

exp�����s��
�

��

exp�����s��� ��
�

Substitution of this ratio into the condition of detailed balance (5.1.1) gives,
as an acceptance rule,

acc��� �� � min ��� exp������s��� � � ��s��� ���� � (8.3.1)

This acceptance rule is identical to that used in a conventional �,�,� ensem-
ble simulation (see section 5.2).

8.3.2 Volume Change

For a change of the volume of box 1 by an amount 	�, ��

�
� ��

�
� 	�, the

ratio of the statistical weights of the configurations after and before the move
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is given by
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Imposing the condition of detailed balance gives, as an acceptance rule for
this volume change,

acc��� �� � min
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(8.3.2)
This way of changing the volume was originally proposed by Panagiotopou-
los et al. [94, 147]. A more natural choice for generating a new configuration
in the volume change step is to make a random walk in ln������ � ���� in-
stead of in �� (see also Chapter 5 for the ��	 � 
 ensemble). This has the
advantage that the domain of this random walk coincides with all possible
values of��. Furthermore, the average step size turns out to be less sensitive
to the density. To adopt this method to the Gibbs ensemble, the acceptance
rule for the volume has to be modified.

If we perform a random walk in ln������ � ����, it is natural to rewrite
equation (8.2.1) as
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The statistical weight of a configuration � with volume �� is proportional to
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Imposing detailed balance for this move leads to the acceptance rule
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���
� (8.3.3)

Note that this modification does not affect the acceptance rules for the parti-
cle displacement or particle exchange.
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8.3.3 Particle Exchange

Let us assume that we generate configuration � from configuration � (��
particles in box 1) by removing a particle from box 1 and inserting this par-
ticle in box 2. The ratio of statistical weights of the configurations is given
by

� ���

� ���

�
������ �����

����

�
�� ����

��������

��� � ������ ��� � �������
�

����������
exp������s�

� � � ��s�� ����

Imposing detailed balance for this move leads to the following acceptance
rule:

acc��� �� � min
�
��

����� ���

��� �� � ����
exp������s�

�
� � ��s�

�
���

�
� (8.3.4)

8.3.4 Implementation

A convenient method for generating trial configurations is to perform a sim-
ulation in cycles. One cycle consists of (on average) �part attempts to dis-
place a (randomly selected) particle in one of the (randomly chosen) boxes,
�vol attempts to change the volume of the subsystems, and�swap attempts to
exchange particles between the boxes. It is important to ensure that at each
step of the simulation the condition of microscopic reversibility is fulfilled.
Possible Gibbs ensemble algorithms are shown in Algorithms 17–19.

In the original implementation of a Gibbs ensemble simulation the calcu-
lations were performed slightly differently [94]; instead of making a random
choice of the type of trial move (particle displacement, volume change, or
particle exchange) at every Monte Carlo step, the different trial moves were
carried out in a fixed order. First,� attempts were made to move every parti-
cle in succession (the ��� � �part), then one attempt was made to change the
volume (the ��	 � � part), and finally �try attempts were made to exchange
particles (the 
�� � �part). However, if in a simulation it is possible to choose
from a repertoire of trial moves, random selection of the type of trial move
is recommended, because this way microscopic reversibility is guaranteed.
An additional disadvantage of performing trial moves in a fixed order is that
it may make a difference at what point in the program the measurement of
the physical properties is performed (e.g., after the ��� � � part, the ��	 � �

part, or the 
�� � �part). If trial moves are selected at random, all trial moves
are on average equivalent and one can simply perform measurements after
a predetermined number of MC cycles.
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Algorithm 17 (Basic Gibbs Ensemble Simulation)

PROGRAM mc Gibbs Gibbs ensemble simulation

do icycl=1,ncycl perform ncycl MC cycles
ran=ranf()*(npart+nvol+nswap)
if (ran.le.npart) then

call mcmove attempt to displace a particle
else if (ran.le.(npart+nvol))

call mcvol attempt to change the volume
else

call mcswap attempt to swap a particle
endif
call sample sample averages

enddo
end

Comments on this algorithm:

1. This algorithm ensures that, in each Monte Carlo step, detailed balance is
obeyed. On average, we perform per cycle npart attempts to displace par-
ticles, nvol attempts to change the volume, and nswap attempts to swap
particles between the two boxes.

2. Subroutine mcmove attempts to displace a randomly selected particle; this
algorithm is very similar to Algorithm 2 (but remember that particles are in
two different boxes). The subroutine mcvol attempts to change the volume
of the two boxes (see Algorithm 18), the subroutine mcswap attempts to swap
a particle between the two boxes (see Algorithm 19), and subroutine sample
samples the ensemble averages.

The implementation of trial moves for particle displacement and volume
change in Gibbs ensemble simulations is very similar to that of the corre-
sponding trial moves in a normal��� � �or ��� � � simulation. However, the
attempts to exchange particles require some care. To ensure that detailed
balance is obeyed, it is important to first select at random from which box a
particle will be removed and subsequently select a particle at random in this
box. An alternative would be to first select one particle at random (from all
� particles) and then try to move this particle to the other simulation box.
However, in that case, acceptance rule (8.3.4) has to be replaced by a slightly
different one [125].

The number of attempts to exchange a particle will depend on the condi-
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Algorithm 18 (Attempt to Change the Volume in the Gibbs Ensemble)

SUBROUTINE mcvol attempt to change
the volume

call toterg(box1,en1o) energy old conf. box 1
call toterg(box2,en2o) and 2 (box1: box length)
vo1=box1**3 old volume box 1 and 2
vo2=v-vo1
lnvn=log(vo1/vol2)+ random walk in ln�����

+ (ranf()-0.5)*vmax
v1n=v*exp(lnvn)/(1+exp(lnvn)) new volume box 1 and 2
v2n=v-v1n
box1n=v1n**(1/3) new box length box 1
box2n=v2n**(1/3) new box length box 2
do i=1,npart

if (ibox(i).eq.1) then determine which box
fact=box1n/box1o

else
fact=box2n/box2o

endif
x(i)=x(i)*fact rescale positions

enddo
call toterg(box1n,en1n) total energy box 1
call toterg(box2n,en2n) total energy box 2
arg1=-beta*((en1n-en1o)+

+ (npbox(1)+1)*log(v1n/v1o)/beta) appropriate weight function
arg2=-beta*((en2n-en2o)+ acceptance rule (8.3.3)

+ (npbox(2)+1)*log(v2n/v2o)/beta)
if (ranf().gt.exp(arg1+arg2)) then

do i=1,npart REJECTED
if (ibox(i).eq.) then determine which box

fact=box1o/box1n
else

fact=box2o/box2n
endif
x(i)=x(i)*fact restore old configuration

enddo
endif
return
end
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Comments to this algorithm:

1. The term ibox(i) = 1 indicates that particle � is in box 1; npart =
npbox(1) + npbox(2) where npbox(i) gives the number of particles
in box i.

2. In this algorithm we perform a random walk in ln� and we use acceptance
rule (8.3.3).

3. The subroutine toterg calculates the total energy of one of the two boxes.
In most cases the energy of the old con guration is known, and therefore it is
not necessary to determine this energy at the beginning of the volume step.

tions of the system. For example, it can be expected that close to the critical
temperature, the percentage of accepted exchanges will be higher than close
to the triple point. As a possible check whether the number of attempts is
sufficient, calculate the chemical potential. Since the calculated energy of a
particle that is to be inserted corresponds to just the test particle energy, the
chemical potential can be calculated without additional costs. Appendix H
shows that, in the Gibbs ensemble, the chemical potential can be obtained
from

�� � ���� ln
�

��

�
��

�� � �
exp

�
��	���

��
Gibbs� box 1


 (8.3.5)

where 	��� is the energy of a (ghost) particle in box 1 and �� � � �Gibbs� box �

denotes an ensemble average in the Gibbs ensemble restricted to box �. It is
important to note that this ensemble average is valid only if the boxes do not
change identity during a simulation.

Inspection of the partition function (8.2.1) shows that one must allow
for �� � � (box 1 empty) and �� � � (box 2 empty) to calculate ensem-
ble averages correctly. It is important therefore to ensure that the program
can handle the case that one of the boxes is empty. As is clear from equa-
tion (8.3.4), the acceptance rule is constructed such that it indeed rejects trial
moves that would attempt to remove particles from a box already empty.
However, if one also calculates the chemical potential during the exchange
step one should be careful. To calculate the chemical potential correctly (see
Appendix H) one should continue to add test particles when one of the boxes
is full.

Case Study 16 (Phase Equilibria of the Lennard-Jones Fluid)
To illustrate the use of the Gibbs ensemble technique, we determine the
vapor-liquid curve of the Lennard-Jones fluid. In Case Studies 1, 7, and
9 we already determined parts of the equation of state of this fluid and in



212 Chapter 8. The Gibbs Ensemble

Algorithm 19 (Attempt to S ap a Particle bet een the T o Boxes)

SUBROUTINE mcswap attempts to swap a particle
between the two boxes

if (ranf().lt.0.5) then which box to add or remove
in=1
out=2

else
in=2
out=1

endif
xn=ranf()*box(in) new particle at a random position
call ener(xn,enn,in) energy new particle in box in
w(in)=w(in)+vol(in)* update chemical potential (8.3.5)

+ exp(-beta*enn)/(npbox(in)+1)
if (npbox(out).eq.0) return if box empty return
ido=0 find a particle to be removed
do while (ido.ne.out)

o=int(npart*ranf())+1
ido=ibox(o)

enddo
call ener(x(o),eno,out) energy particle o in box out
arg=exp(-beta*(enn-eno +

+ log(vol(out)*(npbox(in)+1)/ acceptance rule (8.3.4)
+ (vol(in)*npbox(out)))/beta))
if (ranf().lt.arg) then

x(o)=xn add new particle to box in
ibox(o)=in
nbox(out)=npbox(out)-1
nbox(in)=npbox(in)+1

endif
return
end

Comments to this algorithm:

1. The acceptance rule (8.3.4) is used in this algorithm.

2. The subroutine ener calculates the energy of a particle at the given position
and box.

3. At the end of the simulation, the chemical potential can be calculated from
w(box) using �box � � ln ��box� ��.
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Figure 8.3: Density of the two boxes of the Gibbs ensemble as a function of
the number of Monte Carlo cycles for a system of Lennard-Jones particles;
the number of particles was � � ��� and temperature � � ���.

Case Study 8 we have made an estimate of the liquid coexistence density
from a zero pressure simulation.

In Figure 8.3, the density of the fluid in the two boxes is plotted as a
function of the number of Monte Carlo cycles (as defined in Algorithm 17).
The simulation was started with equal density in both boxes. During the
first 1000 Monte Carlo cycles, the system has not yet “decided” which box
would evolve to a liquid density and which box to a gas density. After 5000
Monte Carlo cycles, the system already has reached equilibrium and the
coexistence properties can be determined.

In Figure 8.4, the phase diagram of the Lennard-Jones as obtained from
Gibbs ensemble simulations is compared with the phase diagram obtained
from the equation of state of Nicolas et al. [61]. The Gibbs ensemble data are
in very good agreement with the equation of state of Nicolas et al. Close to
the critical point the results deviate because Nicolas et al. fitted the equation
of state in such a way that the critical point coincides well with the estimate
of Verlet [13]: �� � ���� and �� � ����. The Gibbs ensemble simulations [53]
give as the estimate for the critical point �� � ����� � ����� �� � ����	 �

�����. Lofti et al. [204] used a combination of 
,�,�-simulations and test
particle insertion to determine the coexistence curve. The estimate of the
critical point of Lofti et al. (�� � ����� and �� � ����	) is in good agreement
with the estimate obtained from the Gibbs ensemble. The Gibbs ensemble
simulations and the simulation of Lofti et al. indicate that the estimate of the
critical temperature of Verlet is too high. Johnson et al. [62] used this new
estimate of the critical point together with additional equation-of-state data



214 Chapter 8. The Gibbs Ensemble

0.0 0.2 0.4 0.6 0.8 1.0
ρ

0.75

1.00

1.25

1.50

T

critical point
equation of state
simulations

Figure 8.4: Phase diagram of the Lennard-Jones fluid as calculated with the
Gibbs ensemble technique (squares) and equation of state of Nicolas et al.
(solid lines). The solid circle gives the estimate of the critical point.

to improve the equation of state of Nicolas et al.

8.3.5 Analy ing the Results

Assuming that we have a working algorithm to perform a simulation in the
Gibbs ensemble, we must now address the question whether the numbers
generated in a simulation are reliable. First of all, the equilibrium conditions
should be fulfilled:

� The pressure in both subsystems must be equal.

� The chemical potential must be equal in both phases.

Unfortunately, both the chemical potential and the pressure of the liquid
phase are subject to relatively large fluctuations. Hence, the observation that
the equilibrium conditions have been fulfilled within the statistical error is not
always sufficient. It is convenient therefore to use additional methods to
analyze the data and judge whether a simulation has been successful.

Graphical Analysis of Simulation Results

In Appendix H, we describe a graphical technique for analyzing the results
of a Gibbs ensemble simulation. In this scheme, the fraction of all particles
(����) in box � is plotted versus the fraction of the total volume (����) taken
up by this box. In the �-� plane, where � � ���� and � � ����, every dot
represents a point sampled in the simulation.
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Figure 8.5: Probability plot in the � � � plane of a successful simulation
of a Lennard-Jones fluid well below the critical temperature �� � ���� and
� � ����.

In the thermodynamic limit, only two points in the �-� plane are sam-
pled; namely, those that correspond to the coexisting liquid and gas density
(see Appendix H). For a finite system, we expect to observe fluctuations
around these points. Figure 8.5 shows an �-� plot for a simulation of two-
phase coexistence well below the critical temperature. The fact that the simu-
lation results cluster around the two points that correspond to the coexisting
liquid and vapor indicates that the system was well equilibrated. If a simu-
lation in the Gibbs ensemble is performed far below the critical temperature,
it is in general no problem to analyze the results. After the equilibration, it
becomes clear which of the boxes contains the vapor phase and which the
liquid phase. The densities of the coexisting phases can simply be obtained
by sampling the densities at regular intervals. When estimating the accu-
racy of the simulation one should be careful since the “measured” densities
are not sampled independently: in estimating the standard deviations of the
results one should take this into account (this aspect is discussed in more
detail in Appendix A of [205]).

Close to the critical point, however, it is possible that the boxes contin-
uously change “identity” during a simulation. In Figure 8.6 the evolution
of the density in such a simulation close to the critical point is shown. In
such a system, the average density in any one of the two boxes will tend to
the overall density (��	). In those circumstances, it is more convenient to
construct a histogram of the probability density 
��� to observe a density �

in either box. Even when the boxes change identity during the simulation,
the maxima of 
��� are still well defined. And, as shown in Appendix H,
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Figure 8.6: Density in the two boxes in a Gibbs ensemble simulation close to
the critical temperature. The left figure shows the evolution of the density of
the two boxes during a simulation. The right figure gives the corresponding
probability density. The simulations were performed on a Lennard-Jones
fluid with � � ��� at � � ����.

in the thermodynamic limit, the two maxima of ��	� correspond to coexist-
ing vapor and liquid densities, except precisely at the critical point. (For a
discussion of the critical behavior of ��	�, see the article by Allen and Tildes-
ley [41].) Because ��	� is obtained by sampling the density in both boxes, the
results are not influenced when the boxes change identity. In Figure 8.6 an
example of such a density distribution is shown. In this particular exam-
ple, the simulation was carried out rather close to the critical point. Under
those conditions, the interpretation of the density histogram is complicated
because interfaces may form in both boxes. As a consequence, three peaks
are observed; the two outside peaks correspond to the coexisting liquid and
gas phase. A simple model that accounts for the existence of the middle peak
is discussed in [148].

Determining the Critical Point

Close to the critical point, the free energy associated with the formation
of the liquid-vapor interface becomes very small. As a consequence, the
penalty on the creation of an interface in either box becomes small, while the
formation of such interfaces is entropically favorable. For this reason, just
below the critical point, vapor-liquid coexistence can no longer be observed
in a Gibbs ensemble simulation [148]. Therefore, the highest temperature at
which the coexistence can be observed is not a proper estimate of the critical
temperature of the system. To estimate the critical temperature, the results
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can be fitted to the law of rectilinear diameters [206]:

�� � ��

�
� �� ����� ���� (8.3.6)

where ������ is the density of the liquid (gas) phase, �� the critical density,
and �� the critical temperature. Furthermore, the temperature dependence
of the density difference of the coexisting phases is fitted to a scaling law
[207]

�� � �� � ��� � ���
�� (8.3.7)

where � is the critical exponent2 (for three-dimensional systems � � ��	�

and for two-dimensional systems � � ��
�� [207]). � and � depend on the
system and are obtained from the fit.

These equations should be used with care. Strictly speaking, they cannot
be used for a simulation of a finite system. The reason is that, at the critical
point, the correlation length that measures the spatial extent of spontaneous
density fluctuations diverges. In a finite system, however, these fluctuations
are constrained by the size of the simulation box. If we suppress long-range
fluctuations, we in fact are modeling a classical system, which has mean field
critical exponents. We therefore can expect to observe a crossover temper-
ature; below this temperature we sample all relevant fluctuations and we
expect to observe nonclassical behavior. Above this temperature we expect
classical behavior. The crossover temperature will depend on the kind of
ensemble used in the simulation.

For the Lennard-Jones fluid in three and two dimensions the finite-size
effects for the Gibbs ensemble have been analyzed by Panagiotopoulos [208]
(see Example 4). The results of this study indicate that for off-lattice systems
this crossover temperature is very close to the critical temperature. This sug-
gests that, for applications in which we want to obtain an estimate of the crit-
ical temperature, it is safe to use equations (8.3.6) and (8.3.7). In cases where
finite-size effects are nevertheless thought to be significant, it is always pos-
sible to perform some simulations using different system sizes (although it
seems natural to perform such additional simulations on larger systems, an
estimate of the importance of finite-size effects can usually be obtained with
much less effort from simulations on smaller systems). Of course, if one is
interested specifically in finite-size effects or in the accurate determination
of critical exponents then one has to be more careful and a proper finite-size
scaling analysis should be performed (see, for example, the work of Rovere
et al. [99, 101, 209] and Wilding and Bruce [100]). For such calculations, the
Gibbs ensemble technique is not particularly well suited.

2Strictly speaking, the use of a scaling law with nonclassical critical exponents is not consis-
tent with the use of law of rectilinear diameters. However, within the accuracy of the simula-
tions, deviations from the law of rectilinear diameters will be difficult to observe.
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Example 4 (Finite-Si e Effects in the Gibbs Ensemble)
Most Gibbs ensemble simulations are performed on relatively small systems
(�� � � � ���). One therefore would expect to see significant finite-size
effects, in particular, close to the critical point. Indeed, in simulations of
a system of 100 Ising spins on a lattice,3 phase coexistence is observed
at temperatures as much as 25% above the critical temperature of the in-
finite system. In contrast to what is found in lattice gases, the first Gibbs
ensemble studies of the phase diagram of the Lennard-Jones fluid (in two
and three dimensions) [52, 94, 147, 148] did not show significant finite-size
effects. This striking difference with the lattice models motivated Mon and
Binder [210] to investigate the finite-size effects in the Gibbs ensemble for the
two-dimensional Ising model in detail. For the two-dimensional Ising model
the critical exponents and critical temperature are known exactly. Mon and
Binder determined for various system sizes � the order parameter �����

(see equation (8.3.7)):

����� �
������ ��

��
� �	 � �
���

�
�

where ����� is the density of the liquid phase, �� and �� are the critical
density and temperature, respectively, and � is the critical exponent.

The results of the simulations of Mon and Binder are shown in Figure 8.7,
in which the order parameter ����� is plotted as ����

� ��� versus �
��. Such
a plot of the order parameter allows us to determine the effective critical ex-
ponent of the system. If the system behaves classically, the critical exponent
has the mean field value � � 	
 and we would expect a linear behavior of
��

����. On the other hand, if the system shows nonclassical behavior, with
exponent � � 	
�, we would expect a straight line for ��

����. Figure 8.7
shows that, away from the critical point, the temperature dependence of the
order parameter is best described with an exponent � � 	
�. Closer to the
critical point, the mean field exponent � � 	
 fits the data better. This
behavior is as expected. Away from the critical point the system can ac-
commodate all relevant fluctuations and exhibits nonclassical behavior. But
close to the critical point the system is too small to accommodate all fluctu-
ations and, as a consequence, mean field behavior is observed. In addition,
Figure 8.7 shows that we still can observe vapor-liquid coexistence at tem-
peratures 20% above the critical temperature of the infinite system, which
implies significant finite-size effects. The study of Mon and Binder shows
that, in a lattice model of a fluid, finite-size effects on the liquid-vapor coex-
istence curve are very pronounced. It is important to note that, in this lattice
version of the Gibbs ensemble, we do not change the volume and therefore
fewer fluctuations are possible than in the off-lattice version.

3The Ising model is equivalent to a lattice-gas model of a fluid. The latter model is the
simplest that exhibits a liquid-vapor transition.
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Figure 8.7: Finite-size effects in a Gibbs ensemble simulation of the two-
dimensional Ising model. Order parameter ����

� ��� for � � �� (i.e., � �
� � ��� spins) versus ����, where �� is the exact critical temperature for the
infinite system. The lines are fitted through the points. The simulation data
are taken from [210].

The striking differences between the findings of Mon and Binder and the
results of the early simulations of the Lennard-Jones fluid motivated Pana-
giotopoulos to reinvestigate in some detail the finite-size effects of Gibbs en-
semble simulations of the two- and three-dimensional Lennard-Jones fluid
[208]. The results of the simulations of Panagiotopoulos are shown in Fig-
ure 8.8. For the Lennard-Jones fluid, the order parameter is defined as

����� � �� � ���

The results for the two-dimensional Lennard-Jones fluid are qualitatively sim-
ilar to the results of Mon and Binder. At low temperatures, Ising-like behavior
is observed and close to the critical point mean-field-like behavior. An impor-
tant difference is the magnitude of the finite-size effects. Figure 8.8 shows
that, for the two system sizes, the results are very similar; the finite size
effects are at most 5%. In addition, Figure 8.8 also indicates why the initial
Gibbs ensemble studies on the Lennard-Jones fluids did not show significant
finite-size effects. All these studies used equations (8.3.6) and (8.3.7) to de-
termine the critical point. If we use these equations we implicitly assume
nonclassical behavior up to the critical point. In Figure 8.8, this corresponds
to extrapolating the lines, fitted to the data point, for � � ��	. Extrapolation
of these lines to ��

���� � � gives a critical point that is not only independent
of this system size but also very close to the true critical point of the infinite
system.
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Figure 8.8: Finite-size effects in the liquid-vapor coexistence curve of the
two-dimensional Lennard-Jones fluid (truncated potential �� � ����) stud-
ied by Gibbs ensemble simulation. The order parameter � corresponds to
the density difference between the coexisting liquid and vapor phases. The
figure shows ����

� ��� versus ���� for various system sizes �. �� is the esti-
mated critical temperature for the infinite system (�� � ��	
� � �����). The
simulation data are taken from [208].

For the three-dimensional Lennard-Jones fluid Panagiotopoulos did not
observe a crossover from Ising-like to mean field behavior in the tempera-
ture regime that could be studied conveniently in the Gibbs ensemble (� 

��
���). Also for liquid-liquid equilibria for the square well fluid, Recht and
Panagiotopoulos [211] and de Miguel et al. [212] did not observe such a
crossover. Moreover, for the three-dimensional Lennard-Jones fluid, the
finite-size effects were negligible away from �� and very small close to ��.

8.4 Applications

The Gibbs ensemble technique has been used to study the phase behav-
ior of a variety of systems. The results of these simulations are reviewed
in [201, 213, 214]. Here we discuss a few applications of the Gibbs ensem-
ble for which the algorithm differs significantly from the one described in
section 8.3.4.

Example 5 (Dense Liquids)
At high densities, the number of exchange steps can become very large and
the simulation requires a significant amount of CPU time. This problem oc-
curs also in conventional grand-canonical Monte Carlo simulations. Various
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methods, which are used to extend simulations in the grand-canonical en-
semble to higher densities, can also be used in the Gibbs ensemble. An ex-
ample of such a technique is the so-called excluded volume map sampling.
This technique, based on the ideas of Deitrick et al. [215] and Mezei [111],
has been applied to the Gibbs ensemble by Stapleton and Panagiotopou-
los [216]. Before calculating the energy of the particle that has to be inserted,
a map is made of the receiving subsystem, by dividing this subsystem into
small boxes that can contain at most one particle. Each box carries a label
that indicates whether it is empty or contains a particle. This map can then
be used as a lookup table to check whether there is “space” for the particle
to be inserted. If such a space is not available, the trial configuration can
be rejected immediately. When using the excluded-volume map, some ad-
ditional bookkeeping is needed to guarantee detailed balance (see [111] for
further details).

Example 6 (Polar and Ionic Fluids)
Because of the long range of the dipolar and Coulombic interactions, the
dipolar and Coulombic potential cannot simply be truncated. Special tech-
niques, such as the Ewald summation or reaction field (see Chapter 12.1),
have been developed to take into account the long-range nature of the po-
tential in a simulation. A simple truncation of long-range intermolecular in-
teractions at half the box diameter can lead to an incorrect estimate of the
phase coexistence curve. In addition to the truncation of dipolar or Coulomb
interactions never being admissible, there is a problem if the potential is trun-
cated at half the diameter of the periodic box. As the size of the simulation
box fluctuates during the simulation, the effective potential is also changing.
As a consequence, a particle in a large simulation box feels a very differ-
ent interaction potential than a particle in a small box. The result is that a
Gibbs ensemble simulation with simulation boxes of different sizes may find
apparent phase coexistence between two systems that are described by dif-
ferent potentials. In fact, this problem is not limited to Coulomb or dipolar
interactions. Even for the relatively short-range Lennard-Jones potential, the
phase diagram is very sensitive to the details of the truncation of the poten-
tial (see section 3.2.2). An example of an application of the Gibbs ensemble
technique to a fluid with Coulomb interactions is the study by Panagiotopou-
los [217] of a simple model for an ionic solution, namely, the restricted prim-
itive model.4 The estimate of the location of the critical point that follows
from this simulation differed appreciably from an earlier estimate [188, 218]
obtained by truncating the Coulomb potential at half the box diameter.

When the Ewald summation method is used to account for Coulomb or
dipolar interactions, then the system size dependence of the results of a
Gibbs ensemble simulation is usually quite small. Such weak system size

4The restricted primitive model is a hard-core potential with a point charge.
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dependence, for instance, was found in a Gibbs ensemble simulation of the
liquid-vapor transition in a Stockmayer fluid5 [219,220].

In the case of a closely related system, the dipolar hard-sphere fluid, the
Gibbs ensemble simulations have even resulted in new insights into an old
problem, namely, the location of the liquid-vapor critical point. At first sight,
nothing seems to be special about the liquid-vapor transition in the dipolar
hard-sphere fluid. As the orientationally averaged interaction between two
dipoles results in a van der Waals-like 1/�� attraction, de Gennes and Pin-
cus conjectured that the vapor-liquid coexistence would be similar to that
of a conventional van der Waals fluid [221]. Kalikmanov [222] used this
conjecture to estimate the critical point. More sophisticated liquid-state the-
ories [223] gave qualitatively similar (though quantitatively different) results.
And, indeed, early constant �,�,�Monte Carlo simulations of Ng et al. [224]
found evidence for such liquid-vapor coexistence, supporting the theoretical
predictions of the existence of liquid-vapor coexistence in a dipolar hard-
sphere fluid.

However, more recent simulations found no evidence for a liquid-vapor
transition [225, 226]. To be more precise, these simulations found no ev-
idence for liquid-vapor coexistence in the temperature range predicted by
the different theories. Even at the lowest temperatures that could be stud-
ied, liquid-vapor coexistence was not observed. Rather, it was found that at
low temperatures the dipoles align nose to tail and form chains [226, 227].
These chains make it very difficult to equilibrate the system. Hence, it be-
comes difficult to distinguish between two possibilities: either the system is in
a thermodynamically stable, homogeneous phase or the system would like
to phase separate into a liquid phase and a vapor phase, but this phase sep-
aration is kinetically inhibited. In either case, the simulations show that the
theoretical description of the liquid-vapor transition in a dipolar hard-sphere
fluid needs to be revised. Camp et al. [228] have performed extensive (���
and ���) Monte Carlo simulations to determine the equation-of-state of
the dipolar hard-sphere fluid. These simulations suggest that, in the dipo-
lar hard-sphere system, there is a phase transition between a dilute and a
more concentrated isotropic fluid phase. Both phases appear to consist of
a network of chains of dipolar molecules. A possible explanation for the oc-
currence of this phase transition, in terms of a defect-induced critical phase
separation, was suggested by Tlusty and Safran [229]. A normal liquid-gas
transition is driven by the isotropic aggregation of particles. This conven-
tional mechanism is absent in dipolar hard spheres because it is preempted
by chain formation. In the language of ref. [229], the two coexisting phases
of the dipolar hard-sphere fluid can be thought of as a dilute gas of chain
ends and a high-density liquid of chain branching points. The formation of
branching points in the dipolar chains costs entropy but lowers the energy.

5The Stockmayer potential is a Lennard-Jones potential plus a point dipole.
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Which of the two factors dominates depends on the density of the fluid. For
details, we refer the reader to ref. [229].

Example 7 (Mixtures)
An important application of the Gibbs ensemble technique is the simulation
of the phase behavior of mixtures (see, e.g., [147,230,231]). One of the main
problems in studying liquid-liquid phase coexistence is that both phases are
usually quite dense. It is difficult therefore to exchange particles between the
two phases. This problem is more serious for the larger of the two species.
Fortunately, it is not necessary to carry out such exchanges for all species,
to impose equality of the chemical potentials in the coexisting phases. It is
sufficient that the chemical potential of only one of the components, label
�, is equal in both phases. For the other components, �, we impose that
����� should be equal in the two phases. Of course, this implies that, when
�� is the same in both phases, then so are all ��. However, the condition
that �� � �� is fixed is much easier to impose in a simulation. In practice,
this is achieved by performing Monte Carlo trial moves in which change is
attempted on the identity of a particle (e.g., from � to �). The imposed chem-
ical potential difference determines the acceptance probability of such trial
moves. This approach was first applied to Gibbs ensemble simulation of
mixtures by Panagiotopoulos [232]. In these simulations, only the smaller
particles are swapped between the two simulation boxes, while for the larger
particles only identity change moves are attempted.

The situation becomes even simpler when studying symmetric mixtures.
In such systems, the densities of the coexisting phases are equal, while the
molar compositions in boxes I and II are symmetry related (�� = � � ���).
As a result, in Gibbs ensemble simulations of such symmetric systems, it is
not necessary to perform volume changes [233, 234] or particle exchanges
between the boxes [212].

8.5 uestions and Exercises

uestion 18 (Gibbs Ensemble) When one of the boxes in the Gibbs ensemble is
in nitely large and the molecules in this box do not have intermolecular interac-
tions, the acceptance/rejection rule for particle swap becomes identical to the accep-
tance/rejection rule for particle swap in the grand-canonical ensemble. Derive this
result.

uestion 19 (Scaling of the Potential) When an attempt is made to change the
volume in the Gibbs ensemble, the energy of the new con guration can be calculated
ef ciently if scaling properties of the potential can be used. Consider a system of

Q

Q

Q
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Lennard-Jones particles. The total energy � of the system is equal to

� �
�

���

��

��
�

���

���

�

�
�

���

��
�
� (8.5.1)

Suppose that the box size of the system is changed from � to � � and � � � ���.

1. Why is this scheme so ef cient?

2. What is the expression for the total virial of this system?

3. Why does this method only work when the cutoff radius is scaled as well?

4. Derive expressions for the new energy � � and new virial 	 � as a function of
�, the old energy (�) and virial (	).

5. How does the tail corrections scale?

Exercise 14 (Vapor-Liquid Equilibrium)
In this exercise, we use Widom’s test particle method (see section 7.2.1) to
locate a vapor-liquid equilibrium. The results are compared with a Gibbs
ensemble simulation.

1. Modify the Monte Carlo program of Lennard-Jones particles in the 
	�

ensemble (only in the file mc nvt.f) in such a way that the chemical
potential can be calculated using Widom’s test particle method:

� � �� �
ln
�
�� �exp ��������

�
�

� (8.5.2)

in which  is the number of particles per volume, �� is the energy of a
test particle, and

�� �
� ln

�
��

�
�

� (8.5.3)

� Make a plot of the chemical potential and pressure as a function
of the density for � � ���.

� Why is it more difficult to calculate the chemical potential at high
densities than at low densities?

� How can you locate the vapor-liquid coexistence densities?

2. Perform a Gibbs ensemble simulation of the system at � � ���. In the
Gibbs ensemble, the chemical potential of box � is equal to [203]

�� � �� �
ln
�

��

	���
exp

�
������

�	
�

� (8.5.4)

in which �� is the number of particles in box � and 	� is the volume of
box �. Do the vapor-liquid density and chemical potential agree with
your previous results?



Chapter 9

Other Methods to Study
Coexistence

The great advantage of the Gibbs ensemble method is that we can study
coexistence between two phases without creating an interface. The present
chapter describes two alternative techniques to study phase coexistence: sem-
igrand ensemble simulations and Gibbs-Duhem integration. These methods
also avoid the creation of an interfaces separating the coexisting phases.

9.1 Semigrand Ensemble

There is an alternative way to study the phase behavior of mixtures. This
method is also based on the observation that, once the chemical potential of
one component in a mixture is fixed, the chemical potential of all other com-
ponents can be imposed by allowing trial moves that attempt to change the
identity of particles. Such simulations are called semigrand-canonical ensemble
simulations [198].

To explain the basic idea behind semigrand ensemble simulations, it is
useful to recall a result derived in section 7.2.1. There we showed that the
excess chemical potential of a molecule in a fluid is related to the average
Boltzmann factor associated with the random addition of such a molecule to
a fluid with� particles present (equation (7.2.5)):

�ex � ���� ln
�

ds��� �exp�������
�
�

Suppose that we wish to simulate the phase behavior of a binary mixture. In
that case, we must compute the Gibbs free energy per mole of the mixture,
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as a function of the composition:

����� � ���� � ����� (9.1.1)

where �� (� � � ��) denotes the mole fraction of species � and �� (��)
denotes the chemical potentials of the component in the mixture. Let us
assume that we have already computed the Gibbs free energy of one of the
pure phases (for instance, by one of the thermodynamic integration methods
described in section 7.1). At first sight it might seem that, to compute �

as a function of ��, we have to repeat such a thermodynamic integration
for a large number of �� values. Fortunately, this is not usually the case.
Rather than recomputing ���� for a number of compositions, we can study
the change in ���� with �. In other words, we need to have a “microscopic”
expression for

�
�����

��

�
�����

� �� � �� (9.1.2)

� ��� � ���id � ��� � ���ex�

In the first line of equation (9.1.2), we have used the Gibbs-Duhem rela-
tion. We assume that the ideal gas contributions to the chemical poten-
tial of both � and � are known. The quantity that we must compute is
	�ex � �������ex. Naively, we might try to measure this quantity by using
the particle insertion method to obtain �ex of species � and � separately and
then subtracting the result. Although such an approach would be correct in
principle, it is time consuming and not very accurate. Fortunately, 	�ex can
be obtained much more directly by measuring the Boltzmann factor associ-
ated with a virtual trial move, where a randomly selected particle of type �
is transformed into a particle of type � [174, 175, 235] (see Figure 9.1). We
leave it as an exercise to the reader to derive that the resulting expression for
	�ex is

	�ex � �
�� ln
�

��

�� � �
exp��	����

�
� (9.1.3)

where 	��� denotes the change in potential energy of the system if one
particle of type � is changed into type �; �
�� ln������� � ��� is simply
the ideal mixing contribution to the chemical potential. The point to note
about equation (9.1.3) is that, for a perfect mixture (i.e., � and � have the
same intermolecular interactions), ln �exp��	����� is identically equal to
0. In other words, we may obtain very good statistics on 	�ex even when
the direct measurement of the excess chemical potential of the individual
species would yield poor statistics.

The aim of this introduction to the semigrand ensemble is twofold. First
of all, equation (9.1.3) shows that the Boltzmann factor associated with the
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Figure 9.1: Schematic sketch of the semigrand ensemble, in which Monte
Carlo moves are attempted in which the identity of the molecules can be
interchanged. The figure shows an attempt to transfer the small molecule
into a big one.

change of identity of a particle in a mixture is related to the difference in ex-
cess chemical potential of the two species that take part in the interchange.
Second, we have made it plausible that we can get good statistics on ��ex
even when the particle insertion method for measuring the excess chemical
potential of the individual species would fail, for instance, in a crystalline
solid [236]. We recall that the grand-canonical Monte Carlo (GCMC) method
has about the same range of applicability as the particle insertion method.
It is logical therefore to infer that it should be possible to construct a simu-
lation scheme based on particle interchanges that should work under condi-
tions where the GCMC scheme fails. The semigrand-canonical Monte Carlo
(SGCMC) method is such a scheme.

How does the SGCMC method work? Let us first consider the expression
for �, the grand-canonical partition function for an �-component mixture:

����� � � � � ��� �� �� �

��

��������� ���

��
���

�
��

� exp�������

���
��

�

�
ds� exp�����s���� (9.1.4)

where � �
�

���, ��s�� denotes the potential energy function of the �-
component mixture and �� is the “kinetic” contribution to the partition func-
tion due to species 	. Next, we consider a related partition function � �, iden-
tical to �, except for the constraint that � �

�
��� is fixed. If � is fixed, we

can eliminate one of the��, for instance��, from the sum in equation (9.1.4),
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and we obtain

� �
�

�

������ ���

�

��� exp������

��
���

�
��

��

��� exp����� � ������

���
��

�

�
ds� exp�����s���� (9.1.5)

We now multiply this equation on both sides by exp������� and we define
a new partition function � � � � exp�������:

� �
�

������ ���

�

���

��
���

�
��

��

��� exp����� � ������

���
��

�
ds� exp�����s����

(9.1.6)
The next step is subtle. We shall reinterpret the sum over all �� in equa-
tions (9.1.4) and (9.1.6). In these equations, we had assumed that, to every
composition ��� ��� � � � � ��, there corresponds one term in the sum. Let us
now take a somewhat different point of view: we assume that these differ-
ent species are all manifestations of the same “particle”. This sounds strange,
so we shall use an analogy to explain what we mean. Let us consider that
we have a group of �		 people, made up of three groups: eaters, drinkers,
and sleepers. In fact, we want to consider all possible combinations of these
groups, with the constraint that the total number is fixed. One such combina-
tion would be 
	 eaters, 
	 drinkers, and �	 sleepers. We make a discovery:
the same person can be an eater, a drinker, or a sleeper but not simultane-
ously. Now our sum over all combinations becomes different: we have �		

“persons” who can all take on any one out of the three possible identities.
In that case, we have many more ways in which we can make a group of 
	
eaters, 
	 drinkers, and �	 sleepers, namely �		���
	�
	��	��. If we wish to
have the same total number of terms in our sum as before, we have to divide
by this factor.

Let us now translate this example back to the sum over particles in equa-
tion (9.1.6). We replace the sum over numbers of particles of species  by
a sum over all possible identities of all particles. But then we must correct
for double counting by dividing by ������� �� � � � ����. If we do that,
equation (9.1.6) becomes

� �
�

identities

���
��

��
���

�
��

��

���

exp����� � �������
�

�
ds� exp�����s����

(9.1.7)
Finally, it turns out that it is more convenient to consider the corresponding
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ensemble at constant pressure. In that case, the partition function changes to

� �
� ��

�
d� exp������

�����
�

��

�

� �
identities

��
���

�
��

��

���

exp����� � ������

�
ds� exp�����s���

�
�

(9.1.8)

For cosmetic reasons, we rewrite equation (9.1.8) in terms of the fugacities ��,
rather than the chemical potentials ��. Recall that the fugacity of a species �
is defined by the expression

����	 
	 ����� � ��� �
�� ��
 ln����	 (9.1.9)

where ��� �
� is the chemical potential of the ideal gas reference state (� � )
of species �. Using the expression for the chemical potential of an ideal gas
at pressure � and recalling that, for an ideal gas � � �, it is easy to show that

��� �
� �� ��
 ln���
���� (9.1.10)

Inserting equation (9.1.10) in equation (9.1.8), we obtain

� � � ��

�
d� exp������

�����
�

��

�
identities

��
���

�
��

��

���
�

ds� exp�����s����

(9.1.11)
What have we achieved by this sequence of transformations from one en-
semble to the next? To answer this, it is instructive to look at the characteris-
tic thermodynamic function associated with the various partition functions
we have introduced. We started with a grand-canonical ensemble. The link
with thermodynamics is given by

��� � ln���	 
	 ������ (9.1.12)

The transformation to � , equation (9.1.6), corresponds to a change to the
thermodynamic variable

����� ���� � ln���	 
	�	 ����� �� ��� (9.1.13)

Finally, we change to constant pressure, which means that the characteristic
thermodynamic function becomes

���� � � ln� � ��	 
	�	 �ln��������� �� �� � (9.1.14)

Rather than use ln������� as the independent variable, it is more convenient
to follow [198] and use the fugacity fraction ��, defined as

�� �
����

��� ��
� (9.1.15)
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The advantage is that, while ln������� varies between �� and �� as we go
from pure � to pure �, �� varies between 0 and 1. Clearly,

���� � � ln
�
��

�
d	 exp����	�

�	
��
�

��

�

�
identities

��
���

�
��

��

���
�

ds� exp
�
����s��

��
� (9.1.16)

How does ��, the chemical potential of the reference species, change with the
fugacity fractions of the other species? To see this we consider the derivative
of equation (9.1.16) with respect to ��:

�
�����

���

�
����������� ����

� �

�
��

��
�
����

��

�
 (9.1.17)

where we have used the fact that d�� � �
�

� ��� d��. Equation (9.1.17) tells
us how we can measure the change in �� changes as we change the chemical
potential difference between species 1 and the other species. Let us consider
the application to phase coexistence in a binary mixture. In that case we vary
only �	. First we measure the excess chemical potential in phase I consisting
of pure species 1 and in phase II consisting of pure species 2 (for instance, by
thermodynamic integration). Next we compute the change in �� in phase I
as we increase �	 from 0 and the corresponding change in �� in phase II as
we lower �	 from 1. The point where ��
�

� ��	� � �
�

�

� ��	� is the coexistence
point, because at that point ��
�� � �

�

�

� and �
�
�

	 � �
�

�

	 � Note that we have
not specified the nature of phase I and II. They could be liquid, solid, or
liquid crystalline.

The only practical problem that remains is the Monte Carlo sampling of
� ������ � ����������, equation (9.1.17). Note that the �� are the depen-
dent variables. The �� are imposed during a given simulation. In addition to
the usual particle moves and volume changes, we must now also consider a
move where a particle changes identity. To this end, we select one of the �

particles at random and with equal probability assign it one of the � possible
identities. The probability of accepting such a trial move is

acc��� � � �
�� � min

�
�
�� �

��
exp

�
�����s��

��
 (9.1.18)

where ���s�� denotes the change in potential energy of the system if we
change the identity of a randomly selected particle from � into � �.

We conclude this discussion of the semigrand ensemble with three com-
ments. First of all, SGCMC is very well suited to study phase equilibria in
multicomponent systems that are also in chemical equilibrium. The reason
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is that every chemical equilibrium simply imposes a relation between the
fugacities of the reacting species. Hence, the only effect of a chemical equi-
librium is that the number of independent fugacities is reduced by one (see
Example 8). In its simplest form, the semigrand ensemble method can be
used only to study chemical equilibria that involve reactions in which the
total number of molecules is conserved. For reactions in which the total
number of molecules is not conserved one can use the approach described
by Johnson et al. [237] and Smith and Triska [238]. This approach, however,
does require, in addition to identity changes, Monte Carlo moves that in-
volve the insertion and deletion of particles.

Example 8 (Vapor-Liquid Equilibria of Br�-Cl�-BrCl)
The vapor-liquid curve of the ternary system Br�-Cl�-BrCl is an example of
a phase equilibrium problem in which the components are also in chemical
equilibrium. The chemical reaction of interest is

Br� � Cl� � �BrCl�

with equilibrium constant

���� �
��BrCl

�Br��Cl�
� ���

This equilibrium constant is approximately 10 (at � � ��� K). Since in this
chemical reaction the total number of molecules is conserved, we can use
the standard semigrand ensemble technique to locate the liquid-vapor coex-
istence curve.

Let us first consider what the approach would be if we were to perform
ordinary 	,
,� simulations to determine the vapor-liquid coexistence curve.
In that case, we would determine the fugacities (chemical potentials) of the
three components in both phases and then find the points for which the fu-
gacity of each is the same in both phases, subject to the constraint imposed
by equation (a). Kofke and Glandt [198] have shown that the semigrand
ensemble can simplify this procedure significantly.

Let us take Br� as the reference component. In the constant-pressure
version of the semigrand ensemble, we have as independent variables: the
pressure, the temperature, the total number of particles, and the chemical
potential differences of two of the three components. However, these two
chemical potential differences are not independent, since the fugacities must
satisfy equation (a). Substitution of equation (a) in the normalization of the
fugacity fraction (9.1.15),

�BrCl � �Br� � �Cl� � �� ��

yields a quadratic equation that allows us to express both �BrCl and �Cl� as a
function of �Br� . The next step is the calculation of the fugacity of Br� along
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the path defined by equations (a) and (b) for both the liquid and the vapor
phases. The change in chemical potential of species 1 (in this case, ���)
along an arbitrary path described by the functions �� � ����� is given by

��
���

� � ��
���

� �

�����
����

d�
��
���

�
�����

���

�
����	��
��� ����

d��
d�

	 �
�

Using equation (9.1.17), we can write this expression as

��
���

� � ��
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� �

�����
����
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��
�

��

d��
d�

�

��
���

��

��

d��
d�

��
	 ��

For our system the integration variable � is � � �Br� . Equation (d) can
be used to determine the change in the chemical potential of the reference
compound fugacity along the path defined by equations (a) and (b).

In practice, the simulation proceeds as follows. For the liquid phase the
following steps are performed:

1. We start the integration of equation (d) from a state point where the
chemical potential of the reference compound can be computed rel-
atively easily. The most natural starting point would be to determine
the fugacity of pure liquid Br� using one of the methods described in
Chapter 7.

2. Next, we must integrate equation (d) from ���� � �Br� � � to ���� �

�Br� � � and evaluate the integrand in equation (d). This integrand is
an ensemble average that is conveniently determined in a semigrand
ensemble simulation. Once �Br� is specified, �Cl� and �BrCl follow. Dur-
ing the simulation, a trial move may involve either the attempted dis-
placement of a particle or an attempt to change its chemical identity.
Attempted identity changes are accepted with a probability given by
equation (9.1.18).

In principle, the same scheme can be used to compute the chemical po-
tential of ��� in the vapor phase. However, if the vapor phase is dilute, it
is often more convenient to compute the lowest few virial coefficients of the
mixture. The chemical potential of ��� can then be computed analytically
from knowledge of these virial coefficients.

Once the dependence of the chemical potential of Br� on the fugacity
fraction �Br� is known for both phases, we can determine the point where �Br2

is equal in the vapor and the liquid. By construction, the chemical potentials
of the other species are then also equal in both phases.

When compared to the Gibbs ensemble technique, the disadvantage of
the semigrand ensemble method is that it is necessary to perform (expen-
sive) free energy calculations for (at most) two reference points. The advan-
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tage is that, once this information is known, the semigrand scheme can be
applied to dense phases, such as solids.

The SGCMC scheme can also be used to simulate phase equilibria in con-
tinuously polydisperse systems, including polydisperse solids. And finally,
it can be quite advantageous to combine the SGCMC method with the Gibbs
ensemble method for mixtures. In that case the fugacity ratios in both simu-
lation boxes are kept the same. In other words, we allow particles in either
box to change identity while remaining in the same box. But in addition
we allow trial moves where we attempt to move a particle of the reference
species 1 from one box to the other. Now the selection of the particle to be
swapped goes as follows. First select box I or box II with equal probability.
Next, select any molecule of type 1 in the selected box and try to insert it in
the other box. The acceptance probability of such a move is given by equa-
tion (8.3.2).1 The natural choice for the reference species 1 is clearly the one
that can be swapped most efficiently, that is, the smallest molecule in the sys-
tem. In Example 10 we describe an application of the semigrand ensemble
for polydisperse systems.

9.2 Tracing Coexistence Curves

Once a single point on the coexistence curve between two phases is known,
the rest of that curve can be computed without further free energy calcu-
lations. A numerical technique for achieving this has been proposed by
Kofke [149, 150]. In its simplest form, Kofke’s method is equivalent to the
numerical integration of the Clausius-Clapeyron equation (although Kofke
refers to his approach as Gibbs-Duhem integration). Let us briefly recall the
derivation of the Clausius-Clapeyron equation. When two phases � and �

coexist at a given temperature � and pressure �, their chemical potentials
must be equal. If we change both the pressure and the temperature by in-
finitesimal amounts d� and d�, respectively, then the difference in chemical
potential of the two phases becomes

d�� � d�� � �� �� � ���d�� ��� � ���d�� (9.2.1)

Along the coexistence curve �� � ��, and hence

d�
d�

�
�� � ��

�� � ��
�

�	

���

 (9.2.2)

where we have used the fact that, at coexistence, ��� = �	, where 	� (	�)
denotes the molar enthalpy of phase � (�). As �	, �, and �� all can be com-
puted directly in a simulation, d��d� can be computed from equation (9.2.2).

1We point out that the implementation that we suggest here is slightly different from the one
advocated in [198] and closer to the approach of Stapleton et al. [239].
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Kofke used a predictor-corrector algorithm to solve equation (9.2.2). If one
of the two coexisting phases is the (dilute) vapor phase, it is convenient to
cast equation (9.2.2) in a slightly different form:

d ln�

d���
� �

��

�����
� (9.2.3)

Kofke and co-workers have applied this method to locate the vapor-liquid
[149,150] and solid-liquid coexistence curve of the Lennard-Jones fluid [240].
Other applications of the Kofke method can be found in [241–244]. It should
be stressed that Gibbs-Duhem integration is in no way limited to the com-
putation of coexistence curves in the �� � plane. A particularly important
class of problems that can be treated in an analogous fashion is that where
one studies the location of a phase transition as a function of the intermolec-
ular interaction potential. For instance, Agrawal and Kofke have investi-
gated the effect of a change of the steepness of the intermolecular potential
in atomic systems on the melting point (see Example 9). In the same spirit,
Dijkstra and Frenkel [245, 246] studied the effect of a change in flexibility of
rodlike polymers on the location of the isotropic nematic transition, Bolhuis
and Kofke [247] the freezing of polydisperse hard spheres, and Bolhuis and
Frenkel [248] the isotropic-solid coexistence curve of spherocylinders.

Although Gibbs-Duhem integration is potentially a very efficient tech-
nique for tracing a coexistence curve, it is not very robust, as it lacks built-in
diagnostics. By this we mean that the numerical errors in the integration of
equation (9.2.2) may result in large deviations of the computed coexistence
points from the true coexistence curve. Similarly, any error in the location of
the initial coexistence points will lead to an incorrect estimate of the coexis-
tence curve. For this reason, it is important to check the numerical stability of
the scheme. This can be achieved by performing additional free energy cal-
culations to fix two or more points where the two phases are in equilibrium.
Meijer and El Azhar [249] have developed such a scheme in which the esti-
mates of the coexistence densities are systematically improved by combining
the Gibbs-Duhem scheme with a free energy difference calculation. In addi-
tion, the stability of the integration procedure can be checked by integrating
backward and forward in the same interval. There is some evidence [244]
that other integration schemes may be preferable to the predictor-corrector
method used by Kofke.

In fact, use of the predictor-corrector scheme to estimate phase-coexis-
tence curves can lead to unphysical oscillations. These oscillations occur
because of inevitable inaccuracies in our estimate of the initial coexistence
point. This problem can be reduced by exploiting the fact that we know that
the coexistence curve is smooth. For instance, in ref. [244], it was assumed
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that the coexistence curve can be fitted to a polynomial in �, of the form

d ln�
d���

�

��

���

���
��

The Gibbs-Duhem integration is initiated as follows. First we perform the
original Gibbs-Duhem integration to obtain an estimate for the coexistence
curve. At every state point, the right-hand side of equation (9.2.3) is com-
puted. We then fit the coefficients of our polynomial to these numerical data.
This provides us with a new estimate of the coexistence pressures. The old
and the new pressures are mixed together to improve the stability. This pro-
cedure is iterated to convergence.

In some cases, for example, for systems containing long-chain molecules,
percolating systems, or lattice models it is very difficult to perform volume
changes. Escobedo and de Pablo [250] have shown that, under those con-
ditions, it may be preferable to combine Gibbs-Duhem integration with the
grand-canonical ensemble. In this scheme, � and � are the independent vari-
ables, rather than � and �. The variation in the pressure difference of phases
� and � is given by

d�� � d�� � ��� � ���d��
�
	�


�
�

	�


�

�
d�� (9.2.4)

Along coexistence, we have �� � ��, which gives

d��
d�

�
���� � ����

�� � ��
�

���� � ����

�� � ��
� (9.2.5)

Implementing this equation in a Gibbs-Duhem integration scheme implies
that the volume changes of the constant pressure simulations are replaced
by particle exchanges and removals.

Escobedo [251] developed extensions of the Gibbs-Duhem integration
technique for multicomponent fluid mixtures.

Example 9 (Free ing of Soft Spheres)
The earliest simulations of freezing were performed by Alder and Wain-
wright [17] and Wood and Jacobson [18]. The exact location of this freezing
transition was first determined by Hoover and Ree [252]. Subsequently, sev-
eral authors studied the dependence of the freezing transition on the “soft-
ness” of the intermolecular potential. This is done most conveniently by con-
sidering a class of model systems of variable softness that contains the hard-
sphere model as a limiting case. In this context so-called soft-sphere models
have been studied extensively. The soft-sphere model is characterized by a
pair potential of the form

��� � �
��


��
�
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Limiting cases are the hard-sphere model (���) and the one-component
plasma (�=1). Before the advent of the Gibbs-Duhem integration scheme,
individual simulation studies had been performed to locate the freezing point
for soft spheres with � � � [253], � � ����� [254, 255], � � �� [143, 256–
258], and � �� [252,259]. Actually, the crystal structure at melting changes
from fcc (face-centered cubic) (or possibly hcp, hexagonal close-packed) for
large �, to bcc (body-centered cubic) for small �. Hoover and Ree [252] have
argued that the change from fcc to bcc takes place around �=6. Agrawal and
Kofke [151, 240] showed that the Gibbs-Duhem integration technique can
be used to locate the melting points of all soft-sphere models in one single
simulation. The quantity that is changed in this Gibbs-Duhem integration is
softness parameter �, defined by � � ���. We can interpret � as a thermody-
namic variable, on the same footing as the pressure 	 and the temperature

. An infinitesimal variation in the thermodynamic variables 
� 	, and � results
in a variation of the Gibbs free energy �:

d� � ��d
� d	�
��

�
d��

where we have defined � as the thermodynamic “force” conjugate to � (the
factor ��� has been introduced to keep our notation consistent with that
of [151,240]). We now consider phase coexistence at constant temperature.
If we vary both 	 and �, the difference in chemical potential of the two phases
will change:

��� � ��� � ���� � ���d	 � ��� � ���d��

where �� (��) is the molar volume of phase � (�). Along the coexistence
curve, �� = ��� and hence

�
� ln	
��

�
coex

� �
��

�	��
�

To use this equation in a simulation, we need the statistical mechanical ex-
pression for �. The partition function of a system at constant pressure and
temperature is given by equation (5.4.7)
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The thermodynamic definition of � is written
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Using � � ���� ln����� � ��, we obtain
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The preceding expression is used to measure � in the coexisting solid and
liquid phases. This makes it possible to compute the melting curve in the
��� 
� plane. Following this approach, Agrawal and Kofke were able to obtain
the melting pressure of the soft-sphere model for all � between 1 and �.
They were also able to locate the fluid-fcc-bcc triple point at 
 � ����.

Example 10 (Free ing of Polydisperse Hard Spheres)
One of the early successes of molecular simulation was the discovery that a
hard-sphere fluid has a freezing transition [17,18]. Certain colloidal solutions
can be considered to be excellent experimental realizations of hard-sphere
fluids. However, real colloidal solutions are never perfectly monodisperse.
The polydispersity of colloidal suspensions has a strong effect on the loca-
tion of the freezing transition. It is therefore of considerable interest to study
the effect of polydispersity on the location of the freezing transition.

It would seem that the grand-canonical ensemble is the natural one to
study polydisperse systems. In this ensemble we can impose the chemical
potential distribution that generates a continuous size distribution. For the
numerical study of freezing, this approach is not useful, as the probability of
a successful insertion/deletion of a particle in the solid phase is very low. To
avoid this problem, Bolhuis and Kofke [260,261] used the semigrand ensem-
ble to study the freezing curve of polydisperse hard spheres. To trace out the
solid-fluid coexistence curve, they combined the semigrand ensemble (see
section 9.1) with the Gibbs-Duhem integration technique (see section 9.2).

In experiments, the polydispersity of a suspension is characterized by the
probability density ����, where � is the diameter of a hard sphere. In con-
trast, in a grand-canonical simulation, one would impose ����, i.e., the chem-
ical potential as a function of sigma. This implies that ���� is not imposed a
priori but follows from the simulation. In a semigrand-ensemble simulation
the chemical potentials are fixed with respect to the chemical potential �� of
an arbitrarily chosen reference component. A typical semigrand-ensemble
Monte Carlo move is to select a particle at random and change the diame-
ter of this particle. In this way, the insertion and deletion of entire particles
are avoided. If we simulate in a similar way a second system at the same
pressure and temperature (we use the ��� version for both systems), and
we somehow manage to ensure that the reference chemical potentials are
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matched, then we know that the two systems are in equilibrium. This makes
this method ideal for phase equilibrium calculations.

To perform a Gibbs-Duhem integration scheme, we need to derive the
equivalent of the Clausius-Clapeyron equation for a polydisperse system.
For an ordinary mixture under isobaric conditions, the Gibbs free energy has
its minimum value at equilibrium. The Gibbs free energy is a natural function
of the temperature, pressure, and number of particles of the various compo-
nents: � � ���� ����� ��� � � � � ���. In the semigrand ensemble, however,
we keep the total number of particles fixed (� �

��

���
��), and we impose

the chemical potential differences with respect to a reference chemical po-
tential, say component �. To find the fundamental thermodynamic function
of state that corresponds to this ensemble, we have to perform a Legendre
transformation to change the �� dependence into a �� � �� dependence for
all components except the reference component �:

� � ��

��
���

����� � ��� �����

�

��
���

���� �

��
���

����� � ��� �
�
���

����

� ����

For a polydisperse system we have a chemical potential distribution, which
implies that we can replace the summation by an integration over 	:

� � ���

�
d	 
�	� ���	� � ���	�� � ���	��

The differential form of this equation gives the fundamental thermodynamic
equation [198]

d���� � �d�� �d���

�
d	 
�	��Æ ���	� � ���	�� � ����	��d��

where Æ represents a functional differential.
Bolhuis and Kofke used a quadratic form for the chemical potential to

express the polydispersity:

� ���	� � ���	�� ��
�	� 	��

�

��
� (9.2.6)

In the limit �� � we recover a system of purely monodisperse hard-spheres
diameter 	�. With this equation for the chemical potential, the fundamental
thermodynamic equation can be written as

d���� � �d� � �d�����	��d��
���

�
d	� �

���

���
d� (9.2.7)
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Figure 9.2: Coexisting fluid and solid phases in the volume fraction polydis-
persity plane. For high polydispersity in equation (9.2.7) higher order terms
in � have been added, see ref. [261] for details.
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�
d� �� � ���

������

The conventional form of the Clausius-Clapeyron equation expresses how,
at coexistence, the pressure changes if one changes the temperature. In
the present case, we are interested in the dependence of the coexistence
curve on the polydispersity parameter �. It is straightforward to derive the
corresponding Clausius-Clapeyron equation. Since �� � ����, we have

d���� � �d�������� � ������d��

If we combine this equation with equation (9.2.7), we obtain

d�������� � 	d�� �
d��
��

�
d�� �

��

�
�
d��

If two phase are in equilibrium the chemical potentials must be the same in
the two phases. This is the case if ����� is the same in the two phases and
the potential difference functions are the same; i.e., we should use equa-
tion (9.2.6) with the same � and �� for the two phases. Hence, for the two
phases we have d�� �  and d� � , giving the desired Clausius-Clapeyron
equation:

d�
d�

�
���

�����

�

Assuming that we know one point on the coexistence curve, we can use this
equation to trace the coexistence curve as a function of the �.
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In Figure 9.2 the solid-fluid coexistence curve is plotted as a function of
the polydispersity �, which is determined during the simulations using

� �

�
�
�
�

���
�
� ��

It turns out that the original (fcc) hard-sphere crystal structure cannot support
a polydispersity larger than 5.7% of the average sphere diameter.



Chapter 10

Free Energies of Solids

On cooling or compression, almost all liquids undergo a first-order phase
transition to the solid state. It is of considerable practical importance to be
able to predict the location of the freezing point. In this chapter, we describe
various methods for locating solid-liquid coexistence by simulation. The
reader may wonder why a special chapter is devoted to numerical schemes
for locating the solid-liquid coexistence curve. After all, techniques for lo-
cating a first-order coexistence curve were already discussed in Chapter 8
in the context of the liquid-vapor transition. The reason is, of course, that
most of the techniques that work for moderately dense liquids and gases do
not work for solids. Consider, for example, the Gibbs ensemble method. For
this method to work, it is essential that it be possible to exchange particles
between the two coexisting phases. The introduction of a particle into the
solid phase requires the presence of a vacancy in the lattice. Such defects
do occur in real solids, but their concentration is so low (for example, in the
case of a hard-sphere crystal near melting, there is on average one defect in a
system of 8000 particles) that one would need a very large crystal to observe
a reasonable number of holes in a simulation. Hence, the Gibbs ensemble
technique, although still valid in principle, would not be very practical for
the study of solid-liquid or solid-solid coexistence.1

For more details and theoretical background concerning the numerical
study of solid-fluid coexistence, we refer the readers to the review of Monson
and Kofke [262].

1In some special case the method of Tilwani and Wu [199] (see Chapter 8) might make a
direct Gibbs ensemble simulation feasible.
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10.1 Thermodynamic Integration

Thermodynamic integration is the method most commonly used in the study
of the solid-liquid transition. For the liquid phase, this calculation is straight-
forward and was already discussed in section 7.1: the Helmholtz free energy
� of the liquid is determined by integrating this equation of state, starting at
low densities where the fluid behaves effectively as an ideal gas:
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����
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�id���

����
�

�
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��
�

d� �

�
��� �� � � ����

� ��

�
� (10.1.1)

where the equation of state as a function of the density (�) is denoted by
����, and �id��� is the free energy of an ideal gas at density �. An impor-
tant condition is that the integration path in equation (10.1.1) should be re-
versible. If the integration path crosses a strong first-order phase transition,
hysteresis may occur, and equation (10.1.1) can no longer be used. For a liq-
uid phase, this problem can be avoided by performing the integration in two
steps. Start the simulation at a temperature well above the critical tempera-
ture and determine the equation of state for compression along an isotherm
to the desired density. In the second step, the system is cooled at constant
density to the desired temperature. The free energy change in this step is
given by

��� � �II�

���II
�
��� � �I�

���I
�

��II

�I

d�����	�����
 �� (10.1.2)

The solid-liquid coexistence curve itself does not end in a critical point,
and hence there exists no “natural” reversible path from the solid to the ideal
gas that does not cross a first-order phase transition. It is usually possible,
however, to construct a reversible path to other states of known free energy.
The construction of such paths is the main topic of the present chapter.

Various routes arrive at a state of known free energy. In the mid-1960s,
Hoover and Ree introduced the so-called single-occupancy cell method [252,
263]. In the single-occupancy cell method, the solid is modeled as a lattice
gas; each particle is assigned to a single lattice point and is allowed to move
only in its “cell” around this lattice point. The lattice sites coincide with
the average positions of the atoms of the unconstrained solid. If the density
is sufficiently high—such that the walls of the cells have a negligible influ-
ence on the properties of the system—the free energy of this lattice model
is identical to that of the original solid. The single-occupancy cell model
can be expanded uniformly without melting (or, more precisely, without
loosing its translational order). In this way, we obtain a (presumably re-
versible) integration path to a dilute lattice gas, the free energy of which can
be calculated analytically. The earliest application of the single-occupancy
cell method was the calculation by Hoover and Ree of the free energy of the
hard-disk [263] and hard-sphere solid [252].
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An alternative for the single-occupancy cell method was also developed
by Hoover and co-workers [254, 256]. In this approach the solid is cooled
to a temperature sufficiently low for it to behave as a harmonic crystal. The
Helmholtz free energy of a harmonic crystal can be calculated analytically,
using lattice dynamics. The free energy of the solid at higher temperatures
then follows from integration of equation (10.1.2).2

In practice, both the single-occupancy cell method and the method using
the harmonic solid have some limitations that make a more general scheme
desirable. For example, there is some evidence that the isothermal expan-
sion of the single-occupancy cell model may not be completely free of hys-
teresis [258]: at the density where the solid would become mechanically un-
stable in the absence of the artificial cell walls, the equation of state of the
single-occupancy cell model appears to develop a cusp or possibly even a
weak first-order phase transition. This makes the accurate numerical inte-
gration of equation (10.1.1) difficult.

The harmonic-solid method can work only if the solid phase under con-
sideration can be cooled reversibly all the way down to the low tempera-
tures where the solid becomes effectively harmonic. However, many molec-
ular solids undergo one or more first-order phase transitions on cooling.
Even more problematic are model systems for which the particles interact
via a discontinuous (e.g., hard-core) potential. The crystalline phase of such
model systems can never be made to behave like a harmonic solid. For com-
plex molecular systems the problem is of a different nature. Even if these
materials can be cooled to become a harmonic crystal, often it is a highly
nontrivial matter to compute the Helmholtz free energy in this limit.

In the present chapter, we discuss a method that does not suffer from
these limitations and can be applied to arbitrary solids [264]. Although the
method is generally applicable, it is advantageous to make small modifi-
cations depending on whether we study an atomic solid with a discontin-
uous potential [259], or with a continuous potential [265], or a molecular
solid [155].

10.2 Free Energies of Solids

The method discussed in this section is a thermodynamic integration tech-
nique for computing the Helmholtz free energy of an atomic solid. The basic
idea is to transform the solid under consideration reversibly into an Einstein
crystal. To this end, the atoms are coupled harmonically to their lattice sites.
If the coupling is sufficiently strong, the solid behaves as an Einstein crystal,

2If we use equation (10.1.2) directly, the integration will diverge in for the limit �� �. This
divergence can be avoided if we determine the difference in free energy of the solid of interest
and the corresponding harmonic crystal.
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the free energy of which can be calculated exactly. The method was first used
for continuous potentials by Broughton and Gilmer [266], while Frenkel and
Ladd [259] used a slightly different approach to compute the free energy
of the hard-sphere solid. Subsequent applications to atomic and molecular
substances can be found in [155, 265].

10.2.1 Atomic Solids ith Continuous Potentials

Let us first consider a system that interacts with a continuous potential,
��r��. We shall use thermodynamic integration (7.1.6) to relate the free en-
ergy of this system to that of a solid of known free energy. For our reference
solid, we choose an Einstein crystal, i.e., a solid of noninteracting particles
that are all coupled to their respective lattice sites by harmonic springs. Dur-
ing the thermodynamic integration we switch on these spring constants and
switch off the intermolecular interactions. To this end we consider a poten-
tial energy function

�̃�r�� � ��r�� � � �� � ��
�
��r�� � ��r�� �

�
� �

��

���

���r� � r������ (10.2.1)

where r��� is the lattice position of atom � and ��r�� � is the static contribution
to the potential energy (i.e., the potential energy of a crystal with all atoms at
their lattice positions), � is the switching parameter, and �� is the Einstein-
crystal spring constant coupling atom � to its lattice site. Note that for � � �

we recover the original interactions; for � � �, we have switched off the
intramolecular interactions completely (except for the constant static term)
and the system behaves like an ideal (noninteracting) Einstein crystal. The
free energy difference is calculated using equation (7.1.6):
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The configurational free energy of the noninteracting Einstein crystal is given
by

�Ein � ��r�� � �
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As we shall see later, it is computationally more convenient to consider
a crystal with fixed center of mass. This will result in a slight modifica-
tion of equation (10.2.3) (see section 10.3.2). The “spring constants” �� can
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be adjusted to optimize the accuracy of the numerical integration of equa-
tion (10.2.2). It is reasonable to assume that the integration is optimal if the
fluctuations of the quantity

�
�

��� ���r� � r����� � ��r�� are minimal, which
implies that the interactions in the pure Einstein crystal should differ as little
as possible from those in the original system. This suggests that �� should
be chosen such that the mean-squared displacements for � � � and � � � are
equal: �

��

���

�r� � r�����
�
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�

�
��

���

�r� � r�����
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Using the expression for the mean-squared displacement in an Einstein crys-
tal (10.3.29) we find the following condition for �:
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For systems with diverging short-range repulsions (such as, for instance,
the Lennard-Jones potential), the integrand in equation (10.2.2) will exhibit
a weak divergence. This is due to the finite probability that, in an Einstein
crystal, two particles may overlap. In practice, this causes few problems
since the divergence is integrable. Furthermore, the amplitude of the di-
verging contribution can be strongly suppressed by increasing the value of
the �’s or by truncating the potential for small values of �.

10.3 Free Energies of Molecular Solids

A molecular solid has internal degrees of freedom in addition to the trans-
lation degrees of freedom. These other degrees of freedom can give rise to
a wide variety of crystal structures. For example, a simple molecule such as
nitrogen has at least seven different solid phases [267].

The orientational degrees of freedom of a molecular solid usually compli-
cate the numerical calculation of the free energy. Although we can still use
an Einstein crystal as reference system, it is often nontrivial to find a path
to this reference system that is free of phase transitions and not plagued by
divergences of the integrand of equation (10.2.2). In such cases it may be
advantageous to use an alternative method that is more robust than the con-
ventional coupling-parameter method described previously.

Let us consider an orientationally disordered molecular solid. We trans-
form this solid into a state of known free energy in two stages [155,264]. First
we couple the molecules in the solid with harmonic springs to their lattice
sites. But in contrast to the method described earlier, we leave the original
intramolecular interactions unaffected. Subsequently, we expand this “inter-
acting Einstein crystal” to zero density (see Figure 10.1). Due to the coupling
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Figure 10.1: Schematic drawing of the lattice-coupling-expansion method
for calculating the free energy of a molecular solid: the first step is the cou-
pling to an Einstein crystal (denoted by the black dots) and the second step
the expansion to zero density.

to the lattice, the crystal cannot melt on expansion but keeps its original
structure. In the low-density limit, all intermolecular interactions vanish
and the system behaves as an ideal Einstein crystal. This scheme of calcu-
lating an absolute free energy is referred to as the lattice-coupling-expansion
method [155, 264].

During the first stage of the thermodynamic integration, the potential
energy function �̃I contains both the original intermolecular potential and
the harmonic coupling to the lattice:

�̃I�r���
�� �� � ��r����� � �
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��r� � r������ (10.3.1)

where�� denotes the orientation of particle �, r� its center-of-mass position,
and r��� the lattice site of particle �. For convenience, we have assumed that
all lattice sites are equivalent. We therefore use the same value of the cou-
pling constant � for all sites. In most molecular solids, several nonequivalent
molecules may be in a unit cell. In that case different coupling constants may
be chosen for all distinct lattice sites.

The change in free energy associated with switching on the harmonic
springs is given by equation (7.1.6):
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It is reasonable to expect that the integrand in equation (10.3.2) is a smooth
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function of �, as the mean-squared displacement decreases monotonically
with increasing �.

During the second stage of the thermodynamic integration, all molecules
remain harmonically coupled to their (Einstein) lattice sites, but this refer-
ence lattice is expanded uniformly to zero density. In what follows, we as-
sume for convenience that the intermolecular potential is pairwise additive:

��r����� �
��

���

�pair������������

where ��� � �r� � r�� is the distance between the centers of mass of the
molecules � and �. When we expand the system uniformly with a factor
�, the coordinates of lattice sites are given by �r���. When the lattice is ex-
panded, the intermolecular interactions between the molecules change. This
is best seen by expressing the center-of-mass coordinate of particle � as

r� � �r��� � �r��

where �r� is the position with respect to a lattice site of the expanded Ein-
stein crystal. For the distance between two particles, we can write

��� � ���r��� � r���� � �r� � �r��� (10.3.3)

In terms of these coordinates, the potential energy of the expanded crystal is

�̃II�r���
���� �

��

���

�pair����������� �

��

���

���r���� (10.3.4)

Note that only the intermolecular interactions depend on � (through ���). The
derivative of the free energy with respect to � is

�
	�̃

	�

�
�

�
��

���

	�pair�����������

	�

�
�

�
��

���

	�pair�����������

	���

	���

	�

�
�

Only at this stage do we make use of the assumption that the intermolecular
potential is pairwise additive. We stress, however, that the assumption is not
essential—it just yields a simpler form for the final expression.

From equation (10.3.3) it follows that

	���

	�
�

r�� � r���
���

�
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The change in free energy due to the uniform expansion is

��II � �mol
Ein � ��� � ��� � ��

�

�
�

�

d�
�
��̃

��

�

�

�
�

�

d�

�
��
���

��pair�����������

����

r�� � r���
���

�
� (10.3.5)

Note that if, in the preceding equation, we replace r��� by ���, the expression
in angular brackets reduces to the virial. We therefore refer to the integrand
in equation (10.3.5) as a modified virial.

Finally, we must evaluate the free energy of the reference state: an Ein-
stein crystal consisting of noninteracting molecules. As the intramolecular
contribution to the free energy is a constant that depends only on tempera-
ture, we shall ignore it. The expression for the total free energy of the molec-
ular solid then becomes

�mol sol � �mol
Ein � ��I � ��II� (10.3.6)

For molecular solids with (partial) orientational order, a similar scheme can
be used. We transform the solid by imposing a coupling of the centers of
mass of the molecules together with a coupling of the ordered degrees of free-
dom. With the combined coupling the solid is expanded. The details of this
scheme depend on the nature of the orientational order.

10.3.1 Atomic Solids ith Discontinuous Potentials

Let us finally consider a system of atoms that interact via a hard-core poten-
tial ��. As before, we try to construct a reversible path between this system
and a noninteracting Einstein crystal. The problem is that, in this case, it
is not possible to use a linear coupling scheme that simultaneously switches
on the Einstein spring constants and switches off the hard-core interactions.
One solution would be to use the lattice-expansion technique described in
section 10.3. An alternative is to consider a system where we can switch on
the spring constants, while leaving the hard-core interactions between the
particles unaffected:

���� � �� � �� � �� � �

��
���

�r� � r������ (10.3.7)

where 	 denotes the total number of particles and r��� the position of the
lattice site to which particle 
 is assigned. The free energy difference between
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the system with coupling � and the hard-sphere fluid is then

�HS � ���max� �

��max

�

d�
�
��r�� ��

�
�
� (10.3.8)

At sufficiently high values of �max, the hard particles do not “feel” each
other and the free energy reduces to that of a noninteracting Einstein crys-
tal. Clearly, the value of the spring constant � should be sufficiently large
to ensure that the harmonically bound crystal is indeed behaving as an Ein-
stein crystal. At the same time, � should not be too large, because this would
make the numerical integration of equation (10.3.8) less accurate. In general,
the choice of the optimal value for � depends on the details of the model. In
Case Study 17, we show how to choose � for a particular model system and
we discuss other practical issues that are specific for hard-core interactions.

10.3.2 General Implementation Issues

If all particles are coupled to the Einstein lattice, the crystal as a whole does
not move. However, in the limit � � �, there is no penalty for moving
the particles away from their “Einstein” lattice position. As a consequence,
the crystal as a whole may start to drift and the mean-squared particle dis-
placement

�
��
�

becomes on the order ��. If this happens, the integrand in
equation (10.3.8) becomes sharply peaked around � � �. This would seem to
imply that the numerical integration of equation (10.3.8) requires many sim-
ulations for low values of �. This problem can be avoided if we perform the
simulation under the constraint that the center of mass of the solid remains
fixed. In this case,

�
��
�

tends to
�
��
�
�
, the mean-squared displacement of a

particle from its lattice site in the normal (i.e., interacting) crystal.
To perform a Monte Carlo simulation under the constraint of a fixed cen-

ter of mass we have to ensure that, if a particle is given a random displace-
ment, all particles are subsequently shifted in the opposite direction such
that the center of mass remains fixed. In practice, it is not very convenient to
keep the center of mass in place by moving all particles every time a single-
particle trial move is carried out. Rather, we update the center-of-mass po-
sition every time a single-particle trial move is accepted. We need to correct
for the shift of the center of mass only when computing the potential en-
ergy of the harmonic springs connecting the particles to their lattice sites. In
contrast, the calculation of the intermolecular potential can be carried out
without knowledge of the position of the center of mass, as a shift of the
center of mass does not change the distance between particles.

It is convenient to distinguish between the “absolute” coordinates (r) of a
particle (i.e., those that have been corrected for center-of-mass motion) and
the uncorrected coordinates (r���). When computing the potential energy of
the harmonic springs, we need to know

��

����r� � r�����. To compute the
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distance of a particle � to its lattice site, r� � r���, we must keep track of the
shift of the center of mass:

�r� � r� � r��� � r���

� � r���

��� � �RCM�

where �RCM denotes the accumulated shift of the center of mass of the sys-
tem. Every time a particle is moved from r���

� r��� � �r, �RCM changes
to �RCM � �r��.

The computation of the change in energy of the harmonic interaction be-
tween all particles and their lattice site is quite trivial. Suppose that we at-
tempt to move particle � that is at a distance �r� from its lattice site ����, by
an amount ��. This causes a shift ���� in the center of mass. The change in
the harmonic potential energy is

��Harm��� � �

��
� ���

�
��r� ������

�
� �r��

�

� �
�
��r� � �� � �������

�
� �r��

�

� �

�
��r� ��� �

�� �

�
��
�

�
� (10.3.9)

where, in the last line, we used the fact that
��

��� �r� � 	.
One more caveat should be considered: normally, when a particle moves

out of the periodic box, the particle is put back at the other side of the box.
However, when simulating a system with a fixed center of mass, moving a
particle back into the original simulation box creates a discontinuous change
in the position of the center of mass and hence a sudden change of the en-
ergy of the Einstein lattice. Therefore, in a simulation with a fixed center of
mass, particles that move out of the original simulation box should not be
put back in. In any event, the excursion that a harmonically bound particle
can make is small and therefore there is no real need to put the particles back
in the simulation box. Algorithms 20 and 21 sketch how the Einstein-crystal
method is implemented in a Monte Carlo simulation.

Constraints and Finite-Si e Effects

The constraint that the center of mass of the system is fixed eliminates a
number of degrees of freedom from the system, and this has an effect on
the free energy. Strictly speaking, the change in free energy due to any hard
constraint is infinite. However, as we shall always consider differences in
free energy, the infinities drop out. The remaining change in the free energy
becomes negligible in the thermodynamic limit. However, as simulations are
necessarily performed on finite systems, it is important to have an estimate
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Algorithm 20 (Monte Carlo Simulation ith Fixed Center of Mass)

subroutine mcmove attempts to move a particle
keeping the center of mass fixed

call setlat set up the reference lattice
o=int(ranf()*npart)+1 select particle at random
dis=(ranf()-0.5)*delx give particle random displ.
xn=x(o)+dis
dx=x(o)-x0(o)-dxcm calculate �r�
del=lambda*(2*dx*dis+ energy difference with lattice

+ dis*dis*(npart-1)/npart) equation (10.3.9)
arg1=-beta*del
if (ranf().lt.exp(arg1)) then
call ener(x(o),eno) energy old configuration
call ener(xn,enn) energy new configuration
arg2=-beta*(enn-eno)
if(ranf().lt.exp(arg2)) then
dxcm=dxcm+(xn-x(o))/npart new shift center of mass
x(o)=xn accepted: replace x(o) by xn

endif
endif
return
end

Comments on this algorithm:

1. Subroutine setlat sets up the reference lattice and calculates the centers of
mass (Algorithm 21). This subroutine normally is called only once during the
simulation, and ener calculates the energy with the other particles.

2. If a move is accepted, the shift in the center of mass of the system is updated.

3. The term � (lambda) is the coupling constant as de ned in equation (10.3.7)
and dxcm� �RCM is the accumulated shift of the center of mass.

4. For hard-core systems, it is important to compute first the Boltzmann factor
associated with the potential-energy change of the harmonic springs and apply
the Metropolis rule to see if the move should be rejected. Only if this test is
passed should we attempt to perform the more expensive test for overlaps.

of the finite size. Below, we describe in some detail how the free energy of
an unconstrained crystal is computed using simulations of a system with
a fixed center of mass. To keep the discussion general, we will consider a
�-dimensional crystal system of �mol molecules composed of a total of �
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Algorithm 21 (Generate an Einstein Crystal)

subroutine setlat(nx,ny,nz) generates the reference lattice
3D-fcc structure: nx*ny atoms in
close-packed plane, nz planes

a1=(4*vol/(nx*ny*nz))**(1/3) lattice vectors
a0=sqrt(a1*a1/2)
i=0
xcm0=0
xcm=0
do iz=0,nz-1
do iy=0,ny-1
do ix=0,nx-1
i=i+1
x0(i)=a0*ix+(a0/2.) lattice point of particle i

+ *mod(iz,2)
y0(i)=a0*iy+(a0/2.)

+ *mod(iz,2)
z0(i)=(a1/2)*iz
xcm0=xcm0+x0(i) center of mass of lattice
xcm=xcm+x(i) center of mass of solid

enddo
enddo

enddo
xcm0=xcm0/npart
xcm=xcm/npart
dxcm=xcm-xcm0 Shift centers of mass
return
end

Comments on this algorithm:

1. This algorithm generates an fcc (face-centered cubic) lattice and calculates the
centers of mass of the Einstein lattice and the solid.

2. Note that normally the center of mass includes the � and � coordinates as
well.

atoms. The partition function for the unconstrained solid is given by

� � ��

�
dr��dp�� exp�����r��p���� (10.3.10)
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where ��=����mol���������������, where �� denotes the number of indis-
tinguishable particles of type 1, �� the number of particles of type 2, etc.,
and �� � �� � ��� � �� � �mol. In all calculations of phase equilibria be-
tween systems that obey classical statistical mechanics, Planck’s constant �
drops out of the result. Hence, in what follows, we omit all factors �. As dis-
cussed in ref. [268], one can write the partition function �con of a constrained
system as

�con � ��

�
dr��dp�� exp �����r��p���

� Æ ���r�� Æ�G�� � �̇�� (10.3.11)

where ��r� and �̇ are the constraints and time derivatives of the constraints,
respectively, and

��� �

��
���

�

	�

�r�
� ��r�
�� (10.3.12)

In order to constrain the center of mass (CM), we take��r� �
��

��� ��r�, and,
thus, �̇ �

��

�������	��p�, where �� � 	��
�

�	�. To simplify matters, we
have assumed that there are no additional internal molecular constraints,
such as fixed bond lengths or bond angles.

We first consider the case of an Einstein crystal, which has a potential
energy function given by

Ein �
�

�

��
���

�� �r� � r�	��
�
�

where r�	� are the equilibrium lattice positions. Note that the particles in a
crystal are associated with specific lattice points and therefore behave as if
they are distinguishable—thus, �� � � (as we omit the factor ���������). It
is easy to show that

�CM
Ein � �CM

Ein�
CM
Ein � (10.3.13)

with

�CM
Ein �

�
dr��

��
���

exp
�
���������

�
�

�
Æ

�
��
���

��r�

�
(10.3.14)
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and

�CM
Ein �

�
dp��

��
���

exp
�
���������

�
�

�
Æ

�
��
���

p�

�

�

�
�

���

���� ��
���

�
����

�

����

�

�
�

���

����
�Ein� (10.3.15)

where � �
�

��� and 	Ein and �Ein are the configurational and kinetic
contributions to 
Ein, the partition function of the unconstrained Einstein
crystal. It then follows that


CM
Ein �

� �
����

��
�
� ���

��

� �
������

��
� 
Ein (10.3.16)

In fact, this expression can be further simplified if we make the specific
choice �� � ���. In that case,


CM
Ein �

�
�������

����

Ein (10.3.17)

There is a good reason for making this choice for ��: in this case the net force
on the center of mass of the crystal, due to the harmonic springs is always
zero, provided that it is zero when all particles are on their lattice sites. This
makes it easier to perform MD simulations on Einstein crystals with fixed
center of mass. The free energy difference between the constrained and the
unconstrained Einstein crystals is then

�CM
Ein � �Ein � ��� ln

�
���

���

����
 (10.3.18)

For an arbitrary crystalline system in the absence of external forces, the par-
tition function subject to the CM constraint is given by


CM � 	CM����������
��
���

��������
���� (10.3.19)

with

	CM �

�
dr�� exp�����r���Æ

�
��
���

��r�

�
� (10.3.20)

while the partition function of the unconstrained crystal is given by


 � 	

��
���

��������
���� (10.3.21)
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with
� �

�
dr�� exp�����r���� (10.3.22)

Note that, as far as the kinetic part of the partition function is concerned,
the effect of the fixed center-of-mass constraint is the same for an Einstein
crystal as for an arbitrary “realistic” crystal. Using equations (10.3.19) and
(10.3.21), the Helmholtz free energy difference between the constrained and
unconstrained crystal is given by

�CM � � � ��� ln��CM��� � ��� ln ����	
�
��� (10.3.23)

We note that

�CM

�
�

�
dr�� exp�����r���Æ �

�
� ��r���

dr�� exp�����r���

�

�
Æ

��
�

��r�

��

� ��rCM � 0�� (10.3.24)

where rCM �
�

� ��r�, and ��rCM� is the probability distribution function of
the center of mass, rCM. To calculate��rCM� we exploit the fact that the prob-
ability distribution of the center of mass of the lattice is evenly distributed
over a volume equal to that of the Wigner-Seitz cell3 of the lattice. The rea-
son the integration over the center-of-mass coordinates is limited to a single
Wigner-Seitz cell is that if the center of mass were to another Wigner-Seitz
cell, we would have created a copy of the crystal that simply corresponds
to another permutation of the particles. Such configurations are not to be
counted as independent. It then follows that ��rCM� � ��WS � �WS��,
where �WS is the volume of a Wigner-Seitz cell, and �WS is the number of
such cells in the system. Thus, �CM�� � ��rCM � 0� � �WS��. In the case
of one molecule per cell, this implies �CM�� � �mol��, where �mol is the
number of molecules in the system.

In numerical free energy calculations, the actual simulation involves com-
puting the free energy difference between the Einstein crystal and the nor-
mal crystal, both with constrained centers of mass. We denote this free en-
ergy difference by

��CM
� �CM � �CM

Ein �

The free energy per particle of the unconstrained crystal (in units of ���) is
then

��

�
�
���CM

�
�
��Ein

�
�

ln��mol���

�
�

�

��
ln���
��	�� (10.3.25)

3A Wigner-Seitz cell is constructed by drawing lines to connect a given lattice point to all
nearby lattice points. At the midpoints of these lines, surfaces normal to these lines are con-
structed. The smallest enclosed volume defines the Wigner-Seitz cell.
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If we consider the special case of a system of identical atomic particles (�� �

� and � � �mol), we obtain the following:

��

�
�

���CM

�
�
��Ein

�
�

ln �
�

�
�

��
ln��

�

��
ln
�
���

�	

�

 (10.3.26)

In practice, we usually calculate the excess free energy, �ex
� � � �id, where

�id is the ideal gas free energy. Let us therefore compute the finite-size cor-
rections to the latter quantity: Given that

��id�� � � ln�����	��������������

we find that

��ex

�
�

���CM

�
�
��Ein

�
�

ln �

�
�

�

��
ln
�
���

�	

�

�
�� �

�

ln�
�

� ln � � � �
ln �	
��

 (10.3.27)

where we have used the Stirling approximation:

ln�� � � ln���� �ln �	����


Hoover has analyzed the system-size dependence of the entropy of a clas-
sical harmonic crystal with periodic boundaries [269]. In this study, it was
established that the leading finite-size correction to the free energy per par-
ticle of a harmonic crystal is equal to ��� ln���. Assuming that this result
can be generalized to arbitrary crystals, we should expect that ��ex������

�� ln������ will scale as ���, plus correction terms of order �������. Fig-
ure 10.4 shows the �-dependence of ��ex�� � �� � �� ln������ for three-
dimensional hard spheres. The figure clearly suggests that the remaining
system-size dependence scales as ���. This is a useful result, because it pro-
vides us with a procedure to extrapolate free energy calculations for a finite
system to the limit ���. For more details, see ref. [270].

Case Study 17 (Solid-Liquid Equilibrium of Hard Spheres)
In this case study, we locate the solid-liquid coexistence densities of the
hard-sphere model. We determine these densities by equating the chemical
potential and the pressure of the two phases.

For the liquid phase, we use the equation of state of Speedy [271], which
is based on a Padé approximation to simulation data on both the equation of
state and the virial coefficients of hard spheres:

�liquid �
��

�
� � �

�� �
�������� � �
��������

� � �
������� � �
��������
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Figure 10.2: Pressure � (left) and chemical potential � (right) as a function of
the density �. The solid curves, showing the pressure and chemical potential
of the liquid phase, are obtained from the equation of state of Speedy [271].
The dashed curve gives the pressure of the solid phase as calculated from
the equation of state of ref. [272]. The open and filled symbols are the results
of computer simulations for the liquid [92, 273, 274] and solid phases [273],
respectively. The coexistence densities are indicated with horizontal lines.

For the solid phase of the hard-sphere model, Speedy proposed the following
equation of state [272]:

�solid �
�

� � ��
� ���	
�

�� � �����


�� � �����
 (10.3.28)

where �� � ����
�

. In Figure 10.2, we compare the predictions of this

equation of state for the liquid and solid phases with the results from com-
puter simulations of Alder and Wainwright [273] and Adams [92]. As can be
seen, the empirical equations of state reproduce the simulation data quite
well. To calculate the chemical potential of the liquid phase, we integrate
the equation of state (see (10.1.1)) starting from the dilute gas limit. This
yields the Helmholtz free energy as a function of the density. The chemical
potential then follows from

����� �
��

�
�

��

�
�

�

����
�

The free energy per particle of the ideal gas is given by

��id��� �
�id���

����
� ln ��� � �



258 Chapter 10. Free Energies of Solids

where � is the de Broglie thermal wavelength. In what follows we shall write

��id��� � ln � � ��

That is, we shall work with the usual reduced densities and ignore the addi-
tive constant � ln�����, as it plays no role in the location of phase equilibria
for classical systems.

Figure 10.2 compares the chemical potential that follows from the Hall
equation of state with some of the available simulation data (namely, grand-
canonical ensemble simulations of [92] and direct calculations of the chemi-
cal potential, using the Widom test-particle method [274] (see Chapter 7)).

These results show that we have an accurate equation of state for the
liquid phase and the solid phase. Since we know the absolute free energy
of the ideal gas phase, we can calculate the free energy and hence the
chemical potential of the liquid phase. For the solid phase we can use the
equation of state to calculate only free energy differences; to calculate the
absolute free energy we have to determine the free energy at a particular
density. To perform this calculation we use the lattice coupling method.

We must now select the upper limit of the coupling parameter 	 (	max)
and the values of 	 for which we perform the simulation. For sufficiently
large values of 	 we can calculate

�
�

����r� � r����� analytically, using

�

�
�
�
�

�

�

��	�

�	
�

For the noninteracting Einstein crystal, the mean-squared displacement is
given by �


�
�
�
�

�

��	
� (10.3.29)

For a noninteracting Einstein crystal with fixed center of mass, the free en-
ergy is given by equation (10.3.18), which gives

�

�
�

Eins�� �
�

�

�

�
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�

�

	
� (10.3.30)

In [259] an analytical expression is derived for the case of an interacting
Einstein crystal, which reads

�

�
�
�

�
�

�
�

Eins�� �
��
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������	������
�
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�
�nn
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�
exp

�
��	��� �����

�

� ���� �� � ����	�� exp
�
��	��� �����

��
� (10.3.31)

where � is the separation of two nearest neighbors � and �, � � r��� � r���,
� is the hard-core diameter, and � is the number of nearest neighbors (for
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Figure 10.3: The mean-squared displacement
�
��
�
�

as a function of the cou-
pling parameter � for a hard-sphere (fcc) solid of 54 particles (6 layers of 3 �
3 close-packed atoms at a density � � ����). The figure on the left shows the
simulation results for low values of �, the figure on the right for high values.
The solid line takes into account nearest-neighbor interactions (10.3.31); the
dashed line assumes a noninteracting Einstein crystal (10.3.30). The open
symbols are the simulation results.

example, � � �� for fcc (face-centered cubic) and hcp (hexagonal close-

packed) solids or � � 	 for bcc (body-centered cubic));
�
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�
�

is the

probability that two nearest neighbors overlap. Such probability is given by
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(10.3.32)

This equation can also be used to correct the free energy of a noninteracting
Einstein crystal (10.3.18):

��Einst���
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�

��Einst

�
�

�

�
ln
�
� �

�

nn

overlap

�
�

�
� (10.3.33)

We choose �max such that, for values of � larger than this maximum value,�
��
�
�

obeys the analytical expression. Typically, this means that the proba-
bility of overlap of two harmonically bound particles should be considerably
less than 1%. The results of these simulations are presented in Figure 10.3.
This figure shows that if we rely only on the analytical results of the noninter-
acting Einstein crystal we have to take a value for �max � ����–����. If we
use equation (10.3.31) for

�
��
�
�
�max � ���–���� is sufficient.
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We now should integrate

��

�
�

�
�max

�

d�
�
��

�
�
�

In practice, this integration is carried out by numerical quadrature. We there-
fore must specify the values of � for which we are going to compute

�
��

�
�
. To

improve the accuracy of the numerical quadrature, it is convenient to trans-
form to another integration variable:

��

�
�
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where ���� is an as-yet arbitrary function of � and ������ is the primitive of
the function 	
����. If we can find a function ���� such that the integrand,
����

�
��

�
�
, is a slowly varying function, we need fewer function evaluations

to arrive at an accurate estimate. To do this we need to have an idea about
the behavior of

�
��

�
�
.

For � � �,
�
��

�
�
� �

��
�
�
, which is the mean-squared displacement of

an atom around its lattice site in the normal hard-sphere crystal. At high
values of �, where the system behaves like an Einstein crystal, we have�
��

�
�
� ���
����. This leads to the following guess for the functional form

of ����:
���� � ��


�
��

�
�
� � � ��

where � � ��

�
��

�
�
. Here,

�
��

�
�

can be estimated from Figure 10.3. The
value of � clearly depends on density (and temperature). For � � 	���,
extrapolation to � � � gives

�
��

�
�
� ���	�, which gives � � ��. If we use

this function ���� the free energy difference is calculated from
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d �ln�� � ��� ��� ��

�
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For the numerical integration we use a �-point Gauss-Legendre quadra-
ture [275]. As the integrand is a smooth function, a 	�-point quadrature is
usually adequate. As discussed in section 10.3.2, the resulting free energy
still depends (slightly) on the system size. An example of the system-size
dependence of the excess free energy of a hard-sphere crystal is shown in
Figure 10.4 [270]. From this figure, we can estimate the excess free energy
of the infinite system to be ��ex � ���	������. This is in good agreement with
the estimate of Frenkel and Ladd, ��ex � ������ [259].

Once we have one value of the absolute free energy of the solid phase at
a given density, we can compute the chemical potential of the solid phase at
any other density, using the equation of state of Speedy (see Figure 10.2).
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Figure 10.4: ��ex��� ln����� versus ��� for an fcc crystal of hard spheres
at a density ��� � ���	�
. The solid line is a linear fit to the data. The coef-
ficient of the ��� term is ������� and the intercept (i.e., the infinite system
limit of ��ex��) is equal to �
���
�	�.

The coexistence densities follow from the condition that the chemical poten-
tials and pressures in the coexisting phases should be equal.

Using the value of �
���
�	� from [270] for the solid at � � ���	���, we
arrive at a freezing density �l � ��
�
� and a melting density �s � ������.
At coexistence, the pressure is �coex � ����� and the chemical potential is
�coex � ������. In fact, as we shall argue below, the presence of vacancies
in the equilibrium crystal lowers the coexistence pressure slightly: �coex �

����	. These results are in surprisingly good agreement with the original
data of Hoover and Ree [252], who obtained as estimate for the solid-liquid
coexistence densities �s � ���	������	 and �l � ��
	������	 at a pressure
����� � ����.

The free energy difference between the fcc and hcp for large hard-sphere
crystals at melting is very close to �, but the fcc structure appears to be the
more stable phase [248,276–278].

Example 11 (Fcc or Hcp )
Hard-sphere crystals can occur in different crystal phases. The best known
among these are the face-centered cubic (fcc) and hexagonal close-packed
(hcp) structures. It is not easy to determine which phase is thermodynam-
ically most stable. The reason is that the free energy differences between
the various structures are on the order of ���� ��� per particle, or less. As
a consequence, the earliest numerical studies aimed at computing this free
energy difference [259] were not conclusive. More recent studies [248, 278]
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showed conclusively that the fcc structure is most stable. While one of the
latter simulations used the Einstein-crystal method of ref. [259], the others
were based on a different approach. Here, we briefly discuss the so-called
lattice-switch Monte Carlo method of Bruce et al. [278].

A close-packed crystal consists of hexagonally close-packed two-dimen-
sional planes that are stacked up in the vertical direction. Assume that we
construct the crystal by stacking planes. For every new plane there are two
distinct possibilities of stacking it on the previous plane in such a way that
all the atoms fit in the triangular holes between the atoms of the previous
plane. Let us denote these two positions of the new plane by � and �, and
the position of the original plane by �. With this notation, the fcc stacking
obeys the following sequence � � � ABCABCABC� � � , while the hcp structure
is characterized by � � � ABABABA� � � . In addition, many hybrid close-packed
structures are possible, as long as we never stack two identical planes on
top of one another (i.e., ���� is forbidden).

At any given instant, the atoms in a layer are not exactly on a lattice point.
We can therefore write

r� � R���� � u��

where R���� is the ideal reference lattice position of particle � in structure �,
where � labels the crystal structure (e.g., fcc or hcp). We can now perform a
Monte Carlo simulation where, in addition to the usual particle displacement
moves, we also attempt moves that do not affect the displacement vectors,
u�, but that switch the reference lattice, R����, from fcc to hcp. In principle,
the free energy difference between these two structures would follow directly
from the relative probabilities of finding the two structures in such a Monte
Carlo simulation:

�hcp � �fcc � ��� ln
�
	�fcc�
	�hcp�

�



However, in practice, such a lattice switch has a very low acceptance prob-
ability. The usual solution for such a problem is to decompose the large trial
move into many small steps, each of which has a reasonable acceptance
probability. The lattice-switch method of Bruce et al. employs the multi-
canonical method of Berg and Neuhaus [279]. This method is a version of
the umbrella-sampling scheme described in section 7.4. The first step in this
procedure is to define a convenient “order parameter” that connects the two
states. To this end, Bruce et al. defined an overlap order parameter�:

��u�� ���u�� fcc� ���u��hcp��

where ��u�� �� is the number of pairs of hard spheres that overlap for con-
figuration u� if the � lattice is used as a reference. For example, ��u�� ���
is zero for a set of displacement vectors, u�, that do not yield a single over-
lap if we choose an hcp reference lattice. Of particular interest are those
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configurations for which ��u�� � �, since for these configurations lattice
switches are always accepted. Let us define the biased distribution

��u�� ������ � ��u�� �� exp
�
�
�
��u��

��
�

where ��u�� �� is the unweighted distribution and ����u��� are the weights
that have to be set. These weights should be chosen such that all relevant
values of � are sampled. From a given simulation one can make an esti-
mate of these weights and these are then subsequently used and updated
in the next (longer) simulation until the desired accuracy has been achieved.

Bruce et al. [278] used this method to compute the free energy difference
between the hcp and the fcc structures with a statistical error of ���� ���.
These calculations of Bruce et al. gave further support for the observation
that the fcc structure is more stable then the hcp structure. Mau and Huse
[280] showed that all hybrids of fcc and hcp stacking have a free energy
higher than that of a pure fcc structure.

10.4 Vacancies and Interstitials

Thus far, we have described crystals as if they were free of imperfections.
However, any real crystal will contain point defects, such as vacancies and
interstitials. In addition, one may find extended defects such as dislocations
and grain boundaries. In equilibrium, point defects are the most common.
Clearly, to have a realistic description of a crystal, it is important to have an
expression for the equilibrium concentration of vacancies and interstitials,
and their contribution to the free energy. This is not completely trivial, as
the concept of a point defect is inextricably linked to that of a lattice site.
And lattice sites lose their meaning in a disordered state. So, we should first
address the question: when is it permissible to count states with a different
number of lattice sites as distinct? The answer is, of course, that this is only
true if these different states can be assigned to distinct volumes in phase
space. This is possible if we impose that every particle in a crystal is con-
fined to its Wigner-Seitz cell. In three-dimensional crystals, this constraint
on the positions of all particles has little effect on the free energy (in con-
trast, in a liquid it is not at all permissible). Below, we derive an expression
for the vacancy concentration in a crystal, following the approach first given
by Bennett and Alder [281].

10.4.1 Free Energies

The equilibrium concentration of vacancies in a crystal is usually very low.
We shall therefore make the approximation that vacancies do not interact.
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This assumption is not as reasonable as it seems, as the interaction of va-
cancies through their stress fields is quite long range. The assumption that
vacancies are ideal implies that ����, the Helmholtz free energy of a crystal
with � vacancies at speci ed positions, can be written as

���� � ���� � ��� ���� � ���� (10.4.1)

where � is the number of lattice sites of the crystal, �� is the free energy per
particle in the defect-free crystal, and ��� is the change in free energy of a
crystal due to the creation of a single vacancy at a specific lattice point. Let
us now consider the effect of vacancies on the Gibbs free energy of a system
of � particles at constant pressure and temperature. First, we define �vac as
the variation in the Gibbs free energy of a crystal of � particles due to the
introduction of a single vacancy at a speci c lattice position

�vac
� ���������� � 	���������� � 	�

� �������
������ � �����
���� � ��
������ 
�����

(10.4.2)

In the above equation, the first subscript refers to the number of lattice sites
in the system, and the second subscript to the number of vacancies. Clearly,
the number of particles � is equal to the difference between the first and
second subscripts. The next step is to write

�������
������ � �����
���� � �������
������ � �������
������

��������
������ � �������
������

��������
������ � �����
�����

(10.4.3)

The first line on the right-hand side of this equation is equal to ���, where
� � vac � part is the difference in the volume of the crystal as one particle
is replaced by a vacancy, at constant pressure and constant number of lattice
sites. The second line on the right-hand side is simply equal to ���, defined
in equation (10.4.1):

��� � �������
������ � �������
�������

To rewrite the third line on the right-hand side of equation (10.4.3), we note
that the Helmholtz free energy is extensive. We express this by introduc-
ing ��, the Helmholtz free energy per particle of a defect-free crystal, and
writing �����
���� ����� Obviously, �������
������� �����
���� � ���

Combining these three terms, we find that

�������
������ � �����
���� � ���� �� � ��� (10.4.4)
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The volume is also an extensive quantity; hence

���� �
�

�� �
�������

It then follows that

�������������� � ��������� ������� ������������

� ����������

Hence, the Gibbs free energy difference associated with the formation of a
vacancy at a specific lattice site, equation (10.4.2), is then

	vac � �������������� � 
� � ��� ������� 
�

� ������� 
� � 
�

� ����� 
�� � 
�

� �� � 
�

where we have defined�� � �����
��. Now we have to include the entropic
contribution due to the distribution of � vacancies over � lattice sites. The
total Gibbs free energy then becomes

� � ����� � �	vac �����
� �
�
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� �

�

�
�
�
� �

�

�

�
ln
�
� �
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� ����� � �	vac � ���� ln
�

�
� �����

If we minimize the Gibbs free energy with respect to �, we find that

��� �� exp���	vac�

where we have ignored a small correction due to the variation of ln� with
�. If we insert this value in the expression for the total Gibbs free energy, we
find that

� � ����� � ��� 	vac � ���	vac � ��� ��� � �� � ��� ����

The total number of particles is � � ���. Hence the Gibbs free energy per
particle is

� �
�� � ��� ���

�
� �� �

��� ���

�
� �� � ������ (10.4.5)

Hence the change in chemical potential of the solid due to the presence of
vacancies is

�� � ������ (10.4.6)

from which it follows that the change in pressure of the solid at fixed chemical
potential is equal to

�� � �������� (10.4.7)
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10.4.2 Numerical Calculations

Vacancies

Numerically, it is straightforward to compute the equilibrium vacancy con-
centration. The central quantity that needs to be computed is���, the change
in free energy of a crystal due to the creation of a single vacancy at a specific
lattice point. In fact, it is more convenient to consider ���, the change in
free energy due to the removal of a vacancy at a specific lattice point. This
quantity can be computed in several ways. For instance, we could use a
particle-insertion method. We start with a crystal containing one single va-
cancy and attempt a trial insertion in the Wigner-Seitz cell surrounding that
vacancy. Then �� is given by

�� � ���� ln
�
�WS �exp������

��

�
� (10.4.8)

where �WS is the volume of the Wigner-Seitz cell, and �� is the change in
potential energy associated with the insertion of a trial particle. For hard
particles

�� � ���� ln
�
�WS	acc��WS�

��

�
�

where 	�����WS� is the probability that the trial insertion in the Wigner-Seitz
cell will be accepted. As most of the Wigner-Seitz cell is not accessible, it is
more efficient to attempt insertion in a subvolume (typically on the order
of the cell volume in a lattice-gas model of the solid). However, then we
also should consider the reverse move—the removal of a particle from a
subvolume 
 of the Wigner-Seitz cell, in a crystal without vacancies. The
only thing we need to compute in this case is 	rem�
�, the probability that a
particle happens to be inside this volume. The expression for �� is then

�� � ���� ln
�


	acc�
�

	rem�
���

�
�

Of course, in the final expression for the vacancy concentration, the factor
�� drops out (as it should), because it is cancelled by the same term in the
ideal part of the chemical potential. A direct calculation of the vacancy con-
centration [281, 282] suggests that this concentration in a hard-sphere solid
near coexistence is approximately ��� ����. Let us assume that the defect-
free crystal is in equilibrium with the liquid at a pressure 	 and chemical
potential �. Then it is easy to verify that the shift in the coexistence pressure
due to the presence of vacancies is

Æ	coex �
��������


� � 
�
�
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where �� (��) is the molar volume of the liquid (solid). The corresponding
shift in the chemical potential at coexistence is

Æ�coex �
Æ�coex

��
�

Inserting the numerical estimate ���� � ����	���, the decrease in the coexis-
tence pressure due to vacancies is Æ�coex � ���
�� 	���. The corresponding
shift in the chemical potential at coexistence is Æ�coex � ����� � 	���. Note
that these shifts are noticeable when compared to the accuracy of absolute
free energy calculations of the crystalline solid.

Interstitials

Thus far, we have ignored interstitials. However, it is not a priori obvious
that these can be ignored. The only new ingredient in the calculation of
the interstitial concentration is the determination of �� This is best done by
thermodynamic integration. To this end, we first simulate a crystal with
one interstitial. We then determine the excursions of the interstitial from its
average position. Next, we define a volume �� such that the interstitial is
(with overwhelming probability) inside this volume. The probability that a
point particle inserted at random in a Wigner-Seitz cell will be inside this
volume is

�acc �
��

�WS
� (10.4.9)

Next, we “grow” the particle to the size of the remaining spheres. This will
require a reversible work �. The latter quantity can easily be calculated, be-
cause the simulation yields the pressure exerted on the surface of this sphere.
The total free energy change associated with the addition of an interstitial in
a given octahedral hole is then

� � ���� ln
�
�acc

�WS

��

�
�� (10.4.10)

and

�� � exp
�
��

�
� � ��� ln

�
�acc

�WS

��

�
� �

��
� (10.4.11)

As before, the �� term drops out of the final result (as it should). For more
details, see refs. [283–287].
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Chapter 11

Free Energy of Chain
Molecules

In Chapter 7, we introduced the test particle insertion scheme as an efficient
method for determining the chemical potential. However, this method fails
when the probability of accepting a trial insertion becomes very small. One
consequence is that the simple particle insertion method is less well suited
for molecular than for atomic systems. This is so because the probability of
accepting the random trial insertion of a large molecule in a fluid is usually
extremely small.

Fortunately, it is possible to overcome this problem, at least partially,
by performing nonrandom sampling. Here, we discuss several of the tech-
niques that have been proposed to compute the chemical potential of chain
molecules. Three different approaches have been proposed to improve the
efficiency of the original Widom scheme. The most direct of these tech-
niques, in essence, is thermodynamic integration schemes. Next, we dis-
cuss a method based on (generalizations of) the Rosenbluth algorithm for
generating polymer conformations. And, finally, we mention a recursive al-
gorithm.

11.1 Chemical Potential as Reversible ork

The excess chemical potential of a (chain) molecule is simply the reversible
work needed to add such a molecule to a liquid in which � other (possibly
identical) molecules are already present. If we choose to break up the inser-
tion of the molecule into a number of steps, then clearly the reversible work
needed to insert the whole molecule is equal to the sum of the contributions
of the substeps. At this stage, we are still free to choose the elementary steps,

W
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just as we are free to choose whatever reversible path we wish when per-
forming thermodynamic integration. One obvious possibility is to start with
an ideal (noninteracting) chain molecule and then slowly switch on the inter-
action of this molecule with the surrounding particles (and the nonbonded
intramolecular interactions). This could be done in the way described in
section 7.1. In fact, this approach was followed by Müller and Paul [288],
who performed a simulation in which the polymer interaction is switched
on gradually. Although this simulation could have been performed with
straightforward thermodynamic integration, a multiple-histogram method
(see section 7.3.1) was used instead, but this does not change the overall na-
ture of the calculation. As stated before, the advantage of thermodynamic
integration (and related techniques) is that it is robust. The disadvantage
is that it is no longer possible to measure the excess chemical potential in a
single simulation.

A closely related method for measuring the chemical potential of a chain
molecule was proposed somewhat earlier by Kumar et al. [289, 290]. In this
scheme, the chain molecule is built up monomer by monomer. The method
of Kumar et al. resembles the gradual insertion scheme for measuring excess
chemical potentials that had been proposed by Mon and Griffiths [291]. The
reversible work involved in the intermediate steps is measured using the
Widom method; that is, the difference in excess free energy of a chain of
length � and � � � is measured by computing ���� � � � ��, the change in
potential energy associated with the addition of the (� � �)th monomer. The
change in free energy is then given by

��ex��� �� �� � �incr
ex ��� �� ��

� ��B� ln �exp�������� �� ���� � (11.1.1)

This equation defines the incremental excess chemical potential �incr
ex �� �

� � ��. The excess chemical potential of the complete chain molecule is sim-
ply the sum of the individual incremental excess chemical potentials. As
the latter contributions are measured using the Widom method, the scheme
of Kumar et al. is referred to as the modi ed Widom method. This method is
subject to the same limitations as the original Widom method (i.e., the inser-
tion probability of the individual monomers should be appreciable). In this
respect, it is slightly less general than thermodynamic integration. As with
the multiple-histogram method used by Müller and Paul [288], the compu-
tation of the excess chemical potential may require many individual simula-
tions [290, 292].
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11.2 Rosenbluth Sampling

Several proposals for measuring the chemical potential of a chain molecule
in a single simulation have been made. Harris and Rice [293] and Siep-
mann [294] showed how to compute the chemical potential of chain mol-
ecules with discrete conformations using an algorithm to generate polymer
conformations due to Rosenbluth and Rosenbluth [295]. A generalization to
continuously deformable molecules was proposed by Frenkel et al. [296,297]
and by de Pablo et al. [298]. As the extension of the sampling scheme from
molecules with discrete conformations to continuously deformable mole-
cules is nontrivial, we shall discuss the two cases separately. The approach
followed here, in many respects, is similar to the conformational-bias Monte
Carlo scheme described in section 13.2.1. However, we have attempted to
make the presentation self-contained.

11.2.1 Macromolecules ith Discrete Conformations

It is instructive to recall how we compute �ex of a chain molecule with the
Widom technique. To this end, we introduce the following notation: the
position of the first segment of the chain molecule is denoted by q and the
conformation of the molecule is described by �. The configurational part of
the partition function of a system of chain molecules can be written as1

�chain���� � �� �
�

��

�
dq�

�
������ ���

exp�����q������� (11.2.1)

The excess chemical potential of a chain molecule is obtained by considering
the ratio

���� ��� � ��	������ � ���noninteracting���� � ����

where the numerator is the (configurational part of) the partition function
of a system of � � � interacting chain molecules while the denominator is
the partition function for a system consisting of � interacting chains and
one chain that does not interact with the others. The latter chain plays the
role of the ideal gas molecule (see section 7.2.1). Note, however, that al-
though this molecule does not interact with any of the other molecules, it
does interact with itself, through both bonded and nonbonded interactions.
Unfortunately, this is not a particularly useful reference state, as we do not
know a priori the configurational part of the partition function of such an
isolated self-avoiding chain. We therefore use another reference state, that of

1We assume that there are no hard constraints on the intramolecular degrees of freedom.



272 Chapter 11. Free Energy of Chain Molecules

the isolated nonself-avoiding chain (i.e., a molecule in which all nonbonded
interactions have been switched off). It should be stressed that the choice of
another reference system makes no difference whatsoever for the computa-
tion of any observable property (see Appendix G).

Let us consider the case of a molecule that consists of � segments. Start-
ing from segment 1, we can add segment 2 in �� equivalent directions, and
so on. Clearly, the total number of nonself-avoiding conformations is �id ��

�

���
��. For convenience, we have assumed that, for a given �, all �� di-

rections are equally likely (i.e., we ignore gauche-trans potential energy dif-
ferences and we even allow the ideal chain to fold back on itself). These
limitations are not essential but they simplify the notation. Finally, we as-
sume for convenience that all �� are the same. Hence, for the simple model
that we consider, �id � ����. Using this ideal chain as our reference system,
the expression for the excess chemical potential becomes

��ex � � ln
�

�chain�� � �	
 	 ��

���	
 	 ���ideal��	
 	 ��

�

� � ln
�

exp������q�	���q���	������
�
	 (11.2.2)

where �� denotes the interaction of the test chain with the � chains already
present in the system and with itself, while �� � �� indicates averaging over all
starting positions and all ideal chain conformations of a randomly inserted
chain.

The problem with the Widom approach to equation (11.2.2) is that almost
all randomly inserted ideal chain conformations will overlap either with par-
ticles already present in the system or internally. The most important contri-
butions to �ex will come from the extremely rare cases, where the trial chain
happens to be in just the right conformation to fit into the available space in
the fluid. Clearly, it would be desirable if we could restrict our sampling to
those conformations that satisfy this condition. If we do that, we introduce a
bias in our computation of the insertion probability and we must somehow
correct for that bias.

The Rosenbluth approach used in [293, 294] consists of two steps: in the
first step a chain conformation is generated with a bias that ensures that
“acceptable” conformations are created with a high probability. The next
step corrects for this bias by multiplying with a weight factor. A scheme that
generates acceptable chain conformations with a high probability was devel-
oped by Rosenbluth and Rosenbluth in the early 1950s [295]. In the Rosen-
bluth scheme, a conformation of a chain molecule is constructed segment by
segment. For every segment, we have a choice of � possible directions. In
the Rosenbluth scheme, this choice is not random but favors the direction
with the largest Boltzmann factor. To be more specific, the following scheme
is used to generate a configuration of one polymer with � monomers:
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Figure 11.1: Rosenbluth scheme to insert a polymer segment by segment.
The arrows indicate the trial positions for the next segment.

1. The first monomer is inserted at a random position and its energy is
denoted by �������. We define the Rosenbluth weight of this monomer
as �� � � exp�����������.2

2. For all subsequent segments � � ���� � � � � 	, we consider all � trial posi-
tions adjacent to segment � � 
 (see Figure 11.1). The energy of the �th
trial position is denoted by �������. From the � possibilities, we select
one, say, �, with a probability

������� �
exp�����������

��

� (11.2.3)

where �� is defined as

�� �

��

���

exp��������� (11.2.4)

The energy ������� excludes the interactions with the subsequent seg-
ments � � 
 to 	. Hence, the total energy of the chain is given by
���� �

��

��� �
������.

3. Step 2 is repeated until the entire chain is grown, and we can compute
the normalized Rosenbluth factor of configuration �:

���� �

��

���

��

�
 (11.2.5)

2The factor � is included in the definition of �� only to keep the notation consistent with
that of section 13.2.1.
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We use this scheme to generate a large number of configurations, and en-
semble averaged properties of these chains are calculated as follows:

���
�
�

��

���
��������

��

���
����

� (11.2.6)

where �� � ��
�

indicates that the configurations have been generated by the
Rosenbluth scheme. This label is important, because the Rosenbluth algo-
rithm does not generate chains with the correct Boltzmann weight. We refer
to the distribution generated with the Rosenbluth procedure as the Rosen-
bluth distribution. In the Rosenbluth distribution, the probability of gener-
ating a particular conformation � is given by

���� �

��

���

exp�����������

��

� ��
exp��������

����
� (11.2.7)

An important property of this probability is that it is normalized; that is,
�

�

���� � 	�

where the sum runs over all possible conformations of the polymer. We can
recover canonical averages from the Rosenbluth distribution by attributing
different weights to different chain conformations. And this is precisely
what is done in equation (11.2.6):

���
�

�

�
�
�������������
�
��������

� (11.2.8)

Substitution of equations (11.2.5) and (11.2.7) gives

���
�

�

�
�
���������� exp��������
�����
�
������ exp��������
����

�

�
�
���� exp���������
�

exp��������
� ��� � (11.2.9)

which shows that equation (11.2.6) indeed yields the correct ensemble aver-
age.

Here, we introduced the Rosenbluth factor as a correction for the bias in
the sampling scheme. The Rosenbluth factor itself is also of interest, since
it can be related to the excess chemical potential. To see this, let us assume
that we use the Rosenbluth scheme to generate a large number of chain con-
formations while keeping the coordinates of all other particles in the system
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fixed. For this set of conformations, we compute the average of the Rosen-
bluth weight factor� , � . Subsequently, we also perform an ensemble aver-
age over all coordinates and conformations of the � particles in the system,
and we obtain

��� �

�
�

�

�
�
�q������

�

�
q����

��
� (11.2.10)

where the angular brackets denote the ensemble average over all configura-
tions of the system �q����� of the solvent. Note that the test polymer does
not form part of the �-particle system. Therefore the probability of find-
ing the remaining particles in a configuration q� does not depend on the
conformation � of the polymer.

To simplify the expression for the average in equation (11.2.10), we first
consider the average of the Rosenbluth factor for a given configuration �q��
�
�

� of the solvent:

���q������ �
�

�

�
�
�q���

�
��q������� (11.2.11)

Substitution of equations (11.2.3) and (11.2.5) yields
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� (11.2.12)

where we have dropped all explicit reference to the solvent coordinates �q��
�
��. Note that equation (11.2.12) can be interpreted as an average over all

ideal chain conformations of the Boltzmann factor exp
�
���

�

�
. If we now

substitute equation (11.2.12) in equation (11.2.11), we obtain

��� �

�
�



exp���	��q�����q����������

�
�
�

� (11.2.13)

If we compare equation (11.2.13) with equation (11.2.2), we see that the en-
semble average of the Rosenbluth factor is directly related to the excess
chemical potential of the chain molecule:

�
ex � � ln ��� � (11.2.14)
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This completes our demonstration that a measurement of the average Ros-
enbluth factor of a trial chain can indeed be used to estimate the excess chem-
ical potential of a polymer in a dense fluid. We should stress that the pre-
ceding method for measuring the chemical potential is in no way limited to
chain molecules in a lattice. What is essential is that the number of possible
directions for each segment (�) relative to the previous one be finite.

11.2.2 Extension to Continuously Deformable Molecules

The numerical computation of the (excess) chemical potential of a flexible
chain (with or without elastic forces that counteract bending) is rather dif-
ferent from the corresponding calculation for a chain molecule that has a
large but fixed number of undeformable conformations.

Here, we consider the case of a flexible molecule with intramolecular
potential energy. Fully flexible chains, of course, are included as a spe-
cial case. Consider a semi-flexible chain of � linear segments. Like in the
conformational-bias Monte Carlo scheme (see section 13.2.3), the potential
energy is divided into two contributions: the “internal” potential energy
�bond, which includes the bonded intramolecular interactions, and the “ex-
ternal” potential energy �ext, which accounts for the remainder of the inter-
actions. A chain in the absence of the external interactions is defined as an
ideal chain.

The conformational partition function of the ideal chain is equal to

�id � �

�
� � �

�
d�� � � �d��

��
���

exp����bond������ (11.2.15)

where � is a numerical constant. We assume that �id is known. Our aim
is to compute the effect of the external interactions on the conformational
partition function. Hence, we wish to evaluate ���id, where � denotes the
partition function of the interacting chain. The excess chemical potential of
the interacting chain is given by

	ex � ��B
 ln����id��

Before considering the “smart” approach to computing 	ex, let us briefly
review two not-so-smart methods.

The most naive way to compute the excess chemical potential of the in-
teracting chain is to generate a very large number of completely random con-
formations of the freely jointed chain. For every conformation we compute
both exp����bond� and exp�����bond � �ext��. The average of the former
quantity is proportional to �id, while the average of the latter Boltzmann
factor is proportional to �. The ratio of these two averages therefore should
yield ���id.
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The problem with this approach is that the overwhelming majority of
randomly generated conformations correspond to semi-flexible chains with
a very high internal energy (and therefore very small Boltzmann weights).
Hence, the statistical accuracy of this sampling scheme will be very poor.

The second scheme is designed to alleviate this problem. Rather than
generating conformations of a freely jointed chain, we now sample the inter-
nal angles in the chain in such a way that the probability of finding a given
angle �� is given by the Boltzmann weight

����� �
exp����������

d�� exp���������
�

Such sampling can be performed quite easily using a rejection method (see,
e.g., [19]). In what follows, we use the symbol �� to denote the unit vec-
tor that specifies the orientation of the �th segment of the chain molecule.
For every conformation thus generated, we compute the Boltzmann factor
exp����ext�. The average of this Boltzmann weight is then equal to

�exp����ext�� �

��
d� exp�����bond � �ext����

d� exp����bond�

� ���id� (11.2.16)

This approach is obviously superior to the first scheme. However, in
many practical situations it will still yield poor statistics, because most ideal
chain conformations will not correspond to energetically favorable situa-
tions for the interacting chain. Hence the Boltzmann weights, again, will
be small for most conformations and the statistical accuracy will not be very
good.

The problem with both these schemes is that neither allows us to focus
on those conformations that should contribute most to �, namely, those for
which the sum of the internal and external potential energies is not much
larger than a few �B	 per degree of freedom. It would clearly be desirable to
bias the sampling toward such favorable conformations.

It turns out that we can use a procedure similar to that used in sec-
tion 11.2.1 to compute the excess chemical potential of a chain molecule with
many fixed conformations. To compute 
ex, we apply the following recipe
for constructing a conformation of a chain of � segments. The construction
of chain conformations proceeds segment by segment. Let us consider the
addition of one such segment. To be specific, let us assume that we have
already grown � segments and we are trying to add segment � � �. This is
done as follows:

1. Generate a fixed number (say, �) trial segments with orientations dis-
tributed according to the Boltzmann weight associated with the inter-
nal potential energy ����. We denote the different trial segment by
indices �� � � �  �.
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2. For all � trial segments, we compute the external Boltzmann factor
exp�������ext ����.

3. Select one of the trial segments, say, �, with a probability

������� �
exp�������ext ����

�ext
�

� (11.2.17)

where we have defined

�ext
�
�

��

���

exp�������ext �����

4. Add this segment as segment 	 � 
 to the chain and repeat this proce-
dure until the entire chain is completed. The normalized Rosenbluth
factor of the entire chain is given by

�
ext��� �

��

���

�ext
�

�
�

where, for the first segment, �ext
� � � exp

�
���

���
ext �
�

�
.

The desired ratio ���id is then equal to the average value (over many trial
chains) of the product of the partial Rosenbluth weights:

���id �
�
�

ext� � (11.2.18)

To show that equation (11.2.18) is correct, let us consider the probability with
which we generate a given chain conformation. This probability is the prod-
uct of a number of factors. Let us first consider these factors for one segment
and then later extend the result to the complete chain. The probability of
generating a given set of � trial segments with orientations �� through �� is

id����id���� � � �id����d�� � � �d��� (11.2.19)

The probability of selecting any one of these trial segments follows from
equation (11.2.17):

������� �
exp�������ext �����

�ext
� ���� � � � ����

� (11.2.20)

for � � ���� � � � � �. We wish to compute the average of �ext
� over all possible

sets of trial segments and all possible choices of the segment. To this end,
we must sum over all � and integrate over all orientations

��

��� d�� (i.e., we
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average over the normalized probability distribution for the orientation of
segment �� �):

�
�ext

�

�

�
�

� ��
���
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��
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��
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�ext
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exp����ext��
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�
	 (11.2.21)

But the labeling of the trial segments is arbitrary. Hence, all � terms in the
sum in this equation yield the same contribution, and this equation simpli-
fies to �

�ext
�

�

�
�

�
d��id��� exp����ext���� (11.2.22)

�

�
d� exp �����bond��� � �ext������

d� exp����bond����
(11.2.23)

�

���



���

id

� (11.2.24)

which is indeed the desired result but for the fact that the expression in equa-
tion (11.2.24) refers to segment � (as indicated by the superscript in 
���). The
extension to a chain of � segments is straightforward, although the interme-
diate expressions become a little unwieldy.

The final result is a relation between the normalized Rosenbluth factor
and the excess chemical potential:

��ex � � ln
��ext��
�ext

ID

� � (11.2.25)

where �ext
ID is the normalized Rosenbluth factor of an isolated chain with

nonbonded intramolecular interactions. This Rosenbluth factor has to be
determined from a separate simulation.

In principle, the results of the Rosenbluth sampling scheme are exact in
the sense that, in the limit of an infinitely long simulation, the results are
identical to those of a Boltzmann sampling. In practice, however, there are
important limitations. In contrast to the conformational-bias Monte Carlo
scheme (see Chapter 13), the Rosenbluth scheme generates an unrepresen-
tative sample of all polymer conformations as the probability of generating
a given conformation is not proportional to its Boltzmann weight. Accurate
values can be calculated only if these distributions have a sufficient overlap.
If the overlap is small, then the tail of the Rosenbluth distribution makes
the largest contribution to the ensemble average (11.2.6); configurations that
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have a very low probability of being generated in the Rosenbluth scheme
may have Rosenbluth factors so large that they tend to dominate the en-
semble average. Precisely because such conformations are generated very
infrequently, the statistical accuracy may be poor. If the relevant conforma-
tions are never generated during a simulation, the results will even deviate
systematically from the true ensemble average. This drawback of the Rosen-
bluth sampling scheme is well known, in fact (see, the article of Batoulis and
Kremer [299, 300] and Example 13).

Example 12 (Henry Coef cients in Porous Media)
For many practical applications of porous media, it is important to know the
adsorption isotherm that specifies the dependence of the number of ad-
sorbed molecules on the external pressure (or chemical potential) at a given
temperature. In Examples 2 and 19, it is demonstrated how to compute
the complete adsorption isotherm via Monte Carlo simulations in the grand-
canonical ensemble. If the external pressures of interest are sufficiently low,
a good estimate of the adsorption isotherm can be obtained from the Henry
coefficient �H. Under these conditions, the number of adsorbed molecules
per unit volume (��) is proportional to the Henry coefficient and external
pressure �:

�� � ����

The Henry coefficient is directly related to the excess chemical potential of
the adsorbed molecules. To see this, consider the ensemble average of the
average density in a porous medium. In the grand-canonical ensemble, this
ensemble average is given by (see section 5.6)
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where �� is defined as the energy of a test particle and ��	� has been
defined as in equation (13.6.5). In the limit � � �, the reservoir can be
considered an ideal gas


� � ln
�


�

��	�

�
�

Substitution of this equation and using equation (11.2.2) gives
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�
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This gives, for the Henry coefficient,

�� � � exp����ex��

Maginn et al. [301] and Smit and Siepmann [302,303] used the approach
described in this section to compute the Henry coefficients of linear alkanes
adsorbed in the zeolite silicalite. The potential describing the alkane inter-
actions is divided into an external potential and an internal potential. The
internal potential includes bond bending and torsion:

�int � �bend � �tors�

The alkane model uses a fixed bond length. The external interactions include
the remainder of the intramolecular interactions and the interactions with the
zeolite:

�ext � �intra � �zeo�

Since the Henry coefficient is calculated at infinite dilution, there are no in-
tramolecular alkane-alkane interactions. Smit and Siepmann use the internal
interactions to generate the trial conformations (see section 13.3) and deter-
mine the normalized Rosenbluth factor using the external interactions only;
this Rosenbluth factor is related to the excess chemical potential according
to

��ex � � ln
��ext�
�
�ext

IG

� �

where
�
�ext

IG

�
is the Rosenbluth factor of a molecule in the ideal gas phase

(no interactions with the zeolite) [304]. For an arbitrary alkane, the calcula-
tion of the Henry coefficient requires two simulations: one in the zeolite and
one in the ideal gas phase. However, for butane and the shorter alkanes, all
isolated (ideal gas) molecules are ideal chains, as there are no nonbonded
interactions. For such chains the Rosenbluth factors in the ideal gas phase
are by definition equal to 1.

In Figure 11.2 the Henry coefficients of the �-alkanes in silicalite as cal-
culated by Smit and Siepmann are compared with those of Maginn et al. If
we take into account that the models considered by Maginn et al. and Smit
and Siepmann are slightly different, the results of these two independent
studies are in very good agreement.

Example 13 (Rosenbluth Sampling for Polymers)
Batoulis and Kremer [300] have made a detailed analysis of the Rosenbluth
algorithm for self-avoiding walks on a lattice. The Rosenbluth scheme is
used to generate one walk on a lattice. Batoulis and Kremer found that, with
a random insertion scheme, the probability of generating a walk of 100 steps
without overlap is on the order of 0.022% (fcc-lattice). If we use the Rosen-
bluth scheme, on the other hand, this probability becomes almost 100%.
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Figure 11.2: Henry coefficients �� of �-alkanes in the zeolite silicalite as
a function of the number of carbon atoms �� as calculated by Maginn et
al. [301] and Smit and Siepmann [303].

In Figure 11.3, the distribution of the radius of gyration of the polymer as
calculated with the corrected ensemble average (11.2.6) is compared with
the uncorrected average (i.e., using the Rosenbluth scheme to generate the
schemes and using ��� � �����

��

���
���� instead of equation (11.2.6) to

calculate the ensemble averages). The figure shows that the Rosenbluth
scheme generated chains that are more compact. Batoulis and Kremer
showed that, for longer chain lengths, this difference increases exponen-
tially. One therefore should be extremely careful when using such a non-
Boltzmann sampling scheme.

11.2.3 Overlapping Distribution Rosenbluth Method

Although the Rosenbluth particle-insertion scheme described in section 11.2
is correct in principle, it may run into practical problems when the excess
chemical potential becomes large. Fortunately, it is possible to combine the
Rosenbluth scheme with the overlapping distribution method to obtain a
technique with built-in diagnostics. This scheme is explained in Appendix I.
As with the original overlapping distribution method (see section 7.2.3), the
scheme described in Appendix I constructs two histograms (but now as a
function of the logarithm of the Rosenbluth weight rather than the poten-
tial energy difference). If the sampled distributions do not overlap, then
one should expect the estimate of the excess chemical potential of chain
molecules to become unreliable and the Rosenbluth method should not be
used. In fact, recent simulations by Mooij and Frenkel [305], using this over-
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Figure 11.3: Probability distribution of the radius of gyration ��. The circles
show the Boltzmann distribution and the squares the Rosenbluth distribu-
tion. The results are of an fcc-lattice for a walk of 120 steps (data taken from
ref. [300]).

lapping distribution method, show that indeed there is a tendency for the
two distributions to move apart when long chains are inserted into a moder-
ately dense fluid. Yet, these simulations also show that, at least in this case,
the statistical errors in �ex become important before the systematic errors
due to inadequate sampling show up.

11.2.4 Recursive Sampling

In view of the preceding discussion, it would seem attractive to have un-
biased sampling schemes to measure the chemical potential. Of course,
thermodynamic integration methods are unbiased and the modified Widom
scheme, although biased at the level of the insertion of a single monomer
(like the original Widom scheme), is less biased than the Rosenbluth method.
Yet, these methods cannot be used to measure �ex in a single simulation (see
section 11.1).

It turns out that nevertheless it is possible to perform unbiased sampling
of �ex in a single simulation. Here, we briefly sketch the basic idea behind
this method. In our description, we follow the approach proposed by Grass-
berger and Hegger [306–308]. Their technique is quite similar to a Monte
Carlo scheme developed a few years earlier by Garel and Orland [309].

Like the Rosenbluth and modified Widom schemes, the recursive sam-
pling approach is based on a segment-by-segment growth of the polymer.
But that is about where the similarity ends. In recursive sampling the aim is
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to generate a population of trial conformations. The excess chemical potential
of a chain molecule is directly related to the average number of molecules
that have survived the growth process.

The first step of the procedure is to attempt a trial insertion of a monom-
er in the system. Suppose that the Boltzmann factor associated with this
trial insertion is �� � exp������r���. We now allow the monomer to make
multiple copies of itself, such that the average number of copies, ����, is
equal to

���� � �����

where �� is a constant multiplicative factor that remains to be specified. A
convenient rule for determining how many copies should be made is the
following. Denote the fractional part of ���� by �� and the integer part by
��. Our rule is then to generate �� (�� � �) copies of the inserted particle with
a probability �� �� (��). Clearly if �� � 	, there is a probability �� �� that the
monomer will “die.” Assume that we have generated at least one copy of
the monomer. Every copy from now on proceeds independently to generate
offspring. For instance, to generate a dimer population, we add a segment
to every surviving monomer. We denote the Boltzmann weight associated
with these trial additions by �����, where the index � indicates that every
surviving monomer will give rise to a different dimer. As before, we have
to decide how many copies of the dimers should survive. This is done in
exactly the same way as for the monomer; that is, the average number of
dimers that descends from monomer � is given by

������� � ��������

where ��, just like �� before, is a constant to be specified later. The number
of dimers generated may either be larger or smaller than the original number
of monomers. We now proceed with the same recipe for the next generation
(trimers) and so on. In fact, as with the semi-flexible molecules discussed in
section 11.2.1, it is convenient to include the intramolecular bond-bending,
bond-stretching, and torsional energies in the probability distribution that
determines with what orientation new segments should be added.

The average number of surviving molecules at the end of the 
th step is

���� �

�
��

���

��

��
exp������r���

�
�

where ���r�� is the total interaction of the chain molecule with the � sol-
vent molecules (and the nonbonded intramolecular interactions). The angu-
lar brackets denote a canonical average over the coordinates and over the
intramolecular Boltzmann factors of the ideal (nonself-avoiding) chain. In
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other words,

���� �

�
��

���

��

�
exp����ex�����

Hence, the excess chemical potential is given by

�ex��� � ��B� ln

�
������

���
��

�
� (11.2.26)

The constants �� should be chosen such that there is neither a population
explosion nor mass extinction. If we have a good guess for �ex��� then we
can use this to estimate ��. In general, however, �� must be determined by
trial and error.

This recursive algorithm has several nice features. First of all, it is com-
putationally quite efficient (in some cases, more than an order of magnitude
faster than the Rosenbluth scheme, for the same statistical accuracy). In fact,
in actual calculations, the algorithm searches in depth first, rather than in
breadth. That is to say, we try to grow a polymer until it has been completed
(or has died). We then continue from the last branch of the tree from where
we are allowed to grow another trial conformation. In this way, we work
our way back to the root of the tree. The advantage of this scheme is that
the memory requirements are minimal. Moreover, the structure of the pro-
gram is very simple indeed (in languages that allow recursive calls). Last
but not least, the recursive scheme generates an unbiased (i.e., Boltzmann)
population of chain conformations [310].

11.2.5 Pruned-Enriched Rosenbluth Method

An important extension of the Rosenbluth scheme has been proposed by
Grassberger [311]. It is called the pruned-enriched Rosenbluth method (PERM).
One of the reasons why the conventional Rosenbluth method fails for long
chains or at high densities is that the distribution of Rosenbluth weights be-
comes very broad. As a consequence, it can happen that a few conforma-
tions with a high Rosenbluth weight completely dominate the average. If
this is the case, we should expect to see large statistical fluctuations in the
average. It would, of course, be desirable to focus the simulations on those
classes of conformations that contribute most to the average, and spend little
time on conformations that have a very low Rosenbluth weight. The PERM
algorithm is a generalization of the recursive-sampling scheme discussed
above. It also generates a population of chains with different conformations.
And it shares the advantage that, due to the recursive nature of the algo-
rithm, we need not keep more than one conformation (plus a set of pointers)
in memory. The ”birth” and ”death” rules of this algorithm are such that
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it generates many copies of conformations with a high Rosenbluth weight,
while low-weight structures have a high probability of ”dying.” The Rosen-
bluth weight of the remaining conformations is adjusted in such a way that
our birth-death rules do not affect the desired average. As the PERM al-
gorithm is recursive, it uses little memory. To summarize the algorithm in
a few words: conformations with a high Rosenbluth weight are multiplied
by a factor � and their weight is reduced by the same factor. Conforma-
tions with a low weight are ”pruned”—half the low-weight conformations
are discarded, while the weight of the remainder is doubled. Once all chains
that have started from a common ”ancestor” have been grown to completion
(or have been discarded), we simply add the (rescaled) Rosenbluth weights
of all surviving chains.

Below, we briefly sketch how the algorithm is implemented. Let us in-
troduce an upper and a lower threshold of the Rosenbluth weight of a chain
with length �,�max

�
and�min

�
, respectively. If the partial Rosenbluth weight

of a particular chain conformation of lenght �, ��, exceeds the threshold,
�� � �

max
�

, then the single conformation is replaced by � copies. The par-
tial Rosenbluth weight of every copy is set equal to ����. If, on the other
hand, the partial Rosenbluth weight of a particular conformation,��, is be-
low the lower threshold,�� ��

min
�

, then we ”prune.” With a probability of
50% we delete the conformation. But if the conformation survives, we dou-
ble its Rosenbluth weight. There is considerable freedom in the choice of
�max

�
,�min

�
, and �. In fact, all of them can be chosen ”on the fly” (as long as

this choice does not depend on properties of conformations that have been
grown from the same ancestor). A detailed discussion of the algorithm can
be found in refs. [311, 312].

The limitation of the recursive growth algorithm is that it is intrinsically
a static Monte Carlo technique; every new configuration is generated from
scratch. This is in contrast to dynamic (Markov-chain) MC schemes in which
the basic trial move is an attempt to modify an existing configuration. Dy-
namic MC schemes are better suited for the simulations of many-particle
systems than their static counterparts. The reason is simple: it is easy to mod-
ify a many-particle configuration to make other ”acceptable” configurations
(for instance, by displacing one particle over a small distance). In contrast,
it is very difficult to generate such configurations from scratch. On the other
hand, once a new configuration is successfully generated in a static scheme,
it is completely independent from all earlier configurations. In contrast, suc-
cessive configurations in dynamic MC are strongly correlated.

CBMC is, in a sense, a hybrid scheme: it is a dynamic (Markov-chain)
MC method. But the chain-regrowing step is more similar to a static MC
scheme. However, in this step it is less ”smart” than the recursive algorithms
discussed above, because it is rather ”myopic.” The scheme looks only one
step ahead. It may happen that we spend a lot of time growing a chain al-
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most to completion, only to discover that there is simply no space left for
the last few monomers. This problem can be alleviated by using a scan-
ning method of the type introduced by Meirovitch [313]. This is basically a
static, Rosenbluth-like method for generating polymer configurations. But,
in contrast to the Rosenbluth scheme, the scanning method looks several
steps ahead. If this approach is transferred naively to a conformational-bias
Monte Carlo program, it would yield an enhanced generation of acceptable
trial conformations, but the computational cost would rise steeply (exponen-
tially) with the depth of the scan. This second drawback can be avoided by
incorporating a recursive scanning method that cheaply eliminates doomed
trial configurations, within a dynamic Monte Carlo scheme. In section 13.7
we discuss a dynamic MC algorithm (recoil growth), that is based on this
approach.
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Chapter 12

Long-Range Interactions

As computing power continues to increase, we can simulate ever larger sys-
tems. For instance, a typical model of a biological system may contain as
many as ��� particles. In such systems it becomes crucial to avoid comput-
ing all pair interactions, as otherwise the computational effort would be pro-
portional to the square of the number of particles. This issue is particularly
relevant for long-range interactions (e.g., Coulombic and dipolar potentials)
as, for such models, truncation of the potential is never allowed. It then be-
comes essential to find an efficient technique for computing the long-range
part of the intermolecular interactions. In section 3.2.2, we showed that, if
we truncate the potential at a distance ��, the contribution of the tail of the
potential ���� can be estimated (in three dimensions) using

�
tail �

��

�

�
�

��

d� ��������	

where � is the average number density. This equation shows that the tail cor-
rection to the potential energy diverges, unless the potential energy function
���� decays faster than ���. This is why one cannot use truncation plus tail
correction for Coulombic and dipolar interactions.

In the literature, one can find numerous examples where the computa-
tional cost of evaluating long-range interactions is reduced in a rather dras-
tic way. It is simply assumed that the long-range part of the potential is not
important. The problem of the long-range interactions is then “solved” by
truncation. This gets rid of the expensive part of the calculation, but it gives
rise to serious inaccuracies. A discussion of the artifacts that are introduced
by the various truncation schemes is presented in some detail by Steinbach
and Brooks [314]. In the present chapter we discuss some of the less dra-
conian (and more reliable) techniques for handling long-range interactions.
Such schemes are more expensive than simple truncation, but the advantage
is that they do respect the long-range character of the forces.
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We discuss three techniques: (1) Ewald summation, (2) fast multipole
methods, and (3) particle-mesh-based techniques. Of these, the Ewald sum-
mation is (still) the most widely used. As the computational effort for the
Ewald summation scales as �������, this approach becomes prohibitively
expensive for large systems. To overcome these restrictions, several alterna-
tive algorithms, such as the particle-particle/particle-mesh (PPPM) method
of Eastwood and Hockney [315], which scales as ��� log��, and the fast
multipole method of Greengard and Rokhlin [316], which scales as ����,
have been proposed. However, these ���� algorithms only become more
efficient than the Ewald summation for systems containing on the order
of ��� particles—where it should be noted that the precise location of the
break-even point depends on the desired accuracy. For intermediate-size
systems (� � ���–���) the so-called particle-mesh Ewald summation [317]
is an attractive alternative. The complexity of the latter method also scales
as��� log��.

12.1

method [318] for computing long-range contributions to the potential energy
in a system with periodic boundary conditions. Readers who are interested
in more detail (or more rigor) are referred to a series of articles by De Leeuw
et al. [319–321] and an introductory paper by Hansen [322]. A discussion of
the Ewald sum in the context of solid state physics can be found in [323].
We also refer the reader to the literature for a discussion of an ingenious
alternative to the Ewald method that can be used for relatively small fluid
systems [324].

12.1.1 Point Charges

Let us first consider a system consisting of positively and negatively charged
particles. These particles are assumed to be located in a cube with diameter
� (and volume � � ��). We assume periodic boundary conditions. The total
number of particles in the fundamental simulation box (the unit cell) is �.
We assume that all particles repel each another at sufficiently short distances.
In addition we assume that the system as a whole is electrically neutral; that
is,
�

� �� � �. We wish to compute the Coulomb contribution to the potential
energy of this �-particle system,

�Coul �
�

�

��

���

�������	 (12.1.1)

In this section we present a simple (and nonrigorous) discussion of the Ewald

Ewald Sums
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where ����� is the electrostatic potential at the position of ion �:

����� �
�

��n

�
��

�r�� � n��
� (12.1.2)

where the prime on the summation indicates that the sum is over all periodic
images n and over all particles �, except � � � if n � 0. Note that we assume
that particle � interacts with all its periodic images, but not, of course, with
itself. Here, and in what follows, we use Gaussian units, because it makes
the notation more compact. Equation (12.1.2) cannot be used to compute
the electrostatic energy in a simulation, because it contains a poorly con-
verging sum (in fact, the sum is only conditionally convergent). To improve
the convergence of the expression for the electrostatic potential energy, we
rewrite the expression for the charge density. In equation (12.1.2) we have
represented the charge density as a sum of Æ-functions. The contribution
to the electrostatic potential due to these point charges decays as ���. Now
consider what happens if we assume that every particle � with charge �� is
surrounded by a diffuse charge distribution of the opposite sign, such that
the total charge of this cloud exactly cancels ��. In that case the electrostatic
potential due to particle � is due exclusively to the fraction of �� that is not
screened. At large distances, this fraction rapidly goes to 	. How rapidly de-
pends on the functional form of the screening charge distribution. In what
follows, we shall assume a Gaussian distribution for the screening charge
cloud.

The contribution to the electrostatic potential at a point �� due to a set of
screened charges can be easily computed by direct summation, because the
electrostatic potential due to a screened charge is a rapidly decaying func-
tion of �. However, it was not our aim to evaluate the potential due to a
set of screened charges but due to point charges. Hence, we must correct for
the fact that we have added a screening charge cloud to every particle. This
is shown schematically in Figure 12.1. This compensating charge density
varies smoothly in space. We wish to compute the electrostatic energy at the
site of ion �. Of course, we should exclude the electrostatic interaction of the
ion with itself. We have three contributions to the electrostatic potential: first
of all, the one due to the point charge ��, secondly, the one due to the (Gaus-
sian) screening charge cloud with charge ���, and finally the one due to the
compensating charge cloud with charge ��. In order to exclude Coulomb self-
interactions, we should not include any of these three contributions to the
electrostatic potential at the position of ion �. However, it turns out that it
is convenient to retain the contribution due to the compensating charge dis-
tribution and correct for the resulting spurious interaction afterwards. The
reason we retain the compensating charge cloud for ion � is that, if we do so,
the compensating charge distribution is not only a smoothly varying func-
tion, but it is also periodic. Such a function can be represented by a (rapidly
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= +

Figure 12.1: A set of point charges may be considered a set of screened
charges minus the smoothly varying screening background.

converging) Fourier series, and this will turn out to be essential for the nu-
merical implementation. Of course, in the end we should correct for the in-
clusion of a spurious ”self” interaction between ion � and the compensating
charge cloud.

After this brief sketch of the method for evaluating the electrostatic con-
tribution to the potential energy, let us now consider the individual terms.
We assume that the compensating charge distribution surrounding an ion �

is a Gaussian with width
�

��� :

�Gauss��� � ��������
�

� exp�������

The choice of � will be determined later by considerations of computational
efficiency. We shall first evaluate the contribution to the Coulomb energy
due to the continuous background charge, then the spurious “self” term,
and finally the real-space contribution due to the screened charges.

Fourier Transformation

This chapter relies heavily on the use of the Fourier transformation. It is
therefore instructive to recall some of the basic equations in the context of
electrostatics.

The central problem is to compute the energy of a given charge distribu-
tion ��r�. Formally, this corresponds to solving Poisson’s equation for the
electrostatic potential. Using the Gaussian notation,

���	�r� � 
���r�� (12.1.3)
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where ��r� is the electrostatic potential at point r. For a single charge � at the
origin the solution of this equation is the Coulomb potential

��r� �
�

���r�
� (12.1.4)

For a collection of � point charges we can define a charge density

���r� �
��

���

��Æ�r � r��� (12.1.5)

where r� and �� are the position and charge of particle 	, respectively. The
potential in a point r follows from a summation of the contributions of the
particles

��r� �
��

���

��

���r � r��
�

A different representation of these equations can be given in Fourier
space. Let us consider a periodic system with a cubic box of length 
 and
volume �. Any function ��r� that depends on the coordinates of our system
can be represented by a Fourier series:

��r� �


�

��

l���

�̃���eik��� (12.1.6)

where k � ����
�l with l � ���� ��� ��� are the lattice vectors in Fourier space.
The Fourier coefficients �̃��� are calculated using

�̃�k� �
�
�

dr ��r�e�ik��� (12.1.7)

In Fourier space Poisson’s equation (12.1.3) has a much simpler form. We
can write for the Poisson equation:

��	��r� � ��	

�


�

�
k

�̃�k�eir�k

�

�


�

�
k

�	�̃�k�eir�k� (12.1.8)

For the Fourier transform of the charge density we have

���� �


�

�
k

�̃�k�eir�k� (12.1.9)
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Substitution of equations (12.1.9) and (12.1.8) into equation (12.1.3) yields
the Poisson equation in Fourier space

���̃��� � ���̃���� (12.1.10)

To find the solution of Poisson’s equation for a point charge of strength � at
the origin, we have to perform the Fourier transform of a delta function:

�̃�k� �

�
�

dr �Æ�r�e�ik��

� ��

This yields as solution for the Poisson equation

�̃��� �
���

��
�

The solution for a unit charge is often called the Green’s function:

�̃��� �
��

��
� (12.1.11)

For a collection of point charges with charge density given by equa-
tion (12.1.5), we can write for the Fourier coefficients of the potential

�̃��� � �̃����̃����

with

�̃���� �

�
�

dr
��
���

��Æ�r � r��e�ik�r

�

��
���

��e�ik�r� � (12.1.12)

These equations show that in Fourier space the solution of Poisson’s equa-
tion is simply obtained by multiplying �̃��� and �̃��� for all � vectors.

In the following we will also use another property of the Fourier trans-
form. If we have a function 	��
�, which is the convolution (�) of two other
functions 	��
� and 	��
�,

	��
� � 	��
� � 	��
� �

�
d
 � 	��


��	��
� 
 ���

then the Fourier coefficients of these functions are related by a simple multi-
plication:

	̃���� � 	̃����	̃�����



12.1 Ewald Sums 297

For example, if we have a charge distribution that does not consist of simple
point charges, but a more “smeared out” distribution,

��r� �
�

�

����r � r�� �
�

dr � ��r �����r � r ��� (12.1.13)

where ��r� is the “shape” of the charge distribution of a single charge, then
the Poisson equation for this system takes, in Fourier space, the form

�̃��� � �̃����̃����̃�����

Fourier Part of E ald Sum

We now apply the properties of the Poisson equation in Fourier form to com-
pute the electrostatic potential at a point �� due to a charge distribution �����

that consists of a periodic sum of Gaussians:

����� �

��
���

�
n

���	
��
�

� exp
�
�	 �r � �r� � n����

�
�

To compute the electrostatic potential ����� due to this charge distribution,
we use Poisson’s equation:

�������� � �������

or in Fourier form,
������� � �������

Fourier transforming the charge density �� yields

���k� �

�
�

dr exp��ik � r����r�

�

�
�

dr exp��ik � r�
��
���

�
n

���	
��
�

� exp
�
�	 �r � �r� � n����

�

�

�
all space

dr exp��ik � r�
��
���

���	
��
�

� exp
�
�	 �r � r��

�
�

�

��
���

�� exp��ik � r�� exp����
	�� (12.1.14)

If we now insert this expression in Poisson’s equation, we obtain

����� �
�

��

��
���

�� exp��ik � r�� exp����
	�� (12.1.15)
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where it should be noted that this expression is defined only for k �� �. This
is a direct consequence of the conditional convergence of the Ewald sum.
For the time being, we shall assume that the term with k � � is equal to �.
As we shall see later, this assumption is consistent with a situation where the
periodic system is embedded in a medium with infinite dielectric constant.

We now compute the contribution to the potential energy due to ��, us-
ing equation (12.1.1). To this end, we first compute �����:

����� �
�

�

�

k ���

���k� exp�ik � r� (12.1.16)

�
�

k ���

��

���

����

��
exp�ik � �r � r��� exp����	�
��

and hence,

�� �
�

�

�

�

��������

�
�

�

�

k ���

��

�����

������

���
exp�ik � �r� � r��� exp����	�
�

�
�

��

�

k ���

��

��
��k��� exp����	�
�� (12.1.17)

where we have used the definition

�k� �
��

���

�� exp�ik � r��� (12.1.18)

Correction for Self-Interaction

The contribution to the potential energy given in equation (12.1.17) includes
a term ��	�����self���� due to the interaction between a continuous Gaussian
charge cloud of charge �� and a point charge �� located at the center of the
Gaussian. This term is spurious, and we should correct for it. We therefore
must compute the potential energy at the origin of a Gaussian charge cloud.
The charge distribution that we have overcounted is

Gauss��� � ���
	��
�

� exp��
����

We can compute the electrostatic potential due to this charge distribution
using Poisson’s equation. Using the spherical symmetry of the Gaussian
charge cloud, we can write Poisson’s equation as

�
�

�

����Gauss���

���
� ��Gauss���
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or

�

����Gauss���

���
� ����Gauss����

Partial integration yields

�
���Gauss���

��
�

�
�

�

d����� Gauss���

� ������	
��
�

�

�
�

�

d�� exp��	���

� �����	
��
�

� exp��	���� (12.1.19)

A second partial integration gives

��Gauss��� � ����	
��
�

�

�
�

�

d� exp��	���

� ��erf
��

	�
�
� (12.1.20)

where, in the last line, we have employed the definition of the error function:
e���� � ��


�
��
��
�

exp�������. Hence,

�Gauss��� �
��

�
erf

��
	�

�
� (12.1.21)

To compute the spurious self term to the potential energy, we must compute
�Gauss��� at � � �. It is easy to verify that

�Gauss�� � �� � ����	
��
�

� �

Hence, the spurious contribution to the potential energy is

�self �
�

�

��
���

���self����

� �	
��
�

�

��
���

��� � (12.1.22)

The spurious self-interaction �self should be subtracted from the sum of the
real-space and Fourier contributions to the Coulomb energy. Note that equa-
tion (12.1.22) does not depend on the particle positions. Hence, during a sim-
ulation, this term is constant, provided that the values of all (partial) charges
(and particles) in the system remain fixed.
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Real-Space Sum

Finally, we must compute the electrostatic energy due to the point charges
screened by oppositely charged Gaussians. Using the results of section 12.1.1,
in particular equation (12.1.21), we can immediately write the (short-range)
electrostatic potential due to a point charge �� surrounded by a Gaussian
with net charge ���:

�short�range��� �
��

�
�

��

�
erf

��
��

�

�
��

�
erfc

��
��

�
� (12.1.23)

where the last line defines the complementary error function erfc��� � � �

erf���. The total contribution of the screened Coulomb interactions to the
potential energy is then given by

�short�range �
�

�

��

� ���

����erfc
��

����
�
����	 (12.1.24)

The total electrostatic contribution to the potential energy now becomes
the sum of equations (12.1.17), (12.1.22), and (12.1.24):

�Coul �
�

�


�

k ���

��

�
���k��� exp�������

� �����
�

�

��

���

���

�
�

�

��

� ���

����erfc
��

����
�

���
	 (12.1.25)

12.1.2 Dipolar Particles

It is straightforward to derive the corresponding expressions for the poten-
tial energy of a system containing dipolar molecules. The only modification
is that we must everywhere replace �� by ��� ���. For example, the electro-
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Figure 12.2: Spherical dielectric surrounded by a sphere.

static energy of a dipolar system becomes

�dipolar �

�

��

�

k ���

��

��
�M����

� exp��������

�
��

�
�����

�

�

��

���

	��

�
�

�

��

� ���

�
��� � ���
����� � ��� � r������ � r���������

�


(12.1.26)

where


��� � erfc
��

��
�

��
� ������

�

�

exp������
��



���� � �
erfc

��
��

�

��
� ������

�

� ��� � �����
exp������

��


and

M��� �
��

���

i�� � k exp�ik � r���

Again, this expression applies to a situation where the periodic system is
embedded in a material with infinite dielectric constant.

12.1.3 Dielectric Constant

To derive an expression for the dielectric constant of a polar fluid, we con-
sider the system shown in Figure 12.2: a large spherical dielectric with
radius � and dielectric constant � (region I) surrounded by a much larger
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sphere with radius � and dielectric constant � � (region II). The entire sys-
tem is placed in vacuum (region III), and an electric field E is applied. The
potential at a given point in this system follows from the solution of the
Poisson equation with the appropriate boundary conditions (continuity of
the normal component of the displacement D and tangential component of
the electric field E) at the two boundaries between regions I and II, and II
and III. In the limit � � �, � � �, ��� � �, we can write, for the electric
field in region I,

E� �
�� �

�� � � ����� � � ��
E� (12.1.27)

which gives, for the polarization P,

P �
�� �

	

E� �

�� ���� ��

	
�� � � ����� � � ��
E� (12.1.28)

In order to make contact with linear response theory, we should compute
the polarization of the system as a function of the applied external field, i.e.,
the electric field that would be present in the system in the absence of the
particles. Using equation (12.1.27), it is easy to derive that the electrostatic
field E �

�
that would be present in region � if it were empty is given by equa-

tion (12.1.27) with � � �:

E �

� �
�� �

�� � � ����� � � ��
E�

The field E �

�
is uniform throughout region �. If we assume that the system

is isotropic and that linear response theory is sufficient, we can write for the
polarization

�P� �
�

�

�
dr�

��
���

�� exp

�
��

�
�� �

��
���

�� � E �

�

��

�
�

�

��
M�

�
� �M�

�
�

E �

�
� (12.1.29)

Comparison of equations (12.1.29) and (12.1.28) yields

�P� �
�

�
�����

�E �

�� (12.1.30)

where the �� is the Kirkwood factor, which is defined as

�� �
�

���

��
M�

�
� �M�

�
�
�

where M is the total dipole moment

M �

��
���

���
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Combining equations (12.1.28) and (12.1.30) gives

��� ����� � � ��

��� � � ��
�

�

�
�����	

�


For a simulation with conducting boundary conditions (� �
� �), the ex-

pression for the dielectric constant becomes

� � � �
�

�
�����	

�
 (12.1.31)

This result shows that the fluctuations of the dipole moment depends on the
dielectric constant of the surrounding medium. This, in turn, implies that, for
a polar system, the Hamiltonian itself depends on the dielectric constant � �

of the surrounding medium.

12.1.4 Boundary Conditions

It may appear strange that the form for the potential energy of an infinite pe-
riodic system of ions or dipoles should depend on the nature of the bound-
ary conditions at infinity. However, for systems of charges or dipoles, this is
a very real effect that has a simple physical interpretation. To see this, con-
sider the system shown in Figure 12.2. The fluctuating dipole moment of
the unit cell M gives rise to a surface charge at the boundary of the sphere,
which, in turn, is responsible for a homogeneous depolarizing field:

E � �
��P

�� � � �
�

where P � M�. Now let us consider the reversible work per unit volume
that must be performed against this depolarizing field to create the net po-
larization P. Using

d� � �EdP �
��

�� � � �
PdP�

we find that the total work needed to polarize a system of volume  equals

�pol �
��

�� � � �
�� �

��

�� � � �
���

or, using the explicit expression for the total dipole moment of the periodic
box,

�pol �
��

��� � � ��

�
�
�
�
�

��
���

r���

�
�
�
�
�

�

�
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in the Coulomb case, and

�pol �
��

��� � � ���

�
�
�
�
�

��

���

��

�
�
�
�
�

�

�

in the dipolar case. This contribution to the potential energy corresponds to
the k � 0 term that we have neglected thus far. It is permissible to ignore this
term if the depolarizing field vanishes. This is the case if our periodic system
is embedded in a medium with infinite dielectric constant (a conductor, � � �
�), which is what we have assumed throughout.

For simulations of ionic systems, it is essential to use such “conducting”
boundary conditions; for polar systems, it is merely advantageous. For a
discussion of these subtle points, see [325].

12.1.5 Accuracy and Computational Complexity

In the Ewald summation, the calculation of the energy is performed in two
parts: the real-space part (12.1.23) and the part in Fourier space (12.1.17).
For a given implementation, we have to choose the parameter � that char-
acterizes the shape of the Gaussian charge distributions, �� the real-space
cutoff distance, and �� the cutoff in Fourier space. In fact, it is common
to write �� as ��	
��, where �� is a positive integer. The total number of
Fourier components within this cutoff value is equal to ���	����. The val-
ues of these parameters depend on the desired accuracy �, that is, the root
mean-squared difference between the exact Coulombic energy and the re-
sults from the Ewald summation. Expressions for the cutoff errors in the
Ewald summation method1 have been derived in [326, 327]. For the energy,
the standard deviation of the real-space cutoff error of the total energy is

Æ�� � �
� ��

�
�

��

� �

������
exp

�
������

�
(12.1.32)

and for the Fourier part of the total energy

Æ�� � �
�
���
�

�
�
�

����	�
�
�

exp
�
�����	�
�

�
�
� (12.1.33)

where
� �
�
�

��� �

Note that for both the real-space part and the Fourier part, the strongest
dependence of the estimated error on the parameters�, ��, and�� is through

1The accuracy is dependent on whether we focus on the energy (for Monte Carlo) or on the
forces (for Molecular Dynamics).
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a function of the form exp��������. We now impose that these two functions
have the same value �. The value of � for which exp�������� � � we denote
by �. Hence � � exp��������. Then it follows from Equation (12.1.32) that

�� �
�

�
(12.1.34)

and from equation (12.1.33) we obtain

�� �
���

�
	 (12.1.35)

If we insert these expressions for �� and�� back into the expressions (12.1.32)
and (12.1.33), we find that both errors have the same functional form:

Æ
� � �
� �

���

���� exp�����
��

and

Æ
� � �
� �

����

���� exp�����
��

	

Hence, changing � affects both errors in the same way. We now estimate the
computational effort involved in evaluating the Ewald sum. To this end, we
write the total computational time as the sum of the total time in real space
and the total time in Fourier space

 � ��� � ���� (12.1.36)

where � is the time needed to evaluate the real part of the potential of a
pair of particles and � is the time needed to evaluate the Fourier part of the
potential per particle and per � vector. �� and �� denote the number of
times these terms need to be evaluated to determine the total energy or the
force on the particles. If we assume a uniform distribution of particles, these
two numbers follow from the estimates of �� and ��:
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The value of � follows from minimization of equation (12.1.36)
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���
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which yields for the time
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�
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�
�
�

� �
�
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�
	 (12.1.37)
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Note that, with the above expression for �, the parameters �� and �� follow
from equations (12.1.34) and (12.1.35) respectively, once we have specified
the desired accuracy. To optimize the Ewald summation one has to make
an estimate of �����. This ratio depends on the details of the particular
implementation of the Ewald summation and can be obtained from a short
simulation.2

We conclude this section with a few comments concerning the imple-
mentation. First of all, when using equation (12.1.34) to relate �� to �, one
should make sure that �� � ���; otherwise the real part of the energy cannot
be restricted to the particles in the box n � 0.

A second practical point is the following: in most simulations, there are
short-range interactions between the particles, in addition to the Coulomb
interaction. Usually, these short-range interactions also have a cutoff ra-
dius. Clearly, it is convenient if the same cutoff radius can be used for the
short-range interactions and for the real-space part of the Ewald summation.
However, if this is done, the parameters of the Ewald summation need not
have their optimum values.

12.2 Fast Multipole Method

An algorithm that is of order ���� is the fast multipole method. The multi-
pole method is based on the idea that a group of particles at a large distance
can be considered one big cluster, for which it is not necessary to calculate
all particle-particle interactions individually. By clustering the system into
bigger and bigger groups, the interactions can be approximated. This ap-
proach of Appel [329] leads to an order ���� algorithm [330]. This algo-
rithm was further refined by Barnes and Hut [331]. In the original algorithm
of Appel, the clusters were approximated as a single charge. Greengard and
Rokhlin [316] developed an algorithm in which the charge distribution in
a cluster is approximated by a multipole expansion. Schmidt and Lee ex-
tended this method to systems with periodic boundary conditions [332].

Algorithm

Next, we give a schematic description of the Greengard and Rokhlin al-
gorithm in three dimensions; a more detailed description can be found in
[328, 332, 333]. Essential in this algorithm is the use of octal trees and multi-
pole expansions, which are described before we discuss the algorithm.

An octal tree can be constructed in the following way (see Figure 12.3).
The original system is defined to be the unique level-zero cell. Level-one

2A typical value of this ratio is ����� � ��� [328].
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Figure 12.3: Octal tree in two dimensions: the left figure shows the original
level-zero system, the middle figure the level-one cells, and the right figure
the level-two cells.

cells are obtained by dividing the parent cell into eight (four in two dimen-
sions) children. This subdivision can be continued till a maximum level, de-
noted level �, has been obtained. We refer to a cell as ����

�
, where � denotes

its level and � the index that refers to its position.
In the Greengard and Rokhlin method various multipole expansions are

used. The formula for these expansions are given, for example, in [328];
here we give a short description of the four formulas that are used. In the
description of the algorithm we refer to the operation by the words in italics.

� Multipole expansion of the charges in a cell. Suppose we have a distri-
bution of � charges at location r� � ���� ��� ��� with charge 	�, then the
potential at a point r � � �� �� � �� � �� sufficiently far away is given by


�r �� �

��

���

��

����

��
�

����
Y�

�
�� �� � �� (12.2.1)

��

� �

��

���

	��
�

� Y��� ���� ���� (12.2.2)

where Y��� are the associated Legendre functions.

� Multipole translation. To calculate the multipole expansion of the par-
ent cell, for example, one can use the multipole expansion of its chil-
dren. However, for each of these children, the origin of this expan-
sion (12.2.1) is different for each cell. For example, if multipole expan-
sions have been made for the children, multipole translations are used to
translate these expansions to a new, common origin, the center of the
parent box. This translated multipole can be used only for sufficiently
far-away positions.

� Local expansion. To calculate the potential energy of all particles in a
cell one can determine the potential due to the multipoles in other
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cells. This involves a conversion of the multipole expansions into a
local expansion that converges in the region of interest. Since, in these
multipole expansions, the close-by cells are excluded, within a cell the
potential energy does not change much; therefore it is advantageous
to make a Taylor expansion of the local field in each cell. This field
can then be used to calculate the energy for all atoms in this cell. This
expansion can be used only for positions in the same cell.

� Translation of the local expansion. If we have calculated the local expan-
sion with respect to a given origin, for example, the local expansion of
the parent box, we can translate this local expansion to, for example,
the center of its children cells.

The Greengard and Rokhlin algorithm consists of the following steps:

1. An octal tree of level � is constructed; the charge distribution in each
of the �� cells is described with a multipole expansion (12.2.1) about
the center of a box.

2. The multipole expansion of each of the children of a parent is trans-
lated to a multipole expansion around the center of the parent box.
This procedure is repeated until level zero has been reached.

3. The calculation of the energy is done in two steps. Consider a par-
ticle in level-� cell ����

� . The calculation of the interactions with the
particles in the same cell and in the 26 neighboring level-� cells is per-
formed directly:

�clo �
�

close

����

���
�

The interactions with the remainder of the particles are done by cal-
culating the local field expansion in cell ����

� . To calculate this local
field, the following steps are used starting from level two (for levels
zero and one, a local expansion does not exist, and therefore they are
by definition zero, since there are no cells sufficiently far away).

(a) For each cell in level �, transform the local expansion of the parent
cell to the center of the current cell.

(b) Add to the local potentials the transformation of the multipole
potentials of the same level cells that fulfill the following condi-
tions:

� The cell must be sufficiently far away for the multipole ex-
pansion to be valid; this excludes the neighboring cells.

� The cells must be sufficiently close that their contribution has
not been included in the local field of the parent of the cell;
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Figure 12.4: The same level cells (shaded) of which the multipole potentials
are transferred to the current cell to give the local expansion. The current
cell is denoted by �, the neighbors of � do not contribute because they
touch �. The white cells of the parent level did not touch the parent cell
of � (indicated with a thick line) and therefore did contribute to the local
expansion of the parent cell.

this excludes the cells that contribute to local potential ini-
tialized in step 3a. In Figure 12.4 these cells are shown. In
three dimensions, � � �� � �� � ��� of these cells fulfill this
condition.

After level � has been reached the far-way contribution of the
charges in cell ����

�
is calculated from the local expansion �

Lo���:

�far �
�

�

�
Lo�r��	

It is important to note that the local expansion �
Lo��� can be used for

all particles in the same cell. Therefore in practice the calculation of
this term is usually done after step 2 of this algorithm.

The preceding algorithm is for a finite system of charge. To apply this algo-
rithm to a system with periodic boundary conditions, the following modifi-
cations have to be made. In a system with periodic boundary conditions the
level-zero cell is surrounded by periodic images that have the same multi-
pole expansion around their center. In the algorithm we have started step 3a,
assuming that the local field of level zero is 0. For the periodic system, this
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has to be replaced by the local expansion of the potential from all images
except the nearest 26 neighbors. If we have calculated this term, the remain-
der of the algorithm remains the same. The summation over all periodic
images is done using an Ewald summation technique (see [332] for details).
Since this involves the multipole expansion of the parent cell (which does
not depend on the number of particles), the overhead in computer time is
very small. However, the timings of Schmidt and Lee do show that to arrive
at the same accuracy as for the nonperiodic system one needs to use a higher
octal tree or more multipole moments.

12.3 Particle Mesh Approaches

The CPU time required for a fully optimized Ewald summation scales with
the number of particles as �������. In many applications we not only have
the long-range interactions but short-range interactions as well. For such
systems it may be convenient to use the same cutoff radius for the real-space
sum in the Ewald summation as for the short-range interactions. For a fixed
cutoff, however, the calculation of the Fourier part of the Ewald summation
scales as�����, which makes the Ewald summation inefficient for large sys-
tems. Note that it is only the reciprocal-space part of the Ewald sum that
suffers from this drawback. Clearly, it would be advantageous to have an
approach that handles the Fourier part more efficiently. Several schemes
for solving this problem have been proposed. They all exploit the fact that
the Poisson equation can be solved much more efficiently if the charges are
distributed on a mesh. The efficiency and accuracy of such mesh-based al-
gorithms depend strongly on the way in which the charges are attributed to
mesh points. Below, we briefly discuss the basics of the particle-mesh ap-
proach. However, a full description of the technical details is beyond the
scope of this book.

The earliest particle-mesh scheme for molecular simulations was devel-
oped by Hockney and Eastwood [24]. The charges in the systems were in-
terpolated on a grid to arrive at a discretized Poisson equation. For a regular
grid this equation can be solved efficiently using the Fast Fourier Transform
(FFT) [33]. The computer time associated with the FFT technique scales as
��� log��, where� denotes the number of points of discrete Fourier trans-
form. In its simplest implementation, the particle-mesh method is fast, but
not very accurate. The technique was subsequently improved by splitting
the calculation into a short-range and a long-range contribution. In the spirit
of the Ewald method, the short-range part is then calculated directly from
the particle-particle interactions while the particle-mesh technique is used
for the long-range contribution.
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Below, we briefly discuss the particle-mesh methods and their relation to
the Ewald-sum approach. We will not attempt to present an exhaustive de-
scription of all existing particle-mesh methods. The reason is twofold: first
of all, a systematic presentation of this subject—as given, for instance, in a
paper by Deserno and Holm [334]—would require a chapter on its own. Sec-
ondly, Deserno and Holm [334] have shown that most of the “good” alterna-
tive methods, such as the Particle Mesh Ewald (PME) [317] and Smooth Par-
ticle Mesh Ewald (SPME) [335], are very similar in spirit and can be seen as
variations of the original particle-particle/particle-mesh (PPPM) technique
of Hockney and Eastwood [24]. The choice of the method to use, often de-
pends on the application. For example, Monte Carlo simulations require an
accurate estimate of the energy, while in Molecular Dynamics simulations
we need to compute the forces accurately. Some particle-mesh schemes are
better suited to do one, some to do the other.

The idea of the PPPM method is to split the Coulomb potential into two
parts by using the following (trivial) identity:

�

�
�

����

�
�

� � ����

�
� (12.3.1)

The idea of using a switching function is similar to the splitting of the Ewald
summation into a short-range and a long-range part. Pollock and Glosli [336]
found that different choices for ���� yield comparable results, although the
efficiency of the method does depend strongly on a careful choice of this
function. Darden et al. [317] have shown that, if one uses the same Gaus-
sian screening function as in the Ewald summation, the PPPM technique
becomes indeed very similar to the Ewald method.

It is instructive to recall the Fourier-space contribution of the energy:
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Following Deserno and Holm [334], we write the Fourier-space contribution
as
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where ���r�� can be interpreted as the electrostatic potential due to the sec-
ond term in equation (12.3.1):

���r�� �
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As a product in Fourier space corresponds to a convolution in real space, we
see that the potential ���r�� is due to the original charge distribution ����,
convoluted by a smearing function ����. The Ewald summation is recovered
if we choose a Gaussian smearing function; in which case ���� is given by an
error function.

In order to evaluate the above expression for the Fourier part of the elec-
trostatic energy using a discrete fast Fourier transform, we have to perform
the following steps [334, 337]:

1. Charge assignment: Up to this point, the charges in the system are not
localized on lattice points. We now need a prescription to assign the
charges to the grid points.

2. Solving Poisson’s equation: Via a FFT technique the Poisson equation
for our discrete charge distribution has to be solved (the Poisson equa-
tion on a lattice can also be solved efficiently, using a diffusion algo-
rithm [338].

3. Force assignment (in the case of MD): Once the electrostatic energy
has been obtained from the solution of the Poisson equation, the forces
have to be calculated and assigned back to the particles in our system.

At every stage, there are several options to choose from. Deserno and Holm
have made a careful study of the relative merits of the various options and
their combinations [334]. Below we give a brief summary of their observa-
tions. For further details the reader is referred to the original article.

To assign the charges of the system to a grid, a charge assignment func-
tion, ��r�, is introduced. For example, in a one-dimensional system, the
fraction of a unit charge at position � assigned to a grid point at position
�� is given by ���� � ��. Hence, if we have a charge distribution ���� ��

� ��Æ��� ���, then the charges at a grid point �� are given by

������ �
�

	

��
�

d� ����� ������
 (12.3.3)

where � is the box diameter and 	 is the mesh spacing. The number of mesh
points in one dimension, �, is equal to �	. The factor �	 ensures that
�� is a density. Many choices for the function ���� are possible. Deserno
and Holm [334] listed the properties that ���� should have. ���� should
be an even function and the function should be normalized in such a way
that the sum of the fractional charges equals the total charge of the system.
Since the computational costs is proportional to the number of particles and
the number of mesh points to which the single charge is distributed, a func-
tion with a small support decreases the computational cost. In addition, one
would like to reduce the errors due to the discretization as much as possible.
If a particle moves through the system and passes from one grid point to



12.3 Particle Mesh Approaches 313

another, the function ���� should not yield abrupt changes in the fractional
charges.

A particularly nice way to approach the charge assignment problem was
described by Essmann et al. [335]. These authors argue that the problem of
discretizing the Fourier transform can be viewed as an interpolation prob-
lem. Consider a single term in the (off-lattice) Fourier sum ��e�ik�r�. This
term cannot be used in a discrete Fourier transform, because r does not, in
general, correspond to a mesh point. However, we can interpolate e�ik�r�

in terms of values of the complex exponential at mesh points. For conve-
nience, consider a one-dimensional system. Moreover, let us assume that �
varies between � and � and that there are � equidistant mesh points in this
interval. Clearly, the particle coordinate �� is located between mesh points
������� and ���������, where ���� denotes the integer part of a real number.
Let us denote the real number ����� by 	�. We can then write an order-
�
interpolation of the exponential as

e�i����
�

��

����

����	� � ��e�i������

where the ���’s denote the interpolation coefficients. Strictly speaking the
sum over � contains only � terms. However, to account for the periodic
boundary conditions, we have written it as if �� � � � �. For an inter-
polation of order 
�, only the 
� mesh point nearest to �� contributes to the
sum. For all other points, the weights ��� vanish. We can now approximate
the Fourier transform of the complete charge density as

�� �
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��
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����

����	� � ��e�i�������

This can be rewritten as

�� �
�
�

e�i������
	�
��
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We can interpret the above expression as a discrete Fourier transform of a
“meshed” charge density ���� �

�	
��
 ������	� � ��. This shows that the

coefficients ��� that were introduced to give a good interpolation of e�i����

end up as the charge-assignment coefficients that attribute off-lattice charges
to a set of lattice points.

While the role of the coefficients � is now clear, there are still several
choices possible. The most straightforward is to use the conventional La-
grange interpolation method to approximate the exponential (see Darden et
al. [317] and Petersen [327]). The Lagrange interpolation scheme is useful for
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Monte Carlo simulations, but less so for the Molecular Dynamics method.
The reason is that although the Lagrangian coefficients are everywhere con-
tinuous, their derivative is not. This is problematic when we need to com-
pute the forces acting on charged particles (the solution is that a separate
interpolation must be used to compute the forces). To overcome this draw-
back of the Lagrangian interpolation scheme, Essmann et al. suggested the
so-called SPME method [335]. The SPME scheme uses exponential Euler
splines to interpolate complex exponentials. This approach results in weight
functions ��� that are ��� � times continuously differentiable. It should be
stressed that we cannot automatically use the continuum version of Poisson’s
equation in all interpolation schemes. In fact equation (12.1.11) is only con-
sistent with the Lagrangian interpolation schemes. To minimize discretiza-
tion errors, other schemes, such as the SPME method, require other forms of
the Green’s function �̃��� (see ref. [334]).

In section 12.1.5 we discussed how the parameter � in the conventional
Ewald sum method can be chosen such that it minimizes the numerical error
in the energy (or in the forces). Petersen [327] has derived similar expres-
sions for the PME method. Expressions that apply to the PPPM method [24]
and the SPME scheme are discussed by Deserno and Holm [339]. In the
case of the force computation, matters are complicated by the fact that, in
a particle-mesh scheme, there are several inequivalent ways to compute the
electrostatic forces acting on the particles. Some such schemes do not con-
serve momentum, others do—but at a cost. The choice of what is the “best”
method, depends largely on the application [334].

This concludes our discussion of particle-mesh schemes. While we have
tried to convey the spirit of these algorithms, we realize that this description
is not sufficiently detailed to be of any help in the actual implementation of
such an algorithm. We refer readers who are considering implementation
of one of the particle-mesh schemes to the articles of Essmann et al. [335],
Deserno and Holm [334], and, of course, Hockney and Eastwood [24].

Example 14 (Algorithms to Calculate Long-Range Interactions)
A detailed comparison of the various algorithms for determining the long-
range interactions has been performed by Esselink [328]. Esselink consid-
ered an ensemble of cubic systems with a density � � �. Each system
consists of � randomly distributed particles. The charges were assigned a
random value between �� and � in such a way that the total charge on the
system was made 0. The algorithms compared were the naive approach,
which is a summation of all pairs of particles (PP), the Appel algorithm (AP),
and the Greengard and Rokhlin algorithm (GR); these three methods were
applied to a nonperiodic system. The Ewald summation (EW) was tested on
a periodic version of the system. All algorithms have been optimized for the
accuracy required.
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Figure 12.5: Comparison of algorithms for long-range interactions: the left
figure shows CPU time � as a function of the number of particles � for the
force and the right figure shows that for the energy. PP denotes the summa-
tion over all particle pairs, AP denotes Appel’s algorithm, GR the Greengard
and Rokhlin algorithm, and EW the Ewald summation. The data are taken
from [328].

In Figure 12.5 the efficiencies of the various algorithms for the energy
and force calculations are compared.

For nonperiodic systems, for ������ both the AP and GR algorithms
outperform the naive PP algorithm. The GR algorithm for ����� is more
efficient than the AP algorithm. However, if the energy alone is sufficient (as
in the case of Monte Carlo simulations), the AP algorithm is more efficient
than the GR algorithm and outperforms the PP algorithm for ����� . Ding
et al. [333] observed a slightly lower break-even point of the GR and PP
algorithms for � � ��� .

For periodic systems it is not possible to use the PP algorithm. For the
force calculation, the EW method is more efficient than the GR algorithm for
�����	��� . It is important to note that Esselink used a nonperiodic version
for the GR and AP algorithms; for a periodic version this break-even point
will shift to a slightly larger number of particles. Ding et al. [340] observed
a break-even point of the EW and GR methods for only 300 particles, while
Schmidt and Lee [332] obtained a break-even point at several thousand par-
ticles. The results of Esselink are supported by Petersen [327]. The reason
for this large difference is not clear, but may very much depend on different
(more efficient) implementations of the Ewald summation.

Esselink did not include the particle-mesh-type methods in his compari-
son. Petersen has shown that in the range of � � ���–��� the PME tech-
nique is superior to the Ewald summation and fast multipole methods. Luty
et al. [341] and Pollock and Glosli [336] obtained a conclusion result for
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the PPPM method. Pollock and Glosli even concluded that for any num-
ber of particles they have investigated (� ���) the PPPM method, despite
the ��� log�� complexity, is more efficient than the fast multipole meth-
ods, which have an ���� complexity. If the fast multipole method is com-
bined with multiple-time step integration (see section 15.3), a more favorable
break-even point is obtained [342]. For a more detailed comparison see
ref. [337].

12.4 E ald Summation in a Slab Geometry

In the previous sections we discussed the treatment of long-range interac-
tions in three-dimensional systems. For some applications one is interested
in a system that is finite in one dimension and infinite in the other two di-
mensions. Examples of such systems are fluids adsorbed in slit-like pores or
monolayers of surfactants.

Special techniques are required to compute long-range interactions in
such inhomogeneous systems. The most straightforward solution would
be to use the same approach as for the three-dimensional Ewald summa-
tion, but restrict the reciprocal-space sum to vectors in the ��� directions
[343, 344]. The energy we wish to calculate is

�Coul �
�

�

��

�����

�

n

� ����

�r�� � n�
�

where the summation over n � �	�
�� 	�
�� �� indicates that periodicity is
only imposed in the ��� directions. As in the ordinary Ewald summation
the prime indicates that for cell ������ � the terms � � � should be omitted.
We have a two-dimensional periodicity in the ��� directions for which we
can use the Fourier representation. The resulting expression for the energy
is [345]

�Coul �
�

�

��

�����

����

�
�

n

� erfc��r�� � n��

�r�� � n�
�

�

	�

�

�	


cos�h � r�������� ��� �

������� �� �
�
�

��

���

��� � (12.4.1)

where h � ������	�� ��� ��	�� �� denotes a reciprocal lattice vector, ��� is
the distance between two particles in the z direction, and  is the screening
parameter. The function ����� ��� �

������ � �
exp����erfc �� � ������ � exp�����erfc ���� ������

��
(12.4.2)

w
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corrects for the inhomogeneity in the nonperiodic direction. If the system is
truly two-dimensional, this term takes a simpler form. The function ����� �

����� � � � erf���� � exp
�
������

�
���
�
�� (12.4.3)

is an additional self-term of charge interactions in the central cell that must
be subtracted from the reciprocal-space sum. In a neutral system with all
particles in the plane � � � this term disappears. The last term in equa-
tion (12.4.1) is the same self-term that appears in the normal Ewald summa-
tion (12.1.22). The details of the derivation can be found in refs. [343–347].

From a computational point of view equation (12.4.1) is inconvenient.
Unlike the three-dimensional case, the double sum over the particles in the
Fourier part of equation (12.4.1) can, in general, not be expressed in terms of
the square of a single sum. This makes the calculation much more expensive
than its three-dimensional counterpart. Several methods have been devel-
oped to increase the efficiency of the evaluation of the Ewald sum for slab
geometries. Spohr [348] showed that the calculation can be made more effi-
cient by the use of a look-up table combined with an interpolation scheme
and the long-distance limit given by equation (12.4.6).

Hautman and Klein [349] considered the case in which the deviation of
the charge distribution from a purely two-dimensional system is small. For
such a system one can introduce a Taylor expansion in �, to separate the
in-plane contributions ��� in 	�

�
�� � �� � �� from the out-of-plane contri-

butions. Using this approach, Hautman and Klein derived an expression in
which the Fourier contribution can again be expressed in terms of sums over
single particles. However, unless the ratio ��

�
�� � �� � 	, the Taylor ex-

pansion converges very poorly. Therefore the applicability of this method is
limited to systems in which all charges are close to a single plane. An exam-
ple of such a system would be a self-assembled monolayer in which only the
head groups carry a charge [349].

An obvious idea would be to use the three-dimensional Ewald summa-
tion by placing a slab of vacuum in between the periodic images (see Fig-
ure 12.7). Spohr has shown [348], however, that even with a slab that is four
times the distance between the charges one does not obtain the correct lim-
iting behavior (see Example 15). The reason is that a periodically repeated
slab behaves like a stack of parallel plate capacitors. If the slab has a net
dipole moment, then there will be spurious electric fields between the pe-
riodic images of the slab. More importantly, the usual assumption that the
system is embedded in a conducting sphere does not correctly account for
the depolarizing field that prevails in a system with a (periodic) slab geome-
try. Yeh and Berkowitz [350] have shown that one can add a correction term
to obtain the correct limiting behavior in the limit of an infinitely thin slab.
In the limit of an infinitely thin slab in the � direction, the force on a charge
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+q

-q Ly

z

Figure 12.6: A system containing two point charges at positions ������ � and
������ �; because of the periodic boundary conditions in the � and � direc-
tions, two oppositely charge “sheets” are formed. There are no periodic
boundary conditions in the � direction.

�� due to the depolarizing field is given by [351]

�� � �
����

	

�� (12.4.4)

and the total electrostatic energy due to this field is

�� � �
��

	

�

�� (12.4.5)

where 
� is the net dipole moment of the simulation cell in the � direction


� �

��

���

����

If the slab is not infinitely thin compared to the box dimensions, higher-order
correction terms have to be added. However, Yeh and Berkowitz [350] have
shown that the lowest-order correction is sufficient if the spacing between
the periodically repeated slabs is three to five times larger than the thickness
of the slab (see also Crozier et al. [352]).

Example 15 (E ald in Slab)
To illustrate the difficulties that arise when computing long-range forces in a
slab geometry, Spohr and co-workers [348,352] considered a simple exam-
ple of two point charges: a charge �� at ������ � and a charge �� at ������ �.
The system is finite in the � direction and periodic in the ��� directions with
box sizes �� and �� (see Figure 12.6). Because of the periodic boundary
conditions the system forms two “sheets” of opposite charge.

In the limit � � �, the distance between the periodic images of the
charge is small compared to the distance between the sheets. We can there-
fore assume a uniform charge density �������� on each sheet. In this limit
the force acting between the two particles is given by

�� �
����

����
 (12.4.6)
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vacuum
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Figure 12.7: The system of Figure 12.6 artificially made periodic in the �

direction by adding a slab of vacuum.

It is instructive to compare the various methods to compute the long-range in-
teractions in this geometry. The true forces are given by the two-dimensional
Ewald summation (12.4.1) and we can compare the following methods:

� Two-Dimensional Ewald summation, this solution is given by equa-
tion (12.4.1), which is the “exact” solution to this problem.

� Bare Coulomb Potential, we simple assume that the periodic images
do not exist (or give a zero contribution). The resulting forces follow
Coulomb law.

� Truncated and Shifted Coulomb Potential, in this method it is assumed
that beyond �� � � the potential is zero. To remove the discontinuity at
� � �� the potential is shifted as well (see section 3.2.2).

� Three-Dimensional Ewald Summation, in this approximation a layer of
vacuum is added. The total system (vacuum plus slab) is seen as a
normal periodic three-dimensional system (see Figure 12.7) for which
the three-dimensional Ewald summation (see equation (12.1.25)) is
used. To study the effect of the thickness of the slab of vacuum, two
systems are considered, one with �� � ��� and a larger one with
�� � ���.

� 3-Dimensional Ewald Summation with Correction Term, this method
is similar to the previous one; i.e., the normal three-dimensional Ewald
summation is used with an additional slab of vacuum, except that now
we correct for the spurious dipolar interactions, using equation (12.4.4).
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Figure 12.8: Comparison of various methods for approximating the long-
range interaction for two charges of the slab geometry shown in Figure 12.6.

In Figure 12.8 we compare the various approximations with the true two-
dimensional solution. The bare Coulomb potential and the shifted and trun-
cated Coulomb potential both give a zero force in the limit � � � and
therefore do not lead to the correct limiting behavior. Although the three-
dimensional Ewald summation gives a better approximation of the correct
solution, it still has the incorrect limiting behavior for both a small and a large
added slab of vacuum. The corrected three-dimensional Ewald summation,
however, does reproduce the correct solution, for both a slab of vacuum of
��� and that of ���.



Chapter 13

Biased Monte Carlo Schemes

Up to this point, we have not addressed a fairly obvious question: what
is the point of using the Monte Carlo technique in simulations? After all,
Molecular Dynamics simulations can be used to study the static properties
of many-body systems and, in addition, MD provides information about
their dynamical behavior. Moreover, a standard MD simulation is computa-
tionally no more expensive than the corresponding MC simulation. Hence,
it would seem tempting to conclude that the MC method is an elegant but
outdated scheme.

As the reader may have guessed, we believe that there are good reasons
to use MC rather than MD in certain cases. But we stress the phrase in cer-
tain cases. All other things being equal, MD is clearly the method of choice.
Hence, if we use the Monte Carlo technique, we should always be prepared
to justify our choice. Of course, the reasons may differ from case to case.
Sometimes it is simply a matter of ease of programming: in MC simulations
there is no need to compute forces. This is irrelevant if we work with pair
potentials, but for many-body potentials, the evaluation of the forces may be
nontrivial. Another possible reason is that we are dealing with a system that
has no natural dynamics. For instance, this is the case in models with dis-
crete degrees of freedom (e.g., Ising spins). And, indeed, for simulations of
lattice models, MC is almost always the technique of choice. But even in off-
lattice models with continuous degrees of freedom, it is sometimes better, or
even essential, to use Monte Carlo sampling. Usually, the reason to choose
the MC technique is that it allows us to perform unphysical trial moves, that
is, moves that cannot occur in nature (and, therefore, have no counterpart in
Molecular Dynamics) but are essential for the equilibration of the system.

This introduction is meant to place our discussion of Monte Carlo tech-
niques for simulating complex fluids in a proper perspective: in most pub-
lished simulations of complex (often macromolecular) fluids, Molecular Dy-
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namics is used, and rightly so. The Monte Carlo techniques that we discuss
here have been developed for situations where either MD cannot be used at
all or the natural dynamics of the system are too slow to allow the system to
equilibrate on the time scale of a simulation.

Examples of such simulations are Gibbs ensemble and grand-canonical
Monte Carlo simulations. Both techniques require the exchange of particles,
either between a reservoir and the simulation box or between the two boxes.
Such particle exchanges are not related to any real dynamics and therefore
require the use of Monte Carlo techniques. But, in the case of complex fluids,
in particular fluids consisting of chain molecules, the conventional Monte
Carlo techniques for grand-canonical or Gibbs ensemble simulations fail.
The reason is that, in the case of large molecules, the probability of accep-
tance of a random trial insertion in the simulation box is extremely small
and hence the number of insertion attempts has to be made prohibitively
large. For this reason, the conventional grand-canonical and Gibbs ensem-
ble simulations were limited to the study of adsorption and liquid-vapor
phase equilibria of small molecules.

13.1 Biased Sampling Techniques

In this chapter,1 we discuss extensions of the standard Monte Carlo algo-
rithm that allow us to overcome some of these limitations. The main fea-
ture of these more sophisticated Monte Carlo trial moves is that they are
no longer completely random: the moves are biased in such a way that the
molecule to be inserted has an enhanced probability to “fit” into the existing
configuration. In contrast, no information about the present configuration of
the system is used in the generation of normal (unbiased) MC trial moves:
that information is used only to accept or reject the move (see Chapters 3
and 5). Biasing a Monte Carlo trial move means that we are no longer work-
ing with a symmetric a priori transition matrix. To satisfy detailed balance,
we therefore also should change the acceptance rules. This point is discussed
in some detail. Clearly, the price we pay for using configurationally biased
MC trial moves is a greater complexity of our program. However, the re-
ward is that, with the help of these techniques, we can sometimes speed up
a calculation by many orders of magnitude. To illustrate this, we shall dis-
cuss examples of simulations that were made possible only through the use
of bias sampling.

1Readers who are not familiar with the Rosenbluth scheme are advised to read section 11.2
first.
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13.1.1 Beyond Metropolis

The general idea of biased sampling is best explained by considering a sim-
ple example. Let us assume that we have developed a Monte Carlo scheme
that allows us to generate trial configurations with a probability that de-
pends on the potential energy of that configuration:

���� �� � ��������

For the reverse move, we have

���� �� � ��������

Suppose we want to sample the �,�,�ensemble, which implies that we have
to generate configurations with a Boltzmann distribution (5.2.2). Imposing
detailed balance (see section 5.1) yields, as a condition for the acceptance
rule,

acc��� ��

acc��� ��
�

�������

�������
exp�������� � �������

A possible acceptance rule that obeys this condition is

acc��� �� � min
�
	

�������

�������
exp�������� � ������

�
� (13.1.1)

This derivation shows that we can introduce an arbitrary biasing function
���� in the sampling scheme and generate a Boltzmann distribution of con-
figurations, provided that the acceptance rule is modified in such a way that
the bias is removed from the sampling scheme. Ideally, by biasing the prob-
ability to generate a trial conformation in the right way, we could make the
term on the right-hand side of equation (13.1.1) always equal to unity. In
that case, every trial move will be accepted. In Chapter 14.3, we have seen
that it is sometimes possible to achieve this ideal situation. However, in gen-
eral, biased generation of trial moves is simply a technique for enhancing
the acceptance of such moves without violating detailed balance.

We now give some examples of the use of non-Metropolis sampling tech-
niques to demonstrate how they can be used to enhance the efficiency of a
simulation.

13.1.2 Orientational Bias

To perform a Monte Carlo simulation of molecules with an intermolecular
potential that depends strongly on the relative molecular orientation (e.g.,
polar molecules, hydrogen-bond formers, liquid-crystal forming molecules),
it is important to find a position that not only does not overlap with the other
molecule but also has an acceptable orientation. If the probability of finding
a suitable orientation by chance is very low, we can use biased trial moves
to enhance the acceptance.
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Algorithm

Let us consider a Monte Carlo trial move in which a randomly selected par-
ticle has to be moved and reoriented. We denote the old configuration by
� and the trial configuration by �. We use standard random displacement
for the translational parts of the move, but we bias the generation of trial
orientations, as follows:

1. Move the center of mass of the molecule over a (small) random dis-
tance and determine all those interactions that do not depend on the
orientations. These interactions are denoted by �pos���. In practice,
there may be several ways to separate the potential into orientation-
dependent and orientation-independent parts.

2. Generate � trial orientations �b��b�� � � � �b�� and for each of these trial
orientations, calculate the energy �or�b��.

3. We define the Rosenbluth2 factor

���� �

��

���

exp����or�b���� (13.1.2)

Out of these � orientations, we select one, say, �, with a probability

��b�� �
exp����or�b�����

��� exp����or�b���
� (13.1.3)

4. For the old configuration, �, the part of the energy that does not de-
pend on the orientation of the molecules is denoted by �pos���. The
orientation of the molecule in the old position is denoted by b�, and
we generate ��	 trial orientations denoted by b�� � � � �b�. Using these
� orientations, we determine

���� � exp����or�b��� �

��
���

exp����or�b���� (13.1.4)

5. The move is accepted with a probability

acc��� �� � min
�
	�
����

����
exp�����pos��� � �pos�����

�
� (13.1.5)

It is clear that equation (13.1.3) ensures that energetically favorable configu-
rations are more likely to be generated. An example implementation of this
scheme is shown in Algorithm 22. Next, we should demonstrate that the
sampling scheme is correct.

2Since this algorithm for biasing the orientation of the molecules is very similar to an algo-
rithm developed by Rosenbluth and Rosenbluth in 1955 [295] for sampling configurations of
polymers (see section 11.2), we refer to the factor� as the Rosenbluth factor.
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Algorithm 22 (Orientational Bias)

PROGRAM orien bias move a particle to a random
position using an orient. bias

o=int(ranf()*npart)+1 select a particle at random
xt=ranf()*box start: generate new configuration
call ener(xt,en) calculate �pos

wn=exp(-beta*en)
sumw=0
do j=1,k generate � trial orientations

call ranor(b(j)) random vector on a sphere
call enero(xt,b(j),eno) calculate trial orientation � �or���

w(j)= exp(-beta*eno) calculate Rosenbluth factor (13.1.2)
sumw=sumw+w(j)

enddo
call select(w,sum,n) select one of the orientations
bn=b(n) � is the selected conformation
wn=wn*sumw Rosenbluth factor new configuration

consider the old conformation
call ener(x(o),en) calculate �pos

wo=exp(-beta*en)
sumw=0
do j=1,k consider � trial orientations
if (j.eq.1) then
b(j)=u(o) use actual orientation of particle �

else
call ranor(b(j)) generate a random orientation

endif
call enero(x(o),b(j),eno) calculate energy of trial orientation �

sumw=sumw+exp(-beta*eno) calculate Rosenbluth factor (13.1.4)
enddo
wo=wo*sumw Rosenbluth factor old configuration
if (ranf().lt.wn/wo) acceptance test (13.1.5)

+ call accept accepted: do bookkeeping
end

Comments to this algorithm:

1. The subroutine ener calculates the energy associated with the position, the
subroutine enero the energy associated with the orientations.

2. The subroutine ranor generates a random vector on a unit sphere (Algo-
rithm 42), subroutine accept does the bookkeeping associated with the ac-
ceptance of a new con guration, and the subroutine select selects one of
the orientations with probability ���� � �����

�
� ���� (see, Algorithm 41).
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Figure 13.1: Lattice model in which the molecules can take four orientations
(indicated by arrows, � � �). The dotted circle indicates the trial position of
the particle that we attempt to move.

Justi cation of Algorithm

To show that the orientational-bias Monte Carlo scheme just described is cor-
rect, that is, generates configurations according to the desired distribution, it
is convenient to consider lattice models and continuum models separately.
For both cases we assume that we work in the canonical ensemble, for which
the distribution of configurations is given by equation (5.2.2)

� �q�� � exp�����q����

where ��q�� is the sum of orientational and nonorientational part of the
energy:

� � �or � �pos�

We first consider a lattice model.

Lattice Models

We assume that the molecules in our lattice model can have � discrete orien-
tations (see Figure 13.1). We impose the condition of detailed balance (5.1.1):

���� �� � ���� ���

The flow of configurations � to � is (equation (5.1.2))

���� �� � � ���� 	��� ��� acc��� ��� (13.1.6)
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In the orientational-bias scheme, the probability of selecting conformation �
is (see equation (13.1.3))

���� �� �
exp����or����

����
�

Imposing detailed balance and substitution of the desired distribution for
� ��� and � ��� imposes the following condition on the acceptance rules:

acc��� ��

acc��� ��
�

exp��������
exp��������

�
exp����or����

����
�

����

exp����or����

�
����

����
exp�����pos��� � �pos������ (13.1.7)

Acceptance rule (13.1.5) satisfies this condition. This demonstrates that for a
lattice model detailed balance is fulfilled.

Continuum Model

If the orientation of a molecule is described by a continuous variable, then
there is an essential difference with the previous case. In the lattice model all
the possible orientations can be considered explicitly, and the correspond-
ing Rosenbluth factor can be calculated exactly. For the continuum case, we
can never hope to sample all possible orientations. It is impossible to de-
termine the exact Rosenbluth factor since an infinite number of orientations
are possible.3 Hence, the scheme for lattice models, in which the Rosen-
bluth factor for all orientations is calculated, cannot be used for a continuum
model. A possible solution would be to use a large but finite number of trial
directions. Surprisingly, this is not necessary. It is possible to devise a rig-
orous algorithm using an arbitrary subset of all possible trial directions. The
answer we get does not depend on the number of trial directions we choose
but the statistical accuracy does.

Let us consider the case in which we use a set of � trial orientations; this
set is denoted by

�b�� � �b��b�� � � � �b���

Conformation b� can be selected only if it belongs to the set �b��. The set of
all sets �b�� that includes conformation � is denoted by

�� � ��b���b� � �b��� �

Every element of �� can be written as �b�� 	��, where 	� is the set of � � 


additional trial orientations. In the flow of configuration � to �, we have to
3In Example 17 we discuss a special case for which the Rosenbluth factor can be calculated

exactly.
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bn bn

Figure 13.2: Continuum model in which the molecule can have an arbitrary
orientation (indicated by arrows). The figure shows two different sets of four
trial orientations that both include orientation b�.

consider the sum over all sets in ��

���� �� � � ���
�
����

���� ��� �� acc��� ��� �� (13.1.8)

in which the probability of generating configuration � and the acceptance
depend on the particular set of trial orientations �.

Similarly, for the reverse move, we define the set ��

�� � ��b���b� � �b����

for which each element can be written as �b�� �
���. The expression for the

reverse flow then becomes

���� �� � � ���
�
����

���� ��� �� acc��� ��� �� (13.1.9)

It should be stressed that infinitely many different sets of orientations in-
clude b�, and the same holds for sets that include b�. Moreover, the prob-
ability of selecting b� from such a set depends on the remainder of the set
�� (see Figure 13.2). Hence, the acceptance probability must also depend on
the sets �� and � ��.

Detailed balance is certainly obeyed if we impose a much stronger condi-
tion, “super-detailed balance,” which states that for every particular choice
of the sets �� and � ��, detailed balance should be obeyed,

���� ��� �� � ��� � ���� ��� ��� ����

� ��� ���� ��� �� � ��� acc��� ��� �� � ���

� � ��� ���� ��� ��� ��� acc��� ��� ��� ����

(13.1.10)

in which �� and � �� are two sets of 	 � 
 arbitrary additional trial orienta-
tions. It may seem strange that the sets �� and � �� show up on both sides of
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the equations. However, bear in mind that, to decide on the acceptance of the
forward move, one should generate both the set �� that includes the new ori-
entation and the set � �� around the old orientation. Hence, the construction
of a trial move includes both sets of trial orientations. As the probabilities
of generating �� and � �� appear on both sides of the equations, they cancel
each other. Moreover, the a priori probability of generating a random orienta-
tion b� in the forward move is equal to the a priori probability of generating
b� in the reverse move. So these generation probabilities also cancel each
other. This leads to a great simplification of the acceptance criterion. For the
canonical ensemble, substitution of equations (13.1.2) and (13.1.3) yields

acc��� ��� �� � ���

acc��� ��� ��� ���
�

exp��������
exp��������

exp����or����

��b�� � ���

��b�� ���

exp����or����

�
��b�� ���

��b�� � ���
exp�����pos��� � �pos������

(13.1.11)

As acceptance rule (13.1.5) satisfies this condition, detailed balance is indeed
obeyed.

Note that, in this demonstration, we did not have to assume that the
number of trial orientations � had to be large. In fact, the result is independent
of the number of trial orientations.

Example 16 (Orientational Bias of ater)
Cracknell et al. [353] used an orientational-bias scheme to simulate liquid
water. At ambient temperature, water has a relatively open structure, in
which the water molecules form a network due to the hydrogen bonds. To in-
sert a water molecule successfully, one has not only to place the molecule in
an empty spot but also find a good orientation. The method used by Crack-
nell et al. to find this optimum orientation is similar to the one introduced in
this section, in the sense that a bias in the orientation is introduced and is
subsequently removed by adjusting the acceptance rules. Yet, the philoso-
phy behind the approach of Cracknell et al. is fundamentally different.

In the scheme of Cracknell et al., a random position of a water molecule
	 is generated and one trial orientation 
 is drawn from a distribution ��	�
 �.
The problem is that the optimum distribution ��	�
 � is not known a priori and
depends on the conformations of the other water molecules. However, as
we have shown, any distribution can be used (as long as detailed balance
and microscopic reversibility are obeyed). Since the construction of the true
orientational distribution requires too much computer time, Cracknell et al.
constructed a distribution that was meant to mimic the true distribution. To
this end, one axis of the water molecule was given a random orientation and,
for the other axis a biasing scheme was used. For this axis, � equidistant
angles �� were generated

�� � ����� � � ��� � � � � ���
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For each of these, the Boltzmann factor of the energy was calculated

�� � � exp������
��

Assuming that the Boltzmann weight varies linearly between test points,
these � points span an approximate orientational distribution ����. For in-
stance, for � � ���	
���� �	� ��
��� the distribution � is given by

���� �
�

��
�
�����	 � ��
� ����� � ��� ��	
������� �

The constant � was fixed by the requirement that the orientational distribu-
tion be normalized. Using a standard rejection scheme, a trial orientation
is generated according to the distribution specified by ����. For liquid water
under ambient conditions, this method gives an improvement of a factor 2–3
over the conventional random insertion.

The main difference between the scheme of Cracknell et al. and the al-
gorithm just discussed is that in Cracknell et al.’s scheme an attempt is made
to construct a continuous distribution that approaches the true distribution in
the limit of large �. In contrast, for the scheme of section 13.1.2, the shape
of the true distribution does not matter. In particular, it is not necessary to
reconstruct the distribution or to calculate a normalization factor.

Example 17 (Dipoles Embedded in Spherical Atoms)
In systems with dipoles, the energy depends on the mutual orientation of
the molecules and a bias in the sampling of the orientation can be useful.
For models of dipoles embedded in an otherwise spherical particle (e.g., the
dipolar hard-sphere fluid) the scheme of section 13.1.2 can be implemented
elegantly as pointed out by Caillol [225]. In equations (13.1.2) and (13.1.4),
the Rosenbluth factor is calculated by sampling  trial orientations. For a
dipolar hard sphere (or any point dipole), we can calculate the Rosenbluth
factors exactly once the electric field �E� at the position of the inserted parti-
cle and that at the position of the old configuration are known:

��r� �

�
db exp���� � E�r��

�
sinh����� �E�r���

���� �E�r��
�

where � is the dipole moment of the molecule.4 A trial orientation can now
4In fact, there is a subtlety with this expression. It assumes that the component of the local

electric field in the direction of the dipole does not depend on the absolute orientation of the
dipole. This seems obvious. But, in the case of an Ewald summation, where the long-range
interaction of a molecule with its periodic images is represented by a Fourier sum, this condition
is not quite satisfied.
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be drawn directly from the distribution

��r��� �
exp���� � E�r��

����
�

13.2 Chain Molecules

The sampling of equilibrium conformations of polymers is usually time con-
suming. The main reason is that the natural dynamics of polymers are
dominated by topological constraints (for example, chains cannot cross) and
hence any algorithm based on the real motion of macromolecules will suffer
from the same problem. For this reason, many “unphysical” Monte Carlo
trial moves have been proposed to speed up the sampling of polymer con-
formations (see, e.g., [299]). In this section we introduce the configurational-
bias Monte Carlo scheme [293, 297, 354, 355]. This simulation technique can
be used for systems where it is not possible to change the conformation of a
macromolecule by successive small steps.

13.2.1 Con gurational-Bias Monte Carlo

The starting point for the configurational-bias Monte Carlo technique is the
scheme introduced by Rosenbluth and Rosenbluth in 1955 [295]. The Rosen-
bluth scheme itself also was designed as a method to sample polymer con-
formations.5 A drawback of the Rosenbluth scheme is, however, that it gen-
erates an unrepresentative sample of all polymer conformations; that is, the
probability of generating a particular conformation using this scheme is not
proportional to its Boltzmann weight. Rosenbluth and Rosenbluth corrected
for this bias in the sampling of polymer conformations by introducing a
conformation-dependent weight factor �. However, as was shown in detail
by Batoulis and Kremer [300], this correction procedure, although correct in
principle, in practice works only for relatively short chains (see Example 13).

The solution of this problem is to bias the Rosenbluth sampling in such
a way that the correct (Boltzmann) distribution of chain conformations is
recovered in a Monte Carlo sequence. In the configurational-bias scheme
to be discussed next, the Rosenbluth weight is used to bias the acceptance
of trial conformations generated by the Rosenbluth procedure. As we shall
show, this guarantees that all chain conformations are generated with the
correct Boltzmann weight.

5The Rosenbluth scheme is discussed in some detail in the context of a free energy calculation
of a chain molecule in Chapter 11.
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Figure 13.3: Sketch of the configurational-bias Monte Carlo scheme. The
left figure shows the generation of a new configuration and the right figure
shows the retracing of the old conformation. The arrows indicate the three
trial positions.

13.2.2 Lattice Models

Algorithm

The configurational-bias Monte Carlo algorithm consists of the following
steps:

1. Generate a trial conformation using the Rosenbluth scheme (see Fig-
ure 13.3, left) to grow the entire molecule, or part thereof, and compute
its Rosenbluth weight ����.

2. “Retrace” the old conformation (see Figure 13.3, right) and determine
its Rosenbluth factor.

3. Accept the trial move with a probability

acc��� �� � min���� ���������� (13.2.1)

The generation of a trial conformation � of a polymer consisting of � mono-
mers is generated using an algorithm based on the method of Rosenbluth
and Rosenbluth (see Figure 13.3):

1. The first atom is inserted at random, and its energy is denoted by
�����, and6 	���� � 
 exp���������, where 
 is the coordination
number of the lattice, for example, 
 � � for a simple cubic lattice.

2. For the next segment, with index , there are 
 possible trial directions.
The energy of trial direction � is denoted by �����. From the 
 possible

6The factor � in the definition of the Rosenbluth weight of the first segment, strictly speaking,
is unnecessary. We introduce it only here to make the subsequent notation more compact.
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directions, we select one, say, �, with a probability

����� �
exp���������

�����
� (13.2.2)

where ����� is defined as

����� �

��

���

exp���������� (13.2.3)

The interaction energy ����� includes all interactions of segment � with
other molecules in the system and with segments 1 through � � 	 of
the same molecule. It does not include the interactions with segments
� � 	 to 
. Hence, the total energy of the chain is given by ���� ���

��� �����.

3. Step 2 is repeated until the entire chain is grown and we can determine
the Rosenbluth factor of configuration �:

���� �

��

���

������ (13.2.4)

Similarly, to determine the Rosenbluth factor of the old configuration, �, we
use the following steps (see Figure 13.3).

1. One of the chains is selected at random. This chain is denoted by �.

2. We measure the energy of the first monomer ����� and compute �����

�  exp���������.

3. To compute the Rosenbluth weight for the remainder of the chain, we
determine the energy of monomer � at its actual position, and also the
energy it would have had had it been placed in any of the other  � 	

sites neighboring the actual position of monomer ��	 (see Figure 13.3).
These energies are used to calculate

����� � exp��������� �

��

���

exp����������

4. Once the entire chain has been retraced, we determine its Rosenbluth
factor:

���� �

��

���

������ (13.2.5)
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Algorithm 23 (Basic Con gurational-Bias Monte Carlo)

PROGRAM CBMC configurational-bias Monte Carlo

new conf=.false. first retrace (part of) the old conf.
call grow(new conf,wo) to calculate its Rosenbluth factor

new conf=.true. next consider the new configuration
call grow(new conf,wn) grow (part of) a chain and calculate

the Rosenbluth factor of the new conf.
if (ranf().lt.wn/wo) acceptance test (13.2.6)

+ call accept accept and do bookkeeping
end

Comments to this algorithm:

1. This algorithm shows the basic structure of the con gurational-bias Monte
Carlo method. The details of the model are considered in the subroutine grow
(see Algorithm 24 for a polymer on a lattice).

2. The subroutine accept takes care of the bookkeeping of the new con gura-
tion.

Finally the trial move from � to � is accepted with a probability given by

acc��� �� � min���� ���������� (13.2.6)

A schematic example of the implementation of this scheme is given in Al-
gorithms 23 and 24. We now have to demonstrate that the acceptance rule
(13.2.6) correctly removes the bias of generating new segments in the chain
introduced by using equation (13.2.2).

Justi cation of the Algorithm

The demonstration that this algorithm samples a Boltzmann distribution is
similar to the one for the orientational-bias algorithm for lattice models (sec-
tion 13.1.2).

The probability of generating a particular conformation � follows from
the repetitive use of equation (13.2.2):

���� �� �

��
���

exp���	�����


����
�

exp��������
����

� (13.2.7)
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Algorithm 24 (Gro ing a Chain on a Lattice)

SUBROUTINE grow(new conf,w) grow an � bead polymer on a lattice
with coordination number � and
calculate its Rosenbluth factor �

if (new conf) then
xn(1)=ranf()*box insert the first monomer

else
o=ranf()*npart+1 select old chain at random
xn(1)=x(o,1)

endif
call ener(xn(1),en) calculate energy
w=k*exp(-beta*en) Rosenbluth factor first monomer
do i=2,ell

sumw=0
do j=1,k consider the � trial directions

xt(j)=xn(i-1)+b(j) determine trial position
call ener(xt(j),en) determine energy trial position j
w(j)=exp(-beta*en)
sumw=sumw+w(j)

enddo
if (new conf) then

call select(w,sumw,n) select one of the trial position
xn(i)=xt(n) direction � is selected

else
xn(i)=x(o,i)

endif
w=w*sumw update Rosenbluth factor

enddo
return
end

Comments to this algorithm:

1. If new conf=.true. generate a new con guration, if new conf =
.false. retrace an old one.

2. In a lattice model we consider all possible trial positions, denoted by b(j),
therefore, for the old con guration, the actual position is automatically in-
cluded.

3. The subroutine select (Algorithm 41) selects one of the trial positions with
probability ���� � �����

�
� ����. The subroutine ener calculates the en-

ergy of the monomer at the given position with the other polymers and the
monomers of the chain that already have been grown.
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Similarly, for the reverse move,

���� �� �
exp��������

����
� (13.2.8)

The requirement of detailed balance (5.1.1) imposes the following condition
on the acceptance criterion:

acc��� ��

acc��� ��
�
����

����
� (13.2.9)

Clearly, the proposed acceptance criterion (13.2.6) satisfies this condition.
It should be stressed that the value of factor ���� depends on the direc-

tion in which the old configuration is retraced: if we start from monomer 1,
we find a different numerical value for ���� than if we start from monomer
�. As a consequence the probability of such a move depends on the way the
factor����has been calculated. Although such a dependence is at first sight
counterintuitive, both ways of retracing the old conformation—starting with
monomer 1 or with monomer �—result in the correct distribution of states, as
long as both ways occur with equal probability during the simulation. This
is automatically satisfied in the case of linear chains of identical segments
where the labeling of the terminal groups is completely arbitrary.

13.2.3 Off-lattice Case

Next we consider configurational-bias Monte Carlo for off-lattice systems.
As with the orientational moves described in section 13.1.2, some aspects
in a continuum version of configurational-bias Monte Carlo require special
attention. In section 13.1.2 we already showed that it may be possible to de-
velop a configurational-bias sampling scheme even when it is impossible to
calculate the Rosenbluth factor exactly. For chain molecules, we can follow
basically the same approach.

The other important point that we have to consider is the way in which
trial conformations of a chain molecule are generated. In a lattice model,
the number of trial conformations is dictated by the lattice. In an off-lattice
system, one could generate trial segments with orientations distributed uni-
formly on a unit sphere. However, for many models of interest this pro-
cedure is not very efficient, in particular when there are strong intramolec-
ular interactions (e.g., bending and torsion potentials). The efficiency of a
configurational-bias Monte Carlo algorithm depends to a large extent on the
method used of generating the trial orientations. For example, an isotropic
distribution of trial directions is well suited for completely flexible chains.
In contrast, for a stiff chain (e.g., liquid-crystal forming polymer), such a
trial position will almost always be rejected because of the intramolecular
interactions.
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Algorithm

From the preceding discussion, it follows that the intramolecular interac-
tions should be taken into account in generating the set of trial conforma-
tions. Here, we consider the case of a flexible molecule with contributions to
the internal energy due to bond bending and torsion. The fully flexible case
then follows trivially. Consider a chain of � linear segments, the potential
energy of a given conformation � has two contributions:

1. The bonded potential energy �bond is equal to the sum of the contribu-
tions of the individual joints. A joint between segments � and � � �

(say) has a potential energy �bond
�

that depends on the angle � between
the successive segments. For instance, �bond

�
��� could be of the form

�bond
�

���=���� � ���
�. For realistic models for polyatomic molecules,

�bond
�

includes all local bonded potential energy changes due to the
bending and torsion of the bond from atom � � � to atom �.

2. The external potential energy � ext accounts for all interactions with other
molecules and for all the nonbonded intramolecular interactions. In
addition, interactions with any external field that may be present are
also included in �ext.

In what follows we shall denote a chain in the absence of the external inter-
actions as the ideal chain. Note that this is a purely fictitious concept, as real
chains always have nonbonded intramolecular interactions.

To perform a configurational-bias Monte Carlo move, we apply the fol-
lowing “recipe” to construct a conformation of a chain of � segments. The
construction of chain conformations proceeds segment by segment. Let us
consider the addition of one such segment. To be specific, let us assume
that we have already grown � � � segments and are trying to add segment
�. This is done in two steps. First we generate a trial conformation �, next
we consider the old conformation �. A trial conformation is generated as
follows:

1. Generate a fixed number (say �) trial segments. The orientations of the
trial segments are distributed according to the Boltzmann weight asso-
ciated with the bonded interactions of monomer � (�bond

�
). We denote

this set of � different trial segments by

�b�� � �b�� � � � �b���

where the probability of generating a trial segment b is given by

	bond
� �b�db �

exp��
�bond
�

�b��db
�

db exp��
�bond
�

�b��
� � exp��
�bond

� �b��db�

(13.2.10)
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2. For all � trial segments, we compute the external Boltzmann factors
exp����ext

�
�b���, and out of these, we select one, denoted by �, with a

probability

�ext
�

�b�� �
exp����ext

� �b���

�ext
� ���

� (13.2.11)

where we have defined

�ext
� ��� �

��

���

exp����ext
� �b���� (13.2.12)

3. The selected segment � becomes the �th segment of the trial conforma-
tion of the chain.

4. When the entire chain is grown, we calculate the Rosenbluth factor of
the chain:

	ext��� �

��

���

�ext
� ���� (13.2.13)

where Rosenbluth factor of the first monomer is defined by

�ext
� ��� � � exp����ext

� �r���� (13.2.14)

where r� is the position of the first monomer.

For the old configuration, a similar procedure to calculate its Rosenbluth
factor is used.

1. One of the chains is selected at random. This chain is denoted 
.

2. The external energy of the first monomer is calculated. This energy
involves only the external interactions. The Rosenbluth weight of this
first monomer is given by

�ext
� �
� � � exp����ext

� �
��� (13.2.15)

3. The Rosenbluth factors of the other ��� segments are calculated as fol-
lows. We consider the calculation of the Rosenbluth factor of segment
�. We generate a set of �� � orientations with a distribution prescribed
by the bonded interactions (13.2.10). These orientations, together with
the actual bond between segment � � � and �, form the set of � orien-
tations �b��b ���. These orientations are used to calculate the external
Rosenbluth factor:

�ext
� �
� �

��

���

exp����ext
� �b���� (13.2.16)
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4. For the entire chain the Rosenbluth factor of the old conformation is
defined by

�ext��� �

��

���

�ext
� ���� (13.2.17)

After the new configuration has been generated and the Rosenbluth factor
of the old configuration has been calculated, the move is accepted with a
probability

acc��� �� � min���� ext�����ext����� (13.2.18)

We still have to show that this sampling scheme is correct.

Justi cation of Algorithm

Comparison with the lattice version shows that for the off-lattice case, two
aspects are different. First, for a model with continuous degrees of freedom,
we cannot calculate the Rosenbluth factor exactly. This point has been dis-
cussed in detail in section 13.1.2 for the orientational-bias scheme. As in sec-
tion 13.1.2, we impose super-detailed balance. Second, the way in which we
generate trial conformations is different for off-lattice than for lattice mod-
els. In a lattice model there is no need to separate the interactions in bonded
and external ones. We have to show that the way in which we treat bonded
interactions does not perturb the sampling.

The probability of generating a chain of length � is the product of the
probability of generating a trial orientation (13.2.10) and the probability of
selecting this orientation (13.2.11); for all monomers this gives, as a probabil-
ity of generating conformation �,

	��� �� �

��
���


���� �� �

��
���


bond
� ���
ext

� ���� (13.2.19)

In the following, we consider the expressions for one of the � segments, to
keep the equations simple. A given set of � trial orientations, which includes
orientation �, is denoted by �b�� �

�� (see section 13.1.2). As before, we stress
that the generation of the additional trial orientations (� ��) around the old
segment �b�� is an essential part of the generation of the trial move. We de-
note the probability of generating the combined set ��� � �� by

�
bond���� � ����
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Hence, the flow of configurations is given by

���� ��� �� � ��� � � ���� ���� ��� �� � ���� acc��� ��� �� � ���

� exp��������� � exp����bond�����
exp����ext����

	ext�b�� ���

� acc��� ��� �� � ����bond���� � ���
 (13.2.20)

For the reverse move, we have

���� ��� ��� ��� � � ���� ���� ��� ��� ���� acc��� ��� ��� ���

� exp�������� � � exp����bond�����
exp����ext����

	ext�b�� � ���

�acc��� ��� ��� ����bond���� � ���
 (13.2.21)

Recall that the total energy of a monomer is the sum of the bonded and
external contributions:

���� � �bond��� � �ext���


We now impose super-detailed balance (13.1.10). The factors �bond���� � ���

on both sides of the equation cancel each other, and we get the following
simple criterion for the acceptance rule:

acc��� ��� �� � ���

acc��� ��� ��� ���
�

	ext�b�� �
��

	ext�b�� � ���

 (13.2.22)

This demonstration was only for a single segment in a chain. For the entire
chain, the corresponding acceptance criterion is obtained analogously. It is
simply the product of the terms for all segments:

acc��� �� ���

�
� � � � � ��

�
��

acc��� �� �� ��

�
� � � � � � ��

�
��

�

��

���
	ext
�
�b�� �

��
��

���
	ext
�
�b�� � ���

�
���� ���

�� � � � � �
�

���

���� �� ��

�
� � � � � � ��

�
��



(13.2.23)
And, indeed, our acceptance rule (13.2.18) satisfies this condition. The equa-
tion shows that, because the trial orientations are generated with a probabil-
ity (13.2.10) prescribed by the bonded energy, this energy does not appear in
the acceptance rules. In Case Study 19, a detailed discussion is given on the
advantages of this approach. It is important to note that we do not need to
know the normalization constant � of equation (13.2.10).

The basic structure of an algorithm for configurational-bias Monte Carlo
for continuum models is very similar to the lattice version (Algorithm 23);
the main difference is the way in which configurations are generated.
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Case Study 18 (Equation of State of Lennard-Jones Chains)
To illustrate the configurational-bias Monte Carlo technique described in this
section, we determine the equation of state of a system consisting of eight-
bead chains of Lennard-Jones particles. The nonbonded interactions are
described by a truncated and shifted Lennard-Jones potential. The potential
is truncated at �� � ����. The bonded interactions are described with a
harmonic spring

�vib��� �

�
����vib�� � 	�� ��� � � � 	��� otherwise 


where � is the bond length, the equilibrium bond length has been set to 	,
and �vib � ���.

The simulations are performed in cycles. In each cycle, we perform on
average �dis attempts to displace a particle, �cbmc attempts to (partly) re-
grow a chain, and �vol attempts to change the volume (only in the case
of �,,� simulations). If we regrow a chain, the configurational-bias Monte
Carlo scheme is used. In this move we select at random the monomer from
which we start to regrow. If this happens to be the first monomer, the en-
tire molecule is regrown at a random position. For all the simulations, we
used eight trial orientations. The lengths of trial bonds are generated with a
probability prescribed by the bond-stretching potential (see Case Study 19).

In Figure 13.4 the equation of state as obtained from �,�,� simulations
is compared with one obtained from �,,� simulations. This isotherm is well
above the critical temperature of the corresponding monomeric fluid (�� �

	����, see Figure 3.3), but the critical temperature of the chain molecules is
appreciably higher [356].

13.3 Generation of Trial Orientations

The efficient generation of good trial conformations is an essential aspect
of the configurational-bias Monte Carlo scheme for continuum models with
strong intramolecular interactions. For some models (for example, Gaussian
chains) it is possible to generate this distribution directly. For an arbitrary
model we can use the acceptance-rejection technique [33] of generating the
trial orientations.

Here, we show how a rejection technique can be used to generate trial
positions efficiently. The number of trial directions in the CBMC scheme
can be chosen at will. Often, the optimal number of trial directions is deter-
mined empirically. However, more systematic techniques exist to compute
this optimal number [357].
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Figure 13.4: Equation of state of an eight-bead Lennard-Jones chain as ob-
tained from �,�,� and �,�,� simulations using the configurational-bias
Monte Carlo scheme. The simulations are performed with 50 chains at a
temperature � � ���.

13.3.1 Strong Intramolecular Interactions

Let us consider as an example a model of a molecule in which the bonded
interactions include bond stretching, bond bending, and torsion. The exter-
nal interactions are the nonbonded interactions. A united atom model of an
alkane is a typical example of such a molecule.

The probability that we generate a trial configuration b is given by, (see
equation (13.2.10))

��b�db � � exp���	bond�b��db� (13.3.1)

It is convenient to represent the position of an atom using the bond length 
,
bond angle �, and torsional angle � (see Figure 13.5). With these coordinates
the volume element db is given by

db � 
� d
d cos�d�� (13.3.2)

The bonded energy is the sum of the bond-stretching potential, the bond-
bending potential, and the torsion potential:

	bond�
�� � � 	vib�
� � 	bend��� � 	tors���� (13.3.3)

Substitution of equations (13.3.3) and (13.3.2) into equation (13.3.1) gives

��b�db � ��
�� �
� d
d cos�d�
� � exp���	vib�
��


�d
� exp���	bend����d cos �
� exp���	tors����d�� (13.3.4)
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Figure 13.5: Schematic sketch of a part of a molecule.

Many models use a fixed bond length, in which case the first term in equa-
tion (13.3.4) is a constant.

Let us consider the molecule shown in Figure 13.5. The first atom is
placed at a random position and we now have to add the second atom. For
convenience, it is assumed that the model has a fixed bond length. The sec-
ond atom has no bonded interactions other than the constraints on the bond
length. The distribution of trial orientations, equation (13.3.4), reduces to

���b�db � d cos �d�� (13.3.5)

Hence, the trial orientations are randomly distributed on the surface of a
sphere (such a distribution can be generated with Algorithm 42 in Appendix
J).

For the third atom, the bonded energy contains the bond-bending energy
as well. This gives, for the distribution of trial orientations,

���b�db � exp����bend���� d cos�d�� (13.3.6)

To generate � trial orientations distributed according to equation (13.3.6), we
again generate a random vector on a unit sphere and determine the angle
�. This vector is accepted with a probability exp����bend����. If rejected,
this procedure is repeated until a value of � has been accepted. In [33], this
acceptance-rejection method is shown to indeed give the desired distribution
of trial orientations. In this way, � (or � � �, for the old conformation) trial
orientations are generated.

An alternative scheme would be to generate angle � uniformly (� � ��	
 �)
and to determine the bond-bending energy corresponding to this angle. This
angle � is accepted with a probability sin��� exp����bend����. If rejected, this
procedure is repeated until a value of � has been accepted. The selected
value of � is supplemented with a randomly selected angle �. These two
angles determine a new trial orientation.
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Algorithm 25 (Gro ing an Alkane)

SUBROUTINE grow(new conf,w) grow or retrace an alkane and
calculate its Rosenbluth factor w

if (new conf) then new conf =.true.: new conf.
ib=int(ranf()*ell)+1 start to grow from position ��

ibnewconf=ib store starting position
else new conf =.false.: old conf.

ib=ibnewconf same starting position to regrow
endif as used for the new configuration
do i=1,ib-1

xn(i)=x(i) store positions that are not regrown
enddo
w=1
do i=ib,ell
if (ib.eq.1) then first atom

if (new conf) then
xt(1)=ranf()*box generate random position

else
xt(1)=xn(1) use old position

endif
call enerex(xt(1),eni) calculate (external) energy
w=k*exp(-beta*eni) and Rosenbluth factor

else second and higher atoms
sumw=0
do j=1,k
if (.not.new conf

+ .and. j.eq.1) then
xt(1)=x(i) actual position as trial orientation

else
call next ci(xt(j),xn,i) generate trial position

endif
call enerex(xt(j),eni) (external) energy of this position
wt(j)= exp(-beta*eni)
sumw=sumw+wt(j)

enddo
w=w*sumw update Rosenbluth factor
if (new conf) then

call select(wt,sumw,n) select one of the trial orientations
xn(i)=xt(n)
xstore(i)=xt(n) store selected configuration

else for bookkeeping
xn(i)=x(i)

endif
endif

enddo
return
end
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Comments to this algorithm:

1. Subroutine enerex calculates the external energy of an atom at the given
position, and subroutine select selects one of the trial positions with prob-
ability ���� � �����

�
� ���� (Algorithm 41).

2. Subroutine next ci adds the next atom to the chain as prescribed by the
bonded interactions (Algorithms 26, 27, and 28 are examples for ethane,
propane, and higher alkanes, respectively).

For the fourth and higher atoms, the bonded energy includes both bond-
bending and torsion energy. This gives, for equation (13.3.4),

�bond
� �b�db � exp����bend���� exp����tors����d cos�d�	 (13.3.7)

We again generate a random vector on a sphere and calculate the bond-
bending angle � and torsion �. These angles are accepted with a proba-
bility exp�����bend��� � �tors�����. If these angles are rejected, new vectors
are generated until one gets accepted.

Again an alternative scheme is to determine first a bond-bending angle
� by generating � uniformly on �
�� � and calculating the bond-bending en-
ergy corresponding to this angle. This angle � is then accepted with a prob-
ability sin��� exp����bend����. This procedure is continued until we have
accepted an angle. Next we generate a torsion angle randomly on �
�� � and
accept this angle with a probability exp����tors����, again repeating this un-
til a value has been accepted. In this scheme the bond angle and torsion
are generated independently, which can be an advantage in cases where the
corresponding potentials are sharply peaked.

The acceptance-rejection technique is illustrated in Algorithms 25–28 for
different �-alkanes. For all-atom or explicit-hydrogen models of hydrocar-
bons, a different strategy is needed for which we refer the reader to the rele-
vant literature [358, 359].

Case Study 19 (Generation of Trial Con gurations of Ideal Chains)
In section 13.2.3, we emphasized the importance of efficiently generating
trial segments for molecules with strong intramolecular interactions. In this
case study, we quantify this. We consider the following bead-spring model of
a polymer. The nonbonded interactions are described with a Lennard-Jones
potential and the bonded interactions with a harmonic spring:

�vib��� �

�

	��vib�� � ��� 
	� � � � �	�� otherwise �

where � is the bond length, the equilibrium bond length has been set to �,
and �vib � �

. The bonded interaction is only the bond stretching. The
external (nonbonded) interactions are the Lennard-Jones interactions. We
consider the following two schemes of generating a set of trial positions:
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Algorithm 26 (Gro ing Ethane)

SUBROUTINE next c2(xn,xt,i) generate a trial position for ethane
position of the first atom is known

call bondl(l) generate bond length
call ranor(b) generate vector on unit sphere
xt(i)=xn(i-1)+l*b
return
end

Comment to this algorithm:

1. The subroutine ranor generates a random vector on a unit sphere (Algo-
rithm 42), and the subroutine bondl (Algorithm 43) generates the bond
length prescribed by the bonded interactions.

Algorithm 27 (Gro ing Propane)

SUBROUTINE next c3(xn, generate a trial position for �th atom
+ xt,i) position of the (�� �)th atom is known
call bondl(l) generate bond length
if (i.eq.2) then second atom
call next c2(xn,xt,i) use Algorithm 26

else if (i.eq.3) then third atom
call bonda(xn,b,i) generate orientation of the
xt=xn(2)+l*b new position with desired bond angle

else
STOP ’error’

endif
return
end

Comment to this algorithm:

1. The subroutine ranor generates a random vector on a unit sphere (Algo-
rithm 42), the subroutine bondl (Algorithm 43) generates the bond length
prescribed by the bonded interactions (for the second atom, only bond stretch-
ing), and the subroutine bonda generates a vector on a unit sphere with bond
angle prescribed by the bond-bending potential (Algorithm 45).
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Algorithm 28 (Generating a Trial Position for an Alkane)

SUBROUTINE next cn(xn,xt,i) generate a trial position for �th atom
position of atoms (�� �) are known

call bondl(l) generate bond length
if (i.eq.2) then second atom
call next c2(xn,xt,i) use Algorithm 26

else if (i.eq.3) then third atom
call next c3(xn,xt,i) use Algorithm 27

else if (i.ge.4) then fourth and higher atoms
call tors bonda(xn,b,i) generate vector with prescribed
xt=xn(i-1)+l*b bond and torsional angles

endif
return
end

Comment to this algorithm:

1. The subroutine tors bonda (Algorithm 46) generates bond bending and a
torsional angle prescribed by the corresponding potentials.

1. Generate a random orientation with bond length uniformly distributed
in the spherical shell between limits chosen such that they bracket all
acceptable bond lengths. For instance, we could consider limits that
correspond to a 50% stretching or compression of the bond. In that
case, the probability of generating bond length � is given by

�����

�
� �dl � ��d� ��� � � � ���

� otherwise �

2. Generate a random orientation and the bond length prescribed by the
bond-stretching potential (as described in Algorithm 26). The probabil-
ity of generating bond length � with this scheme is

�����

�
� � exp����vib����dl � � exp����vib������d� ��� � � � ���

� otherwise �

Let us consider a case in which the system consists of ideal chains. Ideal
chains are defined (see section 13.2.3) as chains having only bonded inter-
actions.
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Suppose we use method � to generate the set of � trial orientations with
bond lengths ��� � � � � ��, then the Rosenbluth factor for atom � is given by

����� �

��

���

exp����vib�����	

The Rosenbluth factor of the entire chain is


��� �

��
���

�����	

For the old conformation a similar procedure is used to calculate its Rosen-
bluth factor:


��� �

��
���

�����	

In absence of external interactions the Rosenbluth factor of the first atom is
defined to be �� � �.

In the second scheme, we generate the set of � trial orientations with a
bond length distribution �����. If we use this scheme, we have to consider
only the external interaction. Since, for an ideal chain, the external interac-
tions are by definition 0, the Rosenbluth factor for each atom is given by

�ext
� ��� �

��
���

exp����ext����� � ��

and similarly, for the old conformation

�ext
� ��� � �	

Hence, the Rosenbluth weight is the same for the new and the old confor-
mations:


ext��� �

��
���

�ext
� ��� � ��

and


ext��� �

��
���

�ext
� ��� � ��	

The acceptance rule for the first scheme is

acc��� �� � min���
 ���
����

and for the second scheme is

acc��� �� � min���
 ext���
ext���� � �	
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Figure 13.6: Comparison of methods � and � for the distribution of bond
lengths � (left) and the distribution of the radius of gyration �� (right). The
solid lines represent the results for method �, the dots for method � (� � �

and � � �).

Inspection of these acceptance rules shows that, in the second scheme,
all configurations generated are accepted, whereas in the first scheme this
probability depends on the bond-stretching energy and therefore will be less
than 1. Hence, it is clearly useful to employ the second scheme.

To show that the results of schemes 1 and 2 are indeed equivalent, we
compare the distribution of the bond length of the chain and the distribution
of the radius of gyration in Figure 13.6. The figure shows that the results
for the two methods are indeed indistinguishable. The efficiency of the two
methods, however, is very different. In Table 13.1, the difference in accep-
tance probability is given for some values of the bond-stretching force con-
stant and various chain lengths. The table shows that if we use method 1
and generate a uniformly distributed bond length, we need to use at least 10
trial orientations to have a reasonable acceptance for chains longer than 20
monomers. Note that the corresponding table for the second method has a
100% acceptance for all values of � independent of the chain length.

Most of the simulations, however, do not involve ideal chains but chains
with external interactions. For chains with external interactions, the first
method performs even worse. First of all, we generate the chains the same
way as in the case of the ideal chains. The bonded interactions are the same
and we need to generate at least the same number of trial directions to get
a reasonable acceptance. In addition, if there are external interactions, we
have to calculate the nonbonded interactions for all of these trial positions.
The calculation of the nonbonded interactions takes most of the CPU time;
yet, in the first method, most of the trial orientations are doomed to be re-
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� � � � � � �� � � �� � � �� � � �� � � ���

1 0.6 �0.01 �0.01 �0.01 �0.01 �0.01
5 50 50 10 �0.01 �0.01 �0.01

10 64 58 53 42 �0.01 �0.01
20 72 66 60 56 44 �0.01
40 80 72 67 62 57 40
80 83 78 72 68 62 60

Table 13.1: Probability of acceptance (%) for ideal chains using uniformly
distributed bond lengths (method 1), where � is the chain length, and � is
the number of trial orientations. The value for the spring constant is �vib �

��� (see [289]). For method 2, the acceptance would have been 100% for all
values of � and �.

jected solely on the basis of the bonded energy. These two reasons make
the second scheme much more attractive than the first.

13.3.2 Generation of Branched Molecules

The generation of trial configurations for branched alkanes requires some
care. Naively, one might think that it is easiest to grow a branched alkane
atom by atom. However, at the branchpoint we have to be careful. Suppose
we have grown the backbone shown in Figure 13.7 and we now have to
add the branches 	� and 	�. The total bond-bending potential has three
contributions, given by


bend � 
bend���� ��� 	�� � 
bend���� ��� 	�� � 
bend�	�� ��� 	��

Vlugt [360] pointed out that, because of the term 
bend�	�� ��� 	��, it is better
not to generate the positions of 	� and 	� independently. Suppose that we
would try to do this anyway. We would then generate the first trial position,
	�, according to

��	�� � exp ���
bend���� ��� 	��� �

next we would generate the second trial position, 	�, using

��	��	�� � exp ��� �
bend���� ��� 	�� � 
bend�	�� ��� 	���� �

where ��	��	�� denotes the probability of generating 	� for a given position
of segment 	�. However, if we would generate both positions at the same
time, then the probability is given by

��	�� 	��

� exp ��� �
bend���� ��� 	�� � 
bend���� ��� 	�� � 
bend�	�� ��� 	���� 
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Figure 13.7: Growth of a banched alkane.

The two schemes are only equivalent if

����� ��� � ��������������

In general this equality does not hold. To see this, compare the probability
of generating configuration �� for the two schemes. This probability is ob-
tained by integrating over all orientations ��. If both chains are inserted at
the same time, we find that

����� �

�
d������� ���

� exp ����bend���� ��� ����

�

�
d�� exp ��� ��bend���� ��� ��� � �bend���� ��� ����� �

For the sequential scheme, we would have obtained

����� �

�
d���������������

� �����

� exp ����bend���� ��� ����

as, in this scheme, segment �� is inserted before segment ��. Therefore the
probability ����� cannot depend on ��.

We can now easily see that if we use a model in which the two branches
are equivalent, for example, isobutane, the sequential scheme does not gen-
erate equivalent a priori distributions for the two branches. Of course, the
generation of trial segments is but one step in the CBMC scheme. Any bias
introduced at this stage can be removed by incorporating the ratio of the true
and the biased distributions in the acceptance criterion. However, the result-
ing algorithm may be inefficient. Vlugt et al. [361] have shown that simply
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ignoring the bias introduced by the “sequential” scheme will result in small,
but noticeable, errors in the distribution of the bond angles.

As the insertion of two segments at the same time is less efficient than
sequential insertion, several strategies have been proposed to increase the
efficiency of the simultaneous generation of branches.

For molecules in which the bond-bending potential has three contribu-
tions (as in the example above), the simplest scheme is to generate two
random vectors on a sphere and use the conventional rejection scheme to
generate configurations with a probability proportional to their Boltzmann
weight [362]. One can also use this approach for more complex potentials
that include torsion. If the random generation of trial directions becomes
inefficient, it may be replaced by a simple Monte Carlo scheme [361].

For some intramolecular potential it may even be necessary to add more
than two atoms at the same time to ensure a proper a priori distribution of
added segments. In fact, for some molecules that have multiple torsional an-
gles, such as 2,3-dimethylbutane, this approach would imply that all atoms
have to be added at the same time. To avoid such many-particle insertions,
Martin and Siepmann [363] developed a scheme similar to the multiple-first-
bead algorithm (see section 13.5).

The idea is to use a random insertion to generate several trial positions
and to use a CBMC scheme to select acceptable candidates using the internal
energies only. These configurations that are distributed according to the cor-
rect intramolecular Boltzmann weight will subsequently be used in another
CBMC scheme that involves the more expensive external energy calcula-
tions.

To see how this approach works, assume that we have a model with inter-
nal interactions given by �int. A single segment is added using the following
steps:

1. First generate a set of �int random trial positions and for each position
compute the internal energy, �int���, and calculate the Rosenbluth fac-
tor associated with this internal energy

�int��� �

�int�

���

exp
�
���int���

�
�

A possible orientation is then selected using

�int��� �
exp

�
���int���

�

�int���
�

2. Step 1 is repeated to generate 	 trial positions which are then fed into
the conventional CBMC scheme to compute the Rosenbluth factor us-
ing the external potential �ext���.
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3. A similar method is used for the old configuration, giving �int��� and
�ext���.

4. A move is accepted using

acc��� �� � min
�
��
�int����ext���

�int����ext���

�
�

Depending on the details of the potential, further refinements are possible.
One can, for instance, separate the bond-bending potential and the torsion
potential. This would imply three nested CBMC steps giving three different
Rosenbluth factors. For more details see [363].

13.4 Fixed Endpoints

A drawback of the conventional configurational-bias Monte Carlo scheme is
that it regrows a chain molecule, either partly or completely, starting from
one of the endpoints. For dense systems, where only relatively short seg-
ments of the molecule can be regrown successfully, the configurational-bias
Monte Carlo scheme reduces to the reptation scheme. This implies that
the equilibration of the middle segments of a chain proceeds very slowly—
for heteropolymers, where reptation moves are forbidden, the situation is
even worse. The same restriction applies to chain molecules that have either
end rigidly anchored to a surface. Finally, conventional configurational-bias
Monte Carlo cannot be applied at all to ring polymers.

In the present section, we discuss how the configurational-bias Monte
Carlo scheme can be extended to include sampling of chain conformations
with fixed endpoints. With such a scheme it is possible to relax the interior of
a chain as efficiently as the endpoints. Ring polymers can be considered spe-
cial examples of chain molecules with fixed endpoints. Another interesting
example that can be treated in the same way is the sampling of path inte-
grals [364], but this falls outside the scope of this book. In addition, we dis-
cuss some alternative Monte Carlo techniques, such as concerted rotations
and end-bridging Monte Carlo, which have been developed by Theodorou
and co-workers [365].

13.4.1 Lattice Models

Let us first consider configurational-bias Monte Carlo between fixed end-
points for a chain molecule on a simple cubic lattice. If we remove � seg-
ments of the molecule between two fixed endpoints r� and r�, we cannot
simply regrow the molecule by the normal Rosenbluth scheme, because this
does not ensure that a trial conformation starting at r� will end at r�. Clearly,



354 Chapter 13. Biased Monte Carlo Schemes

we must bias our regrowth scheme in such a way that the trial conformation
is forced to terminate at r�. To achieve this, we use the following scheme.
Suppose that we start our regrowth at position r�. On a three-dimensional
lattice, this coordinate is represented by three integer coordinates ���� ������.
The final position is denoted by ���� ������. The total number of ideal (i.e.,
nonself-avoiding) random walks of length � between r� and n r� is denoted
by ��r�� r����. We can always compute the number of ideal random walks
between fixed endpoints analytically as it is simply a finite sum of multino-
mial coefficients [366, 367]. Let us next consider the growth of one segment,
starting at r�. In the original configurational-bias Monte Carlo scheme, we
would consider all � possible trial directions. And we would select one of
these directions, say direction �, with a probability

���� �
exp���	ext����

��

� �
�� exp���	ext�� ���

�

where 	ext��� denotes the potential energy of trial segment � due to all other
particles already in the system. In the present case, we use a different weight
factor to select the trial segment, namely,

���� �
exp���	ext������r� � 
r���� r� ��� ��

��

� �
�� exp���	ext�� �����r� � 
r�� ��� r���� ��

� (13.4.1)

In other words, the probability of selecting a given trial direction is propor-
tional to the number of ideal random walks of length � � � that start at the
position of the trial segment and terminate at r�. In this way, we guaran-
tee that we generate only conformations that start at r� and terminate at r�.
However, as before, we must correct for the bias that we have introduced.
We do this by constructing a modified Rosenbluth weight :  �

��

�����

with

�� �

��

� �
�� exp���	ext�� �����r� � 
r�� ��� r���� ����

� �
����r� � 
r�� ��� r���� ��

�

��

� �
�� exp���	ext�� �����r� � 
r�� ��� r���� ��

��r�� r���� � � ��
� (13.4.2)

If we now multiply the probability of generating a given trial conformation
� with the Rosenbluth weight of that conformation, we find that

�gen������� �

��
���

Æ
exp���	ext������r� � 
r���� r� ��� ����

� �
�� exp���	ext�� �����r� � 
r�� ��� r��� � ��

�

��

� �
�� exp���	ext�� �����r� � 
r�� ��� r��� � ��

��r�� r��� � �� ��

�

�

��
���

�
exp���	ext������r� � 
r���� r� ��� ��

��r�� r���� �� ��

�
� (13.4.3)
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The modified Rosenbluth weight has been chosen such that all but one of
the factors involving the number of ideal conformations cancel each other:

�gen�������� �

��

���

exp����ext����

��r�� r����

�
exp����ext����

��r�� r����
	 (13.4.4)

The remaining factor � is the same for all conformations of length � that
start at r� and terminate at r�; hence, it drops out when we compute the
relative probabilities of the old and new conformations. As before, the actual
Monte Carlo scheme involves generating the trial conformation using the
scheme indicated in equation (13.4.1) and accepting the new conformation
with a probability given by

acc�
� �� � min ���� ������
�� 	 (13.4.5)

A total regrowth of a ring polymer of length  can be accomplished by choos-
ing r1 � r� and � � .

13.4.2 Fully Flexible Chain

Again, it is possible to extend configurational-bias Monte Carlo to sample
chain conformations between fixed endpoints, using our knowledge of the
exact expression for the number (or, more precisely, the probability density)
of ideal (nonself-avoiding) conformations of � segments between fixed end-
points r� and r�. If we denote the probability density to find segment � � �

at a distance � from segment � by �����, then we have the following recur-
sion relation between the probability density of the end-to-end separation of
chains of length � and � � �:

��r����� �� �

�
d���r�� ����������	 (13.4.6)

From equation (13.4.6) and the fact that ����� is normalized, we immediately
deduce the inverse relation:

��r����� �
�

d���r�� ����� ��	 (13.4.7)

In the special case that all segments are of fixed length �, the expression for
this probability density is [368]

��r����� �

��������������

��� ������
�
�
�

�
�� � �� � ������

���

������ � ���������
� (13.4.8)

where ��� � �r� � r��. This expression is valid for all � � �. As before,
we wish to modify the configurational-bias Monte Carlo sampling of con-
formations of a fully flexible chain in such a way that the chain is forced to
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terminate at r�. There are two ways to do this. In one approach, we include
the bias in the probability with which we generate trial directions; in the sec-
ond, the bias is in the acceptance probability. In either case, our approach
does not depend on the specific form of �����, but only on the existence of
the recurrence relation (13.4.7).

In the first approach, we use the following scheme of generating the �th
segment out of � segments to be regrown. We generate � trial segments,
all starting at the current trial position r, such that the a priori probability of
generating a given trial direction (say, ��� is proportional to the probability of
having an ideal chain conformation of length �� � between this trial segment
and the final position r�. Let us denote this a priori probability by �bond����.
By construction, �bond���� is normalized. Using equation (13.4.7) we can
easily derive an explicit expression for �bond:

�bond��� �
�������r � �� r�� � � ��

�
d� �����

����r � �
� � r�� �� ��

�
�������r � �� r�� � � ��

��r � r�� � � �� ��
� (13.4.9)

From here on, we treat the problem just like the sampling of a continuously
deformable chain, described in section 13.2.3. That is, we select one of the �

trial directions with a probability

�sel��� �
exp��	
ext�����

��

� �
�� exp��	
ext��� ���

�

The contribution to the total Rosenbluth weight of the set of � trial directions
generated in step � is

�� �

��

� �
�� exp��	
ext��� ���

�
�

The overall probability of moving from the old conformation �old to a new
conformation �new is proportional to the product of the probability of gener-
ating the new conformation and the ratio of the new to the old Rosenbluth
weights. The condition of (super-)detailed balance requires that the prod-
uct of the probability of generating the new conformation times the Rosen-
bluth weight of that conformation is (but for a factor that is the same for the
old and new conformations) equal to the product of the Boltzmann weight
of that conformation and the properly normalized probability of generating
the corresponding ideal (i.e., noninteracting) conformation. If we write the
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expression for this product, we find that

��

���

�gen���������

�

�
���r� � r������r� � r�� � � ��

��r��� � r�� � � �� ��

��
exp����ext����������

� �
�� exp����ext��� ������

�

�

���

� �
�� exp����ext��� ������

�

�

�
exp����ext��total��

��

��� ���r� � r����
����r��� ��

	 (13.4.10)

As the last line of this equation shows, the conformations are indeed gener-
ated with the correct statistical weight. In ref. [369] this scheme has been ap-
plied to simulate model homopolymers, random heteropolymers, and ran-
dom copolymers consisting of up to 1000 Lennard-Jones beads. For mole-
cules with strong intramolecular interactions, the present scheme will not
work and other approaches are needed.

13.4.3 Strong Intramolecular Interactions

In the previous section we have shown that we can use the configurational-
bias Monte Carlo scheme to grow a chain of length 
 between two fixed
endpoints r� and r� if we know the probability density of conformations of
length 
 between these points. For the special case of a fully flexible chain
this probability distribution is known analytically. For chains with strong in-
tramolecular interactions such an analytical distribution is not known. Wick
and Siepmann [370] and Chen and Escobedo [371] have show that one can
use an approximated distribution. Chen and Escobedo [371] estimate this
distribution using a simulation of an isolated chain with bonded interactions
only. Wick and Siepmann [370] proposed a scheme in which this estimated
probability distribution is further refined during the simulation.

13.4.4 Rebridging Monte Carlo

If we model a realistic polymer or peptide we have to include bond-bending
and torsional potentials. Suppose that we rotate in the interior of a polymer
a randomly selected torsional angle by an amount ��. If we would keep all
other torsional angles of the remainder of the chain fixed, a tiny change of
this torsional angle would lead to a large displacement of the last atom of
the chain. If, on the other hand, one would only displace the neighboring
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Figure 13.8: Schematic drawing of the rebridging Monte Carlo scheme. Sup-
pose we give the atoms � and � a new position, for example, by rotating
around the ��,� and �,� bonds by angles ��� and ���, respectively. If we
would not change the positions of the trimer, consisting of the gray atoms
�, �, and 	, the intramolecular energy would increase significantly. The re-
bridging problem is to find a new conformation of the trimer with the same
bond length and bond angle as the old conformation that bridges the new
positions � � and � �.

atoms, the intramolecular interactions of the chain would increase signifi-
cantly, again limiting the maximum rotation. We would like to ensure that
the rotation affects only a small part of the interior of the chain and that it
results in a redistribution of atoms that does not result in a large increase in
the intramolecular energy. Concerted rotation and rebridging and end-bridging
Monte Carlo are schemes that have been developed by Theodorou and co-
workers [60, 365, 372] to perform such Monte Carlo moves.

In Figure 13.8 the rebridging problem is sketched schematically. Suppose
we give the atoms � and � a new position by a random rotation of the driver
angles �� and ��. Assume that all bond lengths and bond angles have a
prescribed value, for example, their equilibrium value or any other specified
value. The rebridging problem is to find all possible conformations of the
trimer consisting of the atoms �, �, and 	 that rebridge the new positions
of atoms � and � given the constraints of the prescribed bond lengths and
angles. Wu and Deem [373] have shown that for the rebridging problem
an analytical solution exists and that the maximum number of solutions is
strictly limited to 16. Alternatively, in refs. [365, 372] it is shown how to
numerically locate all solutions of the rebridging problem.

Suppose that we have all solutions of the rebridging problem, either
by the analytical solution of Wu and Deem or by the numerical scheme of
Theodorou and co-workers. The next step is to use this in a Monte Carlo
scheme. The scheme that we discuss here is only valid for the interior seg-
ments of a polymer. For the ends of the chains, a slightly different scheme
has to be used [60]:

1. The present conformation of the polymer is denoted by 
. We gener-



13.4 Fixed Endpoints 359

ate the new configuration of the polymer, �, by selecting an atom and
a direction (forward or backward) at random. This defines the atoms
pair � and �. These atoms are given new positions � � and � � by per-
forming a random rotation around bonds ��,� and �,�, respectively
(see Figure 13.8).

2. Solve the rebridging problem to locate all possible conformations of
the trimer that bridge the new positions of atoms � � and � �. The total
number of conformations is denoted by �� and out of these we select
one conformation, say �, at random.7 If no such conformation is found
the move is rejected.

3. For the old conformation, we also locate all possible conformation, i.e.,
we solve the rebridging problem to locate the conformations of the
trimer that bridge the old positions of atoms � and �. This number of
conformation is denoted by ��.

4. In the rebridging scheme, we use a dihedral angle � to generate a new
configuration. This implies a temporary change of coordinate system;
a Jacobian is associated with this change. In general, this Jacobian is
not equal to �. This Jacobian has to be taken into account in the ac-
ceptance rules [60]. The equations for this Jacobian can be found in
refs. [60,372,373]. Here, we assume that these determinants for the old
and new conformation have been calculated and are denoted by ��	�

and ����, respectively.

5. Of the new and old conformations the energies are calculated, 
�	�

and 
���, respectively.

6. The new conformation is accepted with a probability

acc�	� �� � min
�
��

exp���
����������

exp���
�	����	���

�
�

In refs. [60,372] the proof is given that this rebridging scheme obeys detailed
balance and samples a Boltzmann distribution.

The reason it is important to find all solutions of the rebridging problem
is to ensure detailed balance. Suppose that the determinants of the Jacobians
are one and the energiegs are zero, then without the terms ��� and ���

the acceptance probability would be one for all possible new conformations.
Suppose that we have a single solution for the new conformation, �� � �,
and for the old conformation �� � �. Without the correction we would
violate detailed balance since the a priori probability of the reverse move is
only a half. Pant and Theodorou [372] have developed an alternative scheme

7One could use the configurational-bias Monte Carlo scheme as an alternative for the ran-
dom selection.
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in which one has to find only a single rebridging conformation, which is the
first solution of their numerical scheme. To ensure detailed balance one has
to check that the old conformation should also be the first solution to which
the numerical scheme converges.

One can also use the rebridging scheme to connect atoms of different
chains. The idea of end-bridging Monte Carlo is to alter the connectivity
of the chain by bridging atoms from different chains. The simplest form
is to rebridge a chain end to an interior segment of another chain with a
trimer. Such an end-bridging Monte Carlo move induces a very large jump
in configuration space. An important aspect of such an end-bridging move
is, however, that it alters the chain lengths of the two chains. Therefore, such
a move cannot be used if it is important to keep the chain length fixed. How-
ever, in most practical applications of polymers one does not have a single
chain length but a distribution of chain lengths. Pant and Theodorou [372]
have shown that the resulting chain length distribution resembles a trun-
cated Gaussian distribution.

One can envision a chain length distribution as a mixture of a very large
number of components, each component characterized by its chain length �.
Imposing the chain length distribution is equivalent to imposing the chemi-
cal potentials of the various components. This suggests that we could com-
bine these end-bridging moves with the semigrand ensemble simulation tech-
nique (see section 9.1) to determine whether a change of the polymer length
should be accepted.

In principle one can use two rebridging moves for the interior segments
of two chains. This would allow us to perform moves in which the total
chain length remains constant. Whether in practice such a scheme will work
depends on the probability that two segments of different chains with the
same number of end segments connected to it are sufficiently close to each
other.

Tests show that the rebridging method is very efficient for polymer melts
with chain length up to C��. For chains up to C�� rebridging Monte Carlo
still samples the local structure efficiently, but fails to sample chain charac-
teristics at larger length scales such as the end-to-end vector. End-bridging
Monte Carlo effectively relaxes chains up to C��� [365]. Another important
application of rebridging Monte Carlo is the possibility of simulating cyclic
molecules. This application is illustrated by Wu and Deem in their study of
cis/trans isomerisation of proline-containing cyclic peptides [373, 374].

13.5 Beyond Polymers

Thus far, the configurational-bias scheme has been presented exclusively as
a method of generating polymer conformations. The method is more general
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than that. It can be used as a scheme to perform collective rearrangements
of any set of labeled coordinates. In fact, the scheme can be used to carry out
Monte Carlo moves to swap � small particles within a volume �� with one
large particle that occupies the same (excluded) volume. This application
of the CBMC scheme has been exploited by Biben et al. [375, 376] to study
mixtures of large and small hard spheres. Gibbs ensemble simulations of
mixtures of spherical colloids and rodlike polymers were performed by Bol-
huis and Frenkel [377] (see Example 18), using CBMC-style particle swaps
and a closely related approach was employed by Dijkstra and co-workers to
study phase separation [366, 367] in mixtures of large and small hard-core
particles on a lattice. An application of CBMC for improving the sampling
of ionic solutions has been proposed by Shelley and Patey [378].

A different application of the CBMC ideas is used by Esselink et al. [379]
to develop an algorithm to perform Monte Carlo moves in parallel. Parallel
Monte Carlo appears to be a contradiction in terms, since the Monte Carlo
procedure is an intrinsically sequential process. One has to know whether
the current move is accepted or rejected before one can continue with the
next move. The conventional way of introducing parallelism is to distribute
the energy calculation over various processors or to farm out the calculation
by performing separate simulations over various processors. Although the
last algorithm is extremely efficient and requires minimum skills to use a
parallel computer, it is not a truly parallel algorithm. For example, farming
out a calculation is not very efficient if the equilibration of the system takes
a significant amount of CPU time. In the algorithm of Esselink et al. several
trial positions are generated in parallel, and out of these trial positions the
one with the highest probability of being accepted is selected. This selec-
tion step introduces a bias that is removed by adjusting the acceptance rules.
The generation of each trial move, which includes the calculation of the en-
ergy (or Rosenbluth factor in the case of chain molecules), is distributed over
the various processors. Loyens et al. have used this approach to perform
phase equilibrium calculations in parallel using the Gibbs ensemble tech-
nique [380].

An interesting application of this parallel scheme is the multiple-first-
bead algorithm. In a conventional CBMC simulation one would have to
grow an entire chain before one can reject a configuration that is “doomed”
from the start because the very first bead has an unfavorable energy. If the
chains are long this can be inefficient and it becomes advantageous to use a
multiple-first-bead scheme [379]. Instead of generating a single trial position
for the first bead, � trial positions are generated. The energy of these beads,
����� with � � �� � � � � � , is calculated, and one of these beads, say �, is selected
using the Rosenbluth criterion:

�1st��� �
exp��	������


�



362 Chapter 13. Biased Monte Carlo Schemes

where

����� �

��

���

exp����������

Also for the old configuration one should use a similar scheme to compute
�����. For some moves the same set of first beads used for the new config-
uration can be used to compute the Rosenbluth factor for the old configura-
tion [381]. To ensure detailed balance the Rosenbluth factors associated with
the multiple-first beads should be taken into account in the acceptance rules:

acc��� �� � min
�
��
�����	���

�����	���

�
�

where 	��� and 	��� are the (conventional) Rosenbluth factors of the new
and the old configuration of the chain, respectively, excluding the contribu-
tion of the first segment. Vlugt et al. [382] have shown that a multiple-first-
bead move can increase the efficiency of simulations of n-alkanes up to a
factor of 
.

Another extension of the CBMC principles is the use of a dual-cutoff ra-
dius [382]. The idea is that usually in a particular trial conformation is ac-
cepted not because it is energetically very favorable, but because its com-
petitors are so unfavorable. This suggests that one can use a much cheaper
potential to perform a prescreening of acceptable trial configurations in a
CBMC move. Let us split the potential into a contribution that is cheap to
compute and the expensive remainder:

���� � �cheap��� � �����

This can be done, for example, by splitting the potential into a long-range
and short-range part. We can now use the cheap part in our CBMC scheme
to generate trial configurations. The probability of generating a given con-
figuration is then

�cheap��� �
exp����cheap����

	cheap���

and the move is accepted using

acc��� �� � min
�
��
	cheap���

	cheap���
exp�������� � ������

�
�

In ref. [382] it is shown that this scheme obeys detailed balance. The advan-
tage of this algorithm is that the expensive part of the energy calculation has
to be performed only once and not for every trial segment. A typical appli-
cation would be to include the Fourier part of an Ewald summation in �.
Many variations on this theme are possible.
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Example 18 (Mixtures of Colloids and Polymers)
Configurational-bias Monte Carlo (CBMC) was presented as a scheme to
sample conformations of chain molecules. In fact, the method is more gen-
eral than that. It can be used to perform collective rearrangements of any set
of labeled coordinates. For instance, the scheme can be used to carry out
Monte Carlo moves to swap � small particles within a volume �� with one
large particle that occupies the same (excluded) volume. This application
of the CBMC scheme has been exploited by Biben [375] to study mixtures
of large and small hard spheres. Gibbs ensemble simulations of mixtures
of spherical colloids and rodlike polymers were performed in ref. [377] using
CBMC-style particle swaps, and a closely related approach was employed
by Dijkstra et al. [366, 367] to study phase separation of mixtures of large
and small hard-core particles on a lattice.

Below, we briefly discuss an example of such a CBMC scheme, related
to the phase behavior of colloidal suspensions [377]. Examples of colloidal
solutions are milk, paint, and mayonnaise. Since a single colloidal particle
may contain more than ��� atoms, it is not practical to model such a particle
as a collection of atoms. It is better to describe colloidal solutions using
coarse-grained models. For example, a suspension of sterically stabilized
silica spheres in a nonpolar solvent can be described surprisingly accurately
with a hard-sphere potential. Similar to the hard-sphere fluid, such a colloidal
suspension has a “fluid-solid” transition, but not a “liquid-gas” transition. To
be more precise, the colloidal particles undergo a transition from a liquid-
like arrangement to a crystalline structure. But in either case, the solvent
remains liquid. In what follows, we use the terms “crystal,” “liquid,” and “gas”
to refer to the state of the colloidal particles in suspension. Experimentally,
it is observed that a liquid-gas transition can be induced in a suspension of
hard-sphere colloids by adding nonadsorbing polymers.

The addition of polymers induces an effective attraction between the col-
loidal particles. This attraction is not related to any change in the internal
energy of the system, but to an increase in the entropy. It is not difficult
to understand the origin of such entropic attractions. Let us assume that
the polymers in solution do not interact with each other. This is never rig-
orously true, but for dilute solutions of long, thin molecules, it is a good first
approximation. The translational entropy of � polymers in a volume � is
then equal to that of � ideal-gas molecules occupying the same volume:
�
���
trans � constant���� ln�, where the constant accounts for all those con-

tributions that do not depend on the volume �. In the absence of colloids,
the volume accessible to the polymers is equal to ��, the volume of the con-
tainer. Now suppose that we add one hard colloidal particle with radius ��.
As the polymers cannot penetrate the colloidal particle, such a colloid ex-
cludes the polymers from a spherical volume with radius �excl � �� � ��,
where �� is the effective radius of the polymer (for flexible polymers, �� is



364 Chapter 13. Biased Monte Carlo Schemes

on the order of the radius of gyration, and for rigid polymers, �� is of or-
der ����, where � is the length of the polymer). Let us denote the volume
excluded by one colloid by �

�
excl. Clearly, the entropy of � polymers in the

system that contains one colloid is �
���
trans � constant � ��� ln��� � �

�
excl�.

Now consider what happens if we have two colloidal spheres in the solution.
Naively, one might think that the entropy of the polymer solution is now equal
to �

���
trans � constant � ��� ln��� � ��

�
excl�. However, this is only true if the

two colloids are far apart. If they are touching, their exclusion zones overlap,
and the total excluded volume �

pair
excl is less than ��

�
excl. This implies that the

entropy of the polymers is larger when the colloids are touching than when
they are far apart. Therefore, we can lower the free energy of the polymer
solution by bringing the colloids close together. And this is the origin of en-
tropic attraction. The strength of the attraction can be tuned by changing the
polymer concentration and, for sufficiently high polymer concentrations, the
colloidal suspensions may undergo a “liquid-vapor” phase separation.

In the present example, we consider the phase behavior of a mixture of
colloidal hard spheres and thin hard rods [377]. In principle, we can use
Gibbs ensemble simulations to study the “vapor-liquid” coexistence in this
mixture. However, a conventional Gibbs ensemble simulation is likely to fail
as the transfer of a colloidal sphere from one simulation box to the other will,
almost certainly, result in an overlap of the sphere with some of the rodlike
polymers. We can now use the CBMC approach to perform such a trial move
with a higher chance of success. In this scheme, we perform the following
steps:

1. Randomly select a sphere in one of the boxes, and insert this sphere
at a random position in the other box.

2. Remove all the rods that overlap with this sphere. These rods are
inserted in the other box. The positions and orientations of the rods are
chosen such that they intersect with the volume vacated by the colloid
—but apart from that, they are random. Even though we have thus
ensured that the rods are in, or near, the “cavity” left by the colloidal
sphere, they are very likely to overlap with one or more of the remaining
spheres. However, if one tries several orientations and positions of the
rods and selects an acceptable configuration using the configurational-
bias Monte Carlo scheme, one can strongly enhance the acceptance
probability of such particle swaps.

The results of these Gibbs ensemble simulations are presented in Fig-
ure 13.9. This figure shows that if one increases the fugacity (and thereby
the concentration) of the rods, a demixing into a phase with a low density
of spheres and a phase with a high density of spheres occurs. The longer
the rods, the lower the concentration at which this demixing occurs. We
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Figure 13.9: Coexistence curves for a mixture of hard spheres and thin rods
[377]. The horizontal axis measures the density and the vertical axis the
fugacity (� exp����). ��� is the ratio of the length of the rods to the diameter
of the hard spheres.

stress once again that, in this system, only hard-core interactions between
the particles exist. Therefore this demixing is driven by entropy alone.

13.6 Other Ensembles

13.6.1 Grand-Canonical Ensemble

In Chapter 5, we introduced the grand-canonical ensemble in the context of
simulations of systems in open contact with a reservoir. An essential ingre-
dient of Monte Carlo simulations in this ensemble is the random insertion or
removal of particles. Clearly, such simulations will be efficient only if there is
a reasonable acceptance probability of particle-insertion moves. In particular
for polyatomic molecules, this is usually a problem. Let us consider the sys-
tem mentioned in Example 2, a grand-canonical ensemble simulation of the
adsorption of molecules in the pores of a microporous material such as a ze-
olite. For single atoms, the probability that we find an arbitrary position that
does not overlap with one of the atoms in the zeolite lattice is on the order 1
in 10�. For dimers, we have to find two positions that do not overlap, and if
we assume that these positions are independent, the probability of success
will be 1 in 10�. Clearly, for the long-chain molecules, the probability of a
successful insertion is so low that to obtain a reasonable number of accepted
insertions, the number of attempts needs to be prohibitively large. In the
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present section, we demonstrate how configurational-bias Monte Carlo tech-
nique can be used in the grand-canonical ensemble to make the exchange
step of chain molecules more probable.

Algorithm

As in the general scheme of the configurational-bias Monte Carlo technique
for off-lattice systems, we divide the potential energy of a given conforma-
tion into a bonded potential energy (�bond), which includes the local in-
tramolecular interactions, and an external potential energy (�ext), which in-
cludes the intermolecular interactions and the nonbonded intramolecular
interactions (see section 13.2.3). A chain that has only bonded interactions is
defined as an ideal chain. Let us now consider the Monte Carlo trial moves
for the insertion and removal of particles.

Particle Insertion To insert a particle into the system, we use the following
steps:

1. For the first monomer, a random position is selected, and the energy of
this monomer is calculated. This energy is denoted by �ext

�
��� and we

define �ext
�

��� � � exp����ext
�

���� (as before, the factor � is introduced
only to simplify the subsequent notation).

2. For the following monomers, a set of � trial positions is generated.
We denote these positions by �b�� � �b��b�� � � � �b��. This set of trial
orientations is generated using the bonded part of the potential, which
results in the following distribution for the �th monomer:

�bond
� �b�db � � exp����bond

� �b��db (13.6.1)

with
��� �

�
db exp����bond

� �b��	 (13.6.2)

Note that the way the trial orientations are generated depends on the
type of monomer being added (see section 13.3). For each of these trial
positions the external energy, �ext

� �b��, is calculated, and one of these
positions is selected with a probability

�ext
� �b�� �

exp����ext
� �b���

�ext
� ���

� (13.6.3)

in which

�ext
� ��� �

��
���

exp����ext
� �b���	
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3. Step 2 is repeated until the entire alkane of length � has been grown,
and the normalized Rosenbluth factor can be calculated:

�
ext��� �

�ext���

��
�

��

���

�ext
� ���

�
� (13.6.4)

4. The new molecule is accepted with a probability

acc��� �� �� � min
�
��
	�
� exp�����

�� � ��
�

ext���

�
� (13.6.5)

where �� is the chemical potential of a reservoir consisting of ideal
chain molecules and 	�
� is the kinetic contribution to the molecular
partition function (for atoms, 	�
� � ����).

Particle Removal To remove a particle from the system, we use the follow-
ing algorithm:

1. A particle, say, �, is selected at random, the energy of the first monomer
is calculated and is denoted by �ext

� ���, and we determine �ext
� ��� �

� exp����ext
� ����.

2. For the following segments of the chain, the external energy �ext
� ���

is calculated and a set of � � � trial orientations is generated with a
probability given by equation (13.6.1). Using this set of orientations
and the actual position, we calculate for monomer �:

�ext
� ��� � exp����ext

� ���� �

��
���

exp����ext
� �b����

3. After step 2 is repeated for all � monomers and we compute for the
entire molecule:

�
ext��� �

�ext���

��
�

��
���

�ext
� ���

�
� (13.6.6)

4. The selected molecule is removed with a probability

acc��� �� �� � min
�
��

�

	�
�exp�����
�

�ext���

�
� (13.6.7)
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We have defined �� as the chemical potential of a reservoir consisting of
ideal chains. It is often convenient to use as a reference state the ideal gas
of nonideal chains (i.e., chains that have both bonded and nonbonded in-
tramolecular interactions). This results in a simple, temperature-dependent
shift of the chemical potential:

��B
� ��id�chain � ��nonid�chain � ln

�
�nonbonded

�
� (13.6.8)

where ��nonbonded� is the average Rosenbluth factor due to the nonbonded
intramolecular interactions. This Rosenbluth factor has to be determined
in a separate simulation of a single chain molecule. For more details about
reference states, see Appendix G. In the same appendix, we also discuss the
relation between the chemical potential and the imposed pressure (the latter
quantity is needed when comparing with real experimental data). To show
that the preceding algorithm does indeed yield the correct distribution, we
have to demonstrate, as before, that detailed balance is satisfied. As the
proof is very similar to those shown before, we will not reproduce it here.
For more details, the reader is referred to [304].

Example 19 (Adsorption of Alkanes in eolites)
In Example 2 grand-canonical simulations were used to determine the ad-
sorption of methane in the zeolite silicalite. Using the scheme described in
the present section, Smit and Maesen computed adsorption isotherms of the
longer alkanes [383]. Adsorption isotherms are of interest since they may
signal phase transitions, such as capillary condensation or wetting, of the
fluid inside the pores [384]. Capillary condensation usually shows up as a
step or rapid variation in the adsorption isotherm. It is often accompanied by
hysteresis, but not always; for instance, experiments on flat substrates [385]
found evidence for steps in the adsorption isotherm without noticeable hys-
teresis.

Since the pores of most zeolites are of molecular dimensions, adsorbed
alkane molecules behave like a one-dimensional fluid. In a true one-dimen-
sional system, phase transitions are not expected to occur. To the extent that
zeolites behave as a one-dimensional medium, one therefore might expect
that the adsorption isotherms of alkanes in zeolites exhibit no steps. If steps
occur, they are usually attributed to capillary condensation in the exterior
secondary pore system formed by the space between different crystals. For
silicalite, adsorption isotherms have been determined for various �-alkanes,
and, indeed, for the short-chain alkanes (methane–pentane) the isotherms
exhibit no steps. The same holds for decane. For hexane and heptane,
however, steplike features are observed (for experimental details, see [383]).

In the simulations of Smit and Maesen [383] the alkane molecules are
modeled with a united atom model; that is, CH� and CH� groups are con-
sidered as single interaction centers [386]. The zeolite is modeled as a rigid
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Figure 13.10: Adsorption isotherms of butane (left) and heptane (right); the
closed symbols are experimental data and the open symbols the results from
simulations at � � ��� K.

crystal and the zeolite-alkane interactions are assumed to be dominated by
the interaction with the oxygen atoms and are described by a Lennard-Jones
potential.

Figure 13.10 compares the simulated adsorption isotherms of various
alkanes in silicalite with experimental data. For butane, a smooth isotherm is
observed and the agreement between experiments and simulation is good.
For hexane and heptane, the agreement is good at high pressures but at
low pressures deviations indicate that the zeolite-alkane model may need to
be refined. It is interesting to note that, for heptane, both the experiments
and the simulations show a step at approximately half the loading. Since the
simulations are performed on a perfect single crystal, this behavior must be
due to a transition of the fluid inside the pores and cannot be attributed to
the secondary pore system.

Silicalite has two types of channels, straight and zigzag, which are con-
nected via intersections. It so happens that the length of a hexane molecule
is on the order of the length of the period of the zigzag channel. The simula-
tions show that, at low chemical potential, the hexane molecules move freely
in these channels and the molecules will spend part of their time at the inter-
sections. If a fraction of the intersections is occupied, other molecules cannot
reside in the straight channels at the same time. At high pressures, almost all
hexane molecules fit exactly into the zigzag channel. They no longer move
freely and keep their noses and tails out of the intersection. In such a con-
figuration the entire straight channel can now be tightly packed with hexane
molecules. This may explain the plateau in the adsorption isotherm; to fill
the entire zeolite structure neatly, the hexane molecules located in zigzag
channels first have to be “frozen” in these channels. This “freezing” of the
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positions of the hexane molecules implies a loss of entropy and therefore will
occur only if the pressure (or chemical potential) is sufficiently high to com-
pensate for this loss. This also makes it clear why we do not observe a step
for molecules shorter or longer than hexane or heptane. If the molecules
are longer, they will always be partly in the intersection and nothing can be
gained by a collective freezing in the zigzag channels. If the molecules are
shorter than one period of the zigzag channel, a single molecule will not oc-
cupy an entire period and a second molecule will enter, which results in a
different type of packing. The interesting aspect is that after the simulations
were published this observation has been confirmed by experiments [387].

Also the adsorption behavior of mixtures of hydrocarbons has many sur-
prising effects [361,388].

13.6.2 Gibbs Ensemble Simulations

In Chapter 8, the Gibbs ensemble technique was introduced as an efficient
tool for simulating vapor-liquid phase equilibria. One of the Monte Carlo
steps in the Gibbs ensemble technique is the transfer of molecules between
the liquid phase and gas phase. For long-chain molecules, this step, if carried
out completely randomly, results in a prohibitively low acceptance of parti-
cle exchanges. Therefore, the Gibbs ensemble technique used to be limited to
systems containing atoms or small molecules. However, by combining the
Gibbs ensemble method with configurational-bias Monte Carlo, the method
can be made to work for much longer chain molecules.

Algorithm

Let us consider a continuum system with strong intramolecular interactions.
In section 13.2.3 it is shown that for such a system it is convenient to sepa-
rate the potential energy into two contributions: the bonded intramolecu-
lar energy (�bond) and the “external” energy (�ext) that contains the inter-
molecular interactions and the nonbonded intramolecular interactions. As
in the original implementation of the Gibbs ensemble, we attempt to ex-
change a molecule between the two boxes. However, while in section 8.1 the
molecules were inserted at random, we now use the following procedure to
grow a molecule atom by atom in a randomly selected box. Let us assume
this is box 1 with volume ��. The number of particles in this box is denoted
by ��.

1. The first atom is inserted at a random position, and the (external) en-
ergy �ext

�
��� is calculated together with

�ext
�

��� � � exp����ext
�

����� (13.6.9)
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2. To insert the next atom �, � trial orientations are generated. The set
of � trial orientations is denoted by �b�� � b��b�� � � � �b�. These ori-
entations are not generated at random but with a probability that is a
function of the bonded part of the intramolecular energy:

�bond
� �b�� � � exp����bond

� �b���� (13.6.10)

Of each of these trial orientations the external energy is calculated
�ext
� �b�� together with the factor

�ext
� �	� �

��

���

exp����ext
� �b���� (13.6.11)

Out of these � trial positions, we select one with probability

�ext
� �b�� �

exp����ext
� �b���

�ext
� �	�

� (13.6.12)

3. Step 2 is repeated 
�� times until the entire molecule is grown and the
Rosenbluth factor of the molecule can be calculated:

�ext�	� �

��

���

�ext
� �	�� (13.6.13)

For the other box, we select a molecule at random and we determine its
Rosenbluth factor, using the following procedure:

1. A particle is selected at random.

2. The (external) energy of the first atom is determined �ext
� �� together

with
�ext
� �� � � exp����ext

� ���� (13.6.14)

3. For the next atom, � � � trial orientations are generated with a prob-
ability given by equation (13.6.10). These trial orientations, together
with the actual position of atom � (b�), form the set �b ��� for which we
determine the factor

�ext
� �� � exp����ext

� ��� �

��

���

exp����ext
� �b �

���� (13.6.15)

4. Step 2 is repeated 
 � � times until we have retraced the entire chain
and its Rosenbluth factor can be calculated:

�ext�� �

��

���

�ext
� ��� (13.6.16)
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We then accept this move with probability

acc��� �� � min
�
��

����� ���

��������� � ��

�ext���

�ext���

�
� (13.6.17)

The proof of the validity of this algorithm, again, is very similar to those
shown earlier in this chapter. We therefore refer the interested reader to
[356, 389, 390]. The combination of the Gibbs ensemble technique with the
configurational-bias Monte Carlo method has been used to determine the
vapor-liquid coexistence curve of chains of Lennard-Jones beads [356, 389]
and alkanes [386, 390–392]. In Example 20, an application of this method is
described.

Example 20 (Critical Properties of Alkanes)
Alkanes are thermally unstable above approximately 650 K, which makes
experimental determination of the critical point of alkanes longer than de-
cane (C��) extremely difficult. The longer alkanes, however, are present in
mixtures of practical importance for the petrochemical industry. In these mix-
tures, the number of components can be so large that it is not practical to
determine all phase diagrams experimentally. One therefore has to rely on
predictions made by equations of state. The parameters of these equations
of state are directly related to the critical properties of the pure components.
Therefore, the critical properties of the long-chain alkanes are used in the
design of petrochemical processes, even if they are unstable close to the
critical point [393]. Unfortunately, experimental data are scarce and con-
tradictory, and one has to rely on semi-empirical methods to estimate the
critical properties [393].

Siepmann et al. [386, 390] have used the combination of the Gibbs en-
semble technique and configurational-bias Monte Carlo to simulate vapor-
liquid equilibria of the �-alkanes under conditions where experiments are
not (yet) feasible. Phase diagrams are very sensitive to the choice of inter-
action potentials. Most available models for alkanes have been obtained by
fitting simulation data to experimental properties of the liquid under standard
conditions. In Figure 13.11 the vapor-liquid curve of octane as predicted
by some of these models is compared with experimental data. This figure
shows that the models of [394,395], which give nearly identical liquid proper-
ties, yield estimates of the critical temperature of octane that differ by 100 K.
Siepmann et al. [386, 390] used these vapor-liquid equilibrium data to im-
prove the existing models.

In Figure 13.12 the critical temperatures and densities as predicted by
the model of Siepmann et al. are plotted versus the carbon number. The
simulations reproduce the experimental critical points very well. There is
considerable disagreement, however, between the various experimental es-
timates of the critical densities. Much of our current knowledge of the critical
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Figure 13.11: Vapor-liquid curve of octane: comparison of Gibbs ensemble
simulations using the so-called OPLS model of Jorgensen and co-workers
[394], the model of Toxvaerd [395], and the model of Siepmann et al. [386,
390].
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Figure 13.12: Critical temperature �� (left) and density �� (right) as a func-
tion of carbon number ��. The open symbols are the simulation data and
the closed symbols are experimental data.

properties of the higher alkanes is based on extrapolations of fits of the ex-
perimental data up to C�. The most commonly used extrapolations assume
that the critical density is a a monotonically increasing function of the carbon
number, approaching a limiting value for the very long alkanes [393,396]. In
contrast to these expectations, the experimental data of Anselme et al. [397]
indicate that the critical density has a maximum for C� and then decreases



374 Chapter 13. Biased Monte Carlo Schemes

monotonically. The data of Steele (as reported in [396]), however, do not
give any evidence for such a maximum (see Figure 13.12). The simulations
indicate the same trend as that observed by Anselme et al. In this context, it
is interesting to note that Mooij et al. [356], Sheng et al. [398], and Escobedo
and de Pablo [399] used Monte Carlo simulations to study the vapor-liquid
curve of a polymeric bead-spring model for various chain lengths. These
studies also show a decrease of the critical density as a function of chain
length. Such a decrease of the critical density with chain length is a general
feature of long-chain molecules, as was already pointed out by Flory.

The Gibbs ensemble technique makes it possible to compute efficiently
the liquid-vapor coexistence curve of realistic models for molecular fluids.
This makes it possible to optimize the parameters of the model to yield an
accurate description of the entire coexistence curve, rather than of a single
state point. It is likely, but not inevitable, that a model that describes the
phase behavior correctly, will also yield reasonable estimates of other prop-
erties, such as viscosity or diffusivity. Mondello and Grest have shown that
this is indeed true for the diffusion coefficient of linear hydrocarbons [400,
401], while Cochran, Cummings, and co-workers [402, 403] found the same
for the viscosity. The hydrocarbon model that was used in these studies had
been optimized to reproduce experimental vapor-liquid coexistence data [386,
390]. Improved force fields have since been proposed for linear alkanes
[358, 404, 405], branched alkanes [363], alkenes [406, 407], alkylbenzenes
[406], and alcohols [408,409].

13.7 Recoil Gro th

To find numerical schemes that are more efficient than conformational-bias
Monte Carlo (CBMC), we should first understand why CBMC works better
than a scheme that employs random trial moves. Suppose that we have a
system with hard-core interactions and the probability of successfully in-
serting a monomer is �. If we assume that the insertion of an �-mer is
equivalent to inserting � independent monomers, then the probability of
a successful random insertion of an �-mer is

�random
�

� ���

For a dense system, � � �, and therefore random insertion only works for
very short chains. With the CBMC scheme we try � trial orientations and
our growing scheme fails if all of the � trial orientations result in an overlap.
The probability that we grow a chain successfully is therefore

�CBMC
� � �

�
� � �� � ���

����
� ������

w
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Figure 13.13: The conformational-bias Monte Carlo scheme fails if the
molecule is trapped in a dead alley (left); irrespective of the number of trial
orientations the CBMC scheme will never generate an acceptable conforma-
tion. In the recoil growth scheme (right) the algorithm “recoils” back to a
previous monomer and attempts to regrow from there.

This crude estimate suggests that by increasing �, the number of trial orien-
tations, we can make � arbitrarily close to 1 and hence obtain a reasonable
insertion probability for any chain length and at any density. In practice,
simply increasing �will not solve the problem. First of all, there is a practical
limitation: increasing � increases the computational cost. More importantly,
the assumption that the probability of a successful insertion of a monomer
is equal and independent for each trial position is not correct. For instance,
if we have grown into a “dead alley” where there is simply no space for an
additional monomer (see Figure 13.13), then no matter how often we try,
the insertion will not be accepted. At high densities such dead alleys are
the main reason the CBMC method becomes inefficient. This suggests that
we need a computational scheme that allows us to escape from these dead
alleys.

The recoil growth (RG) scheme is a dynamic Monte Carlo algorithm that
was developed with the dead-alley problem in mind [410, 411]. The algo-
rithm is related to earlier static MC schemes due to Meirovitch [412] and
Alexandrowicz and Wilding [413]. The basic strategy of the method is that
it allows us to escape from a trap by “recoiling back” a few monomers and
retrying the growth process using another trial orientation. In contrast, the
CBMC scheme looks only one step ahead. Once a trial orientation has been
selected, we cannot “deselect” it, even if it turns out to lead into a dead al-



376 Chapter 13. Biased Monte Carlo Schemes

ley. The recoil growth scheme looks several monomers ahead to see whether
traps are to be expected before a monomer is irrevocably added to the trial
conformation (see Figure 13.13). In this way we can alleviate (but not re-
move) the dead-alley problem. In principle, one could also do something
similar with CBMC by adding a sequence of � monomers per step. How-
ever, as there are � possible directions for every monomer, this would in-
volve computing �� energies per group. Even though many of these trial
monomers do not lead to acceptable conformations, we would still have to
compute all interaction energies.

13.7.1 Algorithm

In order to explain the practical implementation of the RG algorithm, let
us first consider a totally impractical, but conceptually simple scheme that
will turn out to have the same net effect. Consider a chain of � monomers.
We place the first monomer at a random position. Next, we generate � trial
positions for the second monomer. From each of these trial positions, we
generate � trial positions for the third monomer. At this stage, we have gen-
erated �� “trimer” chains. We continue in the same manner until we have
grown ���� chains of length �. Obviously, most of the conformations thus
generated have a vanishing Boltzmann factor and are, therefore, irrelevant.
However, some may have a reasonable Boltzmann weight and it is these con-
formations that we should like to find. To simplify this search, we introduce
a concept that plays an important role in the RG algorithm: we shall distin-
guish between trial directions that are “open” and thoase that are “closed.”
To decide whether a given trial direction, say �, for monomer � is open, we
compute its energy �����. The probability8 that trial position � is open is
given by

�
open
� ��� � min��� exp����������� (13.7.1)

For hard-core interactions, the decision whether a trial direction is open or
closed is unambiguous, as �

open
� ��� is either zero or one. For continuous in-

teractions we compare �
open
� ��� with a random number between 0 and 1. If

the random number is less than �
open
� ���, the direction is open; otherwise it is

closed. We now have a tree with ���� branches but many of these branches
are “dead,” in the sense that they emerge from a “closed” monomer. Clearly,
there is little point in exploring the remainder of a branch if it does not cor-
respond to an “open” direction. This is where the RG algorithm comes in.
Rather than generating a host of useless conformations, it generates them
“on the fly.” In addition, the algorithm uses a cheap test to check if a given

8This probability can be chosen in many alternative ways and may be used to optimize a
simulation. However, the particular choice discussed here appears to work well for Lennard-
Jones and hard-core potentials.
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branch will “die” within a specified number of steps (this number is denoted
by �max). The algorithm then randomly chooses among the available open
branches. As we have only looked a distance �max ahead, it may still happen
that we have picked a branch that is doomed. But the probability of ending
up in such a dead alley is much lower than that in the CBMC scheme.

In practice, the recoil growth algorithm consists of two steps. The first
step is to grow a new chain conformation using only “open” directions. The
next step is to compute the weights of the new and the old conformations.

The following steps are involved in the generation of a new conforma-
tion:

1. The first monomer of a chain is placed at a random position. The en-
ergy of this monomer is calculated (��). The probability that this po-
sition is “open” is given by equation (13.7.1). If the position is closed
we cannot continue growing the chain and we reject the trial confor-
mation. If the first position is open, we continue with the next step.

2. A trial position �i�1 for monomer � � � is generated starting from
monomer �. We compute the energy of this trial monomer �i�1���

and, using equation (13.7.1), we decide whether this position is open or
closed. If this direction is closed, we try another trial position, up to a
maximum9 of � trial orientations. As soon as we find an open position
we continue with step 3.

If not a single open trial position is found, we make a recoil step. The
chain retracts one step to monomer � � � (if this monomer exists), and
the unused directions (if any) from step 2, for � � �, are explored. If
all directions at level �� � are exhausted, we attempt to recoil to � � �.
The chain is allowed to recoil a total of �max steps, i.e., down to length
�� �max � �.

If, at the maximum recoil length, all trial directions are closed, the trial
conformation is discarded.

3. We have now found an “open” trial position for monomer ���. At this
point monomer ���max is permanently added in the new conformation;
i.e., a recoil step will not reach this monomer anymore.

4. Steps 2 and 3 are repeated until the entire chain has been grown.

In the naive version of the algorithm sketched above, we can consider the
above steps as a procedure for searching for an open branch on the exist-
ing tree. However, the RG procedure does this by generating the absolute
minimum of trial directions compatible with the chosen recoil distance �max.

9The maximum number of trial orientation should be chosen in advance—and may depend
on the index �— but is otherwise arbitrary.
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Once we have successfully generated a trial conformation, we have to de-
cide on its acceptance. To this end, we have to compute the weights, ����

and ����, of the new and the old conformations, respectively. This part of
the algorithm is more expensive. However, we only carry it out once we
know for sure that we have successfully generated a trial conformation. In
contrast, in CBMC it may happen that we spend much of our time comput-
ing the weight factor for a conformation that terminates in a dead alley.

In the RG scheme, the following algorithm is used to compute the weight
of the new conformation:

1. Consider that we are at monomer position � (initially, of course, � � �).
In the previous stage of the algorithm, we have already found that at
least one trial direction is available (namely, the one that is included in
our new conformation). In addition, we may have found that a certain
number of directions (say �c) are closed—these are the ones that we
tried but that died within �max steps. We still have to test the remaining
�rest � �� �� �c directions. We randomly generate �rest trial positions
for monomer �� � and use the recoil growth algorithm to test whether
at least one “feeler” of length �max can be grown in this direction grown
(unless ���max � �; in that case we only continue until we have reached
the end of the chain). Note that, again, we do not explore all possible
branches. We only check if there is at least one open branch of length
�max in each of the �rest directions. If this is the case, we call that di-
rection “available.” We denote the total number of available directions
(including the one that corresponds to the direction that we had found
in the first stage of the algorithm) by ��. In the next section we shall
derive that monomer � contributes a factor 	���� to the weight of the
chain, where 	���� is given by

	���� �
�����



open
�

���

and 

open
�

��� is given by equation (13.7.1).

2. Repeat the previous step for all � from � to �� �. The expression for the
partial weight of the final monomer seems ambiguous, as ����� is not
defined. An easy (and correct) solution is to choose ����� � �.

3. Next compute the weight for the entire chain:

���� �

��

���

	���� �

��

���

�����



open
�

���
� (13.7.2)

For the calculation of the weight of the old conformation, we use almost the
same procedure. The difference is that, for the old conformation, we have
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to generate � � � additional directions for every monomer �. The weight is
again related to the total number of directions that start from monomer � and
that are “available,” i.e., that contain at least one open feeler of length �max:

���� �

��

���

����� �

��

���

�����

�
open
� ���

	

Finally, the new conformation is accepted with a probability:

acc��� 
� � min��� exp����
����
�� exp������������� (13.7.3)

where �
� and ��� are the energies of the new and old conformations,
respectively. In the next section, we demonstrate that this scheme generates
a Boltzmann distribution of conformations.

13.7.2 Justi cation of the Method

The best way to arrive at the acceptance rule for the recoil growth scheme is
to pretend that we actually carry out the naive brute-force calculation where
we first generate the tree of all ���� trial conformations. We denote this tree
by �� and the a priori probability for generating this tree by ������. Next we
test which links are “open” or “closed.” The decision whether a monomer
direction is ”open” or ”closed” is made on the basis of the probabilities equa-
tion (13.7.1) and we denote the probability that we have a particular set ��

of “open” monomers (and all others “closed”) by ���������. Let us note
the number of ”open” monomers in this set by ����� and the number of
”closed” monomers by �����. It is easy to see that the probability of gener-
ating this particular set is given by

��������� �

������
���

�
open
� ���

��	���

��

�� � �
open

 ����	

Finally we try to select one completely open conformation by randomly se-
lecting, at every step, one of the “available” trial directions, i.e., a direction
that is connected to (at least) one feeler that does not “die” within �max steps.
At every step, there are ���
� such directions. Hence the probability of se-
lecting a given direction is simply �����
� and the total probability that a
specific conformation will be selected on the previously generated tree of all
possible conformations is

���
���� �

����
���

�

���
�
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if all �� are nonzero, and

�������� � �

otherwise. The fact that the algorithm leaves out many redundant steps (viz.
generating the “doomed” branches or checking if there is more than one
open feeler in a given direction) is irrelevant for the acceptance rule. The
overall probability that we generate a trial conformation � on the set ��,
��������, in a tree �� is

������� ���������� ��������� (13.7.4)

In order to compute acceptance probability of a trial move, we should con-
sider the reverse move where the old configuration is generated. By analogy
to the forward case, this probability is given by

������� ���������� ��������� (13.7.5)

We wish our MC scheme to obey detailed balance. However, just as in the
CBMC case, it is easier to impose the stronger condition of super-detailed bal-
ance. This implies that, in the forward move, we also should consider the
probability of generating a complete tree of possible conformations around
the “old” conformation and the probability that a subset of all monomers
on this tree is “open.” We denote the probability of generating this tree by
��

�
�� �

�
�, where the prime indicates that this is the probability of generating

all branches of the old tree, except the already existing old conformation.
Clearly

������ � ��

���
�

��� �gen���� (13.7.6)

where �gen��� denotes the probability of generating the old conformation.
As in the CBMC scheme, we can include strong intramolecular interactions
in the generation of these trial monomers (see section 13.3). �gen��� will then
be of the form (see section 13.3)

�gen��� �

�
��

���

	bond
�

�
��

�
� (13.7.7)

Similarly, we have to consider the probability ��

�
���

�
�� �

�
� that a set��

�
on this

tree is “open.” Again, the prime indicates that we should not include the old
conformation itself. Again, it is easy to see that

��������� �

�
��

���

	
open
�

�
��

�
��

���
�

��� �

��� (13.7.8)
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The a priori probability of generating a trial move from � to � is then given
by

���� ����� ��� ��� ���

� ������� ���������� ��������� ��

���
�

��� ��

���
�

����

���

(13.7.9)

For the reverse move �� �, we can derive a similar expression:

���� ����� ��� ��� ���

� ������� ���������� ��������� ��

�
�� �

�
�� ��

�
���

�
�� �

�
��

(13.7.10)

In these equations we have used the notation �� � ����� ��� ��� ��� to in-
dicate that we consider a transition from � to � (or vice versa) for a given set
of “embedding” conformations. Clearly, there are many different trees and
sets of open orientations that include the same conformations � and �.

Our super-detailed balance condition now becomes

� ���� ���� ����� ��� ��� ���acc��� ����� ��� ��� ���

� � ���� ���� ����� ��� ��� ���acc��� ����� ��� ��� ����

(13.7.11)

All terms in this equation are known, except the acceptance probabilities. We
now derive an expression for the ratio acc�� � ����� ��� ��� ����acc�� �
����� ��� ��� ���. To this end, we insert equations (13.7.6) and (13.7.8) (and
the corresponding expressions for ��

�
�� �

�
� and ��

�
���

�
�� �

�
�) into our super-

detailed balance condition equation (13.7.11). This leads to a huge simplifi-
cation as there is a complete cancellation of all probabilities for generating
“open” or “closed” monomers that do not belong to the new (or the old)
conformation. What remains is

� ���� �gen���

�
��

���

	
open
�

�
��

�����

�
acc��� ����� ��� ��� ���

� � ��� � �gen���

�
��

���

	
open
�

�
��

�����

�
acc��� ����� ��� ��� ����

(13.7.12)

In order to simplify the notation, we shall assume that the trial directions
are uniformly distributed, i.e., see equation (13.7.7), 	bond= constant. From
equation (13.7.7) it then follows that �gen��� and �gen��� are identical con-
stants.
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Our expression for the ratio of the acceptance probabilities then becomes

acc��� ��

acc��� ��
�
� ���

�
�

���
�

open
�

���������

� ���
�

�

���
�

open
�

���������
� (13.7.13)

where we have dropped the indices ��� ��� � � � . Using the definitions of
	��� and 	��� (equation (13.7.2) and below),

acc��� ��

acc��� ��
�
� ���	���

� ���	���
� (13.7.14)

This is precisely the acceptance rule given by equation (13.7.3). This con-
cludes our “derivation” of the recoil growth scheme. The obvious ques-
tion is: how well does it perform? A comparison between CBMC and the
RG algorithm was made by Consta et al. [411], who studied the behavior of
Lennard-Jones chains in solution. The simulations showed that for relatively
short chains (
 � ��) at a density of  � ���, the recoil growth scheme was
a factor of 1.5 faster than CBMC. For higher densities  � ��� and longer
chains � � �� the gain could be as large as a factor 25. This illustrates the
fact that the recoil scheme is still efficient, under conditions where CBMC is
likely to fail. For still higher densities or still longer chains, the relative ad-
vantage of RG would be even larger. However, the bad news is that, under
those conditions, both schemes become very inefficient.

While the recoil growth scheme is a powerful alternative to CBMC, the
RG strategy is not very useful for computing chemical potentials (see [411]).
More efficient schemes for computing the chemical potential are the recur-
sive sampling scheme and the Pruning-Enriched Rosenbluth Method (PERM)
(see Chapter 11).

Case Study 20 (Recoil Gro th Simulation of Lennard-Jones Chains)
To illustrate the recoil growth (RG) method, we make a comparison be-
tween this method and conformational-bias Monte Carlo (CBMC). Consider
20 Lennard-Jones chains of length 15. The monomer density is  � ��� at
temperature � � ���. Two bonded monomers have a constant bond length
of ���, while three successive particles have a constant bond angle of ���
radians.

In Figure 13.14 the distribution of the end-to-end vector, ��, of the chain
is plotted. In this figure we compare the results from a CBMC and a RG.
Since both methods generate a Boltzmann distribution of conformations, the
results are identical (as they should be).

For this speficic example, we have compared the efficiency, �, of the two
methods. The efficiency is defined as the number of accepted trial moves
per amount of CPU time. For CBMC we see that the efficiency increases as
we increase �, the number of trial orientations, from � to �. From � to � the
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Figure 13.14: Comparison of configurational-bias Monte Carlo (CBMC) with
recoil growth for the simulation of Lennard-Jones chains of length 15. The
left figure gives the distribution of the end-to-end distance ����. In the right
figure the efficiency (�) is a function of the number of trial directions (�) for
different recoil lengths (�max) as well as for CBMC.

efficiency is more or less constant, and above � a decrease in the efficiency
is observed.

In the RG scheme we have two parameters to optimize: the number of
trial orientations � and the recoil length �max. If we use only one trial orien-
tation, recoiling is impossible, since there are no other trial orientations. If
we use a recoil length of �, the optimum number of trial orientations is � and
for larger recoil lengths the optimum is reached with less trial orientations.
Interestingly, the global optimum is � trial orientations and a recoil length of
�–	. In this regime, the increase in CPU time associated with a larger recoil
length is compensated by a higher acceptance. In the present study, optimal
RG was a factor � more efficient than optimal CBMC.

13.8 uestions and Exercises

uestion 20 (Biased CBMC) In a con gurational-bias Monte Carlo simulation,
trial positions are selected with a probability that is proportional to the Boltzmann
factor of each trial segment. However, in principle one can use another probability
function [382] to select a trial segment. Suppose that the probability of selecting a
trial segment 
 is proportional to

�� � exp ������

in which �� �� �.

Q

Q
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1. Derive the correct acceptance/rejection rule for this situation.

2. Derive an expression for the excess chemical potential when this modi ed
CBMC method is used to generate con gurations of test particles.

3. What happens if ��
�� and if �� � �?

Exercise 15 (CBMC of a Single Chain)
In this exercise, we will look at the properties of a single chain molecule.
We will compare various sampling schemes. Suppose that we have a chain
molecule of length � in which there are the following interactions between
beads:

� Two successive beads have a fixed bond length �. We will use � � �.

� Three successive beads have a bond-bending interaction

� �
�

�
�� �� � ���

�
	

in which � is the bond angle, �� is the equilibrium bond angle, and ��
is a constant. We will use �� � �
� rad (� ���
�Æ) and �� � �
�.

� Every pair of beads that is separated by more than two bonds has a
soft repulsive interaction

� �� �

Æ
������cut�

�

�cut�
 � cut

�  � cut
	

in which cut is the cutoff radius (we will use cut � �
� and � � �).

An interesting property of a chain molecule is the distribution of the end-to-
end distance, which is the distance between the first and the last segments
of the chain. There are several possible schemes for studying this property:

Dynamic Schemes In a dynamic scheme, a Markov chain of states is gen-
erated. The average of a property � is the average of � over the elements of
the Markov chain

��� �

����
��� ��

�



In the limit ��� this expression becomes exact. Every new configuration
is accepted or rejected using an acceptance citerion:

� When unbiased chains are generated:

acc �o� n� � min ��	 exp ��� �� �n� �� �o���� 	

in which � is the total energy (soft repulsion and bond bending) of a
chain.
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� When configurational-bias Monte Carlo is used:

acc �o� n� � min
�
��
� �n�
� �o�

�
�

in which

� �

�
���

���

����

��� exp ���� ��� ���

����
�

In this equation, � is the number of trial positions and � ��� �� is the
energy of the �th trial position of the �th chain segment. The term� ��� ��

does not contain the bond-bending potential, because that potential
has already been used to generate the trial positions.

Static Schemes In a static scheme, all configurations are generated inde-
pendently. To obtain a canonical average, every configuration is weighted
with a factor 	

�
� �

����

��� 
� � 	�����

��� 	�
�

For 	� we can write:

� When random chains are generated:

	� � exp ������ �

Here, �� is the total energy of the chain.

� When CBMC is used:
	� � �� (13.8.1)

1. On the book’s website you can find a program for calculating chain
properties using these four methods. However, some additional pro-
gramming has to be done in the file grow.f, which is a subroutine for
growing a new chain using either CBMC or random insertion.

2. Compare the end-to-end distance distributions of the four methods.
Which method has the best performance? Investigate how the effi-
ciency of CBMC depends on the number of trial directions (�).

3. Investigate the influence of chain length on the end-to-end distance
distribution. For which chain lengths do the four methods start to fail?

4. For high temperatures (and for low �� and �), the end-to-end dis-
tance distribution looks like the distribution of a nonself-avoiding ran-
dom walk. This means that the chain segments are randomly oriented
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and the segments are allowed to overlap. For the mean square end-
to-end distance, we can write�

��
�

��
�

��
����

���

���

�
�

�
����

���

���

�
�

�
����

���

���

��
�

in which ���� ��� ��� are the projections of each segment on the ������ �

axes

�� � sin ���� cos ����

�� � sin ���� sin ����

�� � cos ���� �

This set of equations can be reduced to�
��
�

��
� 	� (13.8.2)

� Derive equation (13.8.2). Hint: the following equations will be very
useful:

cos� ���� � sin� ���� � 


cos ��� � ��� � cos ���� cos ���� � sin ���� sin ����
�cos ��� � ���� � ��

The last equation holds because �� � �� is uniformly distributed.
� Modify the program in such a way that

�
��
�

is calculated for a
nonself-avoiding random walk. Compare your results with the an-
alytical solution.

� Does �
��
�
� 	

hold for a chain with a potential energy function described in this
exercise? Investigate the influence of � on the end-to-end dis-
tance distribution.

Exercise 16 (CBMC of a Simple System)
Consider a system with three coordinates (��� ��� ��) and phase space den-
sity

 ���� ��� ��� � exp
�
�
�
��� � ��� � ���

�	
� exp

�
���

	
�

We wish to calculate the average
�
��
�
,

�
��
�
�

���
����������

����
���������

�

using the CBMC algorithm of Falcioni and Deem [414]:
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� Generate � sets of new coordinates ��� � � � � �� by adding random vec-
tors to the old configuration (��).

� Select one set (�) with a probability proportional to its Boltzmann factor,

�� � exp �����
� �

The corresponding Rosenbluth factor weight is

� �	� �

����

���

exp
�
�����

�
�

� Starting from the selected configuration ��, � � 
 configurations (���

� � � � ��) are generated by adding a uniform vector to ��. �� is the old
configuration. This leads to the Rosenbluth factor of the old configura-
tion

� ��� �

����

���

exp
�
�����

�
�

� The new configuration �� is accepted with a probability

acc ��� 	� � min
�

�
� �	�

� ���

�
�

1. Make a sketch of the configurations ��� � � � � �� and ��� � � � � ��. Show
that for � � 
, this algorithm reduces to the standard Metropolis algo-
rithm for particle displacements.

2. Prove that this algorithm obeys detailed balance.

3. Calculate
�
��
�

analytically using
�
�

�

exp
�
����

�
� �

�
�

����
�

4. On the book’s website you can find a computer program for this CBMC
sampling scheme. This program, however, has to be completed by you
(see the file cbmc.f)! Make sure that your estimate of

�
��
�

is indepen-
dent of the number of trial directions (�).

5. What happens with the fraction of accepted trial moves when the num-
ber of trial directions (�) is increased? Make a plot of the fraction of
accepted trial moves as a function of � for various maximum displace-
ments. Explain your results.

6. Why is this CBMC method useful when the system is initially far from
equilibrium?
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Chapter 14

Accelerating Monte Carlo
Sampling

In this chapter we discuss various advanced Monte Carlo techniques. These
methods illustrate the flexibility the Monte Carlo method gives us to develop
novel ways to sample a system efficiently.

14.1 Parallel Tempering

The method of parallel tempering [415–417] is a Monte Carlo scheme that
has been derived to achieve good sampling of systems that have a free-
energy landscape with many local minima. It resembles the technique of
simulating annealing [418] and is related to several other schemes such as
the extended-ensemble method [415], simulated tempering [416,419], and J-
walking [420]. Closely related schemes had been proposed by Nezbeda and
Kolafa [421] in the context of the Widom particle insertion method, while
Shing and Azadipour and later Vega et al. proposed a (mildly approximate)
version of this method for grand-canonical Monte Carlo [422] and Molecular
Dynamics [423] simulations.

In parallel tempering we consider �-systems. In each of these systems
we perform a simulation in the canonical (���) ensemble, but each system
is in a different thermodynamic state. Usually, but not necessarily, these
states differ in temperature. In what follows we assume—for convenience—
that this is the case. Systems with a sufficiently high temperature pass over
the potential. The low-temperature systems, on the other hand, mainly
probe the local free energy minima. The idea of parallel tempering is to
include MC trial moves that attempt to “swap” systems that belong to dif-
ferent thermodynamic states, e.g., to swap a high-temperature system with
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a low-temperature system. If the temperature difference between the two
systems is very large, such a swap has a very low probability of being ac-
cepted (see below). This is very similar to particle displacement in ordinary
Monte Carlo, were if one uses a very large maximum displacement a move
has a very low probability of being accepted. The solution to this problem is
to use many small steps. In parallel tempering we use intermediate temper-
atures in a similar way. Instead of making attempts to swap between a low
and a high temperature, we swap between ensembles with a small tempera-
ture difference.

Let us call the temperature of system �, ��, and the � systems are num-
bered according to an increasing temperature scale, �� � �� � � � � � ��. We
define an extended ensemble that is the combination of all � subsystems.
The partition function of this extended ensemble is the product of all indi-
vidual ��� � ensembles:

�extended �

��

���

����� �

��

���

�

���
� ��

�
dr�� exp��	���r�� ��


where r�� denotes the positions of the � particles in system �. For the canon-
ical ensemble the temperature dependence of � does not play a role since
the total number of particles is constant. However, for extensions to grand-
canonical ensemble simulation this factor should be taken into account. To
sample this extended ensemble it is in principle sufficient to perform ���

simulations of all individual ensembles. But we can also introduce a Monte
Carlo move, which consists of a swap between two ensembles. The accep-
tance rule of a swap between ensembles � and � follows from the condition
of detailed balance. If we denote the configuration of system � by i � r�� ,
this condition reads

� �i
 	��� �j
 	��� � ��i
 	��
 �j
 	��� �j
 	��
 �i
 	���

�acc ��i
 	��
 �j
 	��� �j
 	��
 �i
 	���

� � �i
 	��� �j
 	��� � ��i
 	��
 �j
 	��� �i
 	��
 �j
 	���

�acc ��i
 	��
 �j
 	��� �i
 	��
 �j
 	��� 

If we perform the simulations in such a way that the a priori probability, �,
of performing a particular swap move is equal for all conditions, we obtain
as acceptance rules

acc��i
 	��
 �j
 	��� �j
 	��
 �i
 	���
acc��i
 	��
 �j
 	��� �i
 	��
 �j
 	���

�
exp ��	���j� � 	���i��
exp ��	���i� � 	���j��

� exp ��	� � 	�� ���i� ���j���  (14.1.1)
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It is important to note that, as we know the total energy of a configuration
anyway, these swap moves are very inexpensive since they do not involve
additional calculations.

It should be stressed that the swap moves do not disturb the Boltzmann
distribution corresponding to a particular ensemble. Therefore one can de-
termine ensemble averages from every individual ensemble just as we do
for an ordinary Monte Carlo simulations. This is an important improve-
ment over simulating annealing, since in simulating annealing ensemble av-
erages are not defined. Parallel tempering is a true equilibrium Monte Carlo
scheme.

To see the power of parallel tempering consider a single particle mov-
ing in one dimension. This particle moves in the external potential shown
in Figure 14.1. Depending on the temperature this particle will be able to
cross some of the barriers. A typical probability distribution of an ����
simulation of three ensembles is shown in Figure 14.1. These simulations
are done using particle displacements only. As one can expect, only at very
high temperatures is the entire phase space sampled. At low temperatures
the molecule is trapped in a pocket of phase space.

Let us next consider the same three systems and use the extended en-
semble and allow for swaps between the ensembles. These swaps are illus-
trated in Figure 14.2. In this figure we can trace the history of the various
ensembles and the figure illustrates that exchanges between low and high
temperatures occur via the intermediate temperatures. If we now determine
the probability distribution at the various temperatures we see a striking im-
provement for the low temperatures. For this system the entire phase space
is being explored. As can be expected, for the high temperatures there are
no differences. In Case Study 21 the details of these simulations are dis-
cussed. Parallel tempering is not restricted to the ��� ensemble and can be
extended to other ensembles as well.

Case Study 21 (Parallel Tempering of a Single Particle)
To demonstrate the parallel tempering technique, we have simulated a single
particle on a simple one-dimensional potential:

���� �

����������
���������

� � � ��

�� �� � sin ������ �� � � � ��	�


�� �� � sin ������ ��	�
 � � � ��	�


�� �� � sin ������ ��	�
 � � � �	
	

�� �� � sin ������ �	
 � � � �	



� �� � sin ������ �	
 � � � �

� � � �

This function is plotted in Figure 14.1 (left). This potential is caricature of
a glassy material with energy barriers of varying height. This potential is



392 Chapter 14. Accelerating Monte Carlo Sampling

−2.0 −1.0 0.0 1.0 2.0
x

0.0

2.0

4.0

6.0

8.0

10.0
U

(x
)

−2.0 −1.0 0.0 1.0 2.0
x

0

0

0

0

P
(x

)

T=0.05
T=0.3
T=2.0

Figure 14.1: (left) Potential energy (� ���) as a function of the position
�. (right) Probability (� ���) of finding a particle at position � for various
temperatures (�) as obtained from ordinary Monte Carlo simulations. The
lower-temperature systems are not able to cross the highest barrier.

constructed in such a way that the equilibrium density at the very minimum
of the potential is very nearly constant.

Clearly, if we perform an ordinary ��� Monte Carlo simulation a par-
ticle can only pass a barrier if the temperature is sufficiently high. This is
illustrated in Figure 14.1 (right) in which we have plotted the probability dis-
tributions � ��� for � � ����, � � ��	, and � � 
�� as obtained from a Monte
Carlo simulation. Apparently, at � � ���� and � � ��	 the particle is not able
to cross all energy barriers, while for � � 
�� the whole system is sampled.

We now apply the parallel tempering scheme to see whether the sam-
pling can be improved. In this Monte Carlo algorithm, we have performed
two types of trial moves:

1. Particle displacement. The particle was given a uniformly distributed
random displacement between ���� and ���. This displacement is ac-
cepted with the conventional acceptance rule for a simulation in the
��� ensemble

acc ��� � � min ��� exp ��� �� �� �� ������ �

2. Hamiltonian swapping. The Hamiltonians of two randomly selected
neighboring temperatures (� and �) were swapped. This trial move is
accepted with a probability given by equation (14.1.1)

acc ��� � � min ��� exp ���� � ���� ��� ������ �
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Figure 14.2: (left) Probability (� ���) of finding a particle at position � for
various temperatures (�) using parallel tempering. (right) Position (�) as a
function of the number of Monte Carlo trial moves (�) for � � ����. For
graphical purposes, we have used ����% swap moves here.

During the simulation, it was first decided which system to consider. Next,
it was decided whether to do a displacement or a Hamiltonian swap move.
Following Falcioni and Deem [414], we have used ��% swap moves and ��%
particle displacements.

The results of the parallel tempering simulations are shown in Figure 14.2.
We find a dramatic improvement in the sampling. We now have a constant
equal peak height of the particle to be in any of the wells. The effect of the
swapping moves for the system at the lowest temperature is illustrated in
Figure 14.2 (left). These swapping moves help the particle to cross barriers
during the simulation.

Example 21 ( eolite Structure Solution)
Falcioni and Deem [414] used simulating tempering as a method to find ze-
olite structures. Zeolites are inorganic crystals with a known chemical struc-
ture. The interesting aspect of these materials is that there are about 118
different known zeolite structures. But many more zeolite structures are the-
oretically possible. If one makes a new zeolite, one often has a powder and
it is much more time consuming, if possible at all, to make a sufficiently large
crystal from which the crystal structure can be determined.

The problem that Falcioni and Deem were interested in was finding the
zeolite structure that corresponds best to an experimental powder diffraction
pattern. Experimentally, it is well known that in zeolites the angles between
three successive T-sites (positions of the Si atoms in an all silica zeolite) are
clustered around ������. Falcioni and Deem assumed that any new zeolite
structure should have angles with a similar distribution. In a similar way
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rules were deduced for the average bond distance and other properties of
the structures. These rules were translated into a pseudo-Hamiltonian; this
Hamiltonian has a high value for those crystal structures that do not resemble
the characteristics of a zeolite and a low value for those crystals that have
zeolite-like characteristics. An additional term was added to this structural
pseudo-Hamiltonian that indicated the difference between the experimental
and the calculated X-ray powder pattern of the new crystal structure. Falcioni
and Deem then assumed that the unknown zeolite structure corresponds to
the structure that minimizes this combined Hamiltonian. Various Monte Carlo
rules were invented to change the crystal structure, and a new structure was
accepted or rejected by using this pseudo-Hamiltonian. Since this pseudo-
Hamiltonian has many local minima, parallel tempering was used to find the
optimal structure.

To test their method Falcioni and Deem used the information of 32 zeolite
structures to generate the pseudo-Hamiltonian. This information was suffi-
cient to solve the structure of the remainder of all known zeolite structures.

Thus far, we have considered examples of the parallel tempering method
in which the systems that are being simulated in parallel differ only in a sin-
gle control variable. It is, of course, possible to use more than one variable.
For example, Yan and de Pablo [424] performed a parallel tempering study
of a number of systems that differed both in temperature and in chemical po-
tential. But there is no need to limit the choice of control variable to the usual
“thermodynamic” ones. For example, one may perform parallel simulations
of systems that differ in the parameters characterizing the intermolecular
potential. An example is the parallel tempering simulation that Yan and de
Pablo [425] performed on a number of polymer systems that differed in the
polymer chain length. Bunker and Dünweg [426] applied parallel tempering
using systems consisting of polymers that have different excluded volume
interactions. In Examples 22 and 23 we discuss these applications.

Another application is to combine parallel tempering with multihisto-
gram umbrella sampling, to map out a free energy landscape (see, e.g., [427]).
As the multihistogram technique requires several simulations anyway, the
sampling efficiency can be increased at no extra cost by integrating these
calculations with the parallel tempering scheme.

Example 22 (Parallel Tempering and Phase Equilibria)
One way to compute the coexistence curve of a Lennard-Jones fluid is to use
grand-canonical Monte Carlo. During such a simulation the density prob-
ability function is monitored. At coexistence two peaks in this distribution
should appear: one corresponding to the gas phase and the other to the
liquid phase. However, in practice, such a simulation is limited to conditions
close to the critical point. The reason is that one needs to sample both the
liquid and the gas phases from a single simulation. Only close to the critical
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point are the density fluctuations sufficiently large that one can observe both
the liquid and the gas. Wilding and Bruce [100, 428] used this method to
accurately locate the critical point of a Lennard-Jones fluid using finite-size
scaling techniques.

Far below the critical point, however, the probability of observing a den-
sity fluctuation that would spontaneously take the systems from the liquid to
the gas phase or vice versa is so low that the method would become imprac-
tical. Yan and de Pablo [424] circumvented this problem by using parallel
tempering to ensure that both the liquid and the vapor phases are sampled
in a single simulation. The idea is that fluctuations between the liquid and
the gas phases do occur regularly close to the critical point. The parallel
tempering scheme then ensures that these fluctuations are “transmitted” to
temperatures well below the critical point. Yan and de Pablo call this method
hyper-parallel tempering and simulated 18 different systems with tempera-
tures between the triple point and the critical point and chemical potentials
ranging from �� � ����� at the triple point to ��� � ����� at the critical
temperature.

Suppose that we have a system 	, with temperature 
�, excess chemical
potential �ex

�
, energy ��, and number of particle ��, and a system  with 
�,

�ex
� , ��, and ��. The probability of finding these configurations is

���� � exp����
ex
��� � ������

In a parallel tempering move, we exchange the chemical potential and the
temperature of the two systems without changing the configuration of
either system. The new configuration of system 	 is then characterized by
	 ���� ��� ��� �

ex
� �, while for system  we have ���� ��� ��� �

ex
� �. Such a trial

move is accepted with probability

acc��� �� � min
�
�� exp

�
����

ex
� � ���

ex
� ���� ���� � ��� � ������ ����

��
�

Such parallel tempering simulations generate accurate density probability
functions that will contain both the liquid and gas peaks close to coexistence.

The next step is to determine the coexistence properties from these den-
sity probability functions. For a given temperature, the value of the chemical
potential at coexistence is fixed. In order to observe liquid-vapor coexis-
tence, one should therefore tune the chemical potential such that the density
histogram has peaks of equal area around the liquid and the vapor densities.
Yan and de Pablo showed that one can avoid performing many simulations to
locate the coexistence point in this way. To this end, they used the histogram
reweighting technique as developed by Ferrenberg and Swendsen [185,429]
(see section 7.3.1).

Suppose we perform a simulation at temperature 
 and chemical poten-
tial �. The idea of the histogram reweighting technique is that we can use
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the information of this simulation to estimate the properties at a different
temperature � � and chemical potential � �. In a parallel tempering simulation
one should choose the temperatures and chemical potentials of the various
systems in such a way that there is a sufficient overlap of the energy and
density distributions; otherwise the parallel tempering moves would never be
accepted. Such overlap of the different histograms is also required for a suc-
cessful application of the histogram reweighting technique. Hence parallel
tempering as used by Yan and de Pablo is ideally suited to be combined with
histogram reweighting (see also ref. [427]).

Yan and de Pablo showed that, provided one has a good set of tem-
peratures and chemical potentials, the combined parallel temperature and
histogram reweighting technique is very efficient in determining the coex-
istence curve of the Lennard-Jones fluid. However, finding a good set of
temperatures and chemical potentials may require some trial and error.

Example 23 (Parallel Tempering and Polymers)
In a parallel tempering simulation one can also perform swaps between
systems that have slightly different Hamiltonians. In some cases, this can
be very useful. Suppose that system � has a temperature � and energy
�

���

�
�

��
��� �

�������� and system � a temperature � and energy �
���

� �
��

��� �
��������, where ���� and ���� are different potentials. As a parallel

tempering move we can swap systems � and �. We take the positions of
the particles in system � and recompute the energy using the intermolecu-
lar potential of system �; this energy is denoted by �

���

� . In a similar way we
compute for system � the energy using the intermolecular potential of system
�, ����

� . The acceptance rule for such a move reads

acc��� �� � min
�
	
 exp

�
����

���

� ��
���

� � � ��
���

� ��
���

� �
��

�

This type of parallel tempering move can be combined with others involving
the temperature, pressure, or chemical potential.

Bunker and Dünweg used “Hamiltonian” parallel tempering to simulate a
long-chain polymer. The polymer was modeled using a bead-spring model
with a purely repulsive Lennard-Jones interaction between the beads:

�pol��� �

���
��

� ��� � � �PT

��
��

�
�

�	�
�
�
�
�

�
�
�PT � � � �	�
�


� � � �	�
�

where  and � were chosen such that, for a given value of ��, the potential
and its first derivative were continuous. We are interested in the properties of
the model system with �PT � �. The other systems are simply added to facil-
itate equilibration. For instance, for �PT � �	�
�, the core repulsion vanishes
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and polymer chains can pass through each other. In their parallel tempering
scheme, Bunker and Dünweg simulated a number of systems with different
values of �PT. A drawback of this “Hamiltonian” parallel tempering scheme is
that most of the simulation time is spent on systems that are not of physical
interest. After all, we are only interested in the thermodynamic behavior of
the system with �PT � �. However, as is discussed in ref. [426], the gain in
sampling efficiency due to the use of the parallel tempering scheme is still
sufficient to make the scheme competitive.

Yan and de Pablo [425] used a parallel tempering scheme to study phase
coexistence in a polymeric system. In their simulations, each of the subsys-
tems contained a tagged chain that has a different chain length. For ex-
ample, in box � this chain has a length �� and in box � a length ��. In
the last box, �, this chain has the same chain length as the other chains
��. This method resembles the expanded ensemble scheme of Escobedo
and de Pablo [399], but in the expanded ensemble scheme only one box
is simulated that switches between states, while in the implementation of
de Pablo all systems are simulated in parallel. To compute the vapor-liquid
coexistence curve of their polymers, Yang and de Pablo performed in ad-
dition parallel tempering moves in the grand-canonical ensemble in which
both the temperature and the chemical potential of each of these subsys-
tems changes (see Example 22). Without the parallel tempering moves in
which the chain length is changed, one would have to insert or remove an
entire chain at once. With the parallel tempering this insertion or deletion
can be done very efficiently in those systems for which the tagged chain is
short.

14.2 Hybrid Monte Carlo

In Molecular Dynamics simulations, all particle coordinates are updated si-
multaneously. In conventional MC simulations, only a few coordinates are
changed in a trial move. As as consequence, collective molecular motions
are not well represented by Monte Carlo, and this may adversely affect the
rate of equilibration. The advantage of Monte Carlo is that, unlike MD, we
can carry out unphysical moves. Moreover, in MC the system is not con-
strained to move on a hypersurface where some Hamiltonian is conserved.
The time step in Molecular Dynamics is limited by the need to conserve en-
ergy. Clearly, no such constraint applies to Monte Carlo. For this reason,
many authors have attempted to combine the natural dynamics of MD with
the large jumps in configuration space possible in MC. The book by Allen
and Tildesley [19] describes a number of such techniques (force-bias MC,
Langevin Dynamics, smart Monte Carlo) that basically work by including
some or all information about the intermolecular forces in the construction
of a collective MC trial move.
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A technique that has achieved much attention during the past few years
is the hybrid Monte Carlo scheme [430]. The basic idea behind this scheme
is that one can use MD to generate Monte Carlo trial moves. At first sight,
there is no advantage in doing so. However, the criteria for what constitutes
a good Monte Carlo trial move are more tolerant than the specifications of
a good Molecular Dynamics time step. In particular, one can take a time
step that is too long for MD. Energy will not be conserved in such a trial
move. However, as long as one uses an algorithm that is time reversible and
area preserving (i.e., that conserves volume in phase space), such collective
moves can be used as a Monte Carlo trial move. Fortunately, a systematic
way now exists to construct time-reversible, area-preserving MD algorithms,
using the multiple-time-step MD scheme of Tuckerman et al. [71]. The usual
Metropolis algorithm can then be used to decide on the acceptance or re-
jection of the move (see, e.g., [431, 432]). For every trial move, the particle
velocities are chosen at random from a Maxwell distribution. In fact, it is
often advantageous to construct a trial move that consists of a sequence of
MD steps. The reason is that, due to the randomization of the velocities, the
diffusion constant of the system becomes quite low if the velocities are ran-
domized well before the natural decay of the velocity autocorrelation func-
tion.

Yet one cannot make the time step for a single hybrid MC move too long,
because then the acceptance would become very small. As a consequence,
the performance of hybrid MC is not dramatically better than that of the
corresponding Molecular Dynamics. Moreover, the acceptance probability
of hybrid MC moves of constant length decreases with the system size, be-
cause the root-mean-square error in the energy increases with ����. MD
does not suffer from a similar problem. That is to say, the noise in the to-
tal energy increases with �, but the stability of the MD algorithm does not
deteriorate. Hence, for very large systems, MD will always win. For more
normal system sizes, hybrid MC may be advantageous.

It is also interesting to use hybrid MC on models that have an expensive
(many-body) potential energy function that may, to a first approximation, be
modeled using a cheap (pair) potential. We could then perform a sequence
of MD steps, using the cheap potential. At the end of this collective (MD)
trial move, we would accept or reject the resulting configuration by apply-
ing the Metropolis criterion with the true potential energy function. Many
variations of this scheme exist. In any event, the hybrid Monte Carlo method
is a scheme that requires fine tuning [432].

Forrest and Suter [433] have devised a hybrid MC scheme that samples
polymer conformations, using fictitious dynamics of the generalized coordi-
nates. This scheme leads to an improved sampling of the polymer confor-
mations compared to normal MD. The interesting feature of the dynamics
used in ref. [433] is that it uses a Hamiltonian that has the same potential
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energy function as the original polymer model. In contrast, the kinetic part
of the Hamiltonian is adjusted to speed up conformational changes.

14.3 Cluster Moves

One of the main problems in the simulation of complex liquids is that the
“natural” dynamics of these systems may be quite slow. As a consequence,
normal Molecular Dynamics or Monte Carlo methods may not be adequate
to achieve a good sampling of configuration space. For this reason, various
schemes for speeding up the sampling rate have been proposed. Many of
these techniques rely on the fact that, in Monte Carlo simulations, one has
the freedom to carry out unphysical moves. To give an example: in the sim-
ulation of large (bio)molecules, it is often difficult to explore the different
possible conformations of such molecules, because probable conformations
are often separated by high free energy barriers. A technique for alleviating
this problem is to allow the molecule to explore pathways from one con-
formation to another that do not cross potential energy barriers but bypass
them. This is achieved by allowing the molecule to make excursions into a
higher “embedding” dimension [434].

14.3.1 Clusters

As explained at the beginning of section 13.2.3, the crucial step in configur-
ational-bias Monte Carlo is that the “bias” in the generation of trial confor-
mations results in an enhanced acceptance of these trials moves. Ideally, we
would like to bias the generation of trial moves in such a way that every
move is always accepted. Surprisingly, this is sometimes possible. Swend-
sen and Wang [435] (for a review, see [37]) have shown that, at least for
certain classes of lattice problems, it is possible to perform cluster moves
that have an acceptance probability of 100%. In this context, a “cluster” is
a group of particle coordinates (or spins) that are changed collectively in a
Monte Carlo move. That is, the interactions within a cluster do not change
in a cluster move, but the interaction of the cluster with the remainder of the
system may change.

The central idea behind the Swendsen-Wang (SW) scheme and subse-
quent extensions and modifications is to generate trial configurations with
a probability that is proportional to the Boltzmann weight of that configura-
tion. As a result, the subsequent trial moves can be accepted with 100% prob-
ability. We use a somewhat simplified derivation of the Swendsen-Wang for
cluster moves based, again, on the condition for detailed balance. Consider
an “old” configuration (labeled by a superscript �) and a “new” configura-
tion (denoted by a superscript �). Detailed balance is satisfied if the follow-
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ing equality holds:

� �����Gen��cluster��P�cl��o� n�acc�o� n�
� � �����Gen��cluster����cl���� ��acc��� ��� (14.3.1)

where� ��� is the Boltzmann weight of the old configuration, ��Gen��cluster��
denotes the probability of generating a specific cluster, starting from the old
configuration of the system. The term ��cl��� � �� is the probability of
transforming the generated cluster from the old to the new situation. Fi-
nally, acc�� � �� is that acceptance probability of a given trial move. We
can simplify equation (14.3.1) in two ways. First of all, we require that the
a priori probability ��cl��� � �� be the same for the forward and reverse
moves. Moreover, we wish to impose �acc � � for both forward and reverse
moves. This may not always be feasible. However, for the simple case that
we discuss next, this is indeed possible. The detailed balance equation then
becomes

� �����Gen��cluster�� � � �n�Pn
Gen��cluster�� (14.3.2)

or
��Gen��cluster��
��Gen��cluster��

�
� ���

� ���
� exp������� (14.3.3)

where �� is the difference in energy between the new and the old configura-
tions. The trick is then to find a recipe for cluster generation that will satisfy
equation (14.3.3). To illustrate how this works, consider the Ising model. The
extension to many other models is straightforward.

Ising Model

For the construction of the Ising SW algorithm, the dimensionality of the
model is irrelevant. Consider a given configuration of the spin system, with
�� spin pairs parallel and �� spin pairs antiparallel. The total energy of
that configuration is

� � ��� ������

where � denotes the strength of the nearest-neighbor interaction. The Boltz-
mann weight of that configuration is

� ��� � exp������� �����	
�

where 
 is the partition function of the system. In general, 
 is unknown,
but that is unimportant. We are concerned only that 
 is a constant. Next,
we construct clusters by creating bonds between spin pairs according to the
following recipe:
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� If nearest neighbors are antiparallel, they are not connected.

� If nearest neighbors are parallel, they are connected with probability �

and disconnected with probability �� � ��.

Here, it is assumed that � is positive. If � is negative (antiferromagnetic in-
teraction), parallel spins are not connected, while antiparallel spins are con-
nected with a probability �.

In the case that we consider, there are �� parallel spin pairs. The proba-
bility that �� of these are connected and �� � �� � �� are “broken” is

��Gen��cluster�� � pnc�1 � p�nb �

Note that this is the probability to connect (or break) a speci ed subset of all
links between parallel spins. Once the connected bonds have been selected,
we can define the clusters in the system. A cluster is a set of spins that is
at least singly connected by bonds. We now choose our subset of clusters to
flip. After the cluster flipping, the number of parallel and antiparallel spin
pairs will have changed, for example,

����� � ����� � �

and (hence)
����� � ����� � ��

Therefore, the total energy of the system will have changed by an amount
�	��:

���� � ���� � 	���

Let us now consider the probability of making the reverse move. To do this,
we should generate the same cluster structure, but now starting from a sit-
uation where there are �� � � parallel spin pairs and �� � � antiparallel
pairs. As before, the bonds between antiparallel pairs are assumed to be bro-
ken (this is compatible with the same cluster structure). We also know that
the new number of connected bonds, � �

�, must be equal to ��, because the
same number of connected bonds is required to generate the same cluster
structure. The difference appears when we consider how many of the bonds
between parallel spins in the new configuration should be broken (� �

�). Us-
ing

����� � � �

� � � �

� � �� � � �

� � ����� � � � �� � �� � �


we see that
� �

� � �� � ��
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If we insert this in equation (14.3.3), we obtain

��Gen��cluster��
��Gen��cluster��

�

����� � ����

����� � ������
�

�� � ���� �
� ���

� ���
� exp������	 (14.3.4)

To satisfy this equation, we must have

� � � � exp������

or
� � � � exp������


which is the Swendsen-Wang rule.

General Cluster Moves

In general, it is not possible to design clusters such that trial moves are al-
ways accepted. However, it is often convenient to perform clustering to en-
hance the acceptance of trial moves. For instance, in molecular systems with
very strong short-range attractions, trial moves that pull apart two neigh-
boring particles are very likely to be rejected. It is preferable therefore to
include trial moves that attempt to displace the tightly bound particles as a
single cluster. To do this, we have to specify a rule for generating clusters.
Let us assume that we have such a rule that tells us that particles � and �

belong to a single cluster with probability ���
 �� and are disconnected with
a probability � � ���
 ��. Here, ���
 �� depends on the state (relative distance,
orientation, spin, etc.) of particles � and �. Moreover, we require that ���
 ��
be unchanged in a cluster move if both � and � belong to the cluster, and also
if neither particle belongs to the cluster. For instance, ���
 �� could depend on
the current distance of � and � only. If we denote the potential energy of the
old (new) configuration by �� (��), the detailed balance condition requires
that

exp������
�

��

�� � ���
� ��acc��� ��

� exp������
�
��

�� � ���
� ��acc��� ��
 (14.3.5)

where  denotes a particle in the cluster and � a particle outside it. The
superscripts � and � denote forward and reverse moves. In writing equa-
tion (14.3.5), we have assumed that the probability of forming bonds com-
pletely within, or completely outside, the cluster is the same for forward and
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reverse moves. From equation (14.3.5), we derive an expression for the ratio
of the acceptance probabilities:

acc��� ��

acc��� ��
� exp�������� � ������

�
��

�� ������ �

� � ������ �
� (14.3.6)

Clearly, many choices for ��� are possible. A particularly simple form was
chosen by Wu et al. [436], who assumed that ��	� 
� � � for ��� less than a
critical distance �� and ��	� 
� � � beyond that distance (see Example 24).
Note that the acceptance rule in equation (14.3.5) guarantees that two parti-
cles that did not belong to the same cluster in the old configuration will not
end up at a distance less than ��.

Example 24 (Micelle Formation)
Surfactants are amphiphilic molecules that consist of two chemically distinct
parts. If these two parts cannot be connected, then one part will prefer-
entially dissolve in another solvent compared to the other part. The most
common case is that one part of the molecule is water soluble and the other
oil soluble. But, as the two parts of the molecule are connected, the dissolu-
tion of surfactant molecules in a pure solvent (say, water) causes frustration,
as the oil soluble part of the molecule is dragged along into the water phase.
Beyond a certain critical concentration, the molecules resolve this frustration
by self-assembling into micelles. Micelles are (often spherical) aggregates
of surfactant molecules in which the surfactants are organized in such a way
that the hydrophilic heads point toward the water phase and the hydrophobic
tails toward the interior of the micelle. It is of considerable interest to study
the equilibrium properties of such a micellar solution. However, Molecular
Dynamics simulations on model micelles have shown that the micelles move
on a time scale that is long compared to the time it takes individual surfactant
molecules to move [437]. Using conventional MC, rather than MD, does not
improve the situation: it is relatively easy to move a single surfactant, but it
takes many displacements of single surfactants to achieve an appreciable
rearrangement of the micelles in the system. Yet, to sample the equilibrium
properties of micellar solutions, the micelles must be able to move over dis-
tances that are long compared to their own diameter, they must be able to
exchange surfactant molecules, and they must even be able to merge or
break up. As a consequence, standard simulations of micellar self-assembly
are very slow.

Wu et al. [436] have used cluster moves to speed up the simulation of
micellar solutions. They use a cluster MC scheme that makes it possible to
displace entire micelles with respect to each other. The specific model for
a surfactant solution that Wu et al. studied was based on a lattice model
proposed by Stillinger [438]. In this model, the description of surfactants
is highly simplified: the hydrophilic and hydrophobic groups are considered
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Figure 14.3: Snapshot of a typical configuration of the surfactant model of
Wu et al. [436], in which the hydrophilic and hydrophobic parts of surfactant
molecules are represented by charges (black head and white tail). Under
appropriate conditions, the surfactants self-assemble into micelles.

independent (unbonded) particles. The constraint that the head and tail of
a surfactant be physically linked is translated into an electrostatic attraction
between these groups. The magnitude of these effective charges depends
on density and temperature. A typical configuration is shown in Figure 14.3.
In such a system it is natural to cluster the molecules in a micelle and sub-
sequently move entire micelles. The cluster criterion used by Wu et al. is

���� �� �

�
� � if ��� � ��
� � if ��� � ��

	

Wu et al. used �� � �, which implies that two particles belong to the same
cluster if they are on neighboring lattice sites.

In the first step of the algorithm, the clusters are constructed using the
preceding criterion. Subsequently, a cluster is selected at random and given
a random displacement. It is instructive to consider the case in which we
would use the ordinary acceptance rules to move the cluster; that is,

acc�
� �� � min��� exp������	

Figure 14.4 shows such a cluster move. The first step (top) is the construc-
tion of the cluster, followed by a displacement of one of the clusters (middle).
If we accept this move with the probability given by the preceding equation,
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we would violate microscopic reversibility. Since we have moved the clusters
in such a way that they touch each other, in the next step, these two clusters
would be considered a single cluster. It then will be impossible to separate
them to retrieve the initial configuration.

If we use the correct acceptance rule, equation (14.3.6),

acc��� �� � min

�
�� exp������

�
��

� � �new���	 �

� � �old���	 �

�
�

then this move would be rejected because �new���	 � � �. Since these cluster
moves do not change the configuration of the particles in a cluster and do not
change the total number of particles in a cluster, it is important to combine
these cluster moves with single particle moves, or use a cluster criterion
��
� �� that allows the number of particles in a cluster to change.

Orkoulas and Panagiotopoulos have used such cluster moves to simulate
the vapor-liquid coexistence curve of the restricted primitive model of an ionic
fluid [439,440].

14.3.2 Early Rejection Scheme

One of the differences of simulations of models with continuous interac-
tions compared to those of models with hard-core potentials is the way
Monte Carlo moves are optimized. For example, if hard-core interactions
are present, one can reject a move as soon as a single overlap is detected.
For continuous potentials, all interactions must be computed before a trial
move can be accepted or rejected. As a consequence, on average, it is cheaper
to perform a trial move of a hard-core particle that results in rejection than
in acceptance. This leads to the strange situation where it is appreciably
cheaper to perform a MC simulation of a true hard-core model than of a cor-
responding model that has very steep but continuous repulsive interactions.
Intuitively, one would expect that, also for continuous potentials, it should
be possible to reject at an early stage those trial moves that are almost cer-
tainly “doomed” because they will result in a large increase of the potential
energy. In practice this is often achieved by assuming that, beyond a certain
critical distance, the continuous potential can be replaced by a hard-core po-
tential. In this section we show that it is not really necessary to make such an
assumption. Rather, we can use the idea behind the Swendsen-Wang scheme
to formulate criteria that allow us to reject at an early stage “doomed” trial
moves for particles with a continuous intermolecular potential [441].

To see how this approach works, consider a trial displacement of particle

 to a new position. We now construct “bonds” between this particle and a
neighboring particle � with a probability

�bond�
� �� � max ���� � exp��������� � (14.3.7)
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Figure 14.4: Violation of detailed balance in a cluster move; the top figure
shows the four clusters in the system; in the middle figure one of the clusters
is given a random displacement, which brings this cluster into contact with
another cluster; and the bottom figure shows that new configuration has
only three clusters if the moves have been accepted.

where ����� � ����� �� � ����� �� is change in the interaction energy of parti-
cles � and � caused by the trial displacement of particle �. If � is not connected
to �, we proceed with the next neighbor �, and so on. But as soon as a bond
is found between � and any of its neighbors, we reject the trial move. Only if
particle � is not bonded to any of its neighbors do we accept the trial move.

Before discussing the advantages and disadvantages of this scheme, we
first demonstrate that this scheme satisfies detailed balance (see section 5.2).
The probability that we accept a move from the old to the new position is



14.3 Cluster Moves 407

given by

acc��� �� �
�
� ���

�� � �bond��� ��� � exp

�
���
�
� ���

�

�	������ ��

�
� �

where the summation is over particles � for which the �	��� �� is positive. For
the reverse move �� �, we have

acc��� �� �
�
� ���

�� � �bond��� ��� � exp

�
���
�
� ���

�

�	������ ��

�
� 


The summation is over all particles � for which the reverse move causes an
increase in energy. In addition, we can write

�	������ �� � ��	������ ���

which gives for the probability of accepting the reverse move �� �

acc��� �� � exp

�
���
�
� ���

�

�	������ ��

�
� �

where the summation is over all particle � for which the energy 	����� � ��

decreases. Substitution of these two expressions for the acceptance proba-
bilities under the condition of detailed balance (5.1.1), for the ratio of the
acceptance probabilities, gives

acc��� ��

acc��� ��
�

exp
�
��
�
�

� ��� �	������ ��
�

exp
�
��
�
�

� ��� �	������ ��
�

� exp

�
���
�
� ���

�	������ ��

�
� �

� ���

� ���
�

which demonstrates that detailed balance is indeed obeyed.
It is interesting to compare this scheme with the original Metropolis

algorithm. In the bond formation scheme it is possible that a move is rejected
even when the total energy decreases. Hence, although this scheme yields a
valid Monte Carlo algorithm, it is not equivalent to the Metropolis method.
Equation (14.3.7) ensures that, if a trial displacement puts particle � in a very
unfavorable position where �	�� � �, then it is very likely that a bond will
form between these particles and hence the trial move can be rejected. This
advantage of the early-rejection scheme, at least partly, is offset because for
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all pair energies that increase due to the trial displacement, a random num-
ber must be drawn to test whether a bond will be formed. If a particle inter-
acts with many other particles, then this scheme requires the calculation of
a large number of random numbers. This can be avoided if we use the early
rejection scheme only for nearest neighbors (i.e., those that are most likely to
contribute to strong repulsive interactions when particle � is moved).1 If this
stage of the trial move is passed, the interaction with the remaining particles
is then computed in the usual way, and accepted or rejected with the con-
ventional Metropolis rule. The early-rejection scheme is not limited to single
particle moves. In fact, it is probably most useful when applied to complex
many-particle moves. For example, in the configurational-bias Monte Carlo
scheme (see Chapter 13), one has to grow an entire molecule to calculate its
Rosenbluth factor before one can reject or accept such a move. If one of the
first segments has been placed at an unfavorable position, such that the new
configuration is “doomed,” then the early-rejection scheme could be used to
avoid having to complete the growth of a new polymer configuration.

1Here, too, we must be careful: nearest neighbors are only those particles within a certain
distance before and after the trial displacement of particle �.



Chapter 15

Tackling Time-Scale
Problems

One might argue that it would be sufficient to limit our discussion of Molec-
ular Dynamics simulations of atomic systems, because, after all, molecules
are made up of atoms. Hence, if we know how to simulate the dynamics
of nonbonded atoms, we also know how to simulate atoms that belong to
a molecule. Although this statement is correct, as long as it is legitimate to
ignore the quantum nature of intramolecular motions, it is usually not ad-
visable to employ the same simulation techniques to atoms that belong to a
molecule as to free atoms. The reason is that the characteristic time scales
associated with intramolecular motions are typically a factor 10–50 shorter
than the time over which the translational velocity of a molecule changes
appreciably. In a Molecular Dynamics simulation, the time step should be
chosen such that it is appreciably shorter than the shortest relevant time scale
in the simulation. If we simulate the intramolecular dynamics of molecules
explicitly, this implies that our time step should be shorter than the period of
the highest-frequency intramolecular vibration. This would make the sim-
ulation of molecular substances very expensive. Therefore, techniques for
tackling this problem have been developed. Here, we will discuss three ap-
proaches: constraints, extended Lagrangians, and multiple-time-step simu-
lations.

Multiple-time-scale Molecular Dynamics [71], is based on the observa-
tion that forces associated with a high-frequency intramolecular vibration
can be integrated efficiently with a time step different than the time step
used for the integration of the intermolecular forces.

An alternative is to treat the bonds (and, sometimes, bond angles) in
molecules as rigid. The Molecular Dynamics equations of motion are then
solved under the constraint that the rigid bonds and bond angles do not
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change during our simulation. The motion associated with the remaining
degrees of freedom is presumably slower, and hence we can again use a long
time step in our simulations. Here, we briefly explain how such constraints
are implemented in a Molecular Dynamics simulation.

In addition, we illustrate how extended Lagrangians can be used in “on-
the-fly” optimization problems. The first and foremost example of a tech-
nique that uses an extended Lagrangian for this purpose is the Car-Parrinello
“ab-initio” MD method [442]. We shall not discuss this technique because
quantum simulations fall outside the scope of this book. Rather, we shall
illustrate the idea of the Car-Parrinello approach to optimization using a
purely classical example.

15.1 Constraints

To get a feel for the way in which constrained dynamics works, let us first
consider a simple example, namely, a single particle that is constrained to
move on a surface (e.g., a sphere) in space, ������� � = 0. The (Lagrangian)
equations of motion for the unconstrained particle are (see Appendix A)

�

��

��

�q
�

��

��
� (15.1.1)

As the Lagrangian, �, is equal to �kin � �pot, the equation of motion for the
unconstrained particle is

	�̈ � �
��

��
�

Now, suppose that we have the particle initially on the surface ������� � �


. Moreover, we impose that, initially, the particle moves tangential to the
constraint plane:

�̇ � �̇ � �� � 
�

But as the particle moves, its velocity changes such that it is no longer tan-
gent to the constraint surface. To keep the particle on the constraint surface,
we now apply a fictitious force (the constraint force) in such a way that the
new velocity is again perpendicular to ��.

In the general case, the dynamics should satisfy many constraints simul-
taneously (e.g., many bond lengths). Let us denote the functions describing
these constraints by ��, ��, � � � . For instance, �� may be a function that is
equal to 0 when atoms � and  are at a fixed distance ���:

���r�� r�� � ���� � �����

We now introduce a new Lagrangian � � that contains all the constraints:

�
� � � �

�

�

�����r���
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where � denotes the set of constraints and �� denotes a set of (as yet unde-
termined) Lagrange multipliers. The equations of motion that correspond to
this new Lagrangian are

�

��

�� �

��̇
�

�� �

��
(15.1.2)

or

���̈� � �
��

���
�
�

�

��
���

���

� �� �
�

�

�����	 (15.1.3)

The last line of this equation defines the constraint force G�. To solve for
the set ��, we require that the second derivatives of all �� vanish (our initial
conditions were chosen such that the first derivatives vanished):

��̇�

��
�

��̇���

��
� �̈��� � �̇�̇ � ����

� 
	 (15.1.4)

Using equation (15.1.3), we can rewrite this equation as

��̇�

��
�
�

�

�

��

�
��� �
�

�

�����

�
����� �

�

���

�̇��̇�������

�
�

�

�

��

������ �
�

�

�

��

�

�

���������� �
�

���

�̇��̇�������

� �� ����� � ��

� 
	 (15.1.5)

In the last line of equation (15.1.5), we have written the equation on the pre-
vious line in matrix notation. The formal solution of this equation is

 � M���� � � �	 (15.1.6)

This formal solution of the Lagrangian equations of motion in the presence
of constraints, unfortunately, is of little practical use. The reason is that, in a
simulation, we do not solve differential equations but difference equations.
Hence there is little point in going through the (time-consuming) matrix in-
version needed for the exact solution of the differential equation, because
this procedure does not guarantee that the constraints also will be accurately
satisfied in the solution of the difference equation.
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Before we proceed, let us consider a simple example of constrained dy-
namics, namely, a particle moving on the surface of a sphere of radius �. In
that case, we can write our constraint function � as

� �
�

�

�
�� � ��

�
�

The constraint force G is equal to

G � ���� � ��r�

To solve for �, we impose �̈ � �:

���̇ � ���r � r�

� �r � r� � �̇� � �� (15.1.7)

The Lagrangian equation of motion is

r �
�

	
�F � G�

�
�

	
�F � �r��

For convenience, we assume that no external forces are acting on the particle
(F � 0). Combining equations (15.1.7) and (15.1.8), we obtain

�
�

	
�� � �̇� � �� (15.1.8)

Hence

� �
	�̇�

��



and the constraint force G is equal to

G � ��r � �
	�̇�

��
r�

Recall that, on the surface of a sphere, the velocity ṙ is simply equal to ��.
Hence we can also write the constraint force as

G � �	��r


which is the well-known expression for the centripetal force.
This simple example will help us to understand what goes wrong when

we insert the preceding expression for the constraint force into an MD algo-
rithm, e.g., the Verlet scheme. In the absence of external forces, we would
get the following algorithm for a particle on the surface of a sphere:

r��� �� � �r��� � r�� � �� �����r����
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How well is the constraint �� = �� satisfied? To get an impression, we work
out the expression for �� after one time step. Assuming that the constraint
was satisfied at � � � and at � � ���, we find that, at � � ��,

����� ��� � ��
�
� � ������ � ������� � cos������������� � ��

�

� ��
�
	 �

������



�������

�
�

At first sight, this looks reasonable, and the constraint violation is of order
���, as is to be expected for the Verlet scheme. However, whereas for center-
of-mass motion we do not worry too much about errors of this order in the
trajectories, we should worry in the case of constraints. In the case of trans-
lational motion, we argued that two trajectories that are initially close but
subsequently diverge exponentially still may both be representative of the
true trajectories of the particles in the system. However, if we find that, due
to small errors in the integration of the equations of motion, the numerical
trajectories diverge exponentially from the constraint surface, then we are in
deep trouble. The conclusion is that we should not rely on our algorithm to
satisfy the constraints (although, in fact, for the particle on a sphere, the Ver-
let algorithm performs remarkably well). We should construct our algorithm
such that the constraints are rigorously obeyed.

The most straightforward solution to this problem is not to fix the La-
grange multiplier � by the condition that the second derivative of the con-
straint vanishes but by the condition that the constraint is exactly satisfied
after one time step. In the case of the particle on a sphere, this approach
would work as follows. The equation for the position at time � � �� in the
presence of the constraint force is given by

r��� ��� � �r��� � r�� � ��� �
�


r���

� r���� ��� �
�


r����

where ���� � ��� denotes the new position of the particle in the absence of
the constraint force. We now impose that the constraint �� � �� is satisfied
at �� ��:

�� �

�
r���� ��� �

�


r���

��

� ����� � ��� �
��


r��� � r���� ��� �

�
�


����

��
�

This expression is a quadratic equation in �,
�
�


�

��

�
��


r��� � r���� ��� � r���� � ��� � �� � ��
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and the solution is

� �
r��� � r���� ��� �

�
�r��� � r���� ����� � �������� � ��� � ���

����
�

For the trivial case of a particle on a spherical surface, this approach clearly
will work. However, for a large number of constraints, it will become dif-
ficult, or even impossible, to solve the quadratic constraint equations ana-
lytically. Why this is so can be seen by considering the form of the Verlet
algorithm in the presence of � constraints:

rconstrained
�

�� � ��� � runconstrained
�

��� �
���

��

��

���

����	����� (15.1.9)

If we satisfy the constraints at time � � ��, then 	�
�
�� � ��� � 
. But if

the system would move along the unconstrained trajectory, the constraints
would not be satisfied at � � ��. We assume that we can perform a Taylor
expansion of the constraints:

	���� � ��� � 	�� ��� ��� �

��

���

�
�	�

�r�

�
��
�
�	�
	�

� �r�� ��� ��� � r�� ��� ����

� ������� (15.1.10)

If we insert equation (15.1.9) for ��
�
� ��

�
in equation (15.1.10), we get

	�
�
��� ��� �

��

���

���

��

��

� ���

��	��� � �����	� ������ � � (15.1.11)

We note that equation (15.1.11) has the structure of a matrix equation:

�
���� ��� � ���M�� (15.1.12)

By inverting the matrix, we can solve for the vector �. However, as we had
truncated the Taylor expansion in equation (15.1.10), we should then com-
pute the 	’s at the corrected positions, and iterate the preceding equations
until convergence is reached.

Although the approach sketched here will work, it is not computationally
cheap because it requires a matrix inversion at every iteration. In practice,
therefore, often one uses a simpler iterative scheme to satisfy the constraints.
In this scheme, called SHAKE [443], the iterative scheme just sketched is not
applied to all constraints simultaneously but to each constraint in succes-
sion. To be more precise, we use the Taylor expansion of equation (15.1.10)
for 	�, but then we approximate ��

�
� ��

�
as

r�� �� � ��� � r�� ��� � �
�����

��

��	����� (15.1.13)
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Figure 15.1: Symmetric trimer with bond length � and internal bond angle
�. (left) Bonds are represented by an infinitely stiff spring; (right) bonds are
represented by hard constraints in the equation of motion of the dimer.

If we insert equation (15.1.13) in equation (15.1.10), we get

��
�
��� ��� � �����

��

���

�

��

������ � ����������� (15.1.14)

and hence our estimate for �� is

����
� �

��
�
�� � ���

�
�

���

�

��

������� ����������
	 (15.1.15)

In a simulation, we treat all constraints in succession during one cycle of the
iteration and then repeat the process until all constraints have converged
to within the desired accuracy. De Leeuw et al. have shown how one may
cast the problem of constrained dynamics in a Hamiltonian form [444]. The
available evidence seems to indicate that this formalism results in algorithms
used to solve the equations of motion that lead to less drift from the con-
straint surface than the algorithms used to solve the corresponding Lagrang-
ian equations of motion. Why this should be so is not obvious.

15.1.1 Constrained and Unconstrained Averages

Thus far, we have presented constrained dynamics as a convenient scheme
for modeling the motion of molecules with stiff internal bonds. The advan-
tage of using constrained dynamics was that we could use a longer time step
in our Molecular Dynamics algorithm when the high-frequency vibrations
associated with the stiff degrees of freedom were eliminated. However, a
hidden danger lies in using constraints: the averages computed in a sys-
tem with hard constraints and in a system with arbitrarily stiff but nonrigid
bonds are not the same. To give a well-known specific example, consider a
fully flexible trimer (see Figure 15.1). We wish to fix the bond lengths 
�� and

��. We can do this in two ways. One is to impose the constraints 
�

��
� ��

and 
�
��

� �� in the equations of motion of the trimer. The other is to link the
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atoms in the trimer by harmonic springs, such that

�Harmonic �
�

�

�
���� � ��� � ���� � ���

�
�

Intuitively, one might expect that the limit � � � would be equivalent to
dynamics with hard constraints, but this is not so. In fact, if we look at ����,
the distribution of the internal angle �, we find that

���� � � sin� (Harmonic forces)
���� � � sin�

�
� � �cos���	
 (Hard constraints)�

(15.1.16)

We shall try to explain the origin for this difference in behavior of “hard”
and “soft” constraints. A convenient way of discussing constraints is to start
with the Lagrangian of the system, � � � � � . Thus far, we had expressed
the kinetic (�) and potential (�) energy of the system in terms of the Carte-
sian velocities and coordinates of the atoms. However, when we talk about
bonds and bond angles or, for that matter, any other function of the coordi-
nates that has to be kept constant, it is more convenient to use generalized
coordinates, denoted by �. We choose our generalized coordinates such that
every quantity we wish to constrain corresponds to a single generalized co-
ordinate. We denote by �� the set of generalized coordinates that describes
the quantities that are effectively, or rigorously, fixed. The remaining soft
coordinates are denoted by ��. The potential energy function � is a function
of both �� and ��:

���� � ����� ����

If we rigorously fix the hard coordinates such that �� = �, then the potential
energy is a function of ��, while it depends parametrically on �:

�hard���� � �soft��� ����

Let us now express the Lagrangian in terms of these generalized coordinates:

� �
�

�

��
���

��̇
�
� � �

�
�

�

��
���

��̇�
�r�
���

�
�r�
���

�̇� � �

�
�

�
q �G � q � � � (15.1.17)

where the last line of equation (15.1.17) defines the mass-weighted metric
tensor G. We can now write the expression for the generalized momentum:

�� �
��

��̇�
� ����̇�� (15.1.18)
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where summation of the repeated index � is implied. Next, we can write the
Hamiltonian as a function of generalized coordinates and momenta:

� �
�

�
p �G�� � p � ��q��

Once we have the Hamiltonian, we can write expressions for the equilib-
rium phase space density that determines all thermal averages. Although
one could write expressions for all averages in the microcanonical ensemble
(constant ��� � �), this is, in fact, not very convenient. Hence, we shall con-
sider canonical averages (constant ��� � �). It is straightforward to write the
expression for the canonical distribution function in terms of the generalized
coordinates and momenta:

	�p�q� �
exp�����p�q��


���

(15.1.19)

with

��� �

�
dpdq exp�����p�q��� (15.1.20)

The reason we can write equation (15.1.19) in this simple form is that the
Jacobian of the transformation from Cartesian coordinates to generalized
coordinates is 1. Let us now look at the canonical probability distribution
function as a function of q only:

	�q� � �

�
dp exp����p �G�� � p��� ��q���

� � � exp�����q��
�

�G�� (15.1.21)

where �G� denotes the (absolute value of the) determinant of G and � and � �

are normalizing constants.
Thus far, we have not mentioned constraints. We have simply trans-

formed the canonical distribution function from one set of phase space co-
ordinates to another. Clearly, the answers will not depend on our choice of
these coordinates. But now we introduce constraints. That is, in our La-
grangian (15.1.17) we remove the contribution to the kinetic energy due to
the change in the hard coordinates; that is, we set q� � 0, and in the po-
tential energy function, we replace the coordinates q� by the parameters �.
The Lagrangian for the system with constraints is

�
� �

�

�

��
���

��̇
�
� � � (15.1.22)

�
�

�

��
���

��̇
�
�

�r�
����

�
�r�
���	

�̇�	 � ��q����

�
�

�
q� �G� � q� � ��q�����
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Note that the number of variables has decreased from �� to ��� �, where �
is the number of constraints. The Hamiltonian of the constrained system is

�
� �

�

�
p� �G��� � p� � ��q�����

where
��� �

��

��̇��
	 (15.1.23)

As before, we can write the phase space density. In this case, it is most
convenient to write this density directly as a function of the generalized co-
ordinates and momenta:


�p��q�� �
exp�����p��q���

��
���

	 (15.1.24)

Let us now write the probability density in coordinate space:


�q�� � 

�
dp� exp����p� �G� � p���� ��q������

�  � exp�����q�����
�

�G��� (15.1.25)

where  and  � are normalizing constants. Now compare this expression
with the result that we would have obtained if we had applied very stiff
springs to impose the constraints. In that case, we would have to use equa-
tion (15.1.21). For q�=�, equation (15.1.21) predicts


�q�� � � � exp�����q�����
�

�G�� (15.1.26)

and this is not the same result as given by equation (15.1.25). Ignoring con-
stant factors, the ratio of the probabilities in the constrained and uncon-
strained system is given by


�q��

�q��q� � ��

�

�
�G��

�G�
	

This implies that, if we do a simulation in a system with hard constraints
and we wish to predict average properties for the system with “stiff-spring”
constraints, then we must compute a weighted average with a weight factor�

�G���G�� to compensate for the bias in the distribution function of the con-
strained system. Fortunately, it is usually easier to compute the ratio �G���G��

than to compute �G� and �G�� individually. To see this, consider the inverse
of G

G���� �

��
���

���
�

���

�r�
�
���

�r�
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It is easy to verify that this is indeed the inverse of G:

G��G���� �

��

�����

��

�r�
���

�r�
���

���

�r�

���

�r�
���
�

�

��

���

�r�
���

���

�r�

� Æ��� (15.1.27)

Now, let us write both the matrices G and G�� in block form

G �

�
G� A�	
A	� A		

�
(15.1.28)

and

G�� �
�

B�� B�	
B	� H

�
� (15.1.29)

where the subscripts � and � denote soft and hard coordinates, respectively.
The submatrix H is simply that part of G�� that is quadratic in the deriva-
tives of the constraints:

��� �

��

���

���
�

���

�r�

���

�r�
�

Now we construct a matrix X as follows. We take the first �	� 
 columns of
G and we complete it with the last 
 columns of the unit matrix:

X �
�

G� �

A	� I

�
� (15.1.30)

From the block structure of X, it is obvious that the determinant of X is equal
to the determinant of G�. Next, we multiply X with GG��, that is, with the
unit matrix. Straightforward matrix multiplication shows that

GG��X � G
�

I B�	
� H

�
� (15.1.31)

Hence,

�X� � �G��

� �GG��X�

� �G��H�� (15.1.32)

The final result is that
�G�

�G��
� �H�� (15.1.33)
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We therefore can write the following relation between the coordinate space
densities of the constrained and unconstrained systems:

�flex�q� � �H��
�

� �hard�q�� (15.1.34)

The advantage of this expression is that we have expressed the ratio of the
determinants of a �� � �� matrix and a �� � � � �� � � matrix, by the
determinant of an �� � matrix. In many cases, this simplifies the calculation
of the weight factor considerably.

As a practical example, let us consider the case of the flexible trimer, dis-
cussed at the beginning of this section. We have two constraints:

�� � ��
��

� �� � �

�� � ���� � �� � ��

If all three atoms have the same mass 	, we can write �H� as

�H� �



	

�
�
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�r�
���

�r�

�
�

���

�r�
���

�r��
�

���

�r�
���

�r�

�
�

���

�r�
���

�r�

�

Inserting the expressions for �� and ��, we find that

�H� �
�

	

���
��

�r�� � r��
�r�� � r�� ���

��

�

Using the fact that ��
��

= ��
��

= ��, we get

�H� �
�

	

�
�����

�

�� � �r�� � r����
�

�
���

	

�

 �

cos�
�

�
� (15.1.35)

Finally, we recover equation (15.1.16) for the ratio of the probability densities
for the constrained and unconstrained systems:

�flex

�hard
� �H�

�

� � �

�

 �

cos� 
�

� (15.1.36)

This ratio varies between 
 and �����, that is, at most some 15%. It should be
noted that, in general, the ratio depends on the masses of the particles that
participate in the constraints. For instance, if the middle atom of our trimer
is much lighter than the two end atoms, then

�
�H� becomes

�

 � cos�

= � sin� and the correction due to the presence of hard constraints is not
small. However, to put things in perspective, we should add that, at least for
bond length constraints of the type most often used in Molecular Dynamics
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simulations, the effect of the hard constraints on the distribution functions
appears to be relatively small.

Finally, we stress that, although constrained dynamics is discussed in the
context of the simulation of polyatomic molecules, the same technique has
many other applications. For instance, in the Car-Parrinello scheme for “ab
initio” Molecular Dynamics (see, e.g., the articles by Galli in [40, 41]), con-
straints are imposed to keep the Kohn-Sham orbitals orthonormal. In the
simulation of reaction rates (see, for example, Chapter 16 and the article by
Ciccotti [445]), constrained dynamics is used to simulate the system at the
top of the free energy barrier that separates reactants and products. In addi-
tion, it is often possible to compute the free energy difference between two
realizations of a system, by computing the reversible work needed to trans-
form one system into the other. Again, constrained dynamics simulations
can be used to compute this reversible work.

15.2 On-the-Fly Optimi
Approach

Thus far, we have considered the use of extended Lagrangians only to per-
form simulations in ensembles other than the microcanonical. However,
another important application of extended Lagrangians is to perform sim-
ulations subject to an expensive variational constraint. Car and Parrinello
[442] pioneered this use of extended Lagrangians to maintain constraints
in the context of the “ab initio” Molecular Dynamics method. The Car-
Parrinello method is a Molecular Dynamics technique in which electronic
density-functional theory (in the local density approximation) is used to
compute the energies and densities of the valence electrons “on the fly”
[442]. It is assumed that the system is in its electronic ground state and
that electrons follow the nuclear motion adiabatically. The condition that
the system is always in its electronic ground state seems to imply that an
electronic energy minimization should be performed at every MD time step.
Typically, this requires an iterative procedure. Moreover, it is important that
this energy minimization is carried out to high accuracy, because a partially
converged electronic density will lag behind the nuclear motion and there-
fore exert a systematic drag force on the nuclei. What Car and Parrinello
showed is an alternative to this minimization scheme, based on the extended
Lagrangian approach. In the Car-Parrinello method, the electronic density
fluctuates around its optimal (adiabatic) value but, and this is the crucial
point, even though at every step the system is not exactly in its electronic
ground state, the electrons do not exert a systematic drag force on the nu-
clei. We discuss in more detail this aspect of the Car-Parrinello method, but
not in the context of electronic structure calculations, as that topic is out-

zzation: Car-Parrinelloz
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side the scope of this book. For more details on the Car-Parrinello method
for electronic structure calculations, we refer the reader to the excellent re-
views of Galli and Pasquarello [446] and Remler and Madden [447]. The
closest classical analogue of “ab initio” Molecular Dynamics is the method
developed by Löwen et al. [448,449] to simulate counterion screening in col-
loidal suspensions of polyelectrolytes. In the approach of [448], the counter-
ions are described by classical density-functional theory and an extended
Lagrangian method is used to keep the free energy of the counterions close
to its minimum.

Here we consider a somewhat simpler application of the Car-Parrinello
approach to a classical system. As before, the aim of the method is to re-
place an expensive iterative optimization procedure by a cheap extended
dynamical scheme. As a specific example, we consider a fluid of point-
polarizable molecules. The molecules have a static charge distribution that
we leave unspecified (for instance, we could be dealing with ions, dipoles,
or quadrupoles). We denote the polarizability of the molecules by �. The
total energy of this system is given by

� � �� ��pol�

where �� is the part of the potential energy that does not involve polariza-
tion. The induction energy, �pol, is given by [450]

�pol � �
�

�

E� � �� �
�

��

�

�

����
��

where E� is the local electric field acting on particle � and �� is the dipole
induced on particle � by this electric field. Of course, the local field depends
on the values of all other charges in the system. For instance, in the case of
dipolar molecules,

E� � T�� � �
tot
� �

where T�� is the dipole-dipole tensor and �
tot
� is the total (i.e., permanent

plus induced) dipole moment of molecule �. We assume that the induced
dipoles follow the nuclear motion adiabatically and that �pol is always at its
minimum. Minimizing �pol with respect to the �� yields

�� � �E�� (15.2.1)

Hence, to properly account for the molecular polarizability of an 	-particle
system, we would have to solve a set of 
	 linear equations at every time
step. If we solve this set of equations iteratively, we must make sure that
the solution has fully converged, because otherwise the local field will exert
a systematic drag force on the induced dipoles and the system will fail to
conserve energy.
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Now let us consider the Car-Parrinello approach to this optimization
problem. The application of this extended Lagrangian method to polarizable
molecules has been proposed by Rahman and co-workers [451] and by Sprik
and Klein [452]. A closely related approach was subsequently advocated by
Wilson and Madden [453]. The basic idea is to treat the induced dipoles as
additional dynamical variables that are included in the Lagrangian:

��r����� �
�

�

��

���

�ṙ�� �
�

�

��

���

��̇
�
� � � � (15.2.2)

where � is the mass associated with the motion of the dipoles. This La-
grangian yields the following equations of motion for the dipole moments:

��̈� �
��

���
� �

��

�
� E��

The right-hand side of this equation can be considered as a generalized force
that acts on the dipoles. In the limit that this force is exactly zero the iterative
scheme is recovered. If the temperature associated with the kinetic energy of
the dipoles is sufficiently low, the dipoles will fluctuate around their lowest-
energy configuration. More important, there will be no systematic drag force
on the dipoles, and hence the energy of the system will not drift.

To make sure that the induced dipoles are indeed close to their ground-
state configuration, we should keep the temperature of the induced-dipole
degrees of freedom low. Yet, at the same time, the dipoles should be able to
adopt rapidly (adiabatically) to changes in the nuclear coordinates to ensure
that the condition of minimum energy is maintained during the simulation.
This implies that the masses associated with the induced dipoles should be
small. In summary, we require that

	�� 	�

�� ��

where the temperature of the induced dipoles is defined as

	� �
�

�

��

���

��̇
�
� �

while the translational temperature is related in the usual way to the kinetic
energy

	� �
�

�

��

���

�ṙ�� �

The condition that the temperature of the induced dipoles should be much
lower than the translational temperature seems to create a problem because,
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in an ordinary simulation, the coupling between induced-dipole moments
and translational motion leads to heat exchange. This heat exchange will
continue until the temperature of the induced dipoles equals the transla-
tional temperature. Hence, it would seem that we cannot fix the temperature
of the induced dipoles independent of the translational temperature. How-
ever, here we can again make use of the Nosé-Hoover thermostats. Sprik
and Klein [452] have shown that one can use two separate Nosé-Hoover
thermostats to impose the temperature of the positions and to impose the
(low) temperature of the polarization [454]. The mass � associated with the
induced dipoles should be chosen such that the relaxation time of the po-
larization is on the same order of magnitude as the fastest relaxation in the
liquid.

15.3 Multiple Time Steps

An alternative scheme for dealing with the high-frequency vibrational
modes of polyatomic molecules is based on the Liouville formulation of the
classical equations of motion. We separate the force on a particle into two
parts:

F � Fshort � Flong�

Although this division is arbitrary, for our diatomic molecule we would di-
vide the potential into the short-range interactions that are responisble for
the bond vibration and the long-range attractive forces between the atoms.
The idea is that on the time scale of the vibrations of the atoms, the long-
range part of the potential hardly changes and therefore this “expensive po-
tential” does not need to be updated as often as the “cheap” short-range part
of the potential. This suggests using multiple time steps, a short time step for
the vibration and a much longer one for the remainder of the interactions.

Martyna et al. [85] have used the Liouville formalism to solve the equa-
tions of motion using multiple time steps. Here, we consider the ��� en-
semble. For details on how to use multiple time steps in other ensembles,
we refer to [85]. Let us start with the simple case and derive the equations
of motions for a single particle with force �. The Liouville operator for this
system is equation (4.3.9):

i� � i�� � i��

� v
�

�r
�

F
�

�

�v
�

The equations of motion follow from applying the Trotter formula (4.3.15)
with time step 	
:

ei���
� ei������ei����ei�������
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The position and the velocity at time �� follow from applying the Liouville
operator under the initial condition �r���� v����. As shown in section (4.3.3),
i��� corresponds to a shift in coordinates and i��� to a shift in momenta. If
we perform these operations in three steps, we obtain

ei���� �r���� r���� � ei������ei����ei������� �r���� r����

� ei������ei����� �r��� � F��������� r����

� ei������� �r��� � F��������� r��� � r���������

� � �r��� � F�������� � F���������� r��� � r�������� 	

The equations of motion that follow are

r���� � r��� �
��

��
�F��� � F�����

r���� � r��� � r��������

which the reader wil recognize as the velocity Verlet equations (see sec-
tion 4.3.3).

Let us now separate the Liouville operator i�� into two parts:

i�short �
Fshort

�





v
	

i�long �
F � Fshort

�





v
�

Flong

�





v
	

We use a Trotter expansion with two time steps: a long time step, ��, and a
short one, Æ� � ����. The total Liouville operator then reads

ei��� � ei��short��long������

� ei�long����ei��short������ei�long����	

We can again apply a Trotter expansion for the terms i�long and i��:

ei��� � ei�long����
�
ei�shortÆ����ei��Æ���ei�shortÆ����

��
ei�long����	

We apply this Liouville operator on the initial position and velocity. We first
make a step using the expensive Flong

ei�long����� �r���� r���� � �
�
r��� � Flong��������� r���

�
�

followed by � small steps using the cheap Fshort with the smaller time step,
Æ�, or �

ei��Æ���ei�shortÆ����
��

�
�
r��� � Flong��������� r���

�
�
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Algorithm 29 (Multiple Time Step)

subroutine Multiple time step, f long is
+ multi(f long,f short) the long-range part and f short

the short-range part of the force
vx=vx+0.5*delt*f long velocity Verlet with time step ��
do it=1,n loop for the small time step

vx=vx+0.5*(delt/n)*f short velocity Verlet with timestep ����

x=x+(delt/n)2*vx
call force short(f short) short-range forces
vx=vx+0.5*(delt/n)*f short

enddo
call force all(f long,f short) all forces
vx=vx+0.5*delt*f long
return
end

Comments to this algorithm:

1. In the argument list of the subroutine call we have addedf long, f short
to indicate that in the velocity Verlet algorithm the force has to be known from
the previous time step.

2. Subroutines force short determines to short-range forces. Since this in-
volves a small number of particles, the calculation of these forces is much faster
than force all in which all interactions are computed.

which corresponds to solving the equations of motion using the velocity Ver-
let scheme using the force Fshort with time step Æ� and initial conditions r����
Flong��������� r���. It should be emphasized that this algorithm, by con-
struction, is time reversible. In Algorithm 29 we illustrate how this multiple-
time-step method (MTS) can be implemented.

Two applications of this algorithm are particularly important. One is the
use of MTS algorithms to simulate the dynamics of molecules with stiff in-
ternal bonds. In Case Study 22 it is shown that this application of the MTS
method is attractive, since for the case we consider, it is at least as efficient
as constrained dynamics (see section 15.1). The second important area of ap-
plication is as a time-saving device in the simulation of systems with com-
putationally “expensive” potential-energy functions. Here the MTS method
offers the possibility of carrying out many time steps with a “cheap” po-
tential energy (e.g., an effective pair potential) and then performing the ex-
pensive correction every �th step. Procacci and co-workers have used this
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approach to reduce the computational costs associated with the long-range
interactions of Coulombic systems [455,456]. They have used the MTS ideas
in combination with the Ewald summation (see Chapter 12.1) to reduce the
CPU time for the calculation of long-range interactions.

Case Study 22 (Multiple Time Step versus Constraints)
In this Case Study we consider a system of diatomic Lennard-Jones mole-
cules. We compare two models: the first model uses a fixed bond length
�� between the two atoms of a molecule. In the second model, we use a
bond-stretching potential given by

�bond��� �
�

�
���� � ���

��

where � is the distance between the two atoms in a molecule. In the simu-
lations we used �� � ����� and �� � �. In addition to the bond-stretching
potential, all nonbonded atoms interact via a Lennard-Jones potential. The
total number of diatomics was 125 and the box length �	� (in the usual re-
duced units). The Lennard-Jones potential was truncated at 
� � �	�, while
� � �	�. The equations of motion are solved using bond constraints for the
first model, while multiple time steps were used for the second model. All
simulations were performed in the �� ensemble.

It is interesting to compare the maximum time steps that can be used
to solve the equations of motion for these two methods. As a measure of
the accuracy with which the equations of motion are solved, we compute
the average deviation of the initial energy, which is defined by Martyna et
al. [138] as

� �
�

step

�step�

���

�
�
�
�

� ����� � � ���

� ���

�
�
�
�
�

in which � ��� is the total energy at time �.
For the bond constraints we use the SHAKE algorithm [443] (see also

section 15.1). In the SHAKE algorithm, the bond lengths are exactly fixed
at �� using an iterative scheme. In Figure 15.2 (left) the energy fluctuations
are shown as a function of the time step. Normally one tolerates a noise
level in � of �������, which would correspond to a time step of � � ���� for
the first model. This should be compared with a single-time-step Molecular
Dynamics simulation using the second model. A similar energy noise level
can be obtained with a time step of �� ����, which is a factor 2 smaller.

To apply the multiple-time-step algorithm, we have to separate the inter-
molecular force into a short-range and a long-range part. In the short-range
part we include the bond-stretching potential and the short-range part of the
Lennard-Jones potential. To make a split in the Lennard-Jones potential we
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Figure 15.2: Comparison of the energy fluctuations as a function of the time
step for a normal MD simulation with a harmonic bond potential and a con-
strained MD simulation with the SHAKE algorithm.

use a simple switching function � ���:

��� ��� � �short��� ��long���

�short��� � � ������� ���

�long��� � �� � � ������� ��� �

where

� ��� �

��
�

� � � � � �� � �

� � �� �	�� 
� �� � � � � � ��
� �� � � � ��

and

� �
�� �� � �

�
� (15.3.1)

In fact, there are other ways to split the total potential function [455,456]. We
have chosen � � ��
 and �� � ���. To save CPU time a list is made of all the
atoms that are close to each other (see Appendix F for details); therefore the
calculation of the short-range forces can be done very efficiently. For a noise
level of ����, one is able to use Æ � ���� and � � ��, giving � � ����.

To compare the different algorithms in a consistent way, we compare in
Figure 15.3 the efficiency of the various techniques. The efficiency � is de-
fined as the length of the simulation (time step times the number of integra-
tion steps) divided by the amount of CPU time that was used. In the figure,
we have plotted � for all simulations from Figure 15.2. For an energy noise
level of ����, the SHAKE algorithm is twice as efficient than normal MD
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Figure 15.3: Comparison of the efficiency � for bond constraints (SHAKE)
with normal molecular dynamics (left), and multiple times steps (right). The
left figure gives the efficiency as a function of the time step and the right
figure as a function of the number of small time steps �, �� � �Æ�, where
the value of Æ� is given in the symbol legend.

(� � �). This means that hardly any CPU time is spent in the SHAKE rou-
tine. However, the MTS algorithm is still two times faster (� � ��, Æ� � ����)
at the same efficiency.
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Chapter 16

Rare Events

Molecular Dynamics simulations can be used to probe the natural time evo-
lution of classical many-body systems on a time scale of ����� to ��

�� s (this
upper limit depends of course on the computing power that is at our dis-
posal). This time window is adequate for studying many structural and dy-
namical properties, provided that the relevant fluctuations decay on a time
scale that it is appreciably shorter than ��

��
�. This is true for most equilib-

rium properties of simple liquids. It is also usually true for the dynamics
associated with nonhydrodynamic modes. For hydrodynamic modes (typi-
cally, the modes that describe the diffusion or propagation of quantities that
satisfy a conservation law, such as mass, momentum, or energy), the time
scales can be much longer. But we still can use MD simulations to compute
the transport coefficients that govern the hydrodynamic behavior by making
use of the appropriate Green-Kubo relation. As explained in Appendix C,
Green-Kubo relations allow us to express the hydrodynamic transport coef-
ficients in terms of a time integral of a correlation function of a dynamical
quantity that fluctuates on a microscopic time scale (e.g., the self-diffusion
coefficient is equal to the integral of the velocity autocorrelation function).

Nevertheless, there are many dynamical phenomena that cannot be stud-
ied in this way. We discuss one particularly important example, namely,
activated processes. Conventional MD simulations cannot be used to study
activated processes. The reason is not that the relevant dynamics is slow, but
rather that it involves a step that involves a rare event. However, if this rare
event does take place, it usually happens quite quickly, i.e., on a time scale
that can be followed by MD simulation. An example is the trans-to-gauche
transition in an alkane: this process is infrequent if the barrier separating the
two conformations is large compared to ���. Yet, once an unlikely fluctua-
tion has driven the system to the top of the barrier, the actual barrier crossing
is quick.
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It turns out that in many cases, MD simulations can be used to compute
the rate of such activated processes. Such calculations were first performed
by Bennett in the context of diffusion in solids [457]. Subsequently, Chan-
dler extended and generalized the approach to the calculation of reaction
rates [187, 458]. The basic idea behind these MD calculations is that the rate
at which a barrier crossing proceeds is determined by the product of a static
term, namely the probability of finding the system at the top of the barrier,
and a dynamic term that describes the rate at which systems at the top of the
barrier move to the other valley.

16.1 Theoretical Background

As a prototypical example, we consider a unimolecular reaction � �� �, in
which species � is transformed into species �. If the rate-limiting step of
this reaction is a (classical) barrier crossing, then Molecular Dynamics sim-
ulations can be used to compute the rate constant of such a reaction (the
best explanation of this approach is still to be found in Chandler’s original
1978 paper [458]). In contrast, if the rate-limiting step is a tunneling event
or the hopping from one potential-energy surface to another, the classical
approach breaks down, and we should turn to quantum dynamical schemes
that fall outside the scope of this book (see references in [459]). Let us first
look at the phenomenological description of unimolecular reactions. We de-
note the number density of species � and � by �� and ��, respectively. The
phenomenological rate equations are

d�����
d�

� ���������� � ��������� (16.1.1)

d�����
d�

� ���������� � ���������� (16.1.2)

Clearly, as the number of molecules is constant in this conversion reaction,
the total number density is conserved:

d ������ � ������

d�
� �� (16.1.3)

In equilibrium, all concentrations are time independent, i.e., �̇� = �̇� = 0.
This implies that

� �
����

����
�

����

����
� (16.1.4)

where � is the equilibrium constant of the reaction. Let us now consider
what happens if we take a system at equilibrium, and apply a small pertur-
bation, 	��, to the concentration of species � (and thereby of species �). We
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can write the rate equation that determines the decay of this perturbation as

�������

��
� ����������� � �����������

where we have used equations (16.1.3) and (16.1.4). The solution to this
equation is

������ � ������ exp������� � ������� � ������ exp�������� (16.1.5)

where we have defined the reaction time constant

�� � ����� � �����
��

� ���
���

�
	 �

����

����

�
��

�
��

����
� (16.1.6)

where we have assumed that the total concentration �� � �� � 	. With this
normalization, �� is simply the probability that a given molecule is in state

.

Thus far, we have discussed the reaction from a macroscopic, phenome-
nological point of view. Let us now look at the microscopics. We do this in
the framework of linear response theory. First of all, we must have a mi-
croscopic description of the reaction. This means that we need a recipe that
allows us to measure how far the reaction has progressed. In the case of dif-
fusion over a barrier from one free energy minimum to another, we could
use the fraction of the distance traveled as a reaction coordinate. In general,
reaction coordinates may be complicated, nonlinear functions of the coor-
dinates of all particles. It is convenient to think of the reaction coordinate
� simply as a generalized coordinate, of the type discussed in the previous
section. In Figure 16.1, we show a schematic drawing of the free energy sur-
face of the system as a function of the reaction coordinate �. If we wish to
change the equilibrium concentration of species; 
, we should apply an ex-
ternal perturbation that favors all states with � � �� relative to those with
�  ��.

By analogy to the discussion in Appendix C, we consider an external per-
turbation that changes the relative probabilities of finding species 
 and �.
To achieve this, we add to the Hamiltonian a term that lowers the potential
energy for � � ��:

� � �� � ����� � ���� (16.1.7)

where � is a parameter that measures the strength of the perturbation. As we
are interested in the linear response, we shall consider the limit � � �. The
function ���� � ��� is chosen such that it is equal to 	 if the reaction coor-
dinate � is in the range that corresponds to an equilibrium configuration of
the ”reactant,” while �������� should be equal to � for a typical ”product”
configuration. The traditional choice for �� is a Heaviside �-function:

���� � ��� � 	 � ��� � ��� � ���� � ���
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Figure 16.1: Schematic drawing of the free energy surface of a many-body
system, as a function of the reaction coordinate �. For � � ��, we have the
reactant species �, for � � ��, we have the product �. As will be discussed
below, the choice of �� is, to some extent, arbitrary. However, it is convenient
to identify the value of the reaction coordinate at the top of the barrier with
��.

where ���� � � for � � � and ���� � � otherwise. In what follows, we
shall consider the more general case that 	� is equal to the �-function in the
reactant and product domains. However, unlike �, 	� varies smoothly from
1 to 0 in the region of the free energy barrier. For the sake of simplicity, we
refer to the states � and � as ”reactants” and ”products” in the chemical
sense of the word. However, in general � and � can designate any pair of
initial and final states that can interconvert by a barrier-crossing process.

Let us first consider the effect of a static perturbation of this type on the
probability of finding the system in state �. We note that


�� � ����
�
� ����

�
� �	��

�
� �	��

�
�

Here we have used the fact that 	� is equal to � in the reactant basin. Hence,
the average value of 	� is simply equal to the probability of finding the
system in state �. From equation (C.1.1) of section C.1, we find immediately
that


��

�
� �

��
	�
�

�
�
� �	��

�

�

�
�

This equation can be simplified by noting that, outside the barrier region,
	� is either 1 or 0 and hence, 	�

�
��� � 	����. In the barrier region, this

equality need not hold—but those configurations hardly contribute to the
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equilibrium average. Hence,

����

��
� � ������ �� � ������� � � ���� ���� � (16.1.8)

For what follows, it is convenient to define the function �� � ����. Clearly,

����� � ��� � ����� � ����� �

Next, consider what happens if we suddenly switch off the perturbation at
time � � 	. The concentration of 
 will relax to its equilibrium value as
described in equation (C.2.1) and we find that, to first order in �,

������ � ��

�
d� exp������ ����	� � ����� exp����� ����	� � ������

d� exp������

� �� �����	�������� � (16.1.9)

Finally, we can use equation (16.1.8) to eliminate � from the above equation,
and we find the following expression for the relaxation of an initial pertur-
bation in the concentration of species 
:

������ � ����	�
�����	��������

���� ����
� (16.1.10)

If we compare this with the phenomenological expression, equation (16.1.5),
we see that

exp������� �
�����	��������

���� ����
� (16.1.11)

Actually, we should be cautious with this identification. For very short
times (i.e., times comparable to the average time that the system spends in
the region of the barrier), we should not expect the autocorrelation func-
tion of the concentration fluctuations to decay exponentially. Only at times
that are long compared to the typical barrier-crossing time should we expect
equation (16.1.11) to hold. Let us assume that we are in this regime. Then
we can obtain an expression for �� by differentiating equation (16.1.11):

����
�

exp������� �
����	��̇�����

���� ����
� �

��̇��	�������

���� ����
� (16.1.12)

where we have dropped the �’s, because the time derivative of the equilib-
rium concentration vanishes. Hence, for times that are long compared to
molecular times, but still very much shorter than ��, we can write

���
�

�
��̇��	�������

���� ����
(16.1.13)
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or, if we recall equation (16.1.6) for the relation between ���� and ��, we
find

������� �
��̇����������

����
� (16.1.14)

In this equation, the time dependence of ������� is indicated explicitly.
However, we recall that it is only the long-time plateau value of �������
that enters into the phenomenological rate equation. Finally, we can reex-
press the correlation function in equation (16.1.14) by noting that

�̇��� � ��� � �̇
����� � ���

��
� ��̇

����� � ���

��
� ��̇������	

where the last equality defines

�� �
�

��
�

Hence,

������� �
��̇���������������

����
	 (16.1.15)

where we have used the fact that ��̇� � �. A particularly convenient form of
equation (16.1.15) that we shall use in section 16.3 is

������� �

�
�

�


�
��̇�������������̇�������������

����
� (16.1.16)

But first we establish contact with the conventional ”Bennett-Chandler” ex-
pression for the rate constant.

16.2 Bennett-Chandler Approach

If we choose �� � ���� � ��—and hence �� � ��� � ���—then we can
rewrite equation (16.1.15) in the following way:

������� �
��̇Æ����� � ��������� � ����

����

�
��̇Æ��� � ����������� � ����

����� � ���
� (16.2.1)

In this way, we have expressed the rate constant ���� exclusively in micro-
scopic quantities that can be measured in a simulation. Next, we shall see
how this can be done. First, however, we establish the connection between
equation (16.2.1) and the expression for the rate constant that follows from
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Eyring’s transition state theory. To this end, consider ������� in the limit
�� ��:

lim
����

������� �
��̇�������� ���Æ��� � ������

����� � ���

�
��̇���̇�Æ��� � ������

����� � ���
� (16.2.2)

where we have used the fact that �������� ��� � � , if �̇ � �, and � oth-
erwise. In other words �������� ��� � ���̇�. The expression on the last
line of equation (16.2.2) is the transition state theory prediction for the rate
constant, �������.

Now that we have a microscopic expression for the rate constant ����
(equation (16.2.1)), we should consider how to measure it by simulation. It
will turn out that we cannot use conventional Molecular Dynamics simu-
lations to measure the quantity on the right-hand side of equation (16.2.1).
The reason is the following: what we need to compute is the product of the
probability that the system is at point �� at � � �, multiplied by the gen-
eralized velocity �̇ at � � � and this, in turn, multiplied by � if the system
ends up on the product side and by � if the system returns to the reactant
side. The problem is that the barrier is usually so high that the probability
that this system will cross the barrier spontaneously is very low (in fact, if
this were not the case, the whole idea of a time-scale separation between
molecular times and times on the order �� would not make sense). Hence, if
we sample equation (16.2.1) by normal Molecular Dynamics, we would get
very poor statistics on ����. The solution of this problem is to constrain the
system such that it is initially always at the top of the barrier. To be more pre-
cise, we equilibrate the system under the constraint � � �� and then we start
a large number of runs in which the system is allowed to cross the barrier
(i.e., without any constraints). But now we must be careful because in the
previous section we argued that constraining the system, such that � � ��,
would affect the equilibrium distribution:

	un�constrained�q� � �H��
�

� 	constrained�q� (16.2.3)

with


�� �

	�

��

���



��

�r


��

�r

�

In the present case, we have one constraint.1 Our constraint is

 � �� � � � ��

1We assume, for the moment, that there are no other constraints in the system. For a discus-
sion of the latter case, see e.g., ref. [445].
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If � is a linear function of the Cartesian coordinates, there is no need to worry
about the effect of the constraints on the distribution function, because �H�

is a constant. However, in general, � is a nonlinear function of all other
coordinates, and we should consider the effect of �H� on ��q�.

16.2.1 Computational Aspects

In practice, the computation of a rate constant consists of two steps. We write

���� �
��̇���Æ��� � ����������� � ����

�Æ��� � ������
�
�Æ��� � ���

����� � ���
� (16.2.4)

The first part on the left-hand side of equation (16.2.4) is a conditional aver-
age, namely the average of the product �̇��������� � ���, given that ���� �
��. It is convenient to compute this conditional average using constraint
Molecular Dynamics. But then we should correct for the fact that the hard
constraint(s) will bias the initial distribution function:

��̇���Æ��� � ����������� � ����

�Æ��� � ������
�

�
�H��

�

� �̇��������� � ���
�
��

�H��
�

�

�
�

� (16.2.5)

where the subscript � indicates a constrained average over initial configura-
tions. Note, however, that although the initial coordinates from which the
reaction trajectories are started have been generated from a constrained en-
semble, the subsequent time evolution is not in the constrained ensemble.

We still must compute the second term on the right-hand side of equa-
tion (16.2.4), i.e., �Æ��� � ��� 	 ����� � ���. It is the probability density of
finding the system at the top of the barrier, divided by the probability that
the system is on the reactant side of the barrier. This ratio, which we shall
denote by 
����, cannot be sampled directly with constrained dynamics,
because it is not in the form of a conditional average. We can, however,
compute this probability density indirectly. Let us first look at the statistical
mechanical expression for 
����. In fact, it is convenient to look at a more
general quantity 
�� ��, i.e., the probability density of finding the system at
� �:


�� �� �

�
dr exp�����Æ�� � � ��

�
dr exp��������� � ��

� (16.2.6)

From a direct equilibrium simulation of species �, we can measure 
�� ��

near the bottom of the free energy, at the reactant side. Below, we derive
an explicit expression for the variation of 
�� �� with � �. This allows us to
compute the variation of 
�� �� between the bottom and the top of the barrier,
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and in this way we can compute �����. In fact, rather than computing the
derivative of ��� �� with respect to � �, we differentiate ln��� ��:

� ln��� ��

�� �
�

�
dr exp������Æ�� � � ����� �

�
dr exp�����Æ�� � � ��

� (16.2.7)

We can reexpress the integral in the numerator by partial integration. To do
this, we should first transform from the Cartesian coordinates r to a set of
generalized coordinates � � �� that includes the reaction coordinate �. We
denote the Jacobian of the transformation from r to � � �� by �J�. Now we
carry out the partial integration

� ln��� ��

�� �
�

�
d d� �J� exp������Æ�� � � ����� �

�
dr exp�����Æ�� � � ��

�

�
d d� ��J� exp��������Æ�� � � ��

�
dr exp�����Æ�� � � ��

�

�
dr ��ln��J�� � ������ exp���� �Æ�� � � ��

�
dr exp�����Æ�� � � ��

�
���ln��J�� � ������Æ�� � � ���

�Æ�� � � ���
� (16.2.8)

where, in the third line, we have transformed back to the original Cartesian
coordinates. It should be noted that the computation of the Jacobian �J� can
be greatly simplified [460].

As the averages both in the numerator and in the denominator contain
Æ�� � � ��, it is natural to express equation (16.2.8) in terms of constrained
averages that can be computed conveniently in a constrained Molecular Dy-
namics simulation. Just as in equation (16.2.5), we must correct for the bias
introduced by the hard constraint:

� ln��� ��

�� �
�

�
����

�

���ln��J�� � ������
�
��

����
�

�

�
�

� (16.2.9)

where the subscript � denotes averaging in an ensemble where � is con-
strained to be equal to � �. If we integrate equation (16.2.9) from the bottom
to the top of the barrier, we get

ln
�

�����

��� � ���

�
�

���
��

d� �

�
����

�

���ln��J�� � ������ �

�
��

����
�

�

�
�

� (16.2.10)

In practice, this integration has to be carried out numerically.
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Figure 16.2: Potential-energy barrier for an ideal gas particle; if the particle
has a position to the left of the dividing surface �� the particle is in state �
(reactant). The region to the right of the barrier is designated as product �.
The top of the barrier is denoted by �� (�� � �).

By combining equations (16.2.5), (16.2.6), and (16.2.10), we finally have
an expression for the rate constant ���� that can be computed numerically.

It should be noted that, in the above expression, we have assumed that
the reaction coordinate is the only quantity that will be constrained in the
simulation. If there are more constraints, e.g. if we simulate a reaction in a
polyatomic fluid, then the expression for ���� becomes a bit more compli-
cated (see the article by Ciccotti [445], and references therein).

The expression derived above for a unimolecular rate constant is, in no
way, limited to chemical reactions. In fact, the same approach can be used
to study any activated classical process, such as diffusion in solids, crystal
nucleation, or transport through membranes.

Case Study 23 (Ideal Gas Particle over a Barrier)
To illustrate the “Bennett-Chandler” approach for calculating crossing rates,
we consider an ideal gas particle moving in an external field. This particle
is constrained to move on the dimensional potential surface shown in Fig-
ure 16.2. This example is rather unphysical because the moving particle
cannot dissipate its energy. As a consequence, the motion of the particle
is purely ballistic. We assume that, far away on either side of the barrier,
the particle can exchange energy with a thermal reservoir. Transition state
theory predicts a crossing rate given by equation (16.2.2):

�TST
��� �

�

�
��̇�

exp���������
���
��

d� exp��������
�

�
��	

�
�

exp���������
���
��

d� exp��������
� ��
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If we choose the dividing surface �� (see Figure 16.2) at the top of the bar-
rier (�� � ��) none of the particles that start off with a positive velocity will
return to the reactant state. Hence, there is no recrossing of the barrier and
transition state theory is exact for this system.

Note that transition state theory (equation (a)) predicts a rate constant
that depends on the location of the dividing surface. In contrast, the Bennett-
Chandler expression for the crossing rate is independent of location of the
dividing surface (as it should be). To see this, consider the situation that
the dividing surface is chosen to be the left of the top of the barrier (i.e., at
�� � ��). The calculation of the crossing rate according to equation (16.2.4)
proceeds in two steps. First we calculate the relative probability of finding a
particle at the dividing surface. And then we need to compute the probability
that a particle that starts with an initial velocity �̇ from this dividing surface
will, in fact, cross the barrier. The advantage of the present example is that
this probability can be computed explicitly. According to equation (16.2.6),
the relative probability of finding a particle at �� is given by

�Æ�� � ����

����� � ���
�

exp������������
��

d� exp��������
� ���

If the dividing surface is not at the top of the barrier, then the probability
of finding a particle will be higher at �� than at ��, but the fraction of the
number of particles that actually cross the barrier will be less then predicted
by transition state theory. It is convenient to introduce the time-dependent
transmission coefficient ����, defined as the ratio

���� �
	������

	TST
���

�
��̇�
�Æ���
� � ��������� � ����


�� ���̇�
���
� ���

The behavior of ���� is shown in Figure 16.3 for various choices of ��. The
figure shows that for �� 
 ���� � , and that for different values of �� we get
different plateau values. The reason ���� decays from its initial value is that
particles that start off with too little kinetic energy cannot cross the barrier
and recross the dividing surface (��). The plateau value of ���� provides us
with the correction that has to be applied to the crossing rate predicted by
transition state theory. Hence, we see that as we change ��, the probability
of finding a particle at �� goes up, and the transmission coefficient goes
down. But, as can be seen from Figure 16.3, the actual crossing rate (which
is proportional to the product of these two terms) is independent of ��, as it
should be. Now consider the case that �� � ��. In that case, all particles
starting with positive �̇ will continue to the product side. But now there is also
a fraction of the particles with negative �̇ that will proceed to the product side.
These events will give a negative contribution to �. And the net result is that
the transmission coefficient will again be less than predicted by transition
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Figure 16.3: Barrier recrossing: the left figure gives the transmission coef-
ficient as a function of time for different values of ��. The right-hand fig-
ure shows, in a single plot, the probability density of finding the system at
� � �� (solid squares), the transmission coefficient � (open squares), and the
overall crossing rate (open circles), all plotted as a function of the location
of the dividing surface. Note that the overall crossing rate is independent of
the choice of the dividing surface.

state theory. Hence, the important thing is not if a trajectory ends up on the
product side, but if it starts on the reactant side and proceeds to the product
side. In a simulation, it is therefore convenient always to compute trajectories
in pairs: for every trajectory starting from a given initial configuration with a
velocity �̇, we also compute the time-reversed trajectory, i.e., the one starting
from the same configuration with a velocity ��̇. If both trajectories end up on
the same side of the barrier then their total contribution to the transmission
coefficient is clearly zero. Only if the forward and time-reversed trajectories
end up on different sides of the barrier, do we get a contribution to �. In the
present (ballistic) case, this contribution is always positive. But in general,
this contribution can also be negative (namely, if the initial velocity at the top
of the barrier is not in the direction where the particle ends up).

We chose this simple ballistic barrier-crossing problem because we can
easily show explicitly that the transmission rate is independent2 of the lo-
cation of ��. We start with the observation that the sum of the kinetic and
potential energies of a particle that crosses the dividing surface �� is con-
stant. Only those particles that have sufficient kinetic energy can cross the

2The general proof that the long-time limit of the crossing rate is independent of the location
of the dividing surface was given by Miller [461].
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barrier. We can easily compute the long-time limit of ��̇��������� � ����:

��̇��������� � ���� �

�
��

��

�
�

��

d� � exp������	��

�

�



����
exp��




�
������ �

where �� is the minimum velocity needed to achieve a successful crossing.
�� is given by




�
���

�
� ����� � ����� 

It then follows that

��̇��������� � ���� �

�



����
exp��������� � ������� 

This term exactly compensates the Boltzmann factor, exp���������, asso-
ciated with the probability of finding a particle at ��. Hence, we have shown
that the overall crossing rate is given by equation (a), independent of the
choice of ��.

The reader may wonder why it is so important to have an expression for
the rate constant that is independent of the precise location of the dividing
surface. The reason is that, although it is straightforward to find the top of
the barrier in a one-dimensional system, the precise location of the saddle
point in a reaction pathway of a many-dimensional system is usually difficult
to determine. With the Bennett-Chandler approach it is not necessary to
know the exact location of the saddle point. Still, it is worth trying to get a
reasonable estimate, as the statistical accuracy of the results is best if the
dividing surface is chosen close to the true saddle point.

The nice feature of the Bennett-Chandler expression for barrier-crossing
rates is that it allows us to compute rate constants under conditions where
barrier recrossings are important, for instance, if the motion over the top of
the barrier is more diffusive than ballistic. Examples of such systems are the
cyclohexane interconversion in a solvent [462] and the diffusion of nitrogen
in an argon crystal [463].

16.3 Diffusive Barrier Crossing

In the previous section we described the Bennett-Chandler expression for
the rate of activated processes. This expression is widely used in numerical
simulation. However, although the expression is correct for arbitrary bar-
rier crossings (provided that the barrier is much larger than ���), it is not
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Figure 16.4: Simple model for a diffuse barrier crossing: a square barrier of
height � and width � that separates two macroscopic states, � and �.

always computationally efficient. To see this, consider the expression for the
transmission coefficient

���� �
�������

����
���

�
��̇���Æ����� � ���	����� � ����

�
� ���̇�����

 (16.3.1)

Clearly, if � � �, we can use transition state theory (TST) to compute the
crossing rate, once we know the barrier height. Hence, the only regime
where equation (16.3.1) is of interest is when there are appreciable correc-
tions to TST, i.e., when �� �. However, precisely in this regime, the numer-
ical calculation of �, using equation (16.3.1), is plagued by slow transient
behavior and large statistical errors. To illustrate this, let us consider a sim-
ple example: a square barrier of height � and width � that separates two
macroscopic states, � and � (see Figure 16.4). For simplicity, we assume
that, in equilibrium, the two states have the same probability, eq � �
� (the
population of the barrier region is negligible). Moreover, we assume that
the motion in the barrier region is diffusive. For this simple geometry, it is
easy to write down the diffusion equation. This equation follows from the
continuity equation

������ �

��
� �

�

��
����� �� (16.3.2)

which relates the local density ����� � at point � and time � to the flux density
����� �. In addition, we have the constitutive equation for the diffusional flux
in an external field

����� � � ��

�
�
�����

��
����� � �

������ �

��

�
� (16.3.3)
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where ���� is the external potential. Combining this with the continuity
equation, we obtain the Kramers equation [464],

������ �

��
�

�

��
���

��

��
�������� �� ��

������� �

���
� (16.3.4)

where � is the diffusion constant of the system. In steady state (�̇ � ��, the
flux density 	 is constant and hence it follows from equation (16.3.3) that

	st � �
�� (16.3.5)

where we have used the fact that ����� � � for �������� . It then
follows from equation (16.3.3) that the probability distribution at the top of
the barrier is a linear function of the reaction coordinate, �:

�st��� � 
�� � for ��������� (16.3.6)

The constants 
 and � have to be determined from the boundary conditions.
In equilibrium, 
 � � and � � �eq exp�����, where �eq is the density in
states A and B. Let us suppose now that we increase initially the probability
density in state A from its equilibrium value by an amount Æ�eq�, and de-
crease the probability density of state B by the same amount. If the barrier
is high enough, the flux will be very small and the probabilities of states A
and B will not change. In this case, the stationary probability distribution at
the top of the barrier is

�st��� � �����eq

�
� � �

Æ

�

�
� (16.3.7)

and the flux

	st � �
Æ�eq

�
���� � (16.3.8)

As expected, the flux decreases exponentially with the barrier height. The
probability density at the top of the barrier is given by equation (16.3.7) if,
and only if, the flux has reached its stationary value.

Now consider expression for the rate. We rewrite equation (16.3.1) as

���� �
����� � ������̇���Æ����� � ����

��� ���̇�����
� (16.3.9)

Apart from a constant factor, ���� is the flux through the transition state,
�� (� �), due to a step function probability profile at � � �. As this step
function differs from the linear steady-state profile, the resulting flux will
depend on time. We are interested in the plateau value of ���� after the
initial transient regime. The usual assumption is that this transient regime
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extends over typical “molecular” time scales. However, in the present case
it is easy to show that the approach of ���� to its plateau value can be quite
slow. For times � � ����, we can combine equations (16.3.4) and (16.3.2)
to yield

������ �

��
� �

������� �

���
� (16.3.10)

with the solution

����� � � 	�
����eq

�
�

���
exp��

�� � ����

��
�� (16.3.11)

We then find that ����� �� decays as ��
�
� for times � � ����. This means

that the approach to the stationary state is very slow. But, more importantly,
in the case of diffusive barrier crossings, the transmission coefficient � is
typically quite small. And small values of � cannot be determined accu-
rately using equation (16.3.9). To see this, consider the expression for the
transmission coefficient:

� �


���̇��eq
��̇��������� � ����������� � (16.3.12)

In a computer simulation, we put the system initially at �� and let it evolve.
We then compute ������ � ��� for times that are long enough for equa-
tion (16.3.9) to have reached a plateau value. We repeat this procedure for �
independent trajectories, and then estimate � as

�est �


����̇��
��

���

��̇��������� � ����� � (16.3.13)

The statistical error in �est is given by

��� � ���est � ������� (16.3.14)

Taking into account that the trajectories are uncorrelated and assuming that
�̇ and ������ � ��� are Gaussian variables, we get

��� �
�

����̇��� ��̇
������ � �

�
�� � (16.3.15)

If the transmission coefficient is very small, the second contribution in this
expression is negligible, and

��� �
�

����̇��� ��̇
������ � (16.3.16)
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Moreover,

�
��̇��
���̇��� � ����� (16.3.17)

Finally, ���� � ���. Hence,

��� �
�

�
	 (16.3.18)

and the relative error is
��



�

�



�
�
� (16.3.19)

This shows that, even for a transmission coefficient as large as 0.1, we would
need to follow about ��� trajectories in order to get an accuracy of only 10%.
The reason the statistical error is so large is that we use the �-function to
detect transitions from A to B. In a diffusive barrier crossing process, where
recrossings of the transition state are frequent, the time evolution of this �-
function resembles a random telegraph signal.

In summary, the Bennett-Chandler approach becomes inefficient for sys-
tems with low transmission coefficients because the scheme prepares the
system in a state that is not close to the steady-state situation. In addition,
this scheme employs the ”noisy” �-function to detect whether the system is
in state �.

The obvious question is whether we can do better. Below, we show that
this is indeed possible. First of all, we shall go back to equation (16.1.7) and
try to devise a perturbation that prepares the system immediately close to
the steady state. Secondly, we shall construct a more continuous “detector”
function for measuring the concentration of state B. Below, we shall not dis-
cuss the general case, but explain the basic ideas in the context of our simple
square-barrier model. We refer the reader to the literature [460] for a more
general discussion.

As discussed above, the steady-state probability profile at the top of the
barrier is a linear function of the reaction coordinate. Hence, if we set up a
perturbation that has this shape, rather than a step function, we would elim-
inate the problem of the slow, diffusive approach to the steady-state crossing
rate. Let us therefore replace the �-function perturbation by a function ����

chosen such that ���� � ���� � �� outside the barrier region, while inside
the barrier region3 ���� � �� � �� .

The change in the equilibrium concentration profile due to this perturba-
tion is

����� � ������eq
���

�
� (16.3.20)

3Note that a perturbation that is everywhere constant does not change the equilibrium
distribution. Hence to compute the change in the concentration profile, we can focus on
���� � ���� ���.
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But, with the identification Æ � ��, this is precisely the (linear) concentra-
tion profile that corresponds to the steady state. Hence, with this pertur-
bation, we have suppressed the initial transient. However, if we still use a
�-function to detect whether the system is in state B, the numerical results
will still be noisy. So the second step is to replace the ”detector” function for
state B by � � ����. Note that outside the barrier region ���� � ���� � ��.
Hence, replacing � with � makes a negligible difference for our estimate of
the concentration of B. Let us next consider the effect of this choice of the
perturbation � on the statistical accuracy for the transmission coefficient �.
We start from equation (16.1.16) for the crossing rate

���� �

�
�

�

�	
��̇�
�������
���̇�	�������	���

����


Now, �� � � � �� � �
�
� ��� inside the barrier, and zero elsewhere. Inside

the barrier region, we have at all times

���� �
�

�

and hence
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�
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�
�

�

�	
��̇�
��̇�	��

�

����
�

where the asterisk indicates the condition that both ��
� and ��	� should be
within the barrier region. If the velocity correlations decay on a time scale
that is much shorter than the time it takes to diffuse across the barrier, then
we can write

��̇�
��̇�	��
�

� ��̇�
��̇�	��� exp������eq

The transition state theory expression for ���� is

������� � 
� ���̇��
exp������eq

����


We then obtain the following expression for the transmission coefficient �:
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Making use of the Green-Kubo relation

� �
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�	 ��̇�
��̇�	�� � (16.3.21)

we obtain
� �

��

� ���̇��
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As � is of order �����̇�� ��, where � is the mean-free path, we immediately
see that

� �
�

�
�

i.e., the transmission coefficient is approximately equal to the ratio of the
mean-free path to the barrier width.

Next, we consider the statistical accuracy of our estimate for �

�est �
�

����̇���

��

���

��
�

�����̇�	��̇������ 
 (16.3.22)

where we must remember that in all of the � trajectories considered the sys-
tem is initially at the top of the barrier. Following essentially the same rea-
soning that led to equation (16.3.15) we now get
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If we assume, as before, that �̇ is a Gaussian variable, then
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 (16.3.23)

We consider the limit ���. In that limit �� ��̇��� and hence

����est�
�� �

�

�����̇����
��̇���� (16.3.24)

The relative error in the computation of the transmission coefficient is now

����est�
�����

�
�

�
��̇���

��
 (16.3.25)

From the Green-Kubo relation equation (16.3.21) we see that the diffusion
constant � is equal to ��̇����, where �� is the decay time for velocity fluctu-
ations. Hence,

����est�
�����

�
�

�
�

���
 (16.3.26)

Typically, there is not much point in computing the correlation function
��̇�	��̇���� for times much larger than ��. Hence, the relative error in � is
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simply ��
�
�. If we compare this expression for the statistical accuracy in �

with that obtained in the Bennett-Chandler scheme equation (16.3.19)

� ����est�
�����

�

�
Bennett-Chandler

�
�

�
�
�
�

we conclude that, by a judicious choice of the scheme to compute �, we have
decreased the statistical error—for a given number of trajectories—by a fac-
tor �. This implies that the present scheme is also applicable in the diffusive
regime where � � �. Moreover, by suppressing the transient behavior, we
have substantially reduced the time to compute a single barrier-crossing tra-
jectory. The additional gain due to the suppression of transients is of order

�diff

��
�

��

���
�
��
	

��
� �

��



Hence, the overall gain in speed is of order ����. Of course, the present ana-
lysis is based on a highly simplified example. A discussion of the application
of the present method to more realistic diffusive barrier-crossing problems
is discussed in detail in ref. [460].

16.4 Transition Path Ensemble

In the previous sections we have introduced a reaction coordinate as a vari-
able for characterizing the state of the system. In the discussion we have
implicitly assumed that it is relatively easy to define a proper order param-
eter. As we have seen in Case Study 23, the result of a simulation should
be independent of this choice of order parameter, but an optimal choice can
make a simulation much more efficient. However, in some practical cases
the choice of reaction coordinate is not as obvious. For example, if the order
parameter involves the complex reorganization of the solvent, the bottleneck
may be quite different from the bottleneck in the system without solvent. In
such a case, if one uses the experience with the system in vaccum one may
end up with a very poor order parameter. As a consequence one has to do
a very time-consuming calculation of the crossing rate. Chandler and co-
workers [465–468] have developed the transition path ensemble, which is
based on earlier ideas of Pratt [469], in which a Monte Carlo method is used
to find the transition paths.
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16.4.1 Path Ensemble

The starting point is the time correlation function ���� related to the transi-
tions between states A and B:

���� �
��������������

����
� ���� �� � exp�������� � (16.4.1)

where �� are the coordinates and impulses of all particles at time �, and ��
and �� are characteristic functions that indicate whether the system is in A
or B, respectively:

������� �

�
� if � in A,B
� otherwise	 (16.4.2)

The correlation function in equation (16.4.1) gives the conditional probability
of finding the system in state B at time � provided it started at � � � in state
A. Also here we assume that these transitions are rare events. As a result the
rate constant follows from the plateau of the time derivative:


��� � �̇���	 (16.4.3)

The definitions in this section differ slightly from those introduced in sec-
tion 16.1. For example, the correlation functions in equations (16.4.1) and
(16.1.11) differ by a constant. Since this constant does not affect the time
derivative; therefore 
��� in equations (16.4.3) and (16.2.1) are equivalent.
Since the function �� is fully determined by the initial condition ��, the en-
semble averages in equation (16.4.1) can be written as an integration over
the initial conditions weighted with the equilibrium distribution � ����:

���� �

�
d��� �����������������

d��� ����������
	 (16.4.4)

We can also look at equation (16.4.1) as an ensemble average of ������:

��������� � �������A�t

�

�
d��� �����������������

d��� ����������

�

�
d���A�t�����������

d���A�t����
� (16.4.5)

where the probability of finding a particular “configuration” is given by
�A�t.

Normally we associate a configuration with the position of the particles
in the system. In this ensemble, however, a configuration has a completely
different meaning. The characteristics of this ensemble are that we compute
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the average of ���� over an ensemble of paths that are trajectories that all
have a fixed length � and all start at � at � � �. Since we are sampling over
paths this ensemble is called the path ensemble. Since these averages de-
pend on the total length of the path (as measured by the time �) the ensemble
average of �� depends on �. A procedure for sampling this ensemble would
be to perform a Molecular Dynamics simulation to generate a new path of
length � and subsequently use a Monte Carlo procedure to decide whether to
accept or reject this new path. In this way, we generate an ensemble of paths
that we can use to compute ensemble averages. In the following section we
will discuss the details on how to perform such a simulation.

In principle we could compute ���� from an “ordinary” path ensemble
simulation. This would imply that we generate an ensemble of paths of
length � that start at A and we would count all the paths that are at time �

in B. However, since the transition from A to B is a rare event, the number
of paths that end in B is so small that such an approach would require very
long simulations. Therefore, we need to help the system explore the regions
of interest.

Let us define an order parameter � � ���� to define the state B. The region
in which the system is in state � is given by

� � � if �min � ���� � �max	 (16.4.6)

If we would, for example, consider a particle moving over a potential bar-
rier, the position of a particle on this barrier could be a choice for ����. In
Chapter 7 we have seen that we can explore a region of high free energies,
by dividing the order parameters in small windows and imposing that the
system cannot leave such a window. If the window is sufficiently small, the
system will explore all values of � and we can compute the probability distri-
bution of the order parameter. Combining these probability functions gives
the desired distribution function (this method is also described in Example
3 in section 7.3).

To compute ���� we can use a similar trick. Let us define 
���� � as the
probability of finding the system with order parameter � � ����� at time �

starting from A at � � �:


���� � �

�
d�� � ����������Æ��� �������

d�� � ����������
	 (16.4.7)

From this distribution we can compute ���� by integrating over those values
of � for which the system is in B, cf., equation (16.4.6):

���� �

��max

�min

d� 
���� �	 (16.4.8)

To compute 
���� �, we divide the order parameter � into windows, and a
given window is defined by � �

�
�min���� �max���

�
. The window potential,



16.4 Transition Path Ensemble 453

������, corresponding to window � is

������ �

��
�
� ����� � �min���

� �min��� � ����� � �max����

� ����� � �max���

(16.4.9)

where we allow neighboring windows to overlap. The probability of finding
the order parameter in window � is given by

����	 � �� �

�
d�� � ����
����� exp�������Æ�� � �������

d�� � ����
����� exp�������
� (16.4.10)

This probability distribution can also be written as an ensemble average:

�Æ�� � ������������ � ����	 � ��

�

�
d�� ����������Æ��� �������

d�� ����������
� (16.4.11)

The function ����	 � �� gives the probability that a trajectory of length 	 that
starts in � has at time 	 a value of � in the particular interval. This function
can also be computed from simulations in the path ensemble. The additional
feature is that the window potential (16.4.9) gives an additional constraint
that paths leaving the window will be rejected in the Monte Carlo procedure.

In principle we can use the window approach to compute the correlation
function �	� for various values of 	. The rate constant follows from differ-
entiating this function using equation (16.4.3). However, this is a relatively
time-consuming procedure. Dellago et al. [468] have developed a more ef-
ficient method to compute this function. The function �	� can be written
as the product of the probability of finding a particle in � at time 	 � times a
correction factor:

�	� �
�
�����
������

�
������

�
�
�����
������

�
�����
���
�

���
�
�
�����
���

�

���

�
������

�
�
�����
������

�
�����
���
�

���
� �	 ��� (16.4.12)

The calculation of this correction, which is the ratio of paths that end in B at
time 	 and 	 �, respectively, is as complex as the calculation of �	�. However,
we can cast this term in a more convenient form. For this, let us define a
slightly different path ensemble, namely the ensemble of paths that have
visited B at least once in the time interval 	 � ���� �. An ensemble average in
this ensemble can be written as

�
������������� �

�
d��� ����
�����������
������

d��� ����
�����������
� (16.4.13)
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where ����� is a characteristic function that has the value 1 if in the interval
���� � the path has visited B; otherwise this function is �. The difference with
the previous ensemble is that a path does not have to end in B. We can use
the fact that for all trajectories with length � � ����� we have

������ � ������������ ����

If at time � the path is in � both sides of the equation are unity and if at
time � the path is not in � both sides are �. If we substitute this relation into
equation (16.4.12), we obtain

	��� �
��������������������

��������������
�

��������������

����������� �

���������
� 	�� ��

�
���������������

�����
�

����������

� 	�� ��� (16.4.14)

In this equation we have rewritten the correction factor in terms of two en-
semble averages. The nice feature of this ensemble average is that both av-
erages can be obtained from a single simulation of paths with length �.

For the rate constant 
��� we have


��� �
d	���

d�

� 	�� ��
�

����� �

����������

d ���������������

d�

� ����� ��	�� ��� (16.4.15)

With this result the calculation of the rate constant is done in two steps. The
first step is the calculation of ����� �� using the path ensemble as defined by
equation (16.4.13). The second step is the calculation of 	�� �� using the win-
dow sampling approach in the path ensemble defined by equation (16.4.11).
It is important to note that these two calculations are done in slightly differ-
ent path ensembles.

At this point it is important to note that transition path sampling only
requires information on the reactant and product state, and the reaction rate
is a result of the calculation. By definition, the reaction path is also a result
of the simulation. This can be very important for systems in which one does
not have a good idea what to use as an order parameter. Analyzing the
paths that have been generated in a path ensemble simulation might give
indications what could be an appropiate order parameter.

16.4.2 Monte Carlo Simulations

In the previous section we have shown that the calculation of a rate constant
requires the two types of path ensemble simulations. The first ensemble,
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as defined by equation (16.4.11), uses paths of length � that start in �. This
ensemble is used to compute the correlation function ����. The window
potential (16.4.9) gives as additional constraint that at time � the order pa-
rameter ����� should have a value in the particular window. The probability
distribution in this ensemble is

� ���� �� � ���������� exp��������� (16.4.16)

The second ensemble, as defined by equation (16.4.13), uses paths with a
length 	 that also start at A. The additional constraint in this ensemble is that
in the interval the path should have been in B (but can leave as well). This
ensemble is used to compute the correction factor 
���� ��. The probability
distribution in this ensemble is

� ���� �� � � ����������������� (16.4.17)

Acceptance Rules

Let us start with the derivation of the acceptance rules for a Monte Carlo
simulation in these two ensembles. The old path is denoted by � and the
new path by . The ratio of the acceptance rules follows from the condition
of detailed balance (see section 5.1):

acc��� �

acc�� ��
�
� ����� ��

� ������� �
� (16.4.18)

where ��� � � is the a priori probability of generating configuration 

and � �� the desired probability distribution, i.e., equations (16.4.16) or
(16.4.17), depending on which path ensemble is used. In the Monte Carlo
moves that are discussed below the a priori probability of generating config-
uration  is equal to the generation of � and therefore the acceptance rules
reduce to

acc��� �

acc�� ��
�
� ��

� ���
� (16.4.19)

Shooting Moves

We now have to discuss the way we generate a new path. At first sight it may
be logical to make a small change in the initial condition �� and perform a
Molecular Dynamics simulation of length 	 or �, and to use the acceptance
rule to accept or reject this new path. However, this method will work only
for relatively short paths. In particular for paths that visit B, a small change
in the initial conditions may result in a very large change of the end posi-
tion; and a path may not end in B. A better strategy is to make a change in
the position somewhere in the middle of the path and integrate forwards to
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compute �� and backwards in time to compute ��. Since both A and B are
stable states, these points will “attract” paths and therefore such a shooting
move in the middle of a path will not deviate enormously from the initial
path.

Shifting Moves

We have seen that it is very unlikely to obtain an acceptable path by a small
change in the initial positions or velocities. However, we can also change the
initial time by shifting initial time �� � ����� and the final time �� ����,
where �� can be positive or negative. Since for this shifting move we do not
have to compute the complete path, but only the increment; i.e., do a Molec-
ular Dynamics simulation from � to � � �� if �� is positive, or backwards in
time from �� to �� � �� if �� is negative. One has to be careful: since these
shifting moves are not ergodic one has to combine such moves with shooting
moves. Shifting moves are mostly used to impove the statistics.

Case Study 24 (Ideal Gas Particle in a T o-Dimensional Potential)
To illustrate the path sampling method, consider a system containing a single
particle in the following simple two-dimensional potential [467]:

� ���� � �

�
�
�
� � �� � ��

��
� �

�
�� � �

��
�
�
��� ��

�
� �

��

�
�
��� ��

�
� �

��
� �

�
	
� (16.4.20)

Note that � ���� � � � ����� � � � ������. Figure 16.5 shows that this po-
tential consists of two stable regions around the points ����� �, which we call
A, and ���� �, which we call region B. To be more specific, all points within
a distance of �� from ����� � or ���� � are defined to be in region A or B,
respectively. At a temperature of � � ��� transitions from A to B are rare
events.

To compute the rate of transitions from A to B we used path ensemble
simulations. The initial distribution � ���� was chosen to be canonical, i.e.,

� ���� � exp ���� ����� �

A trajectory was generated using standard Molecular Dynamics simulations
(see Chapter 4). The equations of motion were integrated using the velocity-
Verlet algorithm with a time step of �����.

The first step was the calculation of the coefficient ����� ��. This involves
the computation of the path ensemble averages ��������������� for various
times �. The result of such a simulation is shown in Figure 16.6 for � � ���

and � � ��
. An important question is whether the time � is long enough.
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Figure 16.5: Contour plot of the function ����� � defined by equa-
tion (16.4.20). The two minima are at ����� �, A, and ���� �, B. These minima
are separated by a potential energy barrier.

Since we are interested in the plateau of ����, the function ���������������

must have become a straight line for large values of �. If this function does
not show a straight line, the value of � was probably too short, the process is
not a rare event, or the process cannot be described by a single hopping rate.
The consistency of the simulations can be tested by comparing the results
with a simulation using a shorter (or longer, but this is more expensive) �.
Figure 16.6 shows that the results of the two simulations are consistent.

The next step is the calculation of the correlation function 	���. For the
calculation of 
 ���� �, we have defined the order parameter � as the distance
from point B:

� � � �
�r � rB�

�rA � rB�
� (16.4.21)

in which rB � ���� �. In this way, the region B is defined by ��� � � �
� and the whole phase space is represented by ���� ��. In Figure 16.7
(left), we have plotted 
 ����� � � ���� as a function of � for different slices �.
Recombining the slices leads to Figure 16.7 (right). The value of 	 �� � ����

can be obtained by integrating over region B:

	 ��� �

�
�

��
 ���� � � (16.4.22)
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Figure 16.6: �� ��� (left) and � ��� (right) as a function of time for various
values of the total path length �.
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Figure 16.7: (left) � ����� � � �	
� for all slices �. (right) � ���� � �	
� when all
slices � are combined. The units on the � axis are such that
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Combining the results gives for the total crossing rate

 � � ���� ��� 	 (16.4.23)

Using � � �	
 leads to � ��	
� � �	��, � ��	
� � �	
��
��, and  � �	
��
��.

Example 25 (Transition Path Sampling ith Parallel Tempering)
Transition path sampling (TPS) is a technique that allows us to compute the
rate of a barrier-crossing process without a priori knowledge of the reaction
coordinate or the transition state. However, when there are many distinct
pathways that lead from one stable state to another, then it can be difficult
to sample all possible pathways within the time scale of a single simulation.
Vlugt and Smit [470] have shown that parallel tempering (see section 14.1)
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Figure 16.8: Schematic representation of two different transition paths from
state � to state �. � and � are two stable states, separated by a free energy
barrier. There are two dynamical pathways for the system to go from � to �,
one path crosses the barrier via saddle point �� while the other path crosses
via saddle point ��. If the (free) energy barrier � between the two paths is
much larger than ���, it is unlikely that path � will evolve to path � in a
single transition path simulation. Note that the energy barrier between two
paths (�) is not the same as the energy barrier along the path.

can be used to speed up the sampling of transition pathways that are sepa-
rated by high free energy barriers.

The objective of TPS is to sample all relevant transition paths within a
single simulation. This becomes difficult when different transition paths lead
to distinct saddle points in the free energy surface. To be more precise,
problems arise when the (free) energy barrier between two saddle points is
much higher than ��� (see Figure 16.8). Of course, the sampling problem
would be much less serious if one could work at much higher temperatures
where the transition path can cross the barriers separating the saddle points.

Parallel tempering exploits the possibility of generating “transitions” be-
tween different saddle points at high temperatures, to improve the sampling
efficiency at low temperatures. As was already discussed in section 14.1,
parallel tempering can be used to switch between systems at various temper-
atures. As an illustration of this combined parallel tempering and transition
path sampling approach, we consider the example discussed in ref. [470]: a
two-dimensional system containing a linear chain of �� repulsive Lennard-
Jones particles. The nonbonded interactions are given by

	rep �
� �

�
� � �

�

��� � 
��

�

 � 
rep

� 
  
rep
� (16.4.24)

in which 
 is the distance between two particles and 
rep � ���� (we have
used the Lennard-Jones � as our unit of length). Neighboring particles � and
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� in the chain interact through a double-well potential:

�dw ����� � �

�
� �

�
��� ��� �rep

��
��

��

� (16.4.25)

where ��� denotes the distance between the neighboring particles � and �.
This potential has two equivalent minima, one for ��� � �rep and the other for
��� � �rep � �� (� 	 
).

The chain can have a compact state, �, if all bonds are in the first mini-
mum, or an extended state, �, if all bonds are in the second minimum. We
wish to express the transition rate from � to � as the sum of the rates of the
contributions due to all distinct transition paths. Clearly, there are many (in
this case 14!) distinct pathways that lead from the compact state to the fully
extended state (e.g., first stretch bond � � , then � � �, then � � �, etc.).
Without parallel tempering it would take a prohibitively long time to obtain a
representative sampling of all transition paths at low temperatures. In the
present case, the number of distinct reaction paths is too large to be sam-
pled even with parallel tempering. However, for many problems the number
of relevant paths is small and the present approach can be used to compute
the rate constant. For more details the reader is referred to ref. [470].

Example 26 (Ion Pair Dissociation)
The dissociation of an Na�Cl� pair in water is an example of an activated
process. It is of particular interest to understand the effect of the water
molecules on the dynamics of this process.

As a first guess, one can use the ionic separation as a reaction coordi-
nate:

�ion � �rNa� � rCl� � �

The free energy as a function of this reaction coordinate is shown schemat-
ically in Figure 16.9. Once we have computed the free energy barrier, we
could, in principle, use the Bennett-Chandler approach to compute the reac-
tion rate (see section 16.2). However, for this system one would observe a
very small transmission coefficient, which suggests that the chosen reaction
coordinate does not provide an adequate description of the dynamics of this
reaction.

Figure 16.10 explains how an unfortunate choice of the reaction coordi-
nate may result in a low transmission coefficient in the Bennett-Chandler ex-
pression for the rate constant. But even if the reaction coordinate is well cho-
sen, we may still get a low transmission coefficient. If the free energy land-
scape of the dissociation reaction looks like Figure 16.10(a), the progress
of the reaction would correlate directly with the ionic separation. However,
it could still be that the system exhibits diffusive behavior near the transition
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Figure 16.9: Free energy as a function of the ionic separation �ion.
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Figure 16.10: Two possible scenarios for the ion dissociation; the two figures
show the two-dimensional free energy landscape in a contour plot. � is the
stable associated state and state � the dissociated state, the dotted line corre-
sponds to the dividing surface as defined by the maximum of the free energy
profile (see Figure 16.9), �ion is the reaction coordinate while � represents all
other degrees of freedom. In (a) one sees that the dividing surface nicely
separates the two stable basins, while in (b) a point of �� “belongs” either to
the A basin or to the “B” basin.

state. If this is the case, one would obtain better statistics using the diffusive
barrier crossing method described in section 16.3.

Another possible scenario is shown in Figure 16.10(b). Here, we have
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a situation in which the ionic separation is not a good reaction coordinate.
Unlike the situtation in Figure 16.10(a), the dividing surface does not discrim-
inate the two stable states. Apparently there is another relevant coordinate
(denoted by �) that is an (as yet unknown) function of positions of the solvent
particles.

Since we do not know what this additional order parameter is, this is an
ideal case to use transition path sampling (TPS), as in TPS we do not have
to make an a priori choice of reaction coordinate.

Geissler et al. [471] used transition path sampling to generate some ���

reaction paths for this process. These paths were subsequently analyzed to
obtain the transition state ensemble. This is the ensemble of configurations
on the reaction paths that have the following ”transition-state” property: half
of the trajectories that are initiated at configurations that belong to this en-
semble end up on the product side, and the other half on the reactant side.
Although all trajectories originate from the same configuration, they have dif-
ferent initial velocities (drawn from the appropriate Maxwellian distribution).
In general, ��, the probability that a trajectory starting from an arbitrary con-
figuration will end up in state � is different from 0.5.

Geissler et al. showed that �� � � for most configurations that contained
fivefold-coordinated sodium ions. Conversely, �� � �, for configurations with
sixfold-coordinated sodium ions. For the Cl� ion, no such effect was found.
This indicates that, in order to reach the transition state from the associated
state, water molecules have to enter into the first solvation shell of the sodium
ions. The water coordination of the Na� ion was the order parameter that
was missing in the simple analysis. This example illustrates how TPS can
be used to elucidate unknown “reaction” mechanisms.

16.5 Searching for the Saddle Point

In section 16.4, we described a general procedure for finding barrier-crossing
rates. In principle, this procedure should work even if we have no knowl-
edge about the reaction coordinate. However, in practice, the calculations
may become very time consuming. For this reason, a variety of techniques
that aim to identify the relevant reaction coordinate have been proposed.
Below, we briefly describe some of the methods that have been proposed.
More details (and more references) can be found in ref. [459]. The methods
for searching for a reaction path, whihc we discuss, have been designed for
situations where the free energy barrier separating “reactant” and “prod-
uct” is energy-dominated. This is often the case, but certainly not always
(see, e.g., [427]).

One such energy-based scheme is the so-called ”nudged elastic band”
(NEB) method proposed by Jonsson and collaborators [472]. This method
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aims to find the lowest-energy path to the saddle point that separates the re-
actant basin from the product basin. The NEB method assumes that both the
reactant and product states are known. A number of replicas of the original
system are now prepared. These replicas are initially located equidistantly
along the “linear” path from reactant to product. The position of this orig-
inally linear path is now relaxed to find the reaction path. This is achieved
as follows: the replicas are connected by harmonic springs that tend to keep
them equally spaced—this is the “elastic band.” In addition all replicas expe-
rience the gradient of the intermolecular potential that tends to drive them
to a minimum of the potential energy. However, these gradient forces are
only allowed to act perpendicular to the local tangent. Conversely, the elas-
tic band forces are only allowed to act along the local tangent. As a conse-
quence, the intermolecular forces move the elastic band laterally until the
tranverse forces vanish (i.e., when it is a minimum energy path) while the
longitudinal forces prevent all replicas from collapsing into the reactant or
product state. For more details and further refinements, see [473–475].

A technique that is similar in spirit, but very different in execution, to the
NEB method is the activation-relaxation technique developed by Barkema
and Mousseau [476]. This method also aims to find the lowest energy path
to the saddle point. Unlike the NEB method, this scheme does not make
use of any a priori knowledge of the product basin. To find the saddle point,
the system is forced to move “uphill” against the potential energy gradient.
However, if we would simply let the system move in a direction opposite to
the force that acts on it, we would reach a potential energy maximum, rather
than a saddle point. Hence, in the method of [476], the force that acts on
the system is only inverted (and then only fractionally) along the vector in
configuration space that connects the position of the initial energy minimum
(i.e., the lowest energy initial state) with the present position of the system.
In all other directions, the original forces keep acting on the system. The
aim of this procedure is to force the system to stay close to the lowest energy
trajectory towards the saddle point. Often there is more than one saddle
point. In that case, the initial displacement of the system from the bottom of
the reactant basin will determine which saddle point will be reached. Note
that we cannot tell a priori whether the saddle point that is found will indeed
be the relevant one. The true transition state can only be found by attempting
many different initial displacements, and by computing the energy and (in
the case of a quasi-harmonic energy landscape) the entropy of the saddle
point.

The only reason special techniques are needed to simulate activated pro-
cesses is simply that rare events are . . . rare. If, somehow, one could artifi-
cially increase the frequency of rare events in a controlled way, this would
allow us to use standard simulation techniques to study activated processes.
Voter and collaborators [477, 478] have explored this route. The idea behind
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the approach of Voter is that the rate of activated processes can be increased
either by artificially lowering the energy difference between the top of the
barrier and the reactant basin (”hyperdynamics” [477]) or by increasing the
temperature (”temperature-accelerated dynamics” [478]). The trick is to ap-
ply these modifications in such a way that it is possible to correct for the
effect that they have on the crossing rate. In both schemes, the essence of
the correction is that the rate ��

�
, at which the system crosses a point � in the

biased system, is higher than the corresponding rate ��
�

in the unbiased sys-
tem. To recover the unbiased rate, the biased rate should be multiplied by a
factor ��Boltzmann�����

�

Boltzmann���, where ��Boltzmann (��Boltzmann) is the unbiased
(biased) Boltzmann weight of configuration �. For more details, the reader
is referred to refs. [477, 478]. To recover the unbiased rate, the biased rate
should be multiplied by a factor ��Boltzmann�����

�

Boltzmann���, where ��Boltzmann
(��Boltzmann) is the unbiased (biased) Boltzmann weight of configuration �.

An additional “linear” speed-up of the rate calculations can be achieved
by performing � barrier-crossing calculations in parallel [479]. Although this
approach does not reduce the total amount of CPU time required, it does
reduce the wall-clock time of the simulation. For more details, the reader is
referred to refs. [477–479].



Chapter 17

Dissipative Particle
Dynamics

This book focuses on molecular simulation techniques. Thus far, we focused
on those simulation techniques that, if we had infinite computing power at
our disposal, would yield the exact equilibrium properties of the molecu-
lar model under study. The Dissipative Particle Dynamics (DPD) technique
that we discuss in the present chapter is different in spirit: it is, by construc-
tion, an approximate, coarse-grained scheme. Such models are used when
we need to study the behavior of a system containing very many molecules
for a very long time. For example, colloidal suspensions are dispersions
of mesoscopic (�� nm – � �m) solid particles. These particles themselves
consist of millions, or even billions, of atoms. Furthermore, the number of
solvent molecules per colloid is comparable or even larger. Clearly, a Molec-
ular Dynamics simulation that follows the behavior of several thousand col-
loids over an experimentally relevant time interval (milliseconds to seconds)
would be prohibitively expensive. This is why colloidal suspensions are al-
ways modeled using a coarse-grained model. The simplest coarse-grained
model for colloidal suspensions is the hard-sphere fluid. This model can be
used to approximate the static properties of dispersions of uncharged, spher-
ical colloids with negligible dispersion interactions.1 However, if one is in-
terested in the colloidal dynamics, the solvent cannot be ignored. Colloidal
particles undergo many collisions with the solvent and these collisions are
responsible for the Brownian motion of the colloid. In contrast, in a conven-
tional MD simulation of hard-sphere dynamics, the motion of the spheres
in between collisions is purely ballistic. This shows that, in order to model

1In fact, several predictions of the early simulations on hard-sphere fluids have been con-
firmed with experiments on suspensions of such colloids.
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colloidal dynamics, we need to account for the effect of the solvent on the
colloidal motion.

However, we know that Brownian motion of uncharged colloids does
not depend on the atomic details of the solvent. The only properties of the
medium that matter are its temperature, density, and viscosity. This suggests
that a fully atomic model is not needed to study colloidal motion. What we
need is a “cheap” model of a solvent that has the following features:

� It exhibits hydrodynamic behavior.

� It has thermal fluctuations that can drive Brownian motion.

� It is cheap to simulate.

The Dissipative Particle Dynamics method was introduced by Hoogerbrug-
ge and Koelman [480, 481] with these requirements in mind. It should be
stressed, however, that the DPD method is not unique. Alternative schemes
for achieving the same objective, such as the fluctuating lattice-Boltzmann
method of Ladd [482] and, more recently, a hybrid MD-cellular-automaton
model of Malevanets and Kapral [483], have been proposed in the literature.
Both the DPD approach and the method of ref. [483] bear strong similarities
to Molecular Dynamics. In the DPD approach, the forces due to individ-
ual solvent molecules are lumped together to yield effective friction and a
fluctuating force between moving fluid elements. While this approach does
not provide a correct atomistic description of the molecular motion, it has
the advantage that it does reproduce the correct hydrodynamic behavior on
long length and time scales.

17.1 Description of the Technique

The basic DPD algorithm is very similar to MD: the difference is that, in
addition to the conservative force acting between particles, the total force on
a particle � now also contains a dissipative force and a random force:

F� �

�

� ���

�
f��r��� � f��r��� v��� � f��r���

�
� (17.1.1)

The conservative force f��� can, for instance, be derived from a pair potential2

that acts between particles � and �. The dissipative force f��� corresponds to a
frictional force that depends both on the positions and the relative velocities
of the particles:

f��r��� v��� � ����������v�� � �r����r��� (17.1.2)
2More recent versions of DPD make use of many-body forces. However, somewhat surpris-

ingly, this does not change the structure of the algorithm (see [484]).
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where r�� � r� � r� and v�� � v� � v�, and �r�� is the unit vector in the di-
rection of r��. � is a coefficient controlling the strength of the frictional force
between the DPD particles. ������� describes the variation of the friction co-
efficient with distance. Possible choices for the �-dependence of the friction
coefficient will be discussed later. The random force f��r��� is of the form:

f��r��� � ������������r��� (17.1.3)

� determines the magnitude of the random pair force between the DPD par-
ticles. ��� is a random variable with Gaussian distribution3 and unit variance
and ��� � ���, while ������� describes the variation of the random force with
distance. The functions ����� and ����� cannot be chosen independently.
In order for the configurations of the systems to occur with the proper Boltz-
mann weight, the following relation must be satisfied:

������� �
�
�������

��
� (17.1.4)

� and � are related to the temperature according to

�� � ������ (17.1.5)

At first sight, the DPD method bears a strong resemblance to the so-called
Brownian dynamics method (see, e.g., [19]); both schemes employ a combi-
nation of random and dissipative forces. However, in Brownian dynamics
the frictional and random forces do not conserve momentum. In fact, the
only property that is conserved in Brownian dynamics is the total number
of particles. In DPD, however, the particular functional forms of the fric-
tional and random forces ensure that all forces obey action-equals-reaction,
and hence the model conserves momentum. This is essential for recovering
the correct “hydrodynamic” (Navier-Stokes) behavior on sufficiently large
length and time scales.4

17.1.1 Justi cation of the Method

The first step in the justification of the method is to investigate the rela-
tion between DPD and thermodynamics [487]. The original method was
proposed using heuristic arguments. Español and Warren [487] provided a
proper statistical-mechanical basis. Español and Warren have shown that
the DPD can be written in the form of a Fokker-Planck equation [47]:

	�� ��
� � �� � ��� ��
� � �� � ��� ��
� � ��
 (17.1.6)
3Groot and Warren [485] found that a uniform distribution with unit variance gave similar

results.
4An alternative approach for imposing both momentum conservation and proper Boltzmann

sampling has been proposed by Lowe [486].
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where�� is the usual Liouville operator of a Hamiltonian system interacting
with conservative forces F�,

�� � �

�
��

�

p�
�

�

�r�
�
�

���

f���
�

�p�

�
� � (17.1.7)

and the operator �� takes into account the effects of the dissipative and the
random forces:

�� �
�

���

�r��
�

�p�

�
����������r�� � v��� � ����

�������r��

�
�

�p�
�

�

�p�

��
�

(17.1.8)
The derivation of these equations uses techniques developed for stochastic
differential equations. The importance of casting the DPD equations in a
Fokker-Planck form is that we can use the theory of Markov processes to
prove that the system evolves to an equilibrium distribution; i.e., the steady-
state solution of equation (17.1.6) corresponds to

���eq���� � 	� � 
�

To make the connection with statistical mechanics, the steady-state solution
should correspond to the canonical distribution:

�eq���� � 	� �
�

��	


exp������� ��

�
�

��	


exp

�
�

	
�

�

������ � ����


�
�

where ���� is the potential that gives rise to the conservative forces, ����� �

is the Hamiltonian, and ��	
 is the partition function of the ��� ensemble.
By definition, this equilibrium distribution satisfies

���eq���� � 	� � 
�

We therefore need to ensure that

���eq���� � 	� � 
�

This is achieved by imposing that

��
���� � ����� and �� � ������

This is precisely the choice made in the previous section.
We still have to show that, on sufficiently large lengths and time scales,

the DPD fluid obeys the Navier-Stokes equation of hydrodynamics. At pres-
ent, there exists no rigorous demonstration that this is true for an arbitrary
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DPD fluid. However, all existing numerical studies suggest that, in the limit
where the integration time step Æ� � �, the large-scale behavior of the DPD
fluid is described by the Navier-Stokes equation. The kinetic theory for the
transport properties of DPD fluids [488–491] supports this conclusion. One
interesting limit of the DPD model is the ”dissipative ideal gas,” i.e., a DPD
fluid without the conservative forces. The static properties of this fluid are
those of an ideal gas. However, its transport behavior is that of a viscous
fluid.

The advantage of DPD over conventional (atomistic) MD is that it in-
volves a coarse-grained model. This makes the technique useful when study-
ing the mesoscopic structure of complex liquids. However, if we are only
interested in static properties, we could have used standard MC or MD on a
model with the same conservative forces, but without dissipation. The real
advantage of DPD shows up when we try to model the dynamics of complex
liquids.

17.1.2 Implementation of the Method

A DPD simulation can be implemented in any working Molecular Dynamics
program. The only subtlety is in the integration of the equations of motion.
As the forces between the particles depend on their relative velocities, the
standard velocity-Verlet scheme cannot be used.

In their original publication Hoogerbrugge and Koelman [480] used an
Euler-type algorithm to integrate the equations of motion. However, Marsh
and Yeomans found that, with such an algorithm, the effective equilibrium
temperature depends on the time step that is used in a DPD simulation [492].
Only in the limit of the time step approaching zero was the correct equilib-
rium temperature recovered. A similar result was obtained by Groot and
Warren [485] using a modified velocity-Verlet algorithm. There is, however,
an important feature missing in these algorithms. If we compare the DPD in-
tegration schemes with those used in a Molecular Dynamics simulation, all
“good” MD schemes are intrinsically time-reversible while the above DPD
schemes are not. Pagonabarraga et al. [493] argued that time reversibility is
also important in a DPD simulation, since only with a time-reversible inte-
gration scheme can detailed balance be obeyed. In the Leap-Frog scheme
(see section 4.3.1) the velocities are updated using

��� � ����� � ��� � ����� � ��
����

�
� (17.1.9)

and the positions using

	��� ��� � 	��� � ������ �����
 (17.1.10)
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In DPD, the force at time � depends on the velocities at time �. The velocity
at time � is approximated by

���� �
���� ����� � ��� � �����

�
�

This implies that the term ��� � ����� in equation (17.1.9) appears on both
sides of the equations. In the scheme of Pagonabarraga et al., these equa-
tions were solved self-consistently; i.e., the value for ��� � ����� calculated
from equation (17.1.9) has to be the same as the value for ��� � ����� used
to calculate the force at time �. This implies that we have to perform several
iterations before the equations of motion can be solved. This self-consistent
scheme implies that the equations are solved in such a way that time re-
versibility is preserved.

To see how this time reversibility is related to detailed balance, we con-
sider a single DPD step as a step in a Monte Carlo simulation. If we have
only conservative forces, DPD is identical to standard Monte Carlo. In fact
we can use the hybrid Monte Carlo scheme (see section 14.2) for the DPD
particles. For hybrid Monte Carlo it is essential that a time-reversible al-
gorithm is used to integrate the equations of motion. In the case of hybrid
Monte Carlo detailed balance implies that if we reverse the velocities, the
particles should return to their original positions. If this is not the case de-
tailed balance is not obeyed. If we use a noniterative scheme to solve the
equations of motion in our DPD scheme, the velocity that we calculate at
time � is not consistent with the velocity that is used to compute the force at
this time. Hence, if we reverse the velocities the particles do not return to
their original positions and detailed balance is not obeyed. In Case Study 25
the DPD method is illustrated with a few examples.

Case Study 25 (Dissipative Particle Dynamics)
To illustrate the DPD technique, we have simulated a system of two compo-
nents (� and �). The conservative force is a soft repulsive force given by

f��� �
�

��� �� � �����r�� ��� 	 ��

 ��� � ��

� (17.1.11)

in which ��� � �r��� and �� is the cutoff radius of the potential. The random
forces are given by equation (17.1.3) and the dissipative forces by equa-
tion (17.1.2). The total force on a particle equals the sum of the individual
forces:

f� �
�
� ���

�
f��� � f��� � f��� � f���

�
� (17.1.12)

To obtain a canonical distribution we use

�� � ����
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Figure 17.1: (left) Density profile for ��� � ����. (right) Phase diagram
as calculated using DPD and Gibbs ensemble simulations. Both techniques
result in the same phase diagram, but the Gibbs ensemble technique needs
less particles due to the absence of a surface. In the DPD simulations, we
have used a box of �������� (in units of ���). The time step of the integration
was 	
 � ����.
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A simple but useful choice is [485]

�� ����� �

�
�� � ������

�
��� � ��

� ��� � ��

with �� � �. The simulations were performed with � � ��� and � � ���. We
have chosen ��� � ��� � �� and �������� � ��. This system will separate
into two phases. In the example shown in Figure 17.1, we have chosen the
�-direction perpendicular to the interface. The left part of Figure 17.1 shows
typical density profiles of the two components. In Figure 17.1 (right), we have
plotted the concentration of one of the components in the coexisting phases.

Since we can write down a Hamiltonian for a DPD system, we can also
perform standard Monte Carlo simulations [494]. For example, we can also
use a Gibbs ensemble simulation (see Chapter 8) to compute the phase
diagram. As expected, Figure 17.1 shows that both techniques give identical
results. Of course, due to the presence of an interface one needs many more
particles in such a DPD simulation.

Thermodynamic quantities are calculated using only the conservative
force. The pressure of the system is calculated using

� � �����
�

��

�
�	�

�
r�� � f
��

�
�
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If we have an interface in our system we can compute the interfacial ten-
sion from the pressure tensor. In a homogeneous system at equilibrium the
thermodynamic pressure is constant and equal in all directions. For an inho-
mogeneous system hydrodynamic equilibrium requires that the component
of the pressure tensor normal to the interface is constant throughout the sys-
tem. The components tangential to the interface can vary in the interfacial
region, but must be equal to the normal component in the bulk liquids.

For an inhomogeneous fluid there is no unambiguous way to compute the
normal ���� and tangential ���� components of the pressure tensor [495–
497]. Here, we have used the Kirkwood-Buff convention [498]. The system
is divided into �sl equal slabs parallel to the ��� plane. The local normal
������� and tangential ������� components of the pressure tensor are given
by [207]

����� � ��� ������ �
�

	sl

�
�

�����

��� 
���

���

d������
d�

�
� (17.1.13)

and

����� � ��� ������ �
�

	sl

�
�

�����

��� ���� � ����

���

d������
d�

�
� (17.1.14)

where ������ is the average density in slab �, 	�	 � �
�������	 is the vol-
ume of a slab, ���� is the intermolecular potential from which the conser-
vative forces can be derived.

����

�����
means that the summation runs over

all pairs of particles �� � for which the slab � (partially) contains the line that
connects the particles � and �. Slab � gets a contribution ��� from a given
pair ��� ��, where � is the total number of slabs which intersect this line.

It can be shown that the definition of the interfacial tension ��) is free from
ambiguities [497]. The interfacial tension can be calculated by integrating the
difference of the normal and tangential components of the pressure tensor
across the interface. In the case of our system with two interfaces, � reads

� �
�



���


d
 ����
� � ���
�� � (17.1.15)

The factor �
�

corrects the two interfaces we have because of the periodic
boundary conditions.

In Figure 17.2, we have plotted the surface tension of the system as a
function of temperature. Clearly, the surface tension decreases with increas-
ing temperature. Close to the critical point, the driving force for the formation
of a surface (surface tension) is very low and therefore it is not possible to
form an interface close to the critical point.
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Figure 17.2: Surface tension as a function of temperature.

17.1.3 DPD and Energy Conservation

The name dissipative particle dynamics implies that during a simulation en-
ergy is dissipated. The fact that energy is not conserved in a DPD simulation
can be a disadvantage for some applications. For example, if we have a sys-
tem in which there is a temperature gradient, such a temperature gradient
can only be sustained artificially in a DPD simulation [489]. A solution to
this is to introduce an additional variable characterizing the internal energy
in a DPD simulation [499, 500].

To this end, we associate with every DPD particle an internal-energy
”reservoir.” This reservoir absorbs or releases the energy that would nor-
mally go into the internal degrees of freedom of the group of molecules that
are represented by a single DPD particle. During a collision the energy of
this reservoir can increase or decrease.

The internal energy of a DPD particle is denoted by ��. With this vari-
able we can associate an entropy variable �� � ����� and temperature �� �

���������
��. The next step is to introduce an equation of motion for this in-

ternal energy. There are two processes that can change the internal energy.
The first is “heat conduction” caused by temperature differences between
two particles. The second is “viscous heating” due to the frictional forces.

If the DPD particles are at rest, the time derivative of the internal energy
is given by

d�� �
�

�

���

�
�

��
�

�

��

�
������d	�

�

�


���� (17.1.16)

where ���� is a function determining the range of influence between parti-
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cles. ���� is a random heat flux that occurs spontaneously because of thermal
fluctuations.

We can associate a total mechanical energy to a system of DPD particles:

�mec �
�

���

������ �
�

�

�

�
���

�
� �

If we consider the change in mechanical energy, an increase in the potential
energy would be compensated with a decrease in the kinetic energy if there
were no dissipative and random forces. We now impose that the sum of the
internal energy and the mechanical energy is constant:

d� � d�mec � d
�

�

	� � 
�

This implies for the time derivative of the internal energy:

d	� �
��

�

�
��

�

�
���������v�� � �r���� � ����������

�
�

d�

�
�

�

���������r�� � v������

�
� � (17.1.17)

The total energy change is a combination of convection (17.1.16) and viscous
heating (17.1.17). For details on the implementation of these methods, the
reader is referred to refs. [499–504].

Example 27 (Hydrodynamics and Phase Separation)
Block copolymers resemble surfactants in the sense that two chemically dif-
ferent units, say � and �, are linked together by a chemical bond. If the
interactions between these units are very different, the system would phase
separate were it not for the fact that adjacent units are connected by chem-
ical bonds. However, one often observes microphase separation in such
systems that results in a microscopic texture of alternating �-rich and �-rich
domains. These domains can then arrange into larger-scale structures such
as spheres, rods, sheets, and perforated sheets, or other, more complicated,
sponge-like structures.

The dynamics of the formation of these microstructures has been studied
experimentally and theoretically. However, the effect of the hydrodynamics
on the kinetics of formation of these structures is not fully understood. Groot
et al. [505] compared the formation of these microstructures using dissipa-
tive particle dynamics (DPD) and Brownian dynamics. Brownian dynamics
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Figure 17.3: Order parameter expressing the configurational entropy of the
structure (see ref. [505] for details) as a function of time for a DPD simulation
and a Brownian dynamic simulation. The DPD simulation forms the hexag-
onal structure, while the Brownian dynamic simulation remains trapped in
a phase with interconnecting tubes (see the structures shown in Figure 17.4).

(BD) is a technique that resembles DPD but in which each particle feels a
random force and a drag force relative to a fixed background. The important
difference between BD and DPD is that BD does not satisfy Newton’s third
law and hence it does not conserve momentum. As a consequence, BD can
never reproduce hydrodynamic behavior. In contrast, DPD is similar to MD
in that it does conserve momentum. It can therefore be used to model hydro-
dynamic interactions. A comparison of the predictions of a DPD and a BD
simulation for the time evolution of the same model tells us something about
the importance of the hydrodynamics for the process under consideration.
Groot applied the two techniques to study the formation of microstructures
in block copolymers. For such systems, Molecular Dynamics would require
too much CPU time.

Groot et al. [505] studied the formation of the hexagonal phase from an
initially random ���� block-copolymer liquid. In Figure 17.3 the evolution of
the order parameter characterizing the various phases is plotted. This figure
shows that in the DPD simulation a hexagonal phase is formed, while the
system modeled by BD remains trapped in a metastable state. Apparently,
hydrodynamic interactions are needed to facilitate the crossing of kinetic bar-
riers.
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Figure 17.4: Structures obtained from DPD simulation (left) and a Brownian
dynamic simulation (right) of a system of ���� block copolymers, after the
same number of times steps. In the DPD simulation a hexagonal phase is ob-
served while the Brownian dynamics simulation is trapped in a disordered
phase of interconnected tubes. The figure shows the dividing surface and is
based on data provided by Dr. R.D. Groot.

17.2 Other Coarse-Grained Techniques

In addition to the dissipative particle dynamics method described in the pre-
vious section, there exists a host of coarse-grained methods to model the
mesoscopic dynamics of fluids. Most of these are based on a continuum de-
scription of the fluid under consideration. Such techniques fall outside the
scope of this book. Here, we briefly touch upon two mesoscopic simulation
schemes that are, like DPD, inherently particle based. The first is the so-
called Lattice Boltzmann (LB) method [506–508]. As the name suggests, the
LB method is a lattice scheme. It is based on a lattice gas cellular automaton
model of a fluid [509]. In such a model, the fluid is represented by a regu-
lar lattice. Every lattice point has � nearest neighbors (in two dimensions,
� is usually equal to 6, and in ��, the most frequently used models have
� � ��). Not only space is discretized, but time too. On every lattice point,
there can be at most one particle moving in the direction linking the lattice
point to any given nearest neighbor. In a single time step, a particle moves
along its link from its original lattice site to the corresponding link on the
nearest-neighbor lattice site. This propagation step is carried out for all par-
ticles simultaneously. The next step is the collision step. During collisions,
the total number of particles and the total momentum (and, in certain mod-
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els, the total energy) on a given lattice site is maintained, but apart from this
constraint, particles can change their velocity. There is considerable freedom
in selecting the collision rules, as long as they maintain the full symmetry
of the lattice. With this very simple model, it is possible to mimic hydrody-
namic behavior. However, the cellular automaton method is very ”noisy”
and suffers from a number of other practical drawbacks. Moreover, by con-
struction, the lattice model lacks Galilean invariance. The lattice Boltzmann
method was devised to overcome some (but not all) of the problems of lattice
gas cellular automata.

In the most naive version, one can think of the lattice Boltzmann model
as a preaveraged version of a lattice gas cellular automaton [506]. In this
preaveraging, the number of particles on a given link is replaced by the par-
ticle density on that link. Note that the particle number is either zero or one,
but the density is a real number. In addition, the resulting equations are
greatly simplified if the collision operator (i.e., the function that described
how the post-collision state of a lattice point depends on the precollision
state) is linearized in the deviation of the particle densities from their (lo-
cal) equilibrium value. Finally, there is no need to restrict the LB collision
operators to forms that can be derived from an underlying cellular automa-
ton [507,508]. It is, however, essential that the collision operator satisfies the
conservation laws and the symmetries of the original model.

For the simulation of complex flows, the LB method is much more ef-
ficient than the original cellular automaton model. However, one aspect is
missing in the LB approach, namely the intrinsic fluctuations that result from
the discreteness in the number of particles. As a consequence, a normal LB
model does not exhibit ”thermal fluctuation.” Often this is an advantage.
But if one is interested in Brownian motion of suspended particles [510], or
in the decay of spontaneous stress fluctuations [511], then it is essential to
re-introduce stochastic fluctuations. Such an approach has been proposed
by Ladd [482]. The LB method is very useful for studying flows in com-
plex geometries (e.g., flow in porous media or the dynamics of colloidal sus-
pensions). The method has also been extended to describe mixtures (see,
e.g., [512]).

The aim of the lattice Boltzmann method and related techniques is to pro-
vide a computationally cheap, particle-based representation of mesoscopic
fluid flows. The LB method that we sketched above achieves this aim by
averaging out essentially all information about individual fluid particles.
There exist other computational techniques that, like DPD, are truly particle-
based. In these models, it becomes essential to make the dynamics of the
fluid particles as cheap as possible. We briefly sketch two closely related
schemes. The first is the so-called Direct Monte Carlo Simulation Method
(DSMC) of Bird [513]. This method was developed to simulate flow of rel-
atively dilute gases. In the DSMC method, particles move ballistically be-
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tween collisions. Collisions are carried out stochastically. That is, the num-
ber of collisions per time step is fixed by the known collision frequency at the
specified density. The selection of collision partners is stochastic. To this end,
space is divided into cells. Collision partners are then randomly selected
pairs within one cell. The precise collision dynamics depends on the molec-
ular model that is used. However, in all cases, collisions conserve linear
momentum and energy. An extension of the DSMC method to dense gases
has been proposed by Alexander et al. [514]. For more details on the DSMC
method in general, see the book and review by Bird [513,515], and a tutorial
article by Alexander and Garcia [516]. Recently, Malevanets and Kapral pro-
posed a particle-based method that is very similar in spirit to DSMC [483].
This method was designed to model the dynamics of macromolecules in an
unstructured solvent. To this end, the forces between the macromolecules
are taken into account explicitly, as is the interaction between solute and sol-
vent. However, the solvent-solvent interactions are accounted for stochasti-
cally. This means that normal Molecular Dynamics is used to update the sol-
vent and solute positions and momenta, while ignoring the solvent-solvent
interaction. After this normal MD step, the solvent-solvent interaction is
accounted for in a way that is reminiscent of the DMSC scheme: space is
divided into cells and the solvent-solvent collisions take place inside these
cells. Unlike the DSMC scheme, the Malevanets-Kapral method uses many-
body collisions between the solvent particles. The motion of the center of
mass of all particles in a cell is left unchanged, but a uniform, random ro-
tation is applied to all relative velocities of the particles in the cell. As the
relative velocities do not change in size, the total energy is conserved, while
the conservation of the center-of-mass velocity takes care of the momentum
conservation.
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Appendix A

Equations of Motion from
the Lagrangian or
Hamiltonian

Knowledge of Newton’s equations of motion is sufficient to understand the
basis of the Molecular Dynamics method. However, many of the more ad-
vanced simulation techniques make use of the Lagrangian and Hamiltonian
formulations of classical mechanics. Here we briefly sketch the relation be-
tween these different approaches (see also [517]). For a more detailed, and
more rigorous description of classical mechanics, the reader is referred to the
book by Goldstein [45].

The Lagrangian formulation of classical mechanics is based on a vari-
ational principle. The actual trajectory followed by a classical system in a
time interval ��b� �e�, between an initial position �b and a final position �e, is
the one for which the action, �, is an extremum (usually, a minimum). The
classical action � for an arbitrary trajectory is defined as the time integral of
the difference between the kinetic energy � and the potential energy �� of
the system, computed along that trajectory:

� �

�
�e

�b

d� �� � � � � (A.0.1)

Before considering the general Lagrangian equations of motion that follow
from this extremum principle, let us first consider a few simple examples.

The first case is that of a single particle that moves in the absence of an
external potential, i.e., � � �. As the particle has to move from �b to �e

in a time interval �e � �b, we already know its average velocity: �av. If the
particle would always move with this average velocity, it would follow a
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straight trajectory that we denote by �̄���. Let us denote the true trajectory
of the particle by ���� � �̄��� � ����, where ���� is, as yet, unknown. Then
the velocity of the particle is the sum of the average velocity �av and the
deviation from it, �̇���:

���� � �av � �̇����

By construction,

�
d� �̇��� � ��

In the present example, the potential energy is always zero and hence the
action � is determined by the time integral of the kinetic energy:

� �
�

�
	

�
d� ��av � �̇����

�
� �av �

�

�
	

�
d� �̇�����

Since the last term is always greater than �, the action has its minimum if
�̇��� � � for all �. In other words, we recover the well-known result that,
in the absence of external forces, the particle moves with constant velocity.
This is Newton’s first law.

Next, consider a particle moving in a one-dimensional potential 
���. In
this case, the action is

� �

��e

�b

d�

�
�

�
	

�
d����

d�

��

�
���

�
�

An arbitrary path, ����, can be written as the sum of the actual path that a
classical particle will follow, �̄���, plus the deviation from this path ����:

���� � �̄��� � �����

As before, we impose the initial and final positions of the particle and hence
���b� � ���e� � �. For paths ���� that are close to the actual path, we can
expand the action in powers of the (small) quantity ����. Actually, as ���� is
itself a function of �, such an expansion is called a functional expansion. The
action is extremal if the leading (linear) terms in this functional expansion
vanish. Let us now consider the functional expansion of the action around
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the action of the true path, to linear order in ���� :

� �

��e

�b

d�
�

�
�

�
d�̄���

d�
�

d����
d�

��

�� ��̄��� � �����

�

�
�e

�b

d�
�

�
�

��
d�̄���

d�

��

� �
d�̄���

d�
d����

d�

�
�

�
���̄���� �

����̄�

��
����

�

� �̄�

� �e

�b

d�
�
�

d�̄���
d�

d����
d�

�
����̄�

��
����

�

� �̄� �
d�̄���

d�
����

����
�e

�b

�

��e

�b

d�
�
�

d��̄���

d��
�

����̄�

��

�
����	

where the last step has been obtained via partial integration. Since by def-
inition ���� � 
 at the boundaries, the second term on the right-hand side
vanishes. The action has its extremum if the integrand in the last line of the
above equation vanishes for arbitrary ����. This condition can be satisfied if
and only if

�
d��̄���

d��
� �

����̄�

��
	 (A.0.2)

which is Newton’s second law. In other words, Newton’s equations of mo-
tion can be derived from the statement that a particle follows a path for
which the action is an extremum.

A.1 Lagrangian

There would be little point in introducing this alternative expression of the
laws of classical mechanics, if it did not allow us to do more than simply
rederive � � ��. In fact, the Lagrangian formulation of classical mechan-
ics turns out to be very powerful. For one thing, the Lagrangian approach
makes it easy to derive equations of motion in non-Cartesian coordinate
frames. Suppose that we wish to use some generalized coordinates  instead
of the Cartesian coordinate �. For example, consider a pendulum of length
� in a uniform gravitational field. The angle that the pendulum makes with
the vertical (i.e., with the direction of the gravitational field) can be used to
specify its orientation. Since the path that the pendulum follows is clearly
independent of the coordinates that we happen to use to specify its state, the
action should be the same:

� �

�
d� ���	 �̇� �

�
d� ��	 ̇�	 (A.1.1)
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where the quantity � is called the Lagrangian. The Lagrangian is defined as
the kinetic energy minus the potential energy1:

� � ����̇� � ������ (A.1.2)

We again introduce our actual path �̄��� and the deviation ���� from it:

���� � �̄��� � ����

�̇��� � ˙̄���� � �̇����

We can write for the Lagrangian

���� �̇� � ���̄� ˙̄�� �
����̄� ˙̄��

��̇
�̇��� �

����̄� ˙̄��
��

�����

As in the previous section, we use the functional expansion of � in powers of
���� to derive an expression for the classical path. To this end, we substitute
the Lagrangian in the expression for the action (A.1.1). Next we write a
possible path of the particle as the sum of the actual path and a correction
����. As before, we use partial integration, and use the fact that ���� vanishes
at the boundaries of the integration. It then follows that the action has an
extremum if �

d�
�
�

d
d�

�
����̄� ˙̄��

��̇

�
�

����̄� ˙̄��
��

�
���� � �� (A.1.3)

which is satisfied for arbitrary ���� if and only if�
�

d
d�

�
����̄� ˙̄��

��̇

�
�

����̄� ˙̄��
��

�
� �� (A.1.4)

This is the Lagrangian equation of motion. To cast this equation of motion in
a more familiar form, we introduce the generalized momentum � associated
with the generalized coordinate �:

� �
����� �̇�

��̇
� (A.1.5)

Substitution of this expression into equation (A.1.4) yields

�̇ �
����� �̇�

��
� (A.1.6)

As the above formulation is valid for any coordinate system, it should
certainly hold for Cartesian coordinates. In these coordinates the Lagrangian
reads

��	� 	̇� �



�
�	̇� ��	��

1The correct definition is more restrictive; see [45] for more details.
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� l

Figure A.1: A simple pendulum of length � with mass �.

The momentum associated with � is

�� �
����� �̇�

��̇
� ��̇

and the equation of motion is

��̈ � �
�����

��
�

which is indeed the result we would obtain from Newton’s equation of mo-
tion.

Example 28 (A Pendulum in a Gravitational Field)
Consider a simple pendulum of length � with mass � (see Figure A.1). A
uniform gravitational field is acting on the pendulum and the potential energy
is a simple function of the angle � that the pendulum makes with the vertical:

���� � ��� �	� cos���� 


We wish to express the equations of motion in terms of the generalized co-
ordinate �. The Lagrangian is

� � �� � �� �
	

�
�

�
�̇���� � ̇����

�
�����

�
���

�
�̇� �����


The generalized momentum is defined as

�� �
��

��̇
� ����̇
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and the equation of motion follows from equation (A.1.6)

�̇� � �
�����

��

or

�̈ � �
�

���
�����

��
�

A.2 Hamiltonian

Using the Lagrangian we have derived the equations of motion in terms of
� and �̇. Often, it is convenient to express the equations of motion in terms
of � and its conjugate momentum �. To do this we can perform a Legendre
transformation2:

���	� � � ��̇ � ���	 �̇	
 �� (A.2.1)

This equation defines the Hamiltonian � of the system. As � is a function
of �, � and, in general, also of 
, it is clear that we can write an infinitesimal
variation of � as

d���	� � �
��

��
d��

��

��
d��

��

�

d
� (A.2.2)

But, using the definition of�, we can also write

d���	� � � d���̇� � d���	 �̇�

� �d�̇� �̇d��
�
��

��
d� �

��

��̇
d�̇�

��

�

d

�

� �d�̇� �̇d�� �̇d�� �d�̇�
��

�

d


� �̇d�� �̇d� �
��

�

d
	

2In thermodynamics, Legendre transforms are used to derive various thermodynamic po-
tentials. For example, the energy � is a natural function of the entropy � and volume � :
� � ����� �, i.e., in these variables � is a thermodynamic potential. In most practical applica-
tion it is more convenient to have the temperature � rather than the entropy � as independent
variable. Since the temperature is the variable conjugate to the entropy ������ � ��, we can
perform a Legendre transform to remove the � dependence:

� � � � ���

yielding
d� � d� � d���� �� �d� � �d�	

For historical reasons the Legendre transform linking the Lagrangian to the Hamiltonian has
the opposite sign.
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where we have used the definitions of � and �̇, equations (A.1.5) and (A.1.6),
respectively. It then follows directly that

��

��
� �̇ (A.2.3)

��

��
� ��̇� (A.2.4)

These are the desired equations of motion in terms of ��� . For most systems
that we consider in this book, the Lagrangian does not explicitly depend on
time. In those circumstances, the Hamiltonian is conserved. This follows
directly from the equations of motion:

d����� �

d�
�

��

��
�̇�

��

��
�̇

� �
��

��

��

��
�

��

��

��

��

� ��

This conservation law expresses the fact that, in a closed system, the total en-
ergy is conserved. In Cartesian coordinates, the Hamiltonian can be written
as

����� �� � �̇�� � ���� �̇�

� ��̇� �
	



��̇� �����

�
	


�
��� ������

and the Hamiltonian equations of motion reduce to Newton’s equations

�̇ �
��

���
�

��

�

�̇� � �
��

��
� �

�����

��
�

The Hamiltonian equations of motion are two first-order differential equa-
tions—one for � and one for �. In contrast, the Lagrangian formalism yields
a single second-order equation. However, both formalisms yield identical
results. The choice between the two is dictated by considerations of mathe-
matical convenience.

Example 29 (A Pendulum in a Gravitational Field: Part II)
We consider again the simple pendulum in a uniform gravitational field, in-
troduced in Example 28:

���� � �� �	� cos���� �
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where � is the angle that the pendulum makes with the vertical.
In Example 28 we have derived the equations of motion from the La-

grangian in terms of a second-order differential equation in �. Now we will
use Hamilton’s formulation.

The Lagrangian is

���� �̇� � �� � �� �
���

�
�̇� ������

The Lagrangian depends on the variables � and �̇ and in the Hamiltonian
language we want to express the equations of motion in terms of � and its
conjugate momentum ��. This conjugate momentum is defined by equa-
tion (A.1.5)

�� �
����� �̇�

��̇
� ����̇�

The Hamiltonian follows from the Legendre transformation (A.2.1)

� � ���̇ � ���� �̇�

�
��

����
� ����

�
	

�
����̇� ������

which is, of course, equal to the total energy of the pendulum.
The equations of motion follow from equations (A.2.3) and (A.2.4):

�̇ �
��

���
�


�

���

�̇� � �
��

��
� �

d����
d�

�

which are the desired equations of motion in terms of two first-order differ-
ential equations.

A.3 Hamilton Dynamics and Statistical Mechan-
ics

The Hamiltonian and Lagrangian formulations of classical mechanics yield
identical results. This is not surprising as the Hamiltonian formulation was
derived from the Lagrangian equations (see section A.2). Yet, the forms of
the Lagrangian and Hamiltonian equations of motion are quite different: the
Hamiltonian equations of motion are rst-order differential equations for the
momenta and coordinates of all particles in the system. The Lagrangian
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equations of motion are second-order equations of motion for the coordinates
only. The choice of formalism is dictated by considerations of convenience.
For instance, in order to derive the equations of motion of a system with
constraints, the Lagrangian formalism is more convenient (see 15.1). On the
other hand, the Hamiltonian expressions are to be used when establishing
the connection with statistical mechanics (see Chapter 2).

A.3.1 Canonical Transformation

In the Hamiltonian formulation the generalized coordinates and momenta
are independent variables. One can therefore introduce a transformation
of both variables simultaneously. For example, the transformation of the
coordinates ��� to ��� is denoted by

� � ����� �

� � ����� � (A.3.1)

and the inverse transformation, ��� into ��� , by

� � ����� �

� � ����� �� (A.3.2)

Obviously, the value of any function of the phase-space coordinates is unaf-
fected by the coordinate transformation. In the case of the Hamiltonian, this
implies that

����� � � � ������ �� ����� �� � � ����� �� (A.3.3)

In general, the equations of motion in the new coordinates are not of the
canonical form, unless the coordinate transformation is canonical.3 If the co-
ordinate transformation is canonical, the equations of motion for the new
phase-space coordinates ��� are

�̇ �

�
�� ����� �

��

�
(A.3.4)

�̇ � �

�
�� ����� �

��

�
� (A.3.5)

From equation (A.3.1) and the Hamilton equations of motion for the coordi-
nates ��� , it follows that

�̇ �

�
������ �

��

�
�̇ �

�
������ �

��

�
�̇

�

�
������ �

��

��
������ �

��

�
�

�
������ �

��

��
������ �

��

�
�

3Since time does not appear explicitly in these equations, we are defining a so-called re-
stricted canonical transformation.
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Using equation (A.3.3), we can write
�
�� ����� �

��

�
�

�
������ �

��

��
�������

��

�
�

�
������ �

��

��
�������

��

�
�

This equation can only be equal to expression (A.3.4) for �̇ if
�
������ �

��

�
�

�
������ �

��

�
and

�
������ �

��

�
� �

�
������ �

��

�
� (A.3.6)

Similarly, we can start with �̇, and derive two other conditions:
�
������ �

��

�
� �

�
������ �

��

�
and

�
������ �

��

�
�

�
������ �

��

�
� (A.3.7)

These two equations define the condition for a canonical transformation.

A.3.2 Symplectic Condition

We can express the above conditions for a canonical transformation in a sin-
gle equation, by using a matrix notation. Let � be a ��-dimensional vector
containing the generalized coordinates �� and momenta �� of the � particles
(for the sake of simplicity, we consider a one-dimensional system). Hamil-
ton’s equations of motion (A.2.3) and (A.2.4) can be written as

�̇ ��
��

��
� (A.3.8)

where� is an antisymmetric matrix defined as

� �

�
0 1
�1 0

�
�

In a similar way we can define � to be the ��-dimensional vector contain-
ing the generalized coordinates �� and ��. Using the matrix notation the
transformation (A.3.1) from ��� to ��� is written as

� � �����

For the time derivatives of �, we can write

�̇ � M�̇�

where M is the Jacobian matrix of the transformation. The elements of this
matrix are

	�� �
�
�

���

� (A.3.9)
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We can write, using equation (A.3.8), for the time derivatives of �

�̇ � M�
��

��
� (A.3.10)

In a similar way, we can define the inverse transformation (A.3.2)

� � �����

Since
����� � � �������

we can write
�����

���

�
�

�

�����

���

���

���

� (A.3.11)

If we define the transposed matrix4 of M as defined in equation (A.3.9),

M̃�� �
���

���

�

This allows us to rewrite equation (A.3.11) in matrix notation as

�����

��
� M

�����

��
� (A.3.12)

If we combine equations (A.3.10) and (A.3.12), we have

�̇ � M�M
��

��
�

This expression for the equations of motion is valid for any set of variables
� that are being transformed (independently of time) from the set �. Such a
transformation is canonical if the equations of motion in the new coordinates
have the canonical form:

�̇ ��
��

��
�

This can only be the case if M satisfies the condition

M�M̃ ��� (A.3.13)

This condition is often called the symplectic condition. A matrix M that satis-
fies this condition is called a symplectic matrix.5

4One can obtain the transposed matrix of a given matrix A by interchanging rows and
columns, i.e., �̃�� � ���.

5To see that this condition is identical to equations (A.3.6) and (A.3.7), we have to multiply
this equation from the right with the inverse matrix of M:

M� ��M̃��
�
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A.3.3 Statistical Mechanics

Using the symplectic notation for a canonical transformation, we consider
the implications for statistical mechanics. In the microcanonical ensemble,
the partition function in a three-dimensional system is defined as

������ �
�

�����

�
dp�dq�Æ ������ � � �� � (A.3.14)

where � is Planck’s constant and the delta-function restricts the integration
to the hypersurface in phase space defined by ����� � � �. We can re-
express this integral in terms of other phase-space coordinates, but then we
have to take into account that a volume element in the two coordinate sets
needs not be the same. The volume element associated with � is

d� � d�� � � �d��d�� � � �d��

and to �
d� � d	� � � �d	�d
� � � �d
��

These two volume elements are related via the Jacobian matrix of the trans-
formation matrix

d� � �Det�M�� d�� (A.3.15)

This equation shows that, in general, a coordinate transformation will result
in the appearance of a Jacobian in the partition function:

������ �
�

�����

�
dP�d � �Det�M�� Æ �� ��
�	� � �� � (A.3.16)

When computing ensemble averages in coordinate systems other than the
original Cartesian one, the Jacobian of the transformation may be different
from one, and should be taken into account. In what follows, we denote the
Jacobian �Det�M�� by the symbol �.

For a transformation that is canonical, i.e., obeys condition (A.3.13), the
absolute value of the Jacobian is one. To derive this result we take the deter-
minant on both sides of the symplectic condition (A.3.13)

Det�M�M̃� � Det���

Det��M�Det��� � Det����

This equation can only be true if the determinant of M is ��, which implies
that for a canonical transformation the absolute value of the Jacobian associ-
ated with this transformation must be one.

The natural time evolution in phase space of a classical system may be
considered as a coordinate transformation:

������ �����
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One important property of a Hamiltonian system is that the natural time
evolution corresponds to a symplectic coordinate transformation. We can
consider the transformation from ����� to ���� as a sequence of infinitesimal
transformations with time step Æ�. Suppose that we define the evolution of
the coordinates during the time interval Æ� as transformation of coordinates
from � to �:

� � ����

� ��� � Æ��

� ���� � �̇���Æ��

The Jacobian of this transformation is

M �

��

��

� 1� Æ�
�

��

�
�

��

��

�

� 1� Æ��
���

����
�

where �
���

����

�
��

�
���

������
�

Taking into account that � is an antisymmetric matrix, we can write for the
transpose of the matrix M:

M̃ � 1�
���

����
��

Substitution of this expression for the Jacobian into the symplectic condi-
tion (A.3.13) yields (to first order in Æ�)

M�M̃ �

�
1� Æ��

���

����

�
�

�
1 � Æ�

���

����
�

�

� � � Æ��
���

����
���Æ�

���

����
�

� ��

Hence the symplectic condition holds for the evolution of � during an in-
finitesimal time interval. As we can consider the evolution of � during a
finite interval, as a sequence of canonical transformations of infinitesimal
steps, the total time evolution also satisfies the symplectic condition.

One may view the Hamiltonian as the generator of a canonical transfor-
mation acting on all points in phase space. As the Jacobian of a canonical
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transformation is equal to �, the size of a volume element in phase space
does not change during the natural time evolution of a Hamiltonian system.
Moreover, the density ������� ����� around any point in phase space also re-
mains constant during the time evolution. To see this, consider a volume
� in phase space bounded by a surface �. During time evolution, the sur-
face moves and so do all points inside the surface. However, a point cannot
cross the surface. The reason is simple: if two trajectories in phase space
would cross, it would imply that there are two trajectories that start from
the same phase-space point. But this is impossible, as it would mean that a
trajectory starting from this point is not uniquely specified by its initial con-
ditions. Hence, the number of phase-space points inside any volume does
not change in time. As the volume itself is also constant, this implies that the
phase-space density (i.e., the number of points per unit volume) is constant.
In other words: the phase-space density of a Hamiltonian system behaves
like an incompressible fluid:

d�
d�

� �	 (A.3.17)

While the exact solution of Hamilton’s equations of motion will satisfy the
incompressibility condition, discrete, numerical schemes will—in general—
violate it. As before, we can consider any numerical MD algorithm (e.g.,
Verlet, velocity Verlet, . . . ) as a transformation from ������ ����� to ���� �


��� ��� � 
���. We can then compute the Jacobian of this transformation,
and check whether it is equal to � (see sections 4.3 and 4.3.3). For all “good”
algorithms to solve Newton’s equations of motion, the Jacobian of the trans-
formation from ������ ����� to �����
��� ����
��� is equal to �—such algo-
rithms are said to be “area preserving.” It should be noted that the symplec-
tic condition implies more than just the area-preserving properties. Unfor-
tunately, these other consequences do not have such a simple intuitive inter-
pretation. When we say that it is desirable that an algorithm be symplectic,
we mean more than that it should be area preserving—it should really satisfy
the symplectic condition. Fortunately, in many cases the symplectic nature
of an algorithm is easy to demonstrate by making use of the fact that any set
of classical Hamiltonian equations of motion satisfies the symplectic condi-
tion. An algorithm that can be written as a sequence of exact time evolutions
generated by simple Hamiltonians is therefore necessarily simplectic. An ex-
ample is the Verlet algorithm. As discussed in section 4.3.3, this algorithm
can be viewed as a sequence of exact propagations using either the kinetic
part of the Hamiltonian or the potential part. Either propagation satisfies the
symplectic condition. Hence the Verlet algorithm as a whole is symplectic.
For an accessible discussion of symplectic dynamics in general, see ref. [518].
A discussion of symplectic integrators for Molecular Dynamics simulations
can be found in ref. [519].
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Non-Hamiltonian Dynamics

The classical Newtonian equations of motion describe the time evolution of
a system of � particles in a volume �, at a total energy �. Often it is more
convenient to keep other thermodynamic variables constant, e.g., the tem-
perature � or the pressure �. This is easily achieved in a Monte Carlo simu-
lation, but it is more subtle in the case of Molecular Dynamics simulations.
One way to impose the condition of constant temperature (say) is to make
use of an extended Lagrangian, from which the equations of motion are then
derived (see Chapter 6). While the mechanical consequences of extending
the Lagrangian are straightforward, the effects on the statistical mechanics
of the system are less obvious. The reason is that, in general, these extended
Lagrangians cannot be transformed into a Hamiltonian form. This implies
that we cannot make a connection to statistical mechanics using the meth-
ods introduced in Appendix A.3.3. A systematic procedure for extending the
techniques of classical statistical mechanics to non-Hamiltonian systems was
proposed by Tuckerman et al. [137, 520]. In the present Appendix we sketch
the general approach for analyzing extended Lagrangian systems. We will,
however, skip most of the derivations. For a more complete and more rigor-
ous derivation, using the mathematical techniques of differential geometry,
the reader is referred to [135].

B.1 Theoretical Background

In general, the dynamics that results from solving non-Hamiltonian equa-
tions of motion is not area preserving. As we have seen in Appendix A.3.3,
solving the equations of motion can be considered as a coordinate transfor-
mation. If the system is Hamiltonian, any volume element in phase space
that is thus transformed may change its shape, but not its volume. In con-
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trast, for a non-Hamiltonian system, we have to take into account the Jaco-
bian of the transformation associated with the evolution of �, ����� � ��,
viz. equation (A.3.15),

d�� � J�������d���

where the subscript � indicates the phase-space volume at � � � and J is the
determinant of the Jacobian matrix M of the transformation.

The motion in phase space of a Hamiltonian system is similar to that of an
incompressible liquid: in time the volume of this “liquid” does not change.
In contrast, a non-Hamiltonian system is compressible. This compressibil-
ity must be taken into account when considering the generalization of the
Liouville theorem to non-Hamiltonian systems.

The compressibility can be derived from the time dependence of the Ja-
cobian

dJ�������
d�

� ����� ��J������� (B.1.1)

in which ����� ��, the phase space compressibility of the dynamical system, is
defined:

����� �� ��� � �̇� (B.1.2)

Equation (B.1.1) has as formal solution

J������� � exp
���

�

����� ��d�
�
�

If we define ����� �� as the primitive function of ����� ��, then we can write

J������� � exp ������ �� ������ ���

�
�

����� ���
����� ��

�

where the last line defines the quantity
�
�. Recall that

d�� � J�������d��

�

�
����� ���
����� ��

d���

Hence, �
����� ��d�� �

�
����� ��d���

which defines an invariant measure in phase space. This result can be used
to derive the new form of the Liouville equation for non-Hamiltonian sys-
tems. The important point here is that the phase-space distribution, ����, the
function in which we are interested in, which gives the probability density
in phase space, should be kept separate from the phase-space metric,

�
�,
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which ensures that the volume of phase space of a non-Hamiltonian system
is invariant under time evolution,

��
�
�

��
�� � �����̇� � �� (B.1.3)

The expression corresponding to an ensemble average is

��� �
�

d�
�
������������

�
d�
�
��������

� (B.1.4)

Assuming that there are	� conservation laws,
���
�� � �� for � � � � � � � 	 �,

the partition function of the non-Hamiltonian system is given by

����� � � � � ��� �

�
d� �

�
��� ��

���
���

Æ �
���
�� � ��� � (B.1.5)

In many applications, one obtains the correct (��� or ���) partition func-
tion from the above “microcanonical” partition function, by carrying out the
integration over the unphysical variables that have been introduced to rep-
resent the effect of a thermostat or barostat. In order to do this properly, it is
essential to identify all conservation laws. Moreover, it is useful to eliminate
from the analysis all those coordinates that are linearly dependent on other
variables and variables that are ”driven.” Variables are called ”driven” when
they do not influence the time evolution of (and are not coupled through
a conservation law) the physical variables of interest in the system, even
though their own time evolution may depend on these last variables.

B.2 Non-Hamiltonian Simulation of the� � �En-
semble

We now apply the methods of non-Hamiltonian dynamics to analyze the
Nosé-Hoover algorithm and the Nosé-Hoover chains that have been dis-
cussed in sections 6.1.2 and 6.1.3. Our discussion of these algorithms is only
intended as an illustration that there exist systematic techniques for predict-
ing the phase-space density generated by a particular non-Hamiltonian dy-
namics scheme. Such an analysis is essential when one is considering the
use of thermostats or barostats in MD simulations. While we show a few
simple examples, we refer the reader to ref. [135] for a more comprehensive
discussion.
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B.2.1 The Nose-Hoover Algorithm

In section 6.1.2 we showed that the Nosé-Hoover algorithm generates non-
Hamiltonian dynamics. The Nosé-Hoover equations can be written as

ṙ� � p����

ṗ� � F� �
��

�
p�

�̇ � ����

�̇� �
�

�

p�� ��� � �����

where � is a parameter that has to be determined to generate the canonical
distribution.

To analyze the dynamics of this system, we have to determine the con-
servation laws and the nondriven variables. Let us consider first the case
in which we assume that we only have conservation of energy, viz. equa-
tion (6.1.6)

	Nose �

��

���

p��

��

� ��r�� �
���

�

� �����

� ��r�p� � ���


�
� ������ ���

where ��r�p� is the physical Hamiltonian. If we use � � �r��p�� �� � ��, the
phase-space compressibility of this system can be written as

���� � �� � �̇
�
�

�

�r� � ṙ� �
�

�

�p� � ṗ� ��� � �̇���� � �̇�

�
�

�

�p� � ṗ�

� ������ � ���̇�

Hence, it follows that the metric
�
� is given by

�
� � exp

�
�

�
�d�

�
� exp�����

Substitution of this metric in the expression for the partition function gives:

������ ���� �

�
d�p

�
d�r

�
d��

�
d�

� exp����Æ

�
��r�p� � ���


�
� ������ ��

�
�
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In this expression the integration over � and �� can be performed analyti-
cally. Because of the Æ-function, integration over � gives as condition

� �
�

����

�
�� ���r�p� �

���

	


�
�

Substitution of this condition in the partition function gives

����� ���� �
�

����

�
d�p

�
d�r

�
d��

� exp

�
�

����

�
�� ���r�p� �

���
	


��

�
exp ����������

����

�
d�� exp

�
������	
�

�
�

�
d�p

�
d�r exp ������r�p����

� 
��� � ���

where the last equality only holds provided that we choose � equal to �.
The integration over �� yields a constant prefactor that has no physical im-
portance. In section 6.1.2, we derived a similar result for the Nosé equa-
tions in terms of its real variables. The present demonstration that the Nosé-
Hoover equations lead to a canonical distribution is completely different
from Nosé’s original argument; yet the end result is the same. Note, how-
ever, that we have assumed that there is only a single conservation law, viz.
conservation of �Nose. In general, there will be more conserved quantities.
For instance, if we consider a system in the absence of external forces, then
the total linear momentum is also conserved. This will affect the phase-space
distribution. In the Nosé-Hoover dynamics, conservation of total momen-
tum reads

dPe�

d�
� e�

�
Ṗ � P�̇

�
� e�

�
Ṗ � P

��




�

� e�
��

�

�
F� �

��



p�

�
� P

��




�

� ��

and hence
Pe� � K� (B.2.1)

where P �
�

�
p� is the center-of-mass momentum of the system and K is an

arbitrary constant vector.
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To continue the analysis, we should eliminate the driven variables from
our system. The center-of-mass position, R, and momentum, P, have no
influence on the other variables. We can eliminate these by considering the
positions and momenta relative to the center of mass of the system, r � and p �,
respectively. Note, however, that the magnitude of the center-of-mass mo-
mentum is coupled to the other variables through a conservation law and
cannot be eliminated from the analysis. The components of the center-of-
mass momentum P are linearly dependent.1 Therefore of the � components
only one component can be chosen independently, or we can take as inde-
pendent variable � �

��
� �

�
�

����.
We now have to perform a transformation of our systems to the variables

�p ��P� r ��R�; the resulting equations of motion are

ṙ �

� � p �

���
�

�

ṗ �

� � F �

� �
��

�
p �

�

�̇� � �
��

�
��

�̇ �
��

�

�̇� �

����

�

p ��

�

� �

�

�
��

�
� 	�
��

The equations of motion have two2 conservation laws:

��p �� r �� �� �
���

�
� ���
� � ��

� exp��� � ���

In the first conservation law we have used

��r ��p �� �� �

����

���

p ��

�

� �

�

�
��

�
� �

�
r ��

�
� ��r�p��

To compute the partition function, we have to determine the metric from the
1To see this, consider the components of equation (B.2.1):

��

��
�

��

��
�

��

��
� e��

which shows that only one of the components is independent.
2Because we have replaced the � center-of-mass momenta components by a single variable

� only one conservation law for the momenta is left.
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compressibility:

� �

����

�

�r �

�
� ṙ �

� �

����

�

�p �

�
� ṗ �

� ��� � �̇��� � �̇���� � �̇�

� � ���� � �� � �� �̇	

From which the metric follows directly:

�

 � exp ������ �� � �� �� 	

The partition function � contains two Æ-functions that express the two con-
servation laws:

������ ��� �� �

�
d���p �

�
d���r �

�
d�

�
d��

�
d�

� exp ����� � �� � �� �� Æ

�
��r ��p �� �� �

���
��

� ������ �

�
Æ
�
e�� � �

�
	

The second Æ-function imposes that

� � ln�����	

Hence, integrating over � yields

������ ��� �� �
�

�

�
d���p �

�
d���r �

�
d�

�
d��

�
�
�

�

�	�������
Æ

�
��r ��p �� �� �

���

��
� ���� ln����� � �

�
	

The remaining Æ-function fixes ��:

�� � ��� �� ���r ��p �� �� � ���� ln�������
� �
� 	

Integration over �� then results in the following expression for �:

������ ��� �� �

�
��

�

�
d���p �

�
d���r �

�
�

d�
�
�

�

�	�������
�� ���r ��p �� �� � ���� ln������

� �
� 	

Note that this is not the partition function for a canonical ensemble. This
problem was first pointed out by Cho et al. [521]. Only in the case that � �
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� can the conventional Nosé-Hoover generate a canonical distribution. If
�� � � the partition function reads

������ ���� �� �

�
d���p �

�
d���r �

�
d�

�
d��

�
d�

� exp ��	�� � 
� � 
� �� Æ

�
��r ��p �� �� �

���

��
� ����� ��

�
Æ
�
e��� �

�
�

The Æ-function imposes that � � �. Integration over � then yields

������ ���� �� �

�
d���p �

�
d���r �

�
d��

�
d�

� exp ��	�� � 
� � 
� �� exp����

�Æ

�
��r ��p �� �

���
��

� ����� ��

�
�

The other Æ-function fixes �

� � �
�



�
��r ��p �� �

���

��
� ��

�
�

and we finally obtain

������ ���� �� �
exp ��	�� � 
�����

���

�

�
d�� exp

�
��	�� � 
���������

�
�

�
d���p �

�
d���r � exp

�
��

	��� 
�


��r ��p ��

	

�

�
d���p �

�
d���r � exp

�
��

	�� � 
�


��r ��p ��

	
�

Clearly, if we choose  � 	��� 
�, then the correct canonical partition func-
tion is recovered. In practice, most conventional Nosé-Hoover simulations
are performed with a fixed center of mass and therefore obey the condition
� � �.

B.2.2 Nose-Hoover Chains

The calculation in the previous section shows that in the case of more than
one conservation law, the Nosé-Hoover algorithm does not give us enough
“flexibility” to deal with more than one Æ-function in the partition function.
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To recover the canonical partition function one needs more that one thermo-
stat. This is exactly what the Nosé-Hoover chains algorithm of Martyna et
al. [136] is able to do. For � chains the Nosé-Hoover chains equations of
motion are given by (see also section 6.1.3)

ṙ� �

p�

��

ṗ� � F� �
���
��

p�

�̇� �
���
��

� � �	 
 
 
 	�

�̇�� �

�
�

�

p��
��

� ����

�
�
���
��

���

�̇�� �

�
������
����

� ���

�
�
�����
����

���

�̇�� �

�
������
����

� ���

�



For these equations of motion the conserved energy is

�N�� � ��r	p� �
��

���

����
��

� �������

��

���

�����
 (B.2.2)

Of these � chains only �� and the thermostat center, �	 �
��

���
��, are

independently coupled to the dynamics. The remaining chain variables are
driven. Therefore the � chains add only two additional degrees of freedom
to the system.

Let us now analyze this method with a chain of two thermostats, � � 

and (�	 � ��), for a system without external forces,
�
�

F� � 0. In the pre-
vious section we have shown that the conservation laws are the total energy
and one variable of the total momentum:

��r �	p �	 �� �
����
��

�
����
�	

� ������� ����	 � ��

� exp ���� � ��	

in which we have again introduced a coordinate system with respect to
the position and momentum of the center of mass �r �	p �� and the indepen-
dent variable of the total center-of-mass momentum �. For the Hamiltonian
��r �	p �	 ��, we have

��r �	p �	 �� �


���

���

p ��

�

� �

�

�
��

�
� �

�
r �


�
� ��r	p�
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The next step is to determine the compressibility

� �

����

�

�r �
�

� ṙ �

� �

����

�

�p �

�
� ṗ �

� ��� � �̇ ���� � �̇� �����
� �̇��

� � � ��� � ��
���
��

�
���
��

� � �
���
��

� �� ��� �� ���̇� � �̇�	

from which the following metric can be derived:

�

 � exp ����� �� ���� � ��� �

To derive the corresponding partition function this metric and the conser-
vation laws have to be substituted in the general expression for the partition
function (B.1.5):

����	 	��	 ��� �

�
d���p �

�
d���r �

�
d�

�
d���

�
d��

�
d���

�
d��

� exp ����� �� ���� � ��� Æ
�
e��� � ��

�
�Æ

�
��r �	p �	 �� �

����
���

�
����
���

� ��	���� �	���� ��

�
�

To obtain the physical important part, we have to integrate over �� and ��.
The Æ-function in the integration over �� gives as condition

�� � ln�������

Substitution of this expression into the partition function gives

����	 	��	 ��� �
�
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�
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�
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�
d���

�
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�
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�
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�
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�
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�
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�
�

The second Æ-function gives as condition for ��

�� � ��

�
��r �	p �	 �� �

����
���

�
����
���

� ��	� ln������ � ��
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which gives for the partition function

������ ���� ��� �
exp��������

	����

�
d���p �

�
d���r �

�
d�

�
d
��

�
d
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�
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d���p �

�
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�

�
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�����������
�

The integration over 
�� and 
�� only changes the prefactor. Since � is the
modulus of the center-of-mass momentum vector, it is a polar coordinate.
The integration over polar coordinates requires ����. With the choice � �

��, the correct partition function is recovered.

B.3 The � � � Ensemble

For the �,�,� ensemble the equations of motion are (see also section 6.2)

ṙ	 �
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To analyze the dynamics of this system we have to consider two cases. The
case in which the sum of the forces is zero,

�
�

F� � 0, implies that we have
additional conservation forces. The second case,

�
�

F� �� 0, has only one
conserved quantity; conservation of “energy”:

� ���� � ��p� r��
���
�

�

��
���

����
��

�������	�
���	�
����ext��� � ��

where �� is defined as the center of the thermostat

�� �

��
���

���

We first consider the case
�

� F� �� 0. To analyze its dynamics we have to
compute the compressibility. The independent variables are3 � � p	� r	� ���
��� ��� � ��� � � ��:

� � � � � � �� �� � ��
���
��

�
���
��

�

which gives as phase-space metric
�
� � exp���� � ���� � ����

We can now write for the partition function

�
��ext���� �� �

�
d
�

d	p
�

d	r
�

d���

�
d��

�
�

d���

�
d��
�

d�� exp ���� � ���� � ��� Æ ��
� � ��� �

The delta function gives as condition for ��

�� �
�

��� � ����


�
�� ���p� r� �

���
�

�

��
���

����
��

� 	�
��� �ext

�
�

Substitution of this expression into the partition function gives

�
��ext���� �� �
exp �����

���� ����


�
d
�

d	p
�

d	r
�

d���

�
d��

�
�

d���

�
d��
�

d��

� exp

�
��

�
��p� r� �

���
�

�

��
���

����
��

� �ext

��

�
�

d exp ����ext�

�
d	p

�
d	r exp �����p� r�� �

3A Nosé-Hoover chain of length� has two independent variables, we use �� and ��.
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The integration over �� gives a constant, which can be infinite but has no
physical importance. This demonstrates that the desired distribution is gen-
erated.

At this point we would like to emphasize that the original Nosé-Hoover
algorithm does not generate this distribution. The reason is that the metric
for this algorithm generates an additional ��� term in the partition function.
With the algorithm of Martyna et al. this term is removed. This point is
explained in detail in ref. [135].

For the case
�

�
F� � 0, we have as additional conservation laws for the

total momentum P
P exp ��� � ���� �� ��� � K�

Similar to the �,�,� ensemble the components of � are linearly dependent
and the center-of-mass coordinates have to be eliminated from the analysis.
This results in a set of equations of motion in coordinates relative to the
center of mass. The details of this proof can be found in ref. [135]. Similar to
the �,�,� ensemble, if we use K � 0, we generate an ��� ���� ensemble.
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Appendix C

Linear Response Theory

The Green-Kubo relations presented in section 4.4 are but an example of the
relation between transport phenomena and time-correlation functions. In
fact, Onsager was the first to suggest that a disturbance created in a system
by a weak external perturbation decays in the same way as a spontaneous
fluctuation in equilibrium. The theory that provides this link between corre-
lation functions and response to weak perturbations is called linear response
theory. In this Appendix, we shall give a very simple introduction to linear
response theory, mainly to illustrate the “mechanical” basis of Onsager’s re-
gression hypothesis. For a more detailed discussion, the reader is referred
to any modern textbook on statistical mechanics, such as [44]. A simple in-
troduction (very similar to the one presented here) is given in the book by
Chandler [187], while an extensive discussion of linear response theory in
the context of the theory of liquids is given in [79].

C.1 Static Response

First, we consider the static response of a system to a weak applied field.
The field could be an electric field, for instance, and the response might be
the electric current or, for a nonconducting material, the electric polarization.
Suppose that we are interested in the response of a property that can be ex-
pressed as the ensemble average of a dynamical variable �. In the presence
of an external perturbation, the average of � changes from its equilibrium
value ���

�
to ���

�
� ����. Next, we must specify the perturbation. We

assume that the perturbation also can be written as an explicit function of
the coordinates (and, possibly, momenta) of the particles in the system. The
effect of the perturbation is to change the Hamiltonian �� of the system, to
�� � ���p��q��. For instance, in the case of an electric field along the �
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direction, the change in � would be �� � ������q��, where �� is the
� component of the total dipole moment of the system. The electric field ��
corresponds to the parameter �. We can immediately write down the general
expression for ����:

���� � ���� �

�
d� exp������ � �����
�

d� exp������ � ����
	

where we have used the symbol � to denote
�

p�	q�
�

, the phase-space co-
ordinates of the system. Let us now compute the part of ���� that varies
linearly with �. To this end, we compute

�

 ����


�

�
���

�

Straightforward differentiation shows that
�

 ����


�

�
���

� � ������ � ���� ����� � (C.1.1)

To take again the example of the electric polarization, let us compute the
change in dipole moment of a system due to an applied field ��:

����� � ��

�

��


��

�
����

� ���

��
��

�

�
� ����

�
�
�

Suppose that we wish to compute the electric susceptibility of an ideal gas
of nonpolarizable dipolar molecules with dipole moment �. In that case,

��
��

�

�
� ����

�
�

�

��
����	

�
����

�
�

�

� 
�
�����

�
�

�
��

�
	

and hence,

�� �
��

�
�

���

��
�
���

Of course, this example is special because it can be evaluated exactly. But,
in general, we can compute the expression (C.1.1) only for the susceptibil-
ity, numerically. It should also be noted that, actually, the computation of
the dielectric susceptibility is quite a bit more subtle than suggested in the
preceding example (see, e.g., the discussion in the book of Allen and Tildes-
ley [19] and the article by McDonald in [39]).
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C.2 Dynamic Response

Thus far, we considered only the static response to a constant perturbation.
Let us now consider a very simple time-dependent perturbation. We begin
by preparing the system in the presence of a very weak, constant pertur-
bation (��). The static response of � to this perturbation is given by equa-
tion (C.1.1). At time � � �, we discontinuously switch off the external per-
turbation. The response �� will now decay to 0. We can write an expression
for the average of �� at time �:

������� �

�
d� exp������ � ��������
�

d� exp������ � ����
�

where ���� is the value of � at time � if the system started at point � in
phase space and then evolved according to the natural time evolution of the
unperturbed system. For convenience, we have assumed that the average of
� in the unperturbed system vanishes. In the limit �� �, we can write

������� � ��

�
d� exp������������

d� exp������

� �� ���������� 	 (C.2.1)

To give a specific example, consider once again a gas of dipolar molecules in
the presence of a weak electric field 
�. The perturbation is equal to �
���.
At time � � �, we switch off the electric field. When the field was still on, the
system had a net dipole moment. When the field is switched off, this dipole
moment decays:

������� � 
�� ������������ 	

In words, the decay of the macroscopic dipole moment of the system is de-
termined by the dipole correlation function, which describes the decay of
spontaneous fluctuations of the dipole moment in equilibrium. This rela-
tion between the decay of the response to an external perturbation and the
decay of fluctuations in equilibrium is an example of Onsager’s regression
hypothesis.

It might seem that the preceding example of a constant perturbation that
is suddenly switched off is of little practical use, because we are interested
in the effect of an arbitrary time-dependent perturbation. Fortunately, in the
linear regime that we are considering, the relation given by equation (C.2.1)
is enough to derive the general response.

To see this, let us consider a time-dependent external field ���� that cou-
ples to a mechanical property �; that is,

���� � �� � �����	
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To linear order in ����, the most general form of the response of a mechanical
property � to this perturbation is

������� �

�
�

��

d� ��������
����� ��� (C.2.2)

where ���, the “after-effect” function, describes the linear response. We
know several things about the response of the system that allow us to sim-
plify equation (C.2.2). First of all, the response must be causal; that is, there
can be no response before the perturbation is applied. As a consequence,

�������
�� � � for � � � �.

Second, the response at time � to a perturbation at time � � depends only on
the time difference �� � �. Hence,

������� �

��
��

d� ������ � � ����� ��� (C.2.3)

Note that, once we know �, we can compute the linear response of the sys-
tem to an arbitrary time-dependent perturbing field ��� ��. To find an ex-
pression for ���, let us consider the situation described in equation (C.2.1),
namely, an external perturbation that has a constant value 	 until � � � and
0 from then on. From equation (C.2.3), it follows that the response to such a
perturbation is

������� � 	

��
��

d� ������� � ��

� 	

�
�

�

d
 ����
�� (C.2.4)

If we compare this expression with the result of equation (C.2.1), we see
immediately that �

�

�

d
 ����
� � �	 ����������

or

������ �

�
��

�
�����̇���

�
for �  �

� for � � ��
(C.2.5)

To give a specific example, consider the mobility of a molecule in an external
field ��. The Hamiltonian in the presence of this field is

� � �� � ����
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The phenomenological expression for the steady-state velocity of a molecule
in an external field is

������� � ���� (C.2.6)

If we derive this relation in terms of correlation functions, we shall find a
microscopic expression for the mobility �. From equations (C.2.3) through
(C.2.5), we have

������� � ��

��
��

d� �������� � ��

� ��

�
�

�

d��������

� ����

�
�

�

d� ���	��̇�����

� ����

�
�

�

d� ����	������� � (C.2.7)

In the last line of equation (C.2.7), we used the stationarity property of time-
correlation functions:





�
��������� � ��� � 	�

Carrying out the differentiation, we find that
�
�̇������ � � ��

�
� �

�
�����̇��� � ��

�
�

Combining equations (C.2.6) and (C.2.7), we find that

� � �

�
�

�

d� ����	������� � (C.2.8)

If we compare this result with the Green-Kubo relation for the self-diffusion
coefficient (4.4.11), we recover the Einstein relation, � � �.

C.3 Dissipation

Many experimental techniques probe the dynamics of a many-body system
by measuring the absorption of some externally applied field (e.g., visible
light, infrared radiation, microwave radiation). Linear response theory al-
lows us to establish a simple relation between the absorption spectrum and
the Fourier transform of a time-correlation function. To see this, let us again
consider an external field that is coupled to a dynamical variable ��p��q��.
The time-dependent Hamiltonian of the system is

���� � �� � ������p��q���
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Note that the only quantity explicitly time dependent is ����. As the Hamil-
tonian depends on time, the total energy � of the system also changes with
time:

���� � ������ �

Let us compute the average rate of change of the energy of the system. This
is the amount of energy absorbed (or emitted) by the system, per unit of
time:

��

��
�

�
d�
d�

�
(C.3.1)

�

�
�

�

�
q̇�

��

�q�

� ṗ�

��

�p�

�
�

��

��

�
�

But, from Hamilton’s equations of motion, we have

q̇� �
��

�p�

and
ṗ� � �

��

�q�

�

As a consequence, equation (C.3.1) simplifies to

��

��
�

�
��

��

�
� �

�
�̇�����p��q��

�
� ��̇��� ������ � (C.3.2)

Note, however, that ������ itself is the response to the applied field �:

������ �

�
�

��

d� � ������ � ����� ���

Let us now consider the situation where ���� is a periodic field with fre-
quency � (e.g., monochromatic light). In that case, we can write ���� as

���� � Re ��	i��

and
�̇��� �

i�



�
��ei�� � ��

�
e�i��	 �

The average rate of energy dissipation is

��

��
� ��̇��� ������ (C.3.3)

� ��̇���

�
�

��

d� � ������ � ����� ���
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For a periodic field, we have
�
�

��

d� � ������ � ����� �� �
��ei��

�

�
�

��

d� � ������ � ��ei��� ����

�
���e�i��

�

�
�

��

d� � ������ � ��e�i��� ����

� �
�
��ei�������� � ���e�i���������

�
�

(C.3.4)

where

������ �
�

��

�
�

�

d� ������e�i���

To compute 	̇, the rate of change of the energy, we must average �
��
��
over one period, � (� ����), of the field:

	̇ �
��

��

��
�

d�
�

i����ei�� � ���e�i���

�
�
��ei�������� � ���e�i���������

��

� ��� ����
� ������ � �������

�

� ��� ����
� Im �������� � (C.3.5)

We use the relation between ������ and the autocorrelation function (C.2.5)
of �:

������ �
�

��

�
�

�

d� e�i�� ���
�
�����̇���

��
�

The imaginary part of ������ is given by

Im �������� �
�

��

�
�

�

d� sin����
�
�����̇���

�

� �
�

��

�
�

��

d� � cos���� ���������� � (C.3.6)

Finally, we obtain

	̇ � �����
���

�

�
�

��

d� cos���� ���������� � (C.3.7)

Hence, from knowledge of the autocorrelation function of the quantity that
couples with the applied field, we can compute the shape of the absorp-
tion spectrum. This relation was derived assuming classical dynamics and
therefore is valid only if �̄�� ���. However, it is also possible to derive a
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quantum-mechanical version of linear response theory that is valid for arbi-
trary frequencies (see, e.g., [44]).

To give a specific example, let us compute the shape of the absorption
spectrum of a dilute gas of polar molecules. In that case, the relevant corre-
lation function is the dipole autocorrelation function:

������������ �
�

�
����� � ����� �

For molecules that rotate almost freely (almost, otherwise there would be no
dissipation), ���� ����� depends on time, because each molecule rotates. For
a molecule with a rotation frequency �, we have

���� � ���� � �� cos�����

and for an assembly of molecules with a thermal distribution of rotational
velocities 	���, we have

����� � ����� � ��
�

d�	��� cos�����

The rate of absorption of radiation is then given by


̇ �
�������

�
	��� ����

�
� (C.3.8)

For more details about the relation between spectroscopic properties and
time correlation functions, the reader is referred to the article by Madden
in [39].

In the preceding derivation of linear response theory, we assumed that
we prepare the system in an equilibrium state with the perturbation on and
then allow the system to relax to a new equilibrium state with the perturba-
tion off. However, this will not always work. Consider, for instance, electri-
cal conductivity. In that case, the perturbation is an electrical field that will
cause a current to flow in the system. Hence, the state in which we prepared
the system with the field on is not an equilibrium state but a steady nonequi-
librium state. The same holds, for instance, for a system under steady shear.
It would seem that, in such circumstances, one cannot use the framework
of linear response theory in its simplest form to derive transport coefficients
such as the electrical conductivity � or the viscosity �.

C.3.1 Electrical Conductivity

Fortunately, things are not quite as bad as that. Consider, for example, elec-
trical conductivity. Indeed, if we put a conducting system in an external
field, we will generate a nonequilibrium steady state. However, what we
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can do is to perturb the system by switching on a weak, uniform vector po-
tential A. The Hamiltonian of the system with the vector potential switched
on is

�
�
�

��

���

�

���

�
p� �

��

�
A
��

� �pot� (C.3.9)

The system described by this Hamiltonian satisfies the same equations of
motion as the unperturbed system (A is a gauge field) and the system will
be in an equilibrium state at � � �. We then abruptly switch off the vector
potential. From electrodynamics, we know that a time-dependent vector
potential generates an electric field:

E � �
�

�
Ȧ� (C.3.10)

In the present case, the electrical field will be an infinitesimal Æ spike at � � �:

E��� �
�

�
AÆ���� (C.3.11)

We can compute the current that results in the standard way. We note that
we can write � � in equation (C.3.9) as

� � � �� �

��

���

��

���

p� � A ������

� �� �
A
�

�
	r

��
���

��

��

p�Æ�r� � r�

� �� �
A
�

�
	r j�r�
 (C.3.12)

where j�r� denotes the current density at point r. The average current density
at time � due to the perturbation is given by

�j���� �
A

����

�
	r	r � �j�r
 ��j�r �
 ��� � (C.3.13)

The phenomenological expression for the current response to an applied Æ-
function electric field spike is (see equation (C.2.3))

�j���� �

��
��

d� ���� � � ����� ��

� ����
�

�
� (C.3.14)
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From this it immediately follows that

���� �
�

����

�
�r�r � �j�r� ��j�r �� ��� 	 (C.3.15)

The dc conductivity is then given by

��
 � �� �
�

����

�
�

�

��

�
�r�r � �j�r� ��j�r �� ��� 	 (C.3.16)

C.3.2 Viscosity

The corresponding linear response expression for the viscosity seems more
subtle because shear usually is not interpreted in terms of an external field
acting on all molecules. Still, we can use, by analogy to the electrical conduc-
tivity case, a canonical transformation, the time derivative that corresponds
to uniform shear. To achieve this, we consider a system of � particles with
coordinates r� and Hamiltonian

�� �

��
���

��� ����� � ��r��	 (C.3.17)

Now consider another system described by a set of coordinates r �� related
to r� by a linear transformation:

r �

� � hr�	 (C.3.18)

The Hamiltonian for the new system can be written as

�� �

��
���

�

���

p �

� � G�� � p �

� � ��r ���� (C.3.19)

where G, the metric tensor, is defined as

G � h� � h	 (C.3.20)

We assume that h differs infinitesimally from the unit matrix I:

h � I� �	 (C.3.21)

In the case that we are interested in the effect of uniform shear, for instance,
we could choose ��� � �, while all other elements of �	
 are 0. Now con-
sider the case that we equilibrate the system with Hamiltonian ��, and at
time � � �, we switch off the infinitesimal deformation �. This means that,
at � � �, the system experiences a Æ-function spike in the shear rate

���

��
� ��Æ���	 (C.3.22)
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We can compute the time-dependent response of the shear stress, ������, to
the sudden change from�� to��:

�������� � ��
�

����
�������������� � (C.3.23)

By combining equations (C.3.22) and (C.3.23) with equation (C.2.3), we im-
mediately see that the steady-state stress that results from a steady shear is
given by

��� �
	
�

	�
�

�

����

�
�

�

�� ��������������  (C.3.24)

and the resulting expression for the shear viscosity � is

� �
�

����

�
�

�

�� �������������� � (C.3.25)

C.4 Elastic Constants

A liquid flows under the influence of shear forces. A solid does not. Rather,
any small deformation of a solid induces an elastic response (stress) that
counteracts it. This elastic stress is proportional to the applied deformation
(strain). The constants of proportionality between stress and strain (to be
defined more precisely below) are called the elastic constants. Below we dis-
cuss how to measure these constants by computer simulation. For the sake
of simplicity, we limit the discussion to crystals on isotropic (hydrostatic)
pressure.

When considering the effect of the strain on the free energy of a solid, it is
essential to introduce the so-called Lagrangian strain tensor (see, e.g., [105]).
The reason is that, on a local scale, all changes in free energy are due to
changes in the distances between the particles that make up the solid. And
the quantity that measures this change is precisely the Lagrangian strain.
We start with the relation between new and old coordinates due to an elastic
deformation:

r� � �� � ��r (C.4.1)

where

��� �
	��

	��
(C.4.2)

is the (conventional) strain tensor. It measures the variation of the displace-
ment field u with the original coordinate r. Due to the strain, the distance
��� separating two points � and � in the solid is changed. The new squared
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distance is then related to the old distance by

���

�� � r��
�
� � ��

�
�� � �� r��

� r���� � �� � �� �������

� r���� � ���r���

This defines the Lagrangian strain �. The new volume �� of the system is
related to the original volume �� by

�� � ��det�� � �� (C.4.3)

or
� � � ��

�
det�� � ���� (C.4.4)

We now expand the Helmholtz free-energy (�) per unit of (undeformed) vol-
ume (�) in powers of the Lagrangian strain parameters �:

������ � ���
�
��	� �


�


���
��� �

�

�


��


���
��Æ
�����Æ � � � �

�

� �����	� � �
���

�� ��� �
�

�
�
���

���Æ �����Æ � � � � � (C.4.5)

This equation defines the (second-order) elastic constants ����

���Æ. To com-
pute the elastic constants numerically, we need a microscopic expression for
the �-dependence of �. To derive such a relation, we must consider in de-
tail what a deformation of the system does to the partition function. Let us
first consider the deformed system. The partition function of this system
(ignoring constants, such as ��	
) is equal to

��� �

�
�p
�r
 exp

�
���

�
p
� r


��
� (C.4.6)

This partition function depends on the deformation through the boundary
conditions of the integral over the coordinates. This is not very convenient
when computing derivatives with respect to the strain. Therefore, we first
express the partition function of the deformed system in terms of coordi-
nates and momenta of the original, undeformed system. We can express the
coordinates (r�) and velocities (r�) in this system in terms of the strain tensor
h � �� � ��, and the original coordinates (r���) and velocities (r���):

r� � hr���
r� � hṙ��� (C.4.7)

The kinetic energy, � �
�

��r�� , can be written as

� �
� �

�
��r��

�
� �

�
��r����hTh�r��� �

� �

�
��r��� �G � ṙ���� (C.4.8)
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where hT
� �� � �

T� is the transverse of h and G � hTh is the metric tensor.
From the definition of h it follows that G � �� � ���. We can now write
down the generalized momentum p��� conjugate to the coordinate r��� (see
section A):

����� �

�
��

��̇����

�
� ������̇

�
��� (C.4.9)

and hence

� �
� �

�
��r��� � G � ṙ���
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p��� �G���p���

�
� �

���

p��� � �� � ������p���� (C.4.10)

As

p� � ��r� ���h�̇��� � �hT���p���
r� � hr���� (C.4.11)

the Jacobian of the transformation between �p�� r�� and �p�� � r
�
� � is equal to

�. Hence, we can write

	��� �

�
dp�dr� exp

�
�
�

�
p�� r�

��
(C.4.12)
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Now the dependence of 	��� on � is only contained in the Hamiltonian. We
can now explicitly carry out the differentiation with respect to �. Using
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(C.4.13)

and
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(C.4.14)
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we obtain
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From this it follows immediately that
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(C.4.16)
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where

��Æ � �
�
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�
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������Æ
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���

������Æ

�
� (C.4.17)

denotes the microscopic stress in the deformed system. Note that � can be
measured in a simulation, while � is fixed by the applied strain. For an
undeformed system ���� is simply equal to ��, where � is the hydrostatic
pressure. From equation (C.4.16), it also follows that the constant of propor-
tionality between the stress ��� and the linear strain ��	 is given by�

����

���Æ

�
� ���ÆÆ�� � ��ÆÆ�� � ���Æ�Æ� � �

�
�

���Æ� (C.4.18)

To determine the second-order elastic constants, ��
�

���Æ, we must determine

the initial linear dependence of ����

�� on ��Æ. This technique for measur-
ing the elastic constants is simple and also quite accurate (see, e.g., [522]).
However, several computations are needed to measure the different elastic
constants. The lower the symmetry of the crystal, the more calculations are
needed. This can be avoided by directly considering the microscopic expres-
sion for the ��
�

���Æ. Such an expression was derived by Squire et al. [523]:

�
�
�

���Æ � �
�

����
����� ���Æ� � 	�����Æ��Æ�Æ � Æ�ÆÆ���

��
�

������

�
�
�

��
����


�

�������������Æ

�
� (C.4.19)

Using equation (C.4.19), it takes only a single simulation to measure all elas-
tic constants. Unfortunately, the statistical errors in the evaluation of this
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fluctuation expression are usually larger than those obtained when comput-
ing equation (C.4.16). The problems with statistics appear even worse in
constant-stress MD simulations on the same system, where the elastic com-
pliances (rather than the moduli) are determined from fluctuations in the
box shape [524]. Equation (C.4.19) can only be used if the intermolecular
potentials are everywhere continuous. However, a fluctuation expression
that works for hard-core systems has been developed by Farago and Kan-
tor [525]. More details about the numerical evaluation of elastic constants
can be found in [523], [286], [525], and [526], while the general framework
of elastic properties at finite temperature is discussed in [105].
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Appendix D

Statistical Errors

It is often stated that a computer simulation generates “exact” data for a
given model. However, this is true only if we can perform an infinitely
long simulation. In practice we have neither the budget nor the patience
to approximate such a simulation. Therefore, the results of a simulation will
always be subjected to statistical errors, which have to be estimated.

D.1 Static Properties: System Si e

Let us consider the statistical accuracy of the measurement of a dynam-
ical quantity � in a Molecular Dynamics simulation (the present discus-
sion applies, with minor modifications, to Monte Carlo simulations). Dur-
ing a simulation of total length �, we obtain the following estimate for the
equilibrium-average of �:

�� �

�

�

�
�

�

d� ����� (D.1.1)

where the subscript on �� refers to averaging over a finite “time” �. If the
ergodic hypothesis is justified then �� � ���, as ���, where ��� denotes
the ensemble average of �. Let us now estimate the variance in ��, �����:

����� �
�
��
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�
� ����

�

�
�

��

�
�

�

�
�

�

d�d� � ������ � ���� ���� �� � ����� � (D.1.2)

Note that ������ � �������� �� � ����� in equation (D.1.2) is simply the time
correlation function of fluctuations in the variable �. Let us denote this cor-
relation function by ���� � � ��. If the duration of the sampling � is much
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larger than the characteristic decay time ��
�

of ��, then we may rewrite
equation (D.1.2) as

����� �

�

�

�
�

��

d� �����

�

���
�

�
������ (D.1.3)

In the last equation we have used the definition of ��
�

as half the integral
from �� to � of the normalized correlation function �����	�����. The
relative variance in �� therefore is given by

�����

���
�

� �����	��

�
��
�
� ���

�

���
�

� (D.1.4)

Equation (D.1.4) clearly shows that the root-mean-square error in �� is pro-
portional to

�
��
�
	�. This result is hardly surprising. It simply states the

well-known fact the variance in a measured quantity is inversely propor-
tional to the number of uncorrelated measurements. In the present case, this
number is clearly proportional to �	��

�
. This result may appear to be trivial,

but it is nevertheless very important, because it shows directly how the life-
time and amplitude of fluctuations in an observable � affect the statistical
accuracy. This is of particular importance in the study of fluctuations as-
sociated with hydrodynamical modes or pretransitional fluctuations near a
symmetry-breaking phase transition. Such modes usually have a character-
istic lifetime proportional to the square of their wavelengths. To minimize
the effects of the finite system size on such phase transitions, it is prefer-
able to study systems with a box size 
 large compared with all relevant
correlation lengths in the system. However, due to the slow decay of long-
wavelength fluctuations, the length of the simulation needed to keep the
relative error fixed should be proportional to 
�. As the CPU time for a run
of fixed length is proportional to the number of particles (at best), the CPU
time needed to maintain constant accuracy increases quite rapidly with the
linear dimensions of the system (e.g., as 
� in three dimensions).

Another aspect of equation (D.1.4) is not immediately obvious; namely,
it makes a difference whether the observable � can be written as a sum of
uncorrelated single-particle properties. If this is the case, then it is easy to
see that the ratio �

�
��
�
����

�
�	 ���

� is inversely proportional to the number
of particles, �. To see this, consider the expressions for ��� and

�
��
�
� ���

�

in this case:

��� �

��
���

���� � � ��� (D.1.5)
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and
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� ���� �
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���� � ���� ��� � ����� � (D.1.6)

If the fluctuations in �� and �� are uncorrelated, then we find that
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� ����

����
� (D.1.7)

From equation (D.1.7) it is clear that the statistical error in a single-particle
property is inversely proportional to

�
�. Hence, for single-particle proper-

ties, the accuracy improves as we go to larger systems (at fixed length of the
simulation). In contrast, no such advantage is to be gained when computing
truly collective properties.

D.2 Correlation Functions

We can apply essentially the same arguments to estimate the statistical er-
rors in time correlation functions. Suppose that we wish to measure the
(auto)correlation function1 of the dynamical quantity �. To obtain an esti-
mate of ����� � ����������, we average the product ������� � �� over the
initial time �. Suppose that the length of our run is ��, then our estimate of
����� is

����� � �	��

���
�

d� �������� ��


where the bar over �� denotes the average over a finite time ��. Next, we
consider the variance in ����� [527]:
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d� �d� �� ���� ����� � � ��� ���� ������ �� � ��� �
(D.2.1)

The first term on the right-hand side of equation (D.2.1) contains a fourth-
order correlation function. To simplify matters, we shall assume that the
fluctuations of � follow a Gaussian distribution. This is not the simple
Gaussian distribution that describes, for instance, the Maxwell distribution

1The extension to cross-correlation functions of the type ���������� is straightforward and
left as an exercise to the reader.
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of particle velocities in equilibrium, but a multidimensional (in fact, infinite-
dimensional) distribution that describes all correlations between fluctuations
of � at different times. For the simple case that we consider only real fluctu-
ations at discrete times, this distribution would be of the following form:

�������� ������ � � � � ������� � const. � exp

�
���

�

�

���

��������� � ��������

�
� �

where the matrix ���� � ��� is simply the inverse of the (discrete) time cor-
relation function ����� � ���. For Gaussian variables, we can factorize all
higher-order correlation functions. In particular,

���� ����� � � ����� ������ �� � ���
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Inserting equation (D.2.2) in equation (D.2.1), we get

�
�����

�
�
�
�
�����

��

� ��
��
��

���
�

���
�

d� �d� �� ���� ����� ���� ���� � � ����� �� � ���

� ��
��
��

���
�

���
�

d� �d� �� ���� ����� �� � ��� ���� � � ����� ����

� ��
��
��

���
�

���
�

d� �d� �� ���� � � � ��������
�

� ��
��
��

���
�

���
�

d� �d� �� ���� � � � �� � ������� ���� � � � �� � ������� 	

(D.2.3)

Again, we consider the case where the length of the simulation, ��, is much
longer than the characteristic decay time of the fluctuations of �. In that
case, we can write
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(D.2.4)
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where we have defined the variable � as � �
� � ��. Let us now consider two

limiting cases, � = 0 and ���. For � � �, we can write
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	 (D.2.5)

The last line of this equation defines the correlation time ��:
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For ���, the product
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vanishes, and we have
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	 (D.2.6)

Comparison of equation (D.2.5) with equation (D.2.6) shows that the absolute
error in ����� changes only little with �. As a consequence, the relative error
in time correlation functions increases rapidly as ����� decays to 0. In this
derivation we have assumed that the total number of samples for each � is
equal; in case we have (many) fewer samples for large �, this approach is not
valid. In fact, if we have many fewer samples for large values of �, we may
wonder whether these values are reliable.

It should be stressed that the preceding error estimate is only approx-
imate, because it relies on the validity of the Gaussian approximation. In
specific cases (e.g., for the fluctuations of particle velocities), it is known that
deviations from the Gaussian approximation occur. However, the deviations
(where they are known) are usually not large, and it seems likely that error
estimates based on the Gaussian approximation are on the correct order of
magnitude. Very little evidence, however, supports or contradicts this belief.

A more detailed discussion of statistical errors in collective and single-
particle time correlation functions can be found in [527] and [528]. Systemat-
ical techniques for measuring statistical errors in a simulation are discussed
in [529] and [19].

D.3 Block Averages

The previous section showed that we can estimate the statistical error in time
correlation functions on the basis of our knowledge of the time correlation
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function itself. Hence, no extra work is needed to arrive at an error estimate.
However, as discussed in section D.1, to arrive at an error estimate for a static
quantity, we need to compute the time correlation function of that quantity.
As the computational effort to compute a time correlation function is larger
than that required for a static average, we usually estimate statistical errors
in static quantities by studying the behavior of so-called block averages. A
block average is simply a time average over a finite time ��:

�� �
�

��

�
��

�

d� �����

During a simulation, we can easily accumulate block averages for a given
block length ��. After the simulation has been completed, we can compute
the block averages for blocks of length �� �� by simply averaging the block
averages of � adjacent blocks of length ��. Let us now consider the variance
in the block averages for a given value of ��:
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If �� is much larger than the correlation time ��
�

, we know from section D.1
that
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� (D.3.1)

But, as yet, we do not know ��
�

. We therefore compute the product

����� � �� �
������

���� � ���
�
�

In the limit �� � ��
�

, we know that ����� must approach ��
�

. Hence, we plot
����� versus �� (or, more conveniently, ������� versus ����) and estimate
the limit of ����� for �� ��. This yields our estimate of ��

�
and thereby our

error estimate for �. This analysis of block averages is a very powerful tool
to determine whether a simulation is long enough to yield a reliable estimate
of a particular quantity: if we find that ����� is still strongly dependent on
�� in the limit �� = �, then we know that our run is too short.

An alternative method for estimating the statistical error in a simulation
has been developed by Flyvbjerg and Petersen [84]. Let ��	 ��, � � � , �	

be 
 consecutive samples of some fluctuating quantity � of which we want
to calculate its ensemble average and statistical error. We assume that all

 samples are taken after the system has been equilibrated. The ensemble
average is estimated from

��� � �̄ �
�




	�

��

�
	 (D.3.2)
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and we need an estimator of the variance of
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� (D.3.3)

If all � samples were uncorrelated, we could use the standard formulas of
statistics to calculate this variance. However, in a simulation, the samples
are correlated and we have to take this correlation into account.

The idea behind the method of Flyvbjerg and Petersen is to group the
simulation data into consecutive blocks and compute an average for each of
these blocks. These block averages will show less and less correlation be-
tween two consecutive blocks if the block size is made larger. In the limit
that there is no detectable correlation between the blocks, the standard sta-
tistical formulas are valid and the standard deviations as a function of the
block size follow these formulas. This procedure leads to a reliable estimate
of the standard deviation.

To see how this method works in practice, consider the following trans-
formation of our data set ��� ��, � � � , �� into a new data set � �

�
� � �

�
, � � � , � �

� � ,
which has half the size of the original set:

� �

� � ��������� �����

with
� � � �����

Note that the average of the new set �̄ � is the same as for the original one.
The variance in �̄ � is given by
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We can continue to perform this blocking operation, and if we have per-
formed the simulation sufficiently long, the averages � �

�
will become com-

pletely uncorrelated. If this is the case the following relation should hold:

���� ��

� � � �
� Constant�

This constant value is used as an estimate of the variance in the ensemble av-
erage. Note that, in a similar way, we can also determine the statistical error
in ���� ��. This gives as estimate of the variance in our ensemble average
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� (D.3.4)
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In Case Study 4, this method was used to compute the standard deviation
of the energy in a Molecular Dynamics simulation. In Figure 4.4 a typical
plot of this estimate of the variance as a function of block size is shown. For
small values of�, the number of blocking operations, the data are correlated
and as a consequence the variance will increase if we perform the blocking
operation. For very high values of � we have only a few samples, and as a
result, the statistical error in our estimate of ����� will be large. The plateau
in between gives us the value of ����� we are interested in.
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Integration Schemes

E.1 Higher-Order Schemes

The basic idea behind the predictor-corrector algorithms is to use informa-
tion about the position and its first � derivatives at time � to arrive at a
prediction for the position and its first � derivatives at time � � ��. We
then compute the forces (and thereby the accelerations) at the predicted po-
sitions. And then we find that these accelerations are not equal to the values
that we had predicted. So we adjust our predictions for the accelerations to
match the facts. But we do more than that. On the basis of the observed
discrepancy between the predicted and observed accelerations, we also try
to improve our estimate of the positions and the remaining ��� derivatives.
This is the “corrector” part of the predictor-corrector algorithm. The precise
“recipe” used in applying this correction is a compromise between accuracy
and stability. Here, we shall simply show a specific example of a predictor-
corrector algorithm, without attempting to justify the form of the corrector
part.

Consider the Taylor expansion of the coordinate of a given particle at
time �� ��:
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Using the notation
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we can write the following predictions for ����� ��� through ���� � ���:
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Now that we have ���� � ���, we can compute the forces at the predicted
position, and thus compute the corrected value for ��������. We denote the
difference between �corrected

�
and �

predicted
�

by ���:

��� � �corrected
� � �

predicted
�

�

We now estimate “corrected” values for �� through ��, as follows:

�corrected
�

� �
predicted
� � 	����� (E.1.1)

where the 	� are constants fixed for a given order algorithm. As indicated,
the values for 	� are such that they yield an optimal compromise between
the accuracy and the stability of the algorithm. For instance, for a fifth-order
predictor-corrector algorithm (i.e., one that uses �� through ��), the values
for 	� are

	� �
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One may iterate the predictor and corrector steps to self-consistency. How-
ever, there is little point in doing so because (1) every iteration requires a
force calculation. One would be better off spending the same computer time
to run with a shorter time step and only one iteration because (2) even if we
iterate the predictor-corrector algorithm to convergence, we still do not get
the exact trajectory: the error is still of order ��� for an �th-order algorithm.
This is why we gain more accuracy by going to a shorter time step than by
iterating to convergence at a fixed value of ��.

E.2 Nose-Hoover Algorithms

As discussed in section 6.1.2, it is advantageous to implement the Nosé ther-
mostat using the formulation of Hoover, equations (6.1.24)–(6.1.27). Since
the velocity also appears on the right-hand side of equation (6.1.25), this
scheme cannot be implemented directly into the velocity Verlet algorithm
(see also section 4.3). To see this, consider a standard constant-�,�,� simu-
lation, for which the velocity Verlet algorithm is of the form

���� ��� � ���� � ������� �������	�
��

��� � ��� � ���� �
���� ��� � ����


�
���

When we use this scheme for the Nosé-Hoover equations of motion, we ob-
tain for the positions and velocities

����� ��� � ����� � ������ � ������	�� � �����������
�	
 (E.2.1)

����� ��� � ����� � ������ ���	�� � ��� �������� ���

� �����	�� � �����������	
� (E.2.2)

The first step of the velocity Verlet algorithm can be carried out without dif-
ficulty. In the second step, we first update the velocity, using the old “forces”
to the intermediate value ��� � ��	
� � � �. And then we must use the new
“forces” to update � �:

����� ��� � � �

� � ������ ���	�� � ��� ������� � ������	
� (E.2.3)

In these equations �������� appears on the right- and left-hand sides; there-
fore, these equations cannot be integrated exactly.1 For this reason the Nosé-
Hoover method is usually implemented using a predictor-corrector scheme
or solved iteratively [138]. This has a disadvantage that the solution is no
longer time reversible. Martyna et al. [85] have developed a set of explicit
reversible integrators using the Liouville approach (see section 4.3.3) for this
type of extended systems.

1For the harmonic oscillator it is possible to find an analytic solution (see Case Study 12).
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E.2.1 Canonical Ensemble

For � chains, the Nosé-Hoover equations of motion are given by (see also
section 6.1.3)
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The Liouville operator for the equation of motions is defined as (see sec-
tion 4.3.3)

i
 � �̇
�

��

with � � �r��p�� ��� ��� �. Using the equations of motion, p� � ��v�, and
��� � ���� , we obtain as Liouville operator for the Nosé-Hoover chains
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As explained in section 4.3.3, the Liouville equation combined with the Trot-
ter formula is a powerful technique for deriving a time-reversible algorithm
for solving the equations of motion numerically. Here we will use this tech-
nique to derive such a scheme for the Nosé-Hoover thermostats. We use a
simplified version; a more complete description can be found in ref. [85].
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We have to make an intelligent separation of the Liouville operator. The
first step is to separate the part of the Liouville operator that only involves
the positions �i��� and the velocities �i��� from the parts that involve the
Nosé-Hoover thermostats �i���:

i�NHC � i�� � i�� � i��
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There are several ways to factorize i�NHC using the Trotter formula; we fol-
low the one used by Martyna et al. [85]:

e�i	
�� � e�i	�
���e�i	�
���e�i	�
��e�i	�
���e�i	�
��� ��
�
���

�
� (E.2.4)

The Nosé-Hoover chain part �� has to be further factorized. Here, we will
do this for a chain of length 	 � 
; the more general case is discussed in ref.
[85]. The Nosé-Hoover part of the Liouville operator for this chain length
can be separated into five terms:

i�� � i�� � i��� � i��� � i���� � i���

where the terms are defined as
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The factorization for the Trotter equation that we use is2

e�i�C�����
� e�i��������e�i���������i��������

�e�i�������e�i��������e�i��������i���������e�i��������

� e�i��������
�
e�i���������e�i��������e�i���������

�

�e�i�������e�i��������

�

�
e�i���������e�i��������e�i���������

�
e�i��������� (E.2.5)

Our numerical algorithm is now fully defined by equations (E.2.4) and (E.2.5).
This seemingly complicated set of equations is actually relatively easy to im-
plement in a simulation.

To see how the implementation works, we need to know how each op-
erator works on our coordinates � � �r�� v�� ��� �	� � ��� �	��. If we start at
� � � with initial condition �, the position at time � � �� follows from

ei�NHC����r�� v�� ��� �	� � ��� �	� ��

Because of the Trotter expansion, we can apply each term in i�NHC, sequen-
tially. For example, if we let the first term of the Liouville operator, i�
�, act
on the initial state �,
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This shows that the effect of i�
� is to shift �	� without affecting the other
coordinates. This gives as transformation rule for this operator:

e�i�������� � �	� � �	� �
����	� (E.2.6)

The operators �i�	� and i��� are of the form exp ��������; such opera-
tors give a scaling of the � coordinate:

exp
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���� � exp

�
�

�

� ln���

�
� �exp�ln�����

� � �exp�ln��� � ��� � ��� exp����

2The second factorization, indicated by �� � � �, is used to avoid a hyperbolic sine function,
which has a possible singularity. See ref. [85] for details.
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If we apply this result3 to i���� , we obtain for this operator
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giving the transformation rule

e�i�������	� � ��� � exp �������	�� ��� 
 (E.2.7)

In a similar way we can derive for the other terms

e�i������
� � ��� � ��� �����	� (E.2.8)
e�i������� � �� � �� � �����	 (E.2.9)

�� � �� � �����	 (E.2.10)
e�i�������� � �� � exp �������	� ��
 (E.2.11)

Finally, the transformation rules that are associated to i�� and i�� are similar
to the velocity Verlet algorithm, i.e.,

e�i������� � v� � v� � F���	��� (E.2.12)
e�i����� � r� � r� � v���
 (E.2.13)

With these transformation rules (E.2.6)–(E.2.13) we can write down our nu-
merical algorithm by subsequently applying the transformation rules ac-
cording to the order defined by equations (E.2.4) and (E.2.5). If we start
with initial coordinate���� � �r�� v�� ��� ��� � ��� ����, we have to apply first
ei���. Since this operator is further factorized according to equation (E.2.5),
the first step in our algorithm is to apply e�i������
�. According to transfor-
mation rule (E.2.6) applying this operator on � gives as new state

������	�� � ��� �����	�


The output of this rule is the new state on which we apply the next operator
in equation (E.2.5), i���� , with transformation rule (E.2.9):

������	�� � exp ��������	����	�� ��� 


3This can be generalized, giving the identity
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Algorithm 30 (Equations of Motion: Nose-Hoover)

subroutine integrate integrate equations of motion
Nosé-Hoover thermostat

call chain(uk)
call pos vel(uk)
call chain(uk)
return
end

Comments to this algorithm:

1. This subroutine solves the equations of motion for a single time step �� using
the Trotter equations (E.2.4) and (E.2.5).

2. In the subroutine chain we apply ei������ to the current state (see
Algorithm 31).

3. In the subroutine pos vel we apply e�i���i����� to the current state (see
Algorithm 32).

4. uk is the total kinetic energy.

The next step is to apply i���, followed by again i���� , etc. In this way we
continue to apply all operators on the output of the previous step.

Applying the Nosé-Hoover part of the Liouville operator changes ��,
�	� , and v
. The other two Liouville operators change v
 and r
. This makes
it convenient to separate the algorithm into two parts in which the posi-
tions and velocities of the particles and the Nosé-Hoover chains are con-
sidered separately. An example of a possible implementation is shown in
Algorithm 30.

E.2.2 The Isothermal-Isobaric Ensemble

Similar to the canonical ensemble we can derive a time-reversible integration
scheme for simulation in the ��� ensemble. The equations of motions are
given by expressions (6.2.1)–(6.2.8):
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Algorithm 31 (Propagating the chain)

subroutine chain(uk) apply equation (E.2.5)
to the current position

G2=(Q1*vxi1*vxi1-T)
vxi2=vxi2+G2*delt4 Update ��� using equation (E.2.6)
vxi1=vxi1*exp(-vxi2*delt8) Update ��� using equation (E.2.7)
G1=(2*uk-L*T)/Q1
vxi1=vxi1+G1*delt4 Update ��� using equation (E.2.8)
vxi1=vxi1*exp(-vxi2*delt8) Update ��� using equation (E.2.7)
xi1=xi1+vxi1*delt2 Update �� using equation (E.2.9)
xi2=xi2+vxi2*delt2 Update �� using equation (E.2.10)
s=exp(-vxi1*delt2) Scale factor in equation (E.2.11)
do i=1,npart

v(i)=s*v(i) update v� using equation (E.2.11)
enddo
uk=uk*s*s update kinetic energy
vxi1=vxi1*exp(-vxi2*delt8) Update ��� using equation (E.2.7)
G1=(2*uk-L*T)/Q1
vxi1=vxi1+G1*delt4 Update ��� using equation (E.2.8)
vxi1=vxi1*exp(-vxi2*delt8) Update ��� using equation (E.2.7)
G2=(Q1*vxi1*vxi1-T)/Q2
vxi2=vxi2+G2*delt4 Update ��� using equation (E.2.6)
return
end

Comments to this algorithm:

1. In this subroutine T is the imposed temperature, delt� ��, delt2� ����,
delt4 � ����, and delt8 � ����.

2. uk is the total kinetic energy.
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Algorithm 32 (Propagating the Positions and Velocities)

subroutine pos vel(uk) apply equation (E.2.4)
to the current position

uk=0
do i=1,npart
x(i)=x(i)+v(i)*delt2 update x� using equation (E.2.13)

enddo
call force calculate the force
do i=1,npart
v(i)=v(i)+f(i)*delt/m update v� using equation (E.2.12)
x(i)=x(i)+v(i)*delt2 update x� using equation (E.2.13)
uk=uk+m*v(i)*v(i)/2 update kinetic energy

enddo
return
end

Comments to this algorithm:

1. In this subroutine delt � �� and delt2 � ����.

2. The subroutine force calculates the force on the particles.
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To derive a time-reversible numerical integration scheme to solve the equa-
tions of motion we use again the Liouville approach.

A state is characterized by the variables � � �r��p�� �� � �� �
�� ��� �. The

Liouville operator is defined by

i��	
 � �̇
�

��
�
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For a chain of length � � �, using p� � ��v�� �� ��ṙ��, ��� � ����� ,
� � �ln���	, and �� � 
��, the Liouville operator for these equations of
motion can be written as
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in which we define the operators
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An appropriate Trotter equation for the equations of motion is [85]

e�i������� � e�i�������e�i������e�i�	���e�i������e�i������� ��
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�
�

(E.2.14)
The operator i��� has to be further factorized:

i��� � i�� � i��� � i��� � i��� � i��
 � i���� � i���
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where the terms are defined as
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The Trotter expansion of the term i�� is
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Similar to the �	
 version the transformation rules of the various opera-
tors can be derived and translated into an algorithm. Such an algorithm is
presented in ref. [85].
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Saving CPU Time

The energy or force calculation is the most time-consuming part of almost all
Molecular Dynamics and Monte Carlo simulations. If we consider a model
system with pairwise additive interactions (as is done in many molecular
simulations), we have to consider the contribution to the force on particle �,
by all its neighbors. If we do not truncate the interactions, this implies that,
for a system of � particles, we must evaluate ��� � ���� pair interactions.
And even if we do truncate the potential, we still would have to compute all
��� � ���� pair distances to describe which pairs can interact. This implies
that, if we use no tricks, the time needed for the evaluation of the energy
scales as ��. There exist efficient techniques for speeding up the evalua-
tion of both short-range and long-range interactions in such a way that the
computing time scales as ����, rather than ��. The techniques for the long-
range interactions were discussed in Chapter 12.1; here, we discuss some of
the techniques used for the short-range interactions. These techniques are:

1. Verlet list

2. Cell (or linked) list

3. Combination of Verlet and cell lists

F.1 Verlet List

If we simulate a large system and use a cutoff that is smaller than the simu-
lation box, many particles do not contribute to the energy of a particle �. It
is advantageous therefore to exclude the particles that do not interact from
the expensive energy calculation. Verlet [13] developed a bookkeeping tech-
nique, commonly referred to as the Verlet list or neighbor list, which is il-
lustrated in Figure F.1. In this method a second cutoff radius �� � �� is in-
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i

rcrv

Figure F.1: The Verlet list: a particle � interacts with those particles within
the cutoff radius ��; the Verlet list contains all the particles within a sphere
with radius �� � ��.

troduced, and before we calculate the interactions, a list is made (the Verlet
list) of all particles within a radius �� of particle �. In the subsequent calcula-
tion of the interactions, only those particles in this list have to be considered.
Until now we have not saved any CPU time. We gain such time when we
next calculate the interactions; if the maximum displacement of the particles
is less than �� � ��, then we have to consider only the particles in the Verlet
list of particle �. This is a calculation of order �. As soon as one of the par-
ticles is displaced more than �� � ��, we have to update the Verlet list. The
latter operation is of order ��, and although this step is not performed each
time an interaction is calculated, it will dominate for a very large number of
particles.

The Verlet list can be used for both Molecular Dynamics and Monte Carlo
simulations. However, there are some small differences in the implemen-
tation. For example, in a Molecular Dynamics simulation, the force on all
particles is calculated at the same time. It is sufficient therefore to have a
Verlet list with half the number of particles for each particle as long as the
interaction �-� is accounted for in either the list of particle � or that of �. In a
Monte Carlo simulation each particle is considered separately, therefore it is
convenient to have for each particle the complete list. Algorithm 33 shows
the use of the Verlet list in a Monte Carlo simulation.

Bekker et al. have developed an elegant extension of the Verlet list for
systems with periodic boundary conditions [530]. To calculate the force or
potential energy of particle � one has to locate the nearest image of the par-
ticles in the Verlet list of particle � (see, Algorithm 34). Bekker et al. have
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Algorithm 33 (Use of Verlet List in a Monte Carlo Move)

SUBROUTINE mcmove verlet attempts to displace a particle
using a Verlet list

o=int(ranf()*npart)+1 select a particle at random
if (abs(x(o)-xv(o)).gt.(rv-rc) check to make a new list

+ /2) call new vlist
call en vlist(o,x(o),eno) energy old configuration
xn=x(o)+(ranf()-0.5)*delx random displacement
if (abs(xn-xv(o)).gt.(rv-rc)/2) check to make a new list

+ call new vlist
call en vlist(o,xn,enn) energy new configuration
arg=exp(-beta*(enn-eno))
if (ranf().lt.arg)

+ x(o)=xn accepted: replace x(o) by xn
return
end

Comments to this algorithm:

1. The algorithm is based on Algorithm 2.

2. Subroutine newvlist makes the Verlet list (see Algorithm 34) and subrou-
tine en vlist calculates the energy of a particle at the given position using
the Verlet list (see Algorithm 35).

shown that this nearest image calculation in the inner loop of a MD or MC
simulation can be avoided.

In a periodic system, the total force on particle � can be written as

F� �

��

���

���

�����

�F�������

where the prime denotes that the summation is performed over the nearest
image of particle � in the central box (� � �) or in one of its 26 periodic
images. Here, ����� denotes the periodic image of particle � in box �. Box � is
defined by the integer numbers ��, ��, �	:

� � ��� � ��� � �	

and
t� � ��L� � ��L� � �	L	�
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Algorithm 34 (Making a Verlet List)

SUBROUTINE new vlist makes a new Verlet list
do i=1,npart initialize list

nlist(i)=0
xv(i)=x(i) store position of particles

enddo
do i=1,npart-1

do j=i+1,npart
xr=x(i)-x(j)
if (xr.gt.hbox) then nearest image
xr=xr-box

else if (xr.lt.-hbox) then
xr=xr+box

endif
if (abs(xr).lt.rv) then add to the lists
nlist(i)=nlist(i)+1
nlist(j)=nlist(j)+1
list(i,nlist(i))=j
list(j,nlist(j))=i

endif
enddo

enddo
return
end

Comments to this algorithm:

1. Array list(i,itel) is the Verlet list of particle i, the total number of
particles in the Verlet list of particle i is given by nlist(i), and the array
xv(i) contains the position of the particles at the moment the list is made (is
used to see when a new list has to be made).

2. Note that in this algorithm we assume all particles are in the simulation box;
hence x(i) � [0,box].

where t� is the translation vector of the central box to its periodic image �.
A particle in the central box is denoted by ����� � �. Using this notation, we
can write, for the interaction between particles � and �,

F������ � F������� � �F������ � �F��������
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Algorithm 35 (Calculating the Energy Using a Verlet List)

SUBROUTINE en vlist(i,xi,en) calculates energy using
the Verlet list

en=0
do jj=1,nlist(i) loop over the particles in the list

j=list(i,jj) next particle in the list
en=en+enij(i,xi,j,x(j))

enddo
return
end

Comment to this algorithm:

1. Array list(i,itel) and nlist are made in Algorithm 34 and enij
gives the energy between particles i and j at the given positions.

Figure F.2: Verlet lists: (left) conventional approach in which each particle
has a Verlet list; (right) the approach of Bekker et al. in which each periodic
image of a particle has its own Verlet list that contains only those particles in
the central box.

We can write

F� �

��

���

���

�����

�F�������

The importance of this seemingly trivial result is that the summation is over
all particles � in the central box with the nearest image of particle �. The
difference between the two approaches is shown in Figure F.2.

This method is implemented using different Verlet lists for each periodic
image of particle �. These lists contain only those particles that interact with
particle � and are in the central box. If these lists are used, it is not necessary to
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Figure F.3: The cell list: the simulation cell is divided into cells of size �����;
a particle � interacts with those particles in the same cell or neighboring cells
(in 2D there are 9 cells; and in 3D, 27 cells).

use the nearest image operation during the calculation of the force or energy.
In [530] the use of these lists is shown to speed up an MD simulation by a
factor 1.5. In addition, Bekker et al. have shown that a similar trick can be
used to take the calculation of the virial (pressure) out of the inner loop.

F.2 Cell Lists

An algorithm that scales with � is the cell list or linked-list method [24]. The
idea of the cell list is illustrated in Figure F.3. The simulation box is divided
into cells with a size equal to or slightly larger than the cutoff radius ��;
each particle in a given cell interacts with only those particles in the same or
neighboring cells. Since the allocation of a particle to a cell is an operation
that scales with � and the total number of cells that needs to be considered
for the calculation of the interaction is independent of the system size, the
cell list method scales as �. Algorithm 36 shows how a cell list can be used
in a Monte Carlo simulation.

F.3 Combining the Verlet and Cell Lists

It is instructive to compare the efficiency of the Verlet list and cell list in more
detail. In the Verlet list the number of particles for which the distance needs
to be calculated is in three dimensions, given by

�� �
�

�
������
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Algorithm 36 (Use of Cell List in a Monte Carlo Move)

SUBROUTINE mcmove neigh attempts to displace a particle
using a cell list

call newnlist(rc) make the cell list
o=int(ranf()*npart)+1 select a particle at random
call en nlist(o,x(o),eno) calculate energy old configuration
xn=x(o)+(ranf()-0.5)*delx give particle random displacement
call en nlist(o,xn,enn) calculate energy new configuration
arg=exp(-beta*(enn-eno))
if (ranf().lt.arg)

+ x(o)=xn accepted: replace x(o) by xn
return
end

Comments to this algorithm:

1. This algorithm is based on Algorithm 2.

2. Subroutine new nlistmakes the cell list (see Algorithm 37) and subroutine
en nlist calculates the energy of a particle at the given position using the
cell list (see Algorithm 38). Note that it is possible, at the expense of some
extra bookkeeping, to update the list once a move is accepted instead of making
a new list every move.

for the cell list the corresponding number is

�� � �������

If we use typical values for the parameters in these equations (Lennard-Jones
potential with �� � ���� and �� � ����), we find that �� is five times larger
than ��. As a consequence, in the Verlet scheme, the number of pair dis-
tances that needs to be calculated is 16 times less than in the cell list.

The observation that the Verlet scheme is more efficient in evaluating the
interactions motivated Auerbach et al. [531] to use a combination of the two
lists: use a cell list to construct a Verlet list. The use of the cell list removes
the main disadvantage of the Verlet list for a large number of particles—
scales as ��—but keeps the advantage of an efficient energy calculation. An
implementation of this method in a Monte Carlo simulation is shown in Al-
gorithm 39.
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Algorithm 37 (Making a Cell List)

SUBROUTINE new nlist(rc) makes a new cell list with cell size ��

using a linked-list algorithm
rn=box/int(box/rc) determine size of cells �� � ��

do icel=0,ncel-1
hoc(icel)=0 set head of chain to 0 for each cell

enddo
do i=1,npart loop over the particles

icel=int(x(i)/rn) determine cell number
ll(i)=hoc(icel) link list the head of chain of cell icel
hoc(icel)=i make particle i the head of chain

enddo
return
end

Comment to this algorithm:

1. This algorithm uses the linked-list method. To each cell a particle i is named
head of chain and stored in the array hoc(icel). To this particle the next
particle in the cell (chain) is linked via the linked-list array ll(i). If the
value of the ll(i) is 0 no more particles are in the cell (chain). The desired
(optimum) cell size is rc, and rn is the closest size that ts in the box.

F.4 Ef ciency

The first question that arises is when to use which method. This depends
very strongly on the details of the systems. In any event, we always start
with a scheme as simple as possible, hence no tricks at all. Although the
algorithm scales as��, it is straightforward to implement and therefore the
probability of programming errors is relatively small. In addition we should
take into account how often the program will be used.

The use of the Verlet list becomes advantageous if the number of particles
in the list is significantly less than the total number of particles; in three
dimensions this means

�� �
�

�
������ ��

If we substitute some typical values for a Lennard-Jones potential (�� � ��	


and � � ���
��), we find �� � , which means that only if the number of
particles in the box is more than ��� does it make sense to use a Verlet list.

To see when to use one of the other techniques, we have to analyze the
algorithms in somewhat more detail. If we use no tricks, the amount of CPU

f
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Algorithm 38 (Calculating the Energy Using a Cell List)

SUBROUTINE ennlist(i,xi,en) calculates energy using
the cell list

en=0
icel=int(xi/rn) determine the cell number
do ncel=1,neigh loop over the neighbor cells

jcel=neigh(icel,ncel) number of the neighbor
j=hoc(jcel) head of chain of cell jcel
do while (j.ne.0)
if (i.ne.j)

+ en=en+enij(i,xi,j,x(j))
j=ll(j) next particle in the list

enddo
enddo
return
end

Comment to this algorithm:

1. Array ll(i) and hoc(icel) are constructed in Algorithm 37; enij is
a function that gives the energy between particles i and j at the given posi-
tions. neigh(icel,ncel) gives the location of the ncelth neighbor of
cell icel.

time to calculate the total energy is given by

� � ���� � �����

The constant gives the required CPU time for an energy calculation between
a pair of particles. If we use the Verlet list, the CPU time is

�� � �����
��

��
���

where the first term arises from the calculation of the interactions and the
second term from the update of the Verlet list, which is done every �th

� cycle.
The cell list scales with � and the CPU time can be split into two contri-

butions: one that accounts for the calculation of the energy and the other for
the making of the list,

�� � ����� ����

If we use a combination of the two lists, the total CPU time becomes

�� � �����
��

��
��
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Algorithm 39 (Combination of Verlet and Cell Lists)

SUBROUTINE mcmove clist displace a particle
using a combined list

o=int(ranf()*npart)+1 select a particle at random
if (abs(x(o)-xv(o)).gt.rv-rc) check to make a new list

+ call new clist
call en vlist(o,x(o),eno) energy old configuration
xn=x(o)+(ranf()-0.5)*delx random displacement
if (abs(xn-xv(o)).gt.rv-rc) check to make a new list

+ call new clist
call en vlist(o,xn,enn) energy new configuration
arg=exp(-beta*(enn-eno))
if (ranf().lt.arg)

+ x(o)=xn accepted: replace x(o) by xn
return
end

Comments to this algorithm:

1. The algorithm is based on Algorithm 33.

2. Subroutine newclist makes the Verlet list using a cell list (see Algo-
rithm 40) and subroutine en vlist calculates the energy of a particle at
the given position using the Verlet list (see Algorithm 35).

The way to proceed is to perform some test simulations to estimate the vari-
ous constants, and from the equations, it will become clear which technique
is preferred. In Case Study 26, we have made such an estimate for a simu-
lation of the Lennard-Jones fluid.

Case Study 26 (Comparison of Schemes for the Lennard-Jones Fluid)
It is instructive to make a detailed comparison of the various schemes to save
CPU time for the Lennard-Jones fluid. We compare the following schemes:

1. Verlet list

2. Cell list

3. Combination of Verlet and cell lists

4. Simple �� algorithm

We have used the program of Case Study 1 as a starting point. At this point it
is important to note that we have not tried to optimize the parameters (such
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Algorithm 40 (Making a Verlet List Using a Cell List)

SUBROUTINE new clist makes a new Verlet list
using a cell list

call new nlist(rv) make the cell lists
do i=1,npart initialize list

nlist(i)=0
xv(i)=x(i) store position of particles

enddo
do i=1,npart
icel=int(x(i)/rn) determine cell number
do ncel=1,neigh loop over the neighbor cells

jcel=neigh(icel,ncel) number of the neighbor
j=hoc(jcel) head of chain of cell jcel
do while (j.ne.0)
if (i.ne.j) then
xr=x(i)-x(j)
if (xr.gt.hbox) then nearest image
xr=xr-box

else if(xr.lt.-hbox)then
xr=xr+box

endif
if (abs(xr).lt.rv) then add to the Verlet lists
nlist(i)=nlist(i)+1
nlist(j)=nlist(j)+1
list(i,nlist(i))=j
list(j,nlist(j))=i

endif
endif

j=ll(j) next particle in the cell list
enddo

enddo
enddo
return
end

Comments to this algorithm:

1. Array list(i,itel) is the Verlet list of particle i, the number of particles
in the Verlet list of particle i is given by nlist(i), and the array xv(i)
contains the position of the particles at the moment the list is made (is used to
see when a new list has to be made). We assume that all particles are in the
simulation box; hence x(i) � [0,box].

2. Subroutine new nlist(rv,rn) makes a cell list (Algorithm 37). The de-
sired cell size is rv and the actual cell size is rn.
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as the Verlet radius) for the various methods; we have simply taken some
reasonable values.

For the Verlet list (and for the combination of Verlet and cell lists) it is
important that the maximum displacement be smaller than twice the differ-
ence between the Verlet radius and cutoff radius. For the cutoff radius we
have used �� � ����, and for the Verlet radius �� � ����. This limits the
maximum displacement to �� � ����� and implies for the Lennard-Jones
fluid that, if we want to use a optimum acceptance of 50%, we can use the
Verlet method only for densities larger than � 	 ��
���. For smaller den-
sities, the optimum displacement is larger than 0.25. Note that this density
dependence does not exist in a Molecular Dynamics simulation. In a Molec-
ular Dynamics simulation, the maximum displacement is determined by the
integration scheme and therefore is independent of density. This makes the
Verlet method much more appropriate for a Molecular Dynamics simulation
than for a Monte Carlo simulation. Only at high densities does it make sense
to use the Verlet list.

The cell list method is advantageous only if the number of cells is larger
than � in at least one direction. For the Lennard-Jones fluid this means that,
if the number of particles is 400, the density should be lower than ������ ��.
An important advantage of the cell list over the Verlet list is that this list can
also be used for moves in which a particle is given a random position.

From these arguments it is clear that, if the number of particles is smaller
than 200–500, the simple �� algorithm is the best choice. If the number of
particles is significantly larger and the density is low, the cell list method is
probably more efficient. At high density, all methods can be efficient and we
have to make a detailed comparison.

To test these conclusions about the � dependence of the CPU time of
the various methods, we have performed several simulations with a fixed
number of Monte Carlo cycles. For the simple �� algorithm the CPU time
per attempt is

�� � ���

where � is the CPU time required to calculate one interaction. This implies
that the total amount of CPU time is independent of the density. For a calcu-
lation of the total energy, we have to do this calculation � times, which gives
the scaling of ��. Figure F.4 shows that indeed for the Lennard-Jones fluid,
the �� increases linearly with the number of particles.

If we use the cell list, the CPU time will be

� � ���� � ������

where �� is the total volume of the cells that contribute to the interaction
(in three dimensions, �� � �����), �� is the amount of CPU time required to
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Figure F.4: Comparison of various schemes to calculate the energy: � is in
arbitrary units and � is the number of particles. As a test case the Lennard-
Jones fluid is used. The temperature was ��

� � and per cycle the number of
attempts to displace a particle was set to 100 for all systems. The lines serve
to guide the eye.

make a cell list, and �� is the probability that a new list has to be made.
Figure F.4 shows that the use of a cell list reduces the CPU time for 10,000
particles with a factor 18. Interestingly, the CPU time does not increase
with increasing density. We would expect an increase since the number
of particles that contribute to the interaction of a particle � increases with
density. However, the second contribution to �Neigh (��) is the probability
that a new list has to be made, depends on the maximum displacement,
which decreases when the density increases. Therefore, this last term will
contribute less at higher densities.

For the Verlet scheme the CPU time is

�� � ���� � �����
�	

where �� is the volume of the Verlet sphere (in three dimensions, �� �


�����), �� is the amount of CPU time required to make the Verlet-list, and
�� is the probability that a new list has to be made. Figure F.4 shows that this
scheme is not very efficient. The �� operation dominates the calculation.
Note that we use a program in which a new list for all particles has to be
made as soon as one of the particles has moved more than ��� � ����;
with some more bookkeeping it is possible to make a much more efficient
program, in which a new list is made for only the particle that has moved out
of the list.
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The combination of the cell and Verlet lists removes the �� dependence
of the simple Verlet algorithm. The CPU time is given by

�� � ���� � ��������

Figure F.4 shows that indeed the �� dependence is removed, but the result-
ing scheme is not more efficient than the cell list alone.

This case study demonstrates that it is not simple to give a general recipe
for which method to use. Depending on the conditions and number of parti-
cles, different algorithms are optimal. It is important to note that for a Molec-
ular Dynamics simulation the conclusions may be different.
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Reference States

G.1 Grand-Canonical Ensemble Simulation

In a grand-canonical ensemble simulation, we impose the temperature and
chemical potential. Experimentally, however, usually the pressure rather
than the chemical potential of the reservoir is fixed. To compare the experi-
mental data with the simulation results it is necessary therefore to determine
the pressure that corresponds to a given value of the chemical potential and
temperature of our reservoir.

Preliminaries

The partition function of a system with � atoms in the ��� � �-ensemble is
given by

����� � �� �
��

�����

�
ds� exp�����s���� (G.1.1)

where s� are the scaled coordinates of the � particles. The free energy is
related to the partition function via

� � �
�

�
ln����� � ���

which gives us for the chemical potential

	 �

�


�
� �

�

�
ln���� � ��� � �������� � ���� (G.1.2)
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For a system consisting of�molecules with each molecule having � atoms,
the partition function is

������� � �� �
�������

��

��

���

�
ds�

�
exp�����s�

�
��� (G.1.3)

where ���� is the part of the partition function of a molecule that contains
the integration over momenta (for an atom, ���� is simply ���) and the s�

are the Cartesian coordinates of atoms in the molecule. It should be stressed
that, in writing equation (G.1.3), we are making the assumption that there
are no “hard” constraints on these intramolecular coordinates. In the pres-
ence of hard constraints, the integral in equation (G.1.3) would contain a
Jacobian (see section 15.1).

Ideal Gas

In the limit of zero density, any system will behave as an ideal gas. In this
limit only the intramolecular interactions contribute to the total potential
energy

� �

��
���

�
intra�	�


For a system consisting of noninteracting atoms, the partition function (G.1.1)
reduces to

�IG���� � �� �
��

�����

 (G.1.4)

We can write, for the chemical potential of such an ideal gas of atoms,

�id�gas � ��id�gas � ��� ln � (G.1.5)

with the chemical potential of the reference state defined by

��id�gas � ��� ln��
 (G.1.6)

In case of gas of noninteracting molecules, the partition function (G.1.3) re-
duces to

�id�gas������ � �� �
�������

��

Æ
��
���

�
ds� exp���� intra�s���

��

 (G.1.7)

Substitution into equation (G.1.2) yields, for the chemical potential,

�id�gas � ��id�gas � ��� ln � (G.1.8)
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where the reference chemical potential is defined as

���id�gas � � ln����� ���intra

� � ln����� ln

�
��

���

�
ds� exp���� intra�s���

�
� (G.1.9)

Note that ��id�gas depends only on temperature. At any given temperature, it
simply acts as a constant shift of the chemical potential that has no effect on
the observable thermodynamic properties of the system.

Grand-Canonical Simulations

In a grand-canonical simulation, we use the following acceptance rules (see
section 5.6.2). For the addition, we have

acc��� � � ��

� min
�
��
����� exp�����intra�

�� � ��
exp����� � ���� �� � ������

�
�

For the removal of a particle, we have

acc��� �� ��

� min
�
��

�

���� exp�����intra��
exp������ � ��� � �� � ������

�
�

These equations are based on the idea that particles are exchanged with a
reservoir containing the same molecules at the same chemical potential, the
only difference being that, in the reservoir, the molecules do not interact. In
practical cases (e.g., adsorption), this means that we have a dense phase in
equilibrium with a dilute vapor. And, whereas the absolute chemical po-
tential of the vapor is of little interest, the absolute pressure is clearly an
important quantity. The pressure in the reservoir is related to the chemical
potential through

��� � ���id�gas � ln�	�

� ���id�gas � ln��
id�gas�� (G.1.10)

Substitution of this expression in the acceptance rules yields

acc��� �� �� � min
�
��
��
id�gas

�� � ��
exp�������� �� � ������

�
(G.1.11)

for the addition of a particle, and a similar expression for particle removal.
In other words, if the experimental conditions are such that the system of
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interest is in equilibrium with a reservoir that behaves like an ideal gas, then
only the pressure of this effectively ideal gas enters into the acceptance rules
for trial moves. All information about the reference state drops out (as ex-
pected).

If the pressure in the reservoir is too high for the ideal gas law to hold,
we have to use an equation of state to relate the chemical potential of the
reservoir to its pressure:

��B � ���

id�gas � ln������ (G.1.12)

where � is the fugacity coefficient of the fluid in the reservoir. The fugacity
coefficient can be computed directly from the equation of state of the vapor
in the reservoir. It is important to note that this fugacity coefficient is a func-
tion of the temperature and pressure. In summary, for a nonideal gas, we
should replace �id�gas in the acceptance rule (G.1.11) by ��.



Appendix H

Statistical Mechanics of the
Gibbs Ensemble

The introduction of a new ensemble brings up the question of whether it is a
“proper ensemble”; that is, does it yield the same results as the conventional
ensembles? To prove it does, we use the partition function (8.2.1) as derived
in section 8.2 to define a free energy. This free energy is used to show that,
in the thermodynamic limit, the Gibbs ensemble and the canonical ensemble
are equivalent. This proof gives considerable insight into why the method
works. Before we proceed, we first list a few basic results for the free energy
in the canonical ensemble.

H.1 Free Energy of the Gibbs Ensemble

H.1.1 Basic De nitions and Results for the Canonical En-
semble

Consider a system of� particles in a volume � and temperature � (canonical
ensemble). The partition function is defined as (see Ruelle [532])

����� � �� �
�

�����

�
�

dr� exp �������� � (H.1.1)

The free energy density is defined in the thermodynamic limit by

	�
� � lim
���

	��
� � lim
���
�����

�
�

��
ln�������
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where � � ��� is the density of the system. For a finite number of particles
we can write

����� � �� � exp ���� ����� � 	����� � (H.1.2)

where 
��� � 	��� means 
����� approaches 0 as � � �. With this free
energy, we can derive some interesting properties of a canonical system in
the thermodynamic limit.

For example, it can be shown that this free energy is a convex function of
the density � [532]:

����� � �� � ����� � ������ � �� � �������� (H.1.3)

for every ��� ��, and � where  � � � �. The equality holds in the case of a
first-order transition, if �� � �� � �� � ��� where ��� �� denote the density
of coexisting gas and liquid phases, respectively.

Another interesting result, which plays a central role on the following
pages, is the well-known saddle point theorem [533] (also called the steepest
descent method). This theorem is based on the observation that, for a macro-
scopic system (� very large) in equilibrium, the probability that the free en-
ergy density deviates from its minimum value is extremely small. Therefore,
when we calculate for such a system an ensemble average, we have to take
into account only those contributions where the free energy has its minimum
value. Assume that ����� � �� can be written as

����� � �� �

�
d��� � � � �d�� exp ���� ������� � � � � ��� � 	����� �

where ��� � � � � �� are variables that characterize the thermodynamic state of
the system. Furthermore, define

���� � min
������ ���

������ � � � � ���

and assume that ������ � � � � ��� and the term 	��� satisfy a few technical
conditions [533], which hold for most statistical mechanics systems. The
saddle point theorem states that, in the thermodynamic limit, the free energy
of the system is equal to this minimum value ���� or

lim
���
�	��


�
�

��
ln����� � �� � ����� (H.1.4)

Moreover, this saddle point theorem can also be used to calculate the
ensemble average of a quantity �:

������ � � � � ����� �
�

����� � ��

�
d��� � � � �d��

� ����� � � � � ��� exp ���� ������� � � � � ��� � 	����� � (H.1.5)
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In the thermodynamic limit, this ensemble average again has contributions
only from those configurations where ������ � � � � ��� has its minimum val-
ue. Let us define � as the collection of these minima:

� �

�
��� � � � � ��

�
�
�
�
������ � � � � ��� � min

������ ���
������ � � � � ���

�
�

We now can state the saddle point theorem in a convenient form by intro-
ducing a function ����� � � � � ��� � � with support on the surface � and
normalization �

�

d��� � � � �d������� � � � � ��� � ��

such that, for an arbitrary function 	,

�	���� � � � � ���� � lim
���

�	���� � � � � �����

�

�
�

d��� � � � �d������� � � � � ���	���� � � � � ���� (H.1.6)

H.1.2 The Free Energy Density in the Gibbs Ensemble

The Gibbs ensemble is introduced in section 8.2 as an 
�� � � ensemble to
which an additional degree of freedom is added: the system is divided into
two subsystems that have no interaction with each other. We can rewrite the
partition function of the canonical ensemble (H.1.1):

�
�� � �� �
�

���
�

��
���	

�



��

� ��
	

d��
�

dr���

�
dr����
 exp ��� ������

� ��
 � ��� � interactions between the two volumes�� � (H.1.7)

The difference between this equation and the partition function of the Gibbs
ensemble (8.2.1) is that, in equation (H.1.1), we have interactions between
the subsystems. In the case of short-range interactions, the last term in the
exponent of equation (H.1.7) is proportional to a surface term. This already
suggests that both ensembles should behave similarly in many respects. We
work out these ideas more rigorously in the following pages.

In the usual way, we define, as a free energy in the Gibbs ensemble,

�̄��� � lim
���
�����

�
�

��
ln ̄����� (H.1.8)

In the partition function of the Gibbs ensemble (8.2.1), we can substitute
equation (H.1.1):

̄�
�� � �� �

��
���	

��
	

d�� ���� ��� ���
 � ��� ����� ���
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Introducing � � ���� and � � ����� and assuming that the number of
particles is very large, we can then write

�̄���� � �� � ��

�
�

�

d�
��
�

d� �̄����� ��

where

�̄����� � � ������������������������

� exp
�
���

�
�	

�
�

�



�
� �� � ��	

�
�� �

� � �



�
� ����

��


Note that, in this equation, 	�
� is the free energy of a canonical system. So,
we can apply the saddle point theorem of the previous section (H.1.4) to
calculate the free energy density of the Gibbs ensemble 	̄�
�

	̄�
� � min
�����
�����

�
�	

�
�

�



�
� �� � ��	
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� � �
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��
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�����
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	̄���� �

We now have to find the surface � on which the function 	̄���� � reaches its
minimum. For this, we can use that 	�
� is a convex function of the density
(H.1.3). This gives, for 	̄���� �,

	̄���� � � 	

�
�
�

�

� �� � ��

� � �

� � �



�
� 	�
� (H.1.9)

We first consider the case where there is only one phase. For this case any
combination of � and � that results in densities 
� and 
� in the subsystems
different from 
 will give a higher free energy. So, the equality in equation
(H.1.9) holds only if

�

�

 �

� � �

� � �

� or � � �

Thus, when there is only one phase, the free energy of the Gibbs ensemble
has its minimum value (in the thermodynamic limit) when both boxes have
a density equal to the equilibrium density of the canonical ensemble. There-
fore, the surface � is given by

� � ����� � �� � � � 

Second, we consider the case of a first-order phase transition. Let 
 be
such that 
	 � 
 � 

� and let us choose � and � such that



 �
�

�

 � 
� � 
	 and 

 �

� � �

� � �

 � 
� � 
	 (H.1.10)
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For this case the equality in equation (H.1.3) holds, and we can write, for
�̄���� �,

�̄���� � � ������ � �� � �������

� ����� � �� � ������ (H.1.11)

Note that
���� � �� � ����� � �� (H.1.12)

which gives
�̄���� � � ����� (H.1.13)

It can be shown that, if ��� do not satisfy equation (H.1.10),

�̄���� � � �����

Therefore, the surface � in the case of a first-order phase transition is given
by

� �

�
���� �

�
�
�
�
�� �

�

�
� � ��� �� �

� � �

�� �
� � ��

�
� (H.1.14)

This result shows that, in the case of a first-order transition, the (bulk) free
energy of the Gibbs ensemble has its minimum value (in the thermodynamic
limit) for all values of ��� where there is vapor-liquid coexistence in both
boxes.

Equations (H.1.9) and (H.1.13) show that, in the thermodynamic limit,
the free energy of the Gibbs ensemble is equal to the free energy of the canon-
ical ensemble. To calculate an ensemble average, it remains to determine the
function 	���� � using equation (H.1.6).

In the case of a pure phase 	���� � needs to be of the form

	���� � � 
��� Æ��� ��� (H.1.15)

It is shown in the Appendix of [148] that, for an ideal gas, 
��� � ��We expect
that the same holds for an interacting gas. Figure H.1 shows a probability
plot in the ��� plane for a simulation of a finite system at high temperature.
This figure shows that � � �.

In the case of two phases, we will show that the system will split up into
a liquid phase, with density, ��, in one box, and a vapor phase, with density,
��, in the other box.

Until now we have ignored surface effects, which arise from the presence
of a liquid-vapor interface in the boxes. When the density in one box is
between the vapor and liquid density the system will form droplets of gas
or liquid. The interfacial free energy associated with these droplets has (in
the thermodynamic limit) a negligible contribution to the bulk free energy
of the Gibbs ensemble. Nevertheless, this surface free energy is the driving
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force that causes the system to separate into a homogeneous liquid in one
box and a homogeneous vapor phase in the other.

These surface effects are taken into account in the next significant term
in the expression for the free energy (H.1.2), which is the term due to the
surface tension. This gives, for the partition function,

����� � �� � exp ��� ������� �	� 
�	��� � (H.1.16)

where 	 denotes the area of the interface and � denotes the interfacial ten-
sion. For three-dimensional systems, in general this area will be proportional
to ����. Using this form of the partition function for the Gibbs ensemble,
equation (H.1.5) can be written as

�	���� ��� (H.1.17)

�

��
d�d�	���� � exp

�
��

�
������ �� ��������� � � 
������

��
����� � ��

�

where ���� � is a function of the order of unity.
We know from the saddle point theorem that the most important contri-

bution to the integrals comes from the region �� defined by equation (H.1.14).
Thus,

�	���� ���

�

��
�

d�d�	���� � exp
�
��

�
������ �� ��������� � � 
������
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��
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�

��
�

d�d�	���� � exp
�
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�
��������� � � 
������

��
��
�

d�d� exp
�
��

�
��������� � � 
������

�� (H.1.18)

and applying the saddle point theorem again

�	���� ��� �

��
��

d�d�	���� � exp
�
����������� � � 
������

�

��
��

d�d� exp
�
����������� � � 
������

� (H.1.19)

and
lim
���

�	���� ��� �

��
��

d�d������ �	���� �� (H.1.20)

where the surface �� is now given by

�� �

�
���� �

�
�
�
����� � � min

�̄��̄
��̄� �̄�

�
� (H.1.21)

In the infinite system it is easily seen that the area of the interface is 0, if
box 1 contains only gas (liquid) and box 2 only liquid (gas). Therefore, the
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Figure H.1: Probability plot in the ��� plane (� � ����, � � ���� and
� � �� � �����, � � �� � �����) for a Lennard-Jones fluid at various tem-
peratures: (left) high temperature (� � �	), (middle) well below the critical
temperature (� � �
��), and (right) slightly below the critical temperature
(� � �
�	).

surface � contains only two points, which correspond to the vapor and
liquid densities:

� �

�
���� �
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�
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It is straightforward to show that this surface gives, for ����� �,
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 (H.1.23)

We have shown more formally that the free energy density for the Gibbs
ensemble, as defined by equation (H.1.8), becomes identical to the free en-
ergy density of the canonical ensemble. Furthermore, it is shown that, at
high temperatures, � � �; that is, the densities in the two subsystems of the
Gibbs ensemble are equal and equal to the density in the canonical ensemble
(see Figure H.1).

In the case of a first-order phase transition, if surface terms would be
unimportant, then � and � are restricted to the area defined by equation
(H.1.14):

�� �
�

�
� � �� � �� and �� �

� � �

� � �
� � �� � ��
 (H.1.24)

If we take surface effects into account, this surface (equation (H.1.24)) re-
duces to two points in the ��� plane. The densities of these points corre-
spond to the density of the gas or liquid phase in the canonical ensemble.
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It is interesting to compare this with the results of an actual simulation
of a finite system. In Figure H.1, the results are shown for a simulation at a
temperature well below the critical point. Under such conditions, the sur-
face reduces to two points. This should be compared to the results of a sim-
ulation close to the critical point (Figure H.1). Under such conditions the
interfacial tension is very small and we see that the simulation samples the
entire surface �. Note that due to the finite size of this system, fluctuations
are also possible in which the density of a subsystem becomes greater or
smaller than the density of the liquid or gas phase.

H.2 Chemical Potential in the
Gibbs Ensemble

One of the steps in the Gibbs ensemble involves the insertion of a particle
in one of the boxes. During this step, the energy of this particle has to be
calculated (see section 8.3.4). Since this energy corresponds to the energy of
a test particle, we can use the Widom insertion method [172] to calculate the
chemical potential without additional costs [147]. At this point it is impor-
tant to note that the Gibbs method requires no computation of the chemical
potentials. However, to test whether the system under consideration has
reached equilibrium or for comparison with other results, it is important
to calculate the chemical potential of the individual phases correctly. The
original Widom expression is valid only in the ��� � � ensemble and can be
modified for applications in other ensembles (see section 7.2.1). Here we
derive an expression for the chemical potential for the Gibbs ensemble. We
restrict ourselves to temperatures sufficiently far below the critical tempera-
ture that the two boxes, after equilibration, do not change identity. For the
more general case, we refer to [203].

If we rescale the coordinates of the particles with the box length, the par-
tition function for the Gibbs ensemble (8.2.1) becomes

�̄����� �

�

������

��

����

�
�

��

� ��
�

d�����
� ������

����

�

�
ds��� exp ��	�������

�
ds����� exp ��	����� ����

�

��
����

��
�

d�����
� �� ����

���������� ������� � ��� ������

(H.2.1)

where s � r
� is the scaled coordinates of a particle, � is the box length of
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the subsystem in which the particle is located, and ������ ��� is the partition
of the canonical ensemble (see also section H.1.2).

The chemical potential of box 1 can be defined as

�� � ���� ln
��

����

��
�

d�����
� ������

����

�

�
����� � ��� ��

������ ���

�
���� � ��� �� ���	 (H.2.2)

For the ratio of the partition functions of box 1, we can write

����� � ��� ��

������ ���
�

��

��� � ��
�
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ds��� exp ����������
�

(H.2.3)

in which we have used the notation

����� � �� � ���� � �������

where ���� is the test particle energy of a (ghost) particle in box 1. We can
write equation (H.2.2) as an ensemble average restricted to box 1:

�� � ���� ln
�


�

�
��

�� � �
exp

�
������

��
Gibbs� box 1

� (H.2.4)

where  � � � �Gibbs� box i denotes an ensemble average in the Gibbs ensemble
restricted to box � (note that this ensemble average is well defined if the
boxes do not change identity during a simulation [203]).
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Appendix I

Overlapping Distribution for
Polymers

Let us first consider how the basic idea behind the overlapping distribution
method can be applied to the Rosenbluth insertion scheme. The simplest
approach would be to consider the histogram of the potential energy change
on addition or removal of a chain molecule (see section 7.2.3). However,
for chain molecules, this approach differs from the original Shing-Gubbins
approach in that it has little, if any, diagnostic value. For instance, if we con-
sider the chemical potential of hard-core chain molecules, the distributions
of �� will always overlap (namely, at �� � �), even in the regime where the
method cannot be trusted. Here, we shall describe an overlapping distribu-
tion method based on histograms of Rosenbluth weights [305]. This method
will prove to be a useful diagnostic tool.

Consider again a model with internal potential energy �int and external
potential energy �ext. In what follows, we shall compare two systems. The
first, denoted by 0, contains � chain molecules (� � �). The second system,
denoted by 1, contains ��� chain molecules. In addition, both systems may
contain a fixed number of other (solvent) molecules. Let us first consider
system 1. Around every segment � of a particular chain molecule (say, �),
we can generate � � � trial directions according to an internal probability
distribution given by equation (11.2.19). Note that the set does not include
the actual orientation of segment �. We denote this set of trial orientations by

��rest���� �

����

� �
��

���� � �

where the subscript rest indicates that this set excludes the actual segment
�. The probability of generating this set of trial directions is given by 	rest���,
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given by equation (11.2.19). Having thus constructed an umbrella of trial di-
rections around every segment � � � � �, we can compute the Rosenbluth
weight �� of molecule �. Clearly, �� depends on all coordinates of the re-
maining � molecules (for convenience, we assume that we are dealing with
a neat liquid), on the position r� and conformation �� of molecule �, and on
the � sets of � � � trial directions:

��rest� �

��

���

���rest����

We now define a quantity � through

� � ln���
���� ��rest���

where we use to denote the translational coordinates r and conformational
coordinates � of a molecule. Next, consider the expression for the probability
density of �, 	����:

	���� �

�
d ���d��rest� exp

�
�
�� ����

���

��� �rest���Æ��� ln���

����

�

where

���� �

�
d ���d��rest� exp

�
�
�� ����

� ��
���

�rest���

�

�
� � �

�
d ��� exp

�
�
�� ����

�
�

The second line of this equation follows from the fact that all �int��� are nor-
malized. We shall now try to relate 	���� to an average in system 0 (i.e., the
system containing only � chain molecules). To this end, we write �� ����

as �� �� = ex�
�� �� + int� ��. Second, we use the fact that

exp ��
int���� � �id �

��
���

�int����

where

�id �

�
d��

��
���

exp ��
int���� �

Our expression for 	���� now becomes

	���� �
�id

����

�
d �dr�d��trial� exp

�
�
�� ��

�

�

��
���

�trial��� exp ��
ex���� Æ��� ln����
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We use the symbol ��trial� to denote the set of all trial segments, that is, the
“umbrella” of trial directions around all segments of the chain molecule, plus
the segments themselves. Next, every term exp����ex���� is multiplied and
divided by ��, defined as

�� �

��

� �
��

exp����ext��
����

This allows us to write, for �����,

����� �
��id

����

�

�

trials

�
d �ds�d��trial� exp

�
���� ��

�
�sel� ����Æ ��� ln��� 	

where we have transformed from real coordinates r� to scaled coordinates
s� by factoring out �, the volume of the system. Here, �sel� �� denotes the
probability of selecting the actual conformation of the molecule from the
given set of trial segments according to the rule given in equation (11.2.20).
Finally, we multiply and divide by �� and employ the fact that the Æ func-
tion ensures that�� = exp���:

����� � e�
�
��id��

����

�

�

�
trials

�

 �
s�
��trial� exp����� ����sel� ��Æ��� ln���

��
�

Finally, we obtain

����� � e�
��id��

����
�����

or
ln ����� � �� ��ex � ln������

Hence, by constructing a histogram of ln� both in system 0 (with  chains)
and in system 1 (with  � � chains), we can derive the excess chemical
potential of the chain molecules by studying ln ����� � ln�����. As in the
original Bennett/Shing-Gubbins scheme [182–184], the method works only
if there is a range of � values where we have good statistics on both ����� and
�����. The advantage of this overlapping distribution scheme over the sim-
ple Rosenbluth particle insertion method is that, with the present method,
sampling problems for long chains will manifest themselves as a breakdown
of the overlap of �� and ��. Figure I.1 shows an example of an application
of this overlapping distribution method to hard-sphere polymers.
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Figure I.1: The functions ��ln�� � ���ln��� �

�
ln� , ��ln�� � ���ln���

�

�
ln� for fully flexible chains of hard sphere of length (left) � � � and (right)

� � �� in a hard-sphere fluid at density ��� � 	
�. Note that the overlap
between the distributions decreases as the chains become longer. The differ-
ence ��ln�� � ��ln�� is the overlapping distribution estimated for ��ex.
For the sake of comparison, we also show the value for ��ex, obtained using
the Rosenbluth test particle insertion method (dashed lines).



Appendix J

Some General Purpose
Algorithms

This Appendix describes a few algorithms used in the main text.

Algorithm 41 (Selection of Trial Orientations)

SUBROUTINE select(w,sumw,n) selects a trial position with
prob. ���� � �����

�
�
����

ws=ranf()*sumw
cumw=w(1)
n=1
do while (cumw.lt.ws)

n=n+1
cumw=cumw+w(n)

enddo
return � is the selected trial position
end

Comments to this algorithm:

1. This subroutine selects a trial position with probability

���� �
����

��

�������
�

����

sumw
�

2. Note that for large values of � bisection [33] can be more ef cient.
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Algorithm 42 (Random Vector on a Unit Sphere)

SUBROUTINE ranor(bx,by,bz) generates a random vector
ransq=2. on a unit sphere
do while (ransq.ge.1)

ran1=1.-2.*ranf()
ran2=1.-2.*ranf()
ransq=ran1*ran1+ran2*ran2

enddo
ranh=2.*sqrt(1.-ransq)
bx=ran1*ranh
by=ran2*ranh
bz=(1-2.*ransq)
return
end

Comment to this algorithm:

1. The algorithm is based on [19] (p. 349).

Algorithm 43 (Generate Bond Length ith Harmonic Springs)

SUBROUTINE bondl(l) generate the bond length
assume harmonic springs.

sigma=sqrt(1./(beta*kv)) � � �����

a=(l0+3.*sigma)**2
ready=.false.
do while (.not.ready)

call gauss(sigma,l0,l) generate � with a Gaussian distr.
if (ranf().le.l*l/a) with mean l0 and

+ ready=.true. standard deviation sigma
enddo correct not being truly Gaussian
return
end

Comment to this algorithm:

1. The bond length has the following distribution:

���� � exp���������� � ���
��dl � �� exp���������� � ���

��d��

This distribution is close to a Gaussian generated by gauss (Algorithm 44)
but not identical; we corr ect the Gaussian distribution for this, using the
method described in [19] (p. 349).
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Algorithm 44 (Gaussian Distribution)

SUBROUTINE gauss(sigma,l0,l) generate � Gaussian distributed
with mean �� and standard
deviation �

r=2.
do while (r.ge.1.)

v1=2.*ranf()-1.
v2=2.*ranf()-1.
r=v1*v1+v2*v2

enddo
l=v1*sqrt(-2.*log(r)/(r)) � has now zero mean
l=l0+sigma*l and unit variance
return
end

Comment to this algorithm:

1. This algorithm is based on numerical recipes [33] (p. 203).

Algorithm 45 (Generate Bond Angle)

SUBROUTINE bonda(xn,b,i) generate a bond angle pre-
scribed by the internal inter-

ready=.false. actions
do while (.not.ready)
call ranor(b) unit vector on a sphere
dx1x2=xn(i-1)-xn(i-2) vector r�� � r��� � r���
dx1x2=dx1x2/|dx1x2| normalize vector
phi=acos(b � dx1x2) calculate the bond angle �

ubb=ubb(phi) bond-bending energy
if (ranf().lt.exp rejection test

+ (-beta*ubb))ready=.true.
enddo
return
end

Comment to this algorithm:

1. The algorithm uses the acceptance-r ejection method (see [33]). The subrou-
tine ranor generates a random vector on a unit sphere (Algorithm 42), the
function ubb gives the bond-bending energy for the given angle.
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Algorithm 46 (Generate Bond and Torsion Angle)

SUBROUTINE tors bonda(xn,b,i) generate a vector on unit sphere
with torsional angle and bond-
bending angle prescribed by tor-

ready=.false. sion and bond-bending potentials
do while (.not.ready)

call ranor(b) generate unit vector on a sphere
dx1x2=xn(i-1)-xn(i-2) vector r�� � r��� � r���
dx1x2=dx1x2/|dx1x2| normalize vector
dx2x3=xn(i-2)-xn(i-3) vector r�� � r��� � r���
dx2x3=dx2x3/|dx2x3| normalize vector
phi=acos(b � dx1x2) calculate the bond angle �
ubb=ubb(phi) bond-bending energy
xx1=b � dx1x2 cross product: b and r��
xx2=dx1x2 � dx2x3 cross product: r�� and r��
theta=acos(xx1 � xx2)
utors=utors(theta) determine torsion energy
usum=ubb+utors
if (ranf().lt.exp rejection test

+ (-beta*usum))ready=.true.
enddo
return
end

Comments to this algorithm:

1. The algorithm uses the acceptance-r ejection method (see [33]).

2. In the literature, the torsion angle is sometimes de ned differently.

3. The subroutine ranor generates a random vector on a unit sphere (Algo-
rithm 42), and the function ubb gives the bond-bending energy for the given
angle �, and the function utors gives the torsion for the angle �.
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Small Research Projects

In this Appendix we list a few small research projects. These projects in-
volve the development of your own program. A possible strategy is to use
the source code of one of the Case Studies as the starting point. It is our
experience that the completion of such a research project takes about two
weeks, depending on your experience.

K.1 Adsorption in Porous Media

In this project we will investigate the adsorption behavior in porous media.
As a model we use a slit-like pore. The interactions with the pore are given
by

� ��� �

�
� � � � � �� otherwise � (K.1.1)

where � is the width of the slit. We will investigate the adsorption of methane,
which we model with a Lennard-Jones potential. The starting point is Case
Study 9, which uses a program to simulate the Lennard-Jones fluid in the
grand-canonical ensemble. The project is to develop a program to simulate
an adsorption isotherm of methane in the slit-like pore. Before starting to
program you may want to think about the following points:

1. What is the geometry of the system and how should one apply the
periodic boundary conditions?

2. What is the type of Lennard-Jones potential (truncated, truncated and
shifted, with or without tail corrections)? And what are the parameters
for modeling methane?

3. How is an adsorption isotherm defined thermodynamically?
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With your program, try to answer the following questions:

1. Compute the density profile (density as function on the distance � be-
tween the plates) for � � ����� , and �� for � � ��	 and 
 � ���. The
total number of particles should be of the order of 100 to 500 for the
widest slit.

2. Compute the excess chemical potential and chemical potential as a
function of the distance between the plates for � � ����� , and �� for
� � ��� and 
 � ���. Try to explain the differences.

3. Compute the adsorption isotherms for � � � and � for 
 � ��� and ���.
Try to explain the results.

K.2 Transport Properties in Liquids

Molecular Dynamics simulations can be used to compute the transport prop-
erties of liquids. Examples of these transport properties are the (self-) diffu-
sion coefficient and the viscosity. In Case Study 5 the results for the diffusion
coefficient are shown. In this project we extend these results to mixtures of
Lennard-Jones (LJ) molecules. Before starting to program you may want to
think about the following points:

1. The generalization of the diffusion coefficient from a pure component
to a mixture is not trivial. Try to find in the literature how one should
define a diffusion coefficient of a mixture and how can one compute
this in a simulation. See, for example, refs. [79, 534].

2. What is the type of LJ potential (truncated, truncated and shifted, with
or without tail corrections)? And what are the parameters for model-
ing argon and krypton?

With your program, try to answer the following questions:

1. Compute the pressure, viscosity, and diffusion coefficient of the LJ
fluid at 
 � ������� , and ��� for � � ��	.

2. Compute the diffusion coefficients ��, ��, and �� for a mixture of
50% -50% LJ particles in which the components 1 and 2 have the same
interactions (��� � ��� � ��� and ��� � ��� � ���) but carry a dif-
ferent color. This means that the particles are labeled. Experimentally
this could be done by radioactive labeling.

3. Compute the pressure, viscosity, and diffusion coefficient of the LJ
fluid at 
 � ������� , and ��� for � � ��	. Compute the diffusion co-
efficients ��, ��, and �� for a mixture of 50-50% LJ particles, but
now for a system of 50% argon and 50% krypton (use the parameters of
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argon to compute the reduced temperatures). Does the Einstein equa-
tion for the diffusivity hold for this system?

K.3 Diffusion in a Porous Media

The behavior of liquid in confined geometries is different from the behavior
in the bulk liquid. In the project we investigate the diffusion coefficient in
a cylindrical pore. The starting point is Case Study 5 in which the dynamic
properties of a Lennard-Jones fluid are simulated. This Case Study can be
used as a starting point for our study. The interactions with the walls are
described with a repulsive potential:

� ��� �

Æ
�
�

�

���

���
� � � � �� � � �

� (K.3.1)

where � is a radius characterizing the size of the pore and the center of the
cylinder is located at � � � and � � �, � � �. Some questions that one should
answer before one starts programming are the following:

1. Is the potential for the interactions with the walls appropriate for a
Molecular Dynamics simulation?

2. What is the volume of the pore as a function of the parameter �?

3. What is the dimension of our problem? Do we have diffusion in 1, 2,
or 3 dimensions?

In the first part of the project we study the diffusion in a smooth pore as
defined by the above potential as a function of the pore diameter.

1. Compute the diffusion coefficient of a bulk Lennard-Jones liquid for
� � �	
 and � � �	� and 	�. Since the program uses an ��� ensem-
ble, it is not possible to simulate at exactly the requested temperature.
However, one can ensure to be close to this temperature by an appro-
priate equilibration of the system (this is also the case for the following
two questions) during the first part of the MD simulation.

2. Compute the density as a function of the distance from the center of
the pore for � � �	
 and � � �	� and 	� and � � � and �. Interpret the
results.

3. Compute the diffusion coefficient for � � �	
 and � � �	� and � � 	�

and � � �, �, and . Interpret the results. The interpretation is not
trivial.

4. The above calculations have been performed using the ��� ensemble.
This implies that there is no coupling with the atoms of the walls. In a
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real system the walls are not smooth and can exchange heat with the
adsorbed molecules. A possible way of modeling this is to assume that
we have an Andersen thermostat in the boundary layer with the wall.
Investigate how the results depend on the thickness of the boundary
layer and the constant � of the Andersen algorithm.

The next step is to model the corrugation caused by the atoms. This
corrugation could be a term:

� ���� � � � sin� ������� exp

�
�

�
� � 	

	�

���
� (K.3.2)

where � is the distance to the wall, and �� is a term characterizing the size of
the atoms of the wall and� is the strength of the interaction. The exponential
is added to ensure that the potential is localized close to the walls of the
cylinder. Investigate the diffusion coefficient as a function of the parameters
�� and � both in the 
�� and in the Andersen thermostat cases.

K.4 Multiple-Time-Step Integrators

The time step in a Molecular Dynamics simulation strongly depends on the
steepness of the potential energy surface. However, most potentials like
the Lennard-Jones potential are steep at short distances. As short-range
interactions can be computed very fast, it would be interesting to use a
multiple-time-step integration algorithm, in which short-range (computa-
tionally cheap) interactions are computed every time step and in which long-
range (computationally expensive) interactions are evaluated every  time
steps ( � �). Recently, there has been a considerable effort to construct
time-reversible multiple-time-step algorithms [71, 85].

1. Why is it important to use time-reversible integration schemes in MD?

2. Modify Case Study 4 in such a way that pairwise interactions are cal-
culated using a Verlet neighbor list. For every particle, a list is made of
neighboring particles within a distance of �cut � �. All lists have to be
updated only when the displacement of a single particle is larger than
���. Hint: The algorithm on microfiche F.19 of the book of Allen and
Tildesley [19, 535] is a good starting point.

3. Investigate how the CPU time per time step depends on the size of �
for various system sizes. Compare your results with Table 5.1 from
ref. [19].

4. Modify the code in such a way that the 
�� multiple-time-step algo-
rithm of ref. [85] is used to integrate the equations of motion. You will
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have to use separate neighbor lists for the short-range and the long-
range parts of the potential.

5. Why does one have to use a switching function in this algorithm? Why
is it a good idea to use a linear interpolation scheme to compute the
switching function from ref. [85]?

6. Make a detailed comparison between this algorithm and the standard
Leap-Frog integrator (with the use of a neighbor list) at the same en-
ergy drift.

K.5 Thermodynamic Integration

The difference in free energy between state � and state � can be calculated
by thermodynamic integration:

�� � �� �

����
���

��

�
�� ���

��

�
�

� (K.5.1)

in which � � � in state � and � � 	 in state �. In order to calculate the excess
chemical potential of a Lennard-Jones system, we might use the following
modified potential [536]:

� �
�� � � ��

�
��
�



���
� ��

�



���
� (K.5.2)

Recall that the excess chemical potential is the difference in chemical poten-
tial between a real gas (� � �) and an ideal gas (� � 	).

1. Make a plot of the modified LJ potential for various values of �.

2. Show that �
���

���

�
� 	 (K.5.3)

when
� � ��� ��� �� � �� � (K.5.4)

3. Derive equation (K.5.1).

4. Modify the code of Case Study 1 for this modified potential.

5. Perform the thermodynamic integration and compare your results with
the conventional particle insertion method.

6. Calculate the chemical potential as a function of the density by scaling
.
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Appendix L

Hints for Programming

The official rules for writing a program are that it should involve three per-
sons. One for the design, one for the implementation, and one for the testing
of it. Most probably you are doing all steps on your own! The reason there
is a need for three persons is that if you do not realize a certain aspect in the
design phase, it is very likely that you do not think about this either while
implementing or testing a program. The following tips may be useful in
developing a program:

� First try to understand every line of the starting code. If you do not
understand the starting point, it is impossible to make modifications.

� Try to develop a modification plan consisting of the following steps:

1. Make a copy of the program in a new directory.
2. Describe in words why and how a certain subroutine needs to be

modified.
3. Start the programming by writing comment lines describing what

the modifications are and make the modifications according to
your written instructions. If you find during the implementa-
tions that the original ideas were not correct, describe this in your
notes. This is to ensure that you think before you do. This may
sound obvious and it is, but as you may find out it is a very diffi-
cult rule to stick to.

4. Do not start modifying the entire program. Try to do it in steps.
Try to test the modifications as soon as possible. For example, if
the program is a Gibbs ensemble simulation you probably have
to modify the particle displacement routine, the volume change,
and the particle exchange. However, there is no need to do this
in all subroutines at the same time. First modify the particle dis-
placement and make all the tests you can (for example, energy
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conservation) without using the volume displacement and parti-
cle exchange subroutines, before you continue to the next subrou-
tine.

5. The first time you run the modified code, you might want to use
array-bound checking (usually, this option is not used by default).
This will slow down the code, but it is very useful for detecting
errors. It is also very useful to use code checkers like, for example,
ftnchek [537].

6. Try to find limiting cases for which your program gives known
results. For example, if you have written a program for a mixture
the results should be identical to the pure component results if
all interaction parameters are taken to be identical. Or does the
program give in the ideal gas limit the same results as the ideal
gas results that can be obtained from theory? This is, of course,
not alway possible, but if it is possible it is a good test case.

7. For a Molecular Dynamics program, it is a good idea to check
the conservation of the total energy. In most systems, the total
impulse should also be conserved (usually zero).

8. In a Monte Carlo program, one has to calculate energy differences
for each trial move. It is a good idea to write a subroutine that
rigorously calculates the total energy of the system without using
any sophisticated tricks. In this way, the sum of the initial energy
and all energy differences of all accepted trial moves should equal
the total energy; any difference should only be due to the limited
accuracy of the computer.

9. Especially for lattice simulations, the result of a MC simulation
might be dependent on the random number generator that is used.
In principle, the perfect random number generator does not ex-
sist, but some are less worse than others. It is always a good idea
to do a MC simulation with two different random number gener-
ators. See, for example, ref. [538] for a discussion about this topic.

� If you see numbers try to understand them and check whether they
are reasonable. Since we use reduced units most properties are in the
range ���� ��; this implies that if we find ���� it is probably all right,
but if we find ���� ��

�� you should be suspicious.

� If you are writing a parallel code, we strongly recommend you make a
detailed workplan before you start programming. A common mistake
is that you forget to pass system variables (for example, temperature
or masses of the particles) to all processors.
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[376] T. Biben, P. Bladon, and D. Frenkel. Depletion effects in binary hard-sphere
fluids. J. Phys.: Condens. Matt., 8:10799–10821, 1996.

[377] P.G. Bolhuis and D. Frenkel. Numerical study of the phase diagram of a mix-
ture of spherical and rodlike colloids. J. Chem. Phys., 101:9869–9875, 1995.

[378] J.C. Shelley and G.N. Patey. A configurational bias Monte Carlo method for
ionic solutions. J. Chem. Phys., 100:8265–8270, 1994.

[379] K. Esselink, L.D.J.C. Loyens, and B. Smit. Parallel Monte Carlo simulations.
Phys. Rev. E, 51:1560–1568, 1995.

[380] L.D.J.C. Loyens, B. Smit, and K. Esselink. Parallel Gibbs-ensemble simulations.
Mol. Phys., 86:171–183, 1995.

[381] K. Esselink, P.A.J. Hilbers, S. Karaborni, J.I. Siepmann, and B. Smit. Simulating
complex fluids. Mol. Sim., 14:259–274, 1995.

[382] T.J.H. Vlugt, M.G. Martin, B. Smit, J.I. Siepmann, and R. Krishna. Improving
the efficiency of the cbmc algorithm. Mol. Phys., 94:727–733, 1998.

[383] B. Smit and T.L.M. Maesen. Commensurate “freezing” of alkanes in the chan-
nels of a zeolite. Nature, 374:42–44, 1995.

[384] R. Evans. Microscopic theories of simple fluids and their interfaces. In J. Char-
volin, J.F. Joanny, and J. Zinn-Justin, editors, Liquides aux Interfaces/Liquids at
interfaces, pages 1–98. Les Houches, Session XLVIII, 1988, North Holland, Am-
sterdam, 1990.

[385] S.J. Gregg and K.S.W. Sing. Adsorption, Surface Area and Porosity. Academic
Press, London, 1982.

[386] J.I. Siepmann, S. Karaborni, and B. Smit. Simulating the critical properties of
complex fluids. Nature, 365:330–332, 1993.

[387] W.J.M. van Well, J.P. Wolthuizen, B. Smit, J.H.C. van Hooff, and R.A. van San-
ten. Commensurate freezing of n-alkanes in silicalite. Angew. Chem. (Int. Ed.),
34:2543–2544, 1995.

[388] R. Krishna, B. Smit, and T.J.H. Vlugt. Sorption-induced diffusion-selective sep-
aration of hydrocarbon isomers using silicalite. J. Phys. Chem. A, 102:7727–7730,
1998.

[389] G.C.A.M. Mooij. Novel Simulation Techniques for the Study of Polymer Phase Equi-
libria. Ph.D. thesis, Rijksuniversiteit Utrecht, The Netherlands, 1993.

[390] B. Smit, S. Karaborni, and J.I. Siepmann. Computer simulations of vapour-
liquid phase equilibria of n-alkanes. J. Chem. Phys., 102:2126–2140, 1995. Erra-
tum: J. Chem. Phys. 109:352, 1998.

[391] M. Laso, J.J. de Pablo, and U.W. Suter. Simulation of phase equilibria for chain
molecules. J. Chem. Phys., 97:2817–2819, 1992.



610 Bibliography

[392] J.I. Siepmann, S. Karaborni, and B. Smit. Vapor-liquid equilibria of model alka-
nes. J. Am. Chem. Soc., 115:6454–6455, 1993.

[393] C. Tsonopoulos. Critical constant of normal alkanes from methane to polyethy-
lene. AIChE Journal, 33:2080–2083, 1987.

[394] W.L. Jorgensen, J.D. Madura, and C.J. Swenson. Optimized intermolecular
potential function for liquid hydrocarbons. J. Am. Chem. Soc., 106:6638–6646,
1984.

[395] S. Toxvaerd. Molecular dynamics calculation of the equation of state of alka-
nes. J. Chem. Phys., 93:4290–4295, 1990.

[396] C. Tsonopoulos and Z. Tan. Critical constant of normal alkanes from methane
to polyethylene II. Application of the Flory theory. Fluid Phase Equilibria,
83:127–138, 1993.

[397] M.J. Anselme, M. Gude, and A.S. Teja. The critical temperatures and densities
of the n-alkanes from pentane to octadecane. Fluid Phase Equilibria, 57:317–326,
1990.

[398] Y.-J. Sheng, A.Z. Panagiotopoulos, S.K. Kumar, and I. Szleifer. Monte Carlo
calculation of phase equilibria for a bead-spring polymeric model. Macro-
molecules, 27:400–406, 1994.

[399] F.A. Escobedo and J.J. de Pablo. Simulation and prediction of vapour-liquid
equilibria for chain molecules. Mol. Phys., 87:347–366, 1996.

[400] M. Mondello and G.S. Grest. Molecular dynamics of linear and branched alka-
nes. J. Chem. Phys., 103:7156–7165, 1995.

[401] M. Mondello, G.S. Grest, E.B. Webb III, and P. Peczak. Dynamics of n-alkanes:
Comparison to Rouse model. J. Chem. Phys., 109:798–805, 1998.

[402] J.D. Moore, S.T. Cui, H.D. Cochran, and P.T. Cummings. Rheology of lubri-
cant basestocks: A molecular dynamics study of c-30 isomers. J. Chem. Phys.,
113:8833–8840, 2000.

[403] C. McCabe, S.T. Cui, P.T. Cummings, P.A. Gordon, and R.B. Saeger. Examining
the rheology of 9-octylheptadecane to giga-pascal pressures. J. Chem. Phys.,
114:1887–1891, 2001.

[404] M.G. Martin and J.I. Siepmann. Transferable potentials for phase equilibria
(trappe): I. united-atom description of n-alkanes. J. Phys. Chem. B, 102:2569–
2577, 1998.

[405] S.K. Nath, F.A. Escobedo, and J.J. de Pablo. On the simulation of vapor-liquid
equilibria for alkanes. J. Chem. Phys., 108:9905–9911, 1998.

[406] C.D. Wick, M.G. Martin, and J.I. Siepmann. Transferable potentials for phase
equilibria. 4. United-atom description of linear and branched alkenes and
alkylbenzenes. J. Phys. Chem. B, 104:8008–8016, 2000.

[407] S.K. Nath, B.J. Banaszak, and J.J. de Pablo. A new ninted atom force field for
�-olefins. J. Chem. Phys., 1114:3612–3161, 2001.

[408] M.E. van Leeuwen and B. Smit. Molecular simulations of the vapour-liquid
coexistence curve of methanol. J. Phys. Chem., 99:1831–1833, 1995.

[409] B. Chen, J.J. Potoff, and J.I. Siepmann. Monte Carlo calculations for alcohols
and their mixtures with alkanes. transferable potentials for phase equilibria. 5.



Bibliography 611

United-atom description of primary, secondary, and tertiary alcohols. J. Phys.
Chem. B, 105:3093–3104, 2001.

[410] S. Consta, N.B. Wilding, D. Frenkel, and Z. Alexandrowicz. Recoil growth:
An efficient simulation method for multi-polymer systems. J. Chem. Phys.,
110:3220–3228, 1999.

[411] S. Consta, T.J.H. Vlugt, J. Wichers Hoeth, B. Smit, and D. Frenkel. Recoil
growth algorithm for chain molecules with continuous interactions. Mol. Phys.,
97:1243–1254, 1999.

[412] H. Meirovitch. Statistical properties of the scanning simulation method for
polymer-chains. J. Chem. Phys., 89:2514–2522, 1988.

[413] Z. Alexandrowicz and N.B. Wilding. Simulation of polymers with rebound
selection. J. Chem. Phys., 109:5622–5626, 1998.

[414] M. Falcioni and M.W. Deem. A biased Monte Carlo scheme for zeolite structure
solution. J. Chem. Phys., 110:1754–1766, 1999.

[415] A.P. Lyubartsev, A.A. Martsinovski, S.V. Shevkunov, and P.N. Vorontsov-
Vel’yaminov. New approach to Monte Carlo calculation of the free energy:
Method of expanded ensembles. J. Chem. Phys., 96:1776–1783, 1992.

[416] E. Marinari and G. Parisi. Simulated tempering: A new Monte Carlo scheme.
Europhys. Lett., 19:451–458, 1992.

[417] C.J. Geyer and E.A. Thompson. Annealing markov chain Monte Carlo with
applications to the ancestral inference. J. Am. Stat. Soc., 90:909–920, 1995.

[418] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[419] C.J. Geyer. Markov chain Monte Carlo maximum likelihood. In Computing
Science and Statistics, pages 156–163. Proceedings of the 23rd Symposium on
the Interface, 1991.

[420] D.D. Frantz, D.L. Freeman, and J.D. Doll. Reducing quasi-ergodic behaviour in
Monte Carlo simulations by J-walking: Application to atomic clusters. J. Chem.
Phys., 93:2769–2784, 1990.

[421] I. Nezbeda and J.A. Kolafa. A new version of the insertion particle method
for determining the chemical potential by Monte Carlo simulation. Mol. Sim.,
5:391–403, 1991.

[422] K. Shing and A.Z. Azadipour. A new simulation method for the grand canon-
ical ensemble. Chem. Phys. Lett., 190:386–390, 1992.

[423] L.F. Vega, K.S. Shing, and L.F. Rull. A new algorithm for molecular dynamics
simulations in the grand canonical ensemble. Mol. Phys., 82:439–453, 1994.

[424] Q.L. Yan and J.J. de Pablo. Hyper-parallel tempering Monte Carlo: Application
to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys.,
111:9509–9516, 1999.

[425] Q.L. Yan and J.J. de Pablo. Hyperparallel tempering Monte Carlo simulation
of polymeric systems. J. Chem. Phys., 113:1276–1282, 2000.

[426] A. Bunker and B. Dünweg. Parallel excluded volume tempering for polymer
melts. Phys. Rev. E, 63:art. no. 010902, 2001.

[427] S. Auer and D. Frenkel. Prediction of absolute crystal-nucleation rate in hard-
sphere colloids. Nature, 409:1020–1023, 2001.



612 Bibliography

[428] N.B. Wilding. Critical-point and coexistence-curve properties of the Lennard-
Jones fluid: A finite-size scaling study. J. Phys.: Condens. Matter, 4:3087–3108,
1992.

[429] A.M. Ferrenberg and R.H. Swendsen. New Monte Carlo technique for study-
ing phase transitions. Phys. Rev. Lett., 61:2635–2638, 1988.

[430] S. Duane, A. Kennedy, B.J. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Phys. Lett. B., 195:216–222, 1987.

[431] B. Mehlig, D.W. Heermann, and B.M. Forrest. Exact Langevin algorithms. Mol.
Phys., 76:1347–1357, 1992.

[432] B. Mehlig, D.W. Heermann, and B.M. Forrest. Hybrid Monte Carlo method for
condensed matter systems. Phys. Rev. B, 45:679–685, 1992.

[433] B.M. Forrest and U.W. Suter. Generalized coordinate Hybrid Monte Carlo. Mol.
Phys., 82:393–410, 1994.

[434] G.M. Crippen. Conformational analysis by energy embedding. J. Comp. Chem.,
3:471–476, 1982.

[435] R.H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo
simulations. Phys. Rev. Lett., 58:86–88, 1987.

[436] D. Wu, D. Chandler, and B. Smit. Electrostatic analogy for surfactant assem-
blies. J. Phys. Chem., 96:4077–4083, 1992.

[437] B. Smit, K. Esselink, P.A.J. Hilbers, N.M. van Os, and I. Szleifer. Computer
simulations of surfactant self-assembly. Langmuir, 9:9–11, 1993.

[438] F.H. Stillinger. Variational model for micelle structure. J. Chem. Phys., 78:4654–
4661, 1983.

[439] G. Orkoulas and A.Z. Panagiotopoulos. Chemical potentials in ionic sys-
tems from Monte Carlo simulations with distance-biased test particle insertion.
Fluid Phase Equilibria, 93:223–231, 1993.

[440] G. Orkoulas and A.Z. Panagiotopoulos. Free energy and phase equilibria for
the restricted primitive model of ionic fluids from Monte Carlo simulations. J.
Chem. Phys., 101:1452–1459, 1994.

[441] D. Frenkel. Advanced Monte Carlo techniques. In M.P. Allen and D.J. Tildes-
ley, editors, Computer Simulation in Chemical Physics, pages 93–152. NATO ASI,
Kluwer, Dordrecht, 1993.

[442] R. Car and M. Parrinello. Unified approach for molecular dynamics and
density-functional theory. Phys. Rev. Lett., 55:2471–2474, 1985.

[443] J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen. Numerical integration of the
Cartesian equations of motion of a system with constraints: Molecular dynam-
ics of n-alkanes. J. Comp. Phys., 23:237–341, 1977.

[444] S.W. de Leeuw, J.W. Perram, and H.G. Petersen. Hamilton’s equations for con-
strained dynamical systems. J. Stat. Phys., 61:1203–1222, 1990.

[445] G. Ciccotti. Molecular dynamics simulations of nonequilibrium phenomena
and rare dynamical events. In M. Meyer and V. Pontikis, editors, Proceedings
of the NATO ASI on Computer Simulation in Materials Science, pages 119–137.
Kluwer, Dordrecht, 1991.



Bibliography 613

[446] G. Galli and A. Pasquarello. First-principle molecular dynamics. In M.P. Allen
and D.J. Tildesley, editors, Computer Simulation in Chemical Physics, pages 261–
313. NATO ASI, Kluwer, Dordrecht, 1993.

[447] D.K. Remler and P.A. Madden. Molecular dynamics without effective poten-
tials via the Carr-Parrinello approach. Mol. Phys., 70:921–966, 1990.
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[487] P. Español and P.B. Warren. Statistical mechanics of dissipative particle dy-
namics. Europhys. Lett., 30:191–196, 1995.
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Jones fluid, 100
Einstein crystal, 256
equation of state: Lennard-Jones,

51, 122, 133
equation of state: Lennard-Jones

chains, 340
Gibbs ensemble technique, 211
hard spheres, 256
harmonic oscillator, 155, 157
keep old configuration, 56
Lennard-Jones, 51, 54, 56, 98, 100,

101, 122, 123, 133, 142, 153,
175, 181, 211

Molecular Dynamics, 98, 100, 101
Monte Carlo technique, 51, 54, 56,

122, 123, 133, 211, 256
multiple time step, 427
Nosé-Hoover thermostat, 153
NPT ensemble, 122, 123
NVT ensemble, 51
overlapping distribution, 181
parallel tempering, 391
particle insertion method, 175
path ensemble, 456
phase equilibria: Lennard-Jones,

123, 211
rare events, 440, 456
recoil growth, 382
SHAKE, 427
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solid-liquid phase equilibrium of
hard spheres, 256

static properties of the Lennard-
Jones fluid, 98

trial configurations of ideal chains,
345

Verlet lists, 554
Widom method, 175

Cell lists, 550
Algorithm, 551–553
Case Study, 554

Chain molecules
chemical potential, 270
concerted rotation, 51
Example, 396

Chemical potential
acceptance ratio method, 189
Case Study, 175, 181
chain molecules, 270
excess chemical potential, 174, 211
finite-size corrections, 178
Gibbs ensemble, 211
ideal gas, 129, 560
incremental, 270
Lennard-Jones, 175, 181
mixtures, 226
modified Widom method, 270
multiple-histograms, 183
NPT ensemble, 177
NVE ensemble, 178
NVT ensemble, 174
overlapping distribution, 179, 282
particle insertion method, 173, 174
recursive sampling, 283
Rosenbluth sampling, 279
self-consistent histogram method,

184
tail correction, 176
thermodynamic integration, 269
umbrella sampling, 192
Widom method, 173, 174

Clausius-Clapeyron equation, 233
Cluster moves

Example, 403
Coarse-grained model, 465
Colloids, 465

Example, 363

Compressibility
phase space, 496

Concerted rotation, 51, 357
Configurational-bias Monte Carlo

acceptance rule, 332, 334, 339
Algorithm (alkane), 344, 347
Algorithm (ethane), 346
Algorithm (lattice), 334, 335
Algorithm (propane), 346
branched alkanes, 350
Case Study, 340, 345
Exercise, 384, 386
explicit-hydrogen model, 345
fixed endpoints (continuum), 355
fixed endpoints (lattice), 353
Gibbs ensemble technique, 370
justification (lattice), 334
justification (off-lattice), 339
lattice, 332
off-lattice, 336
super-detailed balance, 340
trial orientations, 341

Conformational-bias Monte Carlo
Recoil growth, versus, 374

Constrained dynamics
averages, 415
Case Study, 427
probability density, 418
SHAKE, 427

Coordinate transformation
canonical, 489

Coulomb potential, 292
Critical exponents, 217

Detailed balance, 42, 112
biased configurations, 323
canonical ensemble, 114
Case Study, 54
grand-canonical ensemble, 130
Metropolis scheme, 29
super-detailed balance, 328, 340

Dielectric constant, 303
Diffusion, 87

Algorithm, 91, 95
Andersen thermostat, 147
Case Study, 100, 101
Lennard-Jones, 100–102, 147, 155
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Nosé-Hoover thermostat, 155
NVE simulations, 102

Diffusion coefficient, 88
Diffusive barrier crossing, 443
Diffusivity, 106
Dissipative particle dynamics

Case Study, 470
constant energy, 473
Example, 473, 474

Dissipative particle dynamics (DPD),
465

Dynamic Monte Carlo, 31

Early rejection scheme, 405
Einstein crystal

Algorithm, 252
Case Study, 256
free energy, 244
free energy (constrained), 250
partition function, 244

Einstein relation, 88, 513
Elastic constants, 519
Electric susceptibility, 510
Electrical conductivity, 90, 516
End-bridging Monte Carlo, 357, 360
Ensemble

path ensemble, 452
Ensemble average, 15

canonical ensemble, 23
constrained dynamics, 415
generalized coordinates, 51
Nosé-Hoover, 149
path ensemble, 452
Rosenbluth sampling, 274

Entropy
definition, 11

Equation of state
Case Study, 51, 122, 133, 340
Lennard-Jones, 51, 122, 133
Lennard-Jones chains, 340

Equations of motion
accuracy, 71, 72
Algorithm, 70, 540–542
Beeman algorithm, 76
energy conservation, 72
Euler algorithm, 75
Example, 485, 487

Hamiltonian, 481, 487
Lagrangian, 481, 485
Leap Frog algorithm, 75
Lyapunov instability, 81
memory, 72
multiple time step, 424, 426
predictor-corrector algorithm, 533
reversibility, 73
speed, 71
velocity Verlet algorithm, 75, 426
velocity-corrected Verlet algorithm,

76
Verlet algorithm, 70

Ergodicity, 17
Monte Carlo technique, 30
trial moves, 47

Euler algorithm, 75
Ewald summation, 292

accuracy, 304
boundary conditions, 303
Coulombic interactions, 292
dielectric constant, 301
dipolar interactions, 300
Example, 314, 318
slab geometry, 318
two dimensions, 316

Example, xvii
adsorption in zeolites, 134
adsorption of alkanes in zeolites,

368
alkanes, 280
chain molecules, 396
chemical potential chain molecules,

280
cluster moves, 403
colloids and polymers, 363
critical properties of alkanes, 372
dipolar spheres, 330
dissipative particle dynamics, 474
Ewald summation, 314, 318
finite-size effects (Gibbs), 218
Gibbs ensemble (dense liquids),

220
Gibbs ensemble (ionic fluid), 221
Gibbs ensemble (mixtures), 223
Gibbs ensemble (polar fluid), 221
Gibbs-Duhem integration, 235, 237
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grand-canonical ensemble, 368
Greengard and Rokhlin, 314
Hamiltonian, 487
hard spheres, 237, 261
Henry coefficients in porous me-

dia, 280
histogram reweighting technique,

394
hydrodynamics, 474
Lagrangian, 485
methane, 134
mixture of hard disks, 57
orientational bias, 330
orientational bias of water, 329
parallel tempering, 393, 394, 396,

458
phase equilibria, 394
polydispersity, 237
polymers, 396
Rosenbluth sampling, 281
self-consistent histogram method,

394
semigrand ensemble, 231, 237
transition path sampling, 458, 460
vapor-liquid equilibria, 231
zeolite, 134, 280

Exchange of particle
Algorithm, 132

Excluded volume map sampling, 221
Exercise

Andersen thermostat, 161
configurational-bias Monte Carlo,

384, 386
free energy, 224
Gibbs ensemble technique, 224
hard spheres, 136
Ising model, 137
Lennard-Jones, 60, 105
Molecular Dynamics, 105, 161
Monte Carlo, 59–61, 136, 137
Monte Carlo integration, 59
NPT ensemble, 136
NVT ensemble, 161
phase equilibrium, 224
photon gas, 59
statistical mechanics, 20–22
vapor-liquid equilibrium, 224

Widom method, 224
Extended ensemble, 390
External potential energy, 276, 337

Fcc
free energy, 261

Fick’s law, 87
Finite-size corrections

chemical potential, 178
Finite-size effects

free energy, 261
Ising model, 219
Lennard-Jones (2d), 220

Force calculation
Algorithm, 68

Free energy
constrained Einstein crystal, 250
Einstein crystal, 244
Exercise, 224
finite-size effects, 261
fixed center of mass, 250
lattice-coupling-expansion method,

246
lattice-switch Monte Carlo, 262
nonequilibrium work, 196
self-consistent histogram method,

187
solid, 261

Fugacity, 229, 364
fugacity fraction, 229

Fugacity coefficient, 562

Gauss-Legendre quadrature, 260
Generalized coordinates, 50

ensemble average, 51
Gibbs ensemble

acceptance rule, 205
Gibbs ensemble technique

acceptance rule, 372
Algorithm, 209
analyzing the results, 214
Case Study, 211
chain molecules, 370
chemical potential, 211
configurational-bias Monte Carlo,

370
critical exponents, 217
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critical point, 216
dense liquids, 220
density evolution, 213
dipolar hard-sphere fluid, 222
Example, 218, 220, 221, 223
excluded volume map sampling,

221
Exercise, 224
finite-size effects, 217, 218
free energy, 565
free energy density, 563
ionic fluid, 221
law of rectilinear diameters, 217
Lennard-Jones fluid, 214
mixtures, 223
partition function, 204
polar fluid, 221
probability density, 204
restricted primitive model, 221
saddle point theorem, 564
scaling law, 217
schematic sketch, 205
Stockmayer fluid, 222
thermodynamic limit, 564

Gibbs free energy, 118
Gibbs-Duhem integration

Example, 235, 237
Grand-canonical ensemble

Case Study, 133
chain molecules, 366
justification of the algorithm, 130
Monte Carlo technique, 126
schematic sketch, 128

Green-Kubo relation, 90, 513
Greengard and Rokhlin

Example, 314

Hamilton formalism
statistical mechanics, 488

Hamiltonian, 23, 481
Example, 487

Hamiltonian (non-) system
Liouville theorem, 496

Hard spheres
Case Study, 256
chemical potential, 257
equation of state, 257

Example, 237, 261
Exercise, 136
free energy (finite-size effects), 261
free energy solid, 261
freezing, 237
solid-liquid phase equilibrium, 256

Harmonic oscillator
Andersen thermostat, 155
Case Study, 155, 157
Nosé-Hoover chains, 157
Nosé-Hoover thermostat, 155
trajectories, 156, 158

Hcp
free energy, 261

Heat capacity, 58, 85
Helmholtz free energy, 116

definition, 12
elastic constants, 520
excess, 116
ideal gas, 116

Henry coefficient, 280
Histogram reweighting technique, 395

Example, 394
Hydrodynamics

Example, 474
Hyper-parallel tempering, 395
Hyperdynamics, 464

Ideal chain, 276, 337, 366
chemical potential, 368

Importance-sampling scheme, 24
Initialization

Algorithm, 66
Interfacial tension, 472
Internal potential energy, 276
Interstitial

concentration, 263
Ion

Example, 460
Ising

Exercise, 137
Ising model

finite-size effects, 219
Isobaric-isothermal ensemble

Case Study, 122, 123
Monte Carlo technique, 115
schematic sketch, 117
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Isotension-isothermal ensemble
Monte Carlo technique, 125

Jacobian, 490
elastic constant, 521

Jarzynski’s identity, 196

Kirkwood � factor, 302
Kirkwood’s coupling parameter method,

170
Kirkwood-Buff, 472

Lagrangian, 481
Example, 485

Lagrangian strain tensor, 519
Lattice Boltzmann method, 476
Lattice gas cellular automata, 476
Lattice-coupling-expansion method, 246
Lattice-switch Monte Carlo, 262
Law of rectilinear diameters, 217
Leap Frog algorithm, 75
Lennard-Jones

Algorithm force calculation, 68
Andersen thermostat, 142
Case Study, 51, 54, 56, 98, 100,

101, 122, 123, 133, 142, 153,
175, 181, 211

chemical potential, 133, 175, 177,
181, 182

diffusion, 100–102
energies, 99
equation of state, 51, 53, 55, 57,

122, 123, 133, 146
Example, 394
Exercise, 60, 105
finite-size effects, 220
force, 69
Gibbs ensemble, 214
mean-squared displacement, 102,

147, 155
Molecular Dynamics, 98, 100
Nosé-Hoover thermostat, 153
phase diagram, 38, 214
phase equilibria, 123
radial distribution function, 101
statistical error, calculation of, 100
truncated and shifted potential,

98

truncation of the potential, effect
of, 38

vapor-liquid coexistence, 124
velocity autocorrelation function,

102
velocity distribution, 145, 154

Lennard-Jones chains
Case Study, 340, 382
equation of state, 340, 342
recoil growth, 382

Linear response theory, 509
dissipation, 513
dynamic, 511
static, 509

Linked lists, 550
Algorithm, 551–553

Liouville formulation
multiple time step, 424
Nosé-Hoover algorithm, 536

Liouville operator, 78
Liouville theorem

non-Hamiltonian system, 496
Long-range interactions, 36

Example, 314
Lyapunov instability, 81

Markov chain, 29
Matrix

antisymmetric, 490
Jacobian, 490
symplectic, 491
transposed, 491

Maxwell-Boltzmann distribution, 66
Mean-squared displacement

Algorithm, 91, 95
Mesoscale dynamics, 476
Mesoscopic model, 465
Methane

adsorption isotherm, 135
Example, 134

Metropolis scheme
schematic sketch, 28

Microcanonical ensemble
Monte Carlo technique, 114
partition function, 492

Minimum image convention, 39
Mobility, 513
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Model fluid
alkanes, 372
block copolymers, 474
Br�-Cl�-BrCl, 231
dipolar hard-sphere fluid, 222
hard spheres, 237, 256, 261
ideal chains, 345
ions in water, 460
Lennard-Jones, 51, 54, 56, 98, 100,

101, 122, 123, 133, 142, 153,
175, 181, 211, 394

Lennard-Jones chains, 340
Lennard-Jones dumbbell, 427
methane, 134
point dipoles, 330
polymers, 396
restricted primitive model, 221
soft spheres, 235
Stockmayer fluid, 170, 222
water, 329

Molecular Dynamics
Algorithm (NVE), 65, 66, 70
Algorithm (NVT), 143, 144
boundary conditions, 32
Case Study, 98, 100, 101
Exercise, 105, 161
initialization, 40
Lennard-Jones, 98, 100, 101
NPT ensemble, 158
NVE ensemble, 64
NVT ensemble, 140, 147, 155
potential, truncation of, 35

Monte Carlo
dynamic, 31
end-bridging, 357
Exercise, 59–61, 136, 137, 161
rebridging, 357

Monte Carlo integration
Exercise, 59

Monte Carlo technique
Algorithm (�VT), 131, 132
Algorithm (fixed center of mass),

251
Algorithm (Gibbs), 209, 210, 212
Algorithm (NPT), 121, 122
Algorithm (NVT), 33
boundary conditions, 32

canonical ensemble, 112
canonical ensemble: justification

of algorithm, 114
Case Study, 51, 54, 56, 122, 123,

133, 211, 256
configurational-bias Monte Carlo

(lattice), 334, 335
efficiency, 119
grand-canonical ensemble, 126
initialization, 40
isobaric-isothermal ensemble, 115
isotension-isothermal ensemble, 125
justification, 112
Metropolis scheme, 28
microcanonical ensemble, 114
orientational bias, 325
path ensemble, 454
potential, truncation of, 35
random sampling, 24

Multicanonical method, 262
Multiple time step

Algorithm, 426
Case Study, 427
Liouville formulation, 424

Neighbor list, 545
Nosé-Hoover chains

equations of motion, 536
harmonic oscillator, 157
Liouville formulation, 536
Trotter expansion, 536

Nosé-Hoover thermostat
Algorithm, 540–542
Case Study, 153
diffusion, 155
harmonic oscillator, 155
Lennard-Jones, 153

NPT ensemble
Exercise, 136

Nudged elastic band, 462
NVE simulations

diffusion, 102
NVT ensemble

Exercise, 161

Overlapping distribution
Case Study, 181
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chain molecules, 282
chemical potential, 179
polymers, 573
Rosenbluth sampling, 282

Parallel Monte Carlo, 361
Parallel tempering

acceptance rule, 390
Case Study, 391
Example, 393, 394, 396, 458

Particle displacement
Algorithm, 33, 251
fixed center of mass, 249

Particle exchange
Algorithm, 212

Particle insertion method, 173
Algorithm, 175
Case Study, 175

Partition function, 12
canonical ensemble, 23, 112
configurational part, 27
Einstein crystal, 244
elastic constant, 520
Gibbs ensemble, 204
grand-canonical ensemble, 129
grand-canonical ensemble (mix-

ture), 227
isobaric-isothermal ensemble, 118
microcanonical ensemble, 492
Nosé-Hoover, 148
NPT ensemble, 118
semigrand ensemble, 229

Path ensemble, 452
acceptance rule, 455
Case Study, 456
Monte Carlo technique, 454
shifting moves, 456
shooting moves, 455

Periodic boundary conditions, 34
schematic representation, 34

Phase equilibria
alkanes, 372
Br�-Cl�-BrCl, 231
Case Study, 123, 211, 256
Example, 394
Exercise, 224
freezing soft spheres, 235

Gibbs ensemble technique, 203
Gibbs-Duhem integration, 233
hard spheres, 256
Lennard-Jones, 123, 211
semigrand ensemble, 231
zero pressure, 124

Phase space compressibility
dynamical system, 496

Phenomenological rate equations, 432
Photon gas

Exercise, 59
Poisson’s equation, 297
Polarization, 422
Polydispersity

Example, 237
Polymers

block copolymers, 474
Example, 363, 396

Potential energy
bonded, 337
external, 276
from radial distribution function,

99
internal, 276
nonbonded, 337

Potential, truncation of, 35
minimum image convention, 39
simple truncation, 37
truncate and shift, 39

Predictor corrector algorithm, 73
Predictor-corrector algorithm, 533
Pressure

from radial distribution function,
100

trail volume method, 200
virial equation, 84

Probability density
canonical ensemble, 113
Gibbs ensemble, 204
grand-canonical ensemble, 129
isobaric-isothermal ensemble, 118
NPT ensemble, 118

Pruned-enriched Rosenbluth method,
285

Radial distribution function
Algorithm, 86
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potential energy, 99
pressure, 100

Random-number generators, 30
Rare events, 431

Bennet-Chandler approach, 436
Case Study, 440, 456
diffusive barrier crossing, 443
transition path ensemble, 450
transition state theory, 437

Rebridging Monte Carlo, 357
Recoil growth

acceptance rule, 379
algorithm, 376
Case Study, 382
Conformational-bias Monte Carlo,

versus, 374
justification of the method, 379
Lennard-Jones chains, 382
super-detailed balance, 380

Recursive sampling
chemical potential, 283

Reduced units, 40, 58
Restricted primitive model, 221
Rosenbluth factor, 324, 332
Rosenbluth sampling, 271

chemical potential, 275
continuum model, 276
ensemble average, 274
lattice model, 271
overlapping distribution, 282
pruned-enriched, 285

Saddle point, 462
activation-relaxation technique, 463
hyperdynamics, 464
nudged elastic band, 462
temperature-accelerated dynam-

ics, 464
Scaling law, 217
Scanning method, 287
Self-consistent histogram method

Example, 187, 394
Self-diffusion coefficient, 513
Self-diffusivity, 106
Self-interaction, 294
Semigrand ensemble, 225, 360

acceptance rule, 230

Example, 231, 237
partition function, 229

Shadow orbit, 73, 83
SHAKE

constrained dynamics, 427
Shear stress, 519
Shear viscosity, 90, 519
Shifting moves

path ensemble, 456
Shooting moves

path ensemble, 455
Single-occupancy cell method, 242
Statistical error

block averages, 529
calculation of, 98
correlation functions, 527
static properties, 525

Statistical mechanics, 9
Exercise, 20–22
Hamilton formalism, 488

Steady-state velocity, 513
Stirling approximation, 256
Stockmayer fluid, 170

Gibbs ensemble, 222
Super-detailed balance, 328, 340, 380
Surface tension, 472
Symplectic

canonical transformation, 491
condition, 491
equations of motion, 490
matrix, 491

Tail corrections, 145
chemical potential, 176
energy, 35, 36
Lennard-Jones, 37
pressure, 38

Temperature
instantaneous, 64
kinetic energy, 84
microcanonical ensemble, 64
scaling, 67
thermodynamic definition, 11

Temperature-accelerated dynamics, 464
Thermal conductivity, 90
Thermal quantities, 169
Thermodynamic integration, 168
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adiabatic transformation, 172
chain molecules, 269
coupling parameter, 170

Transition matrix, 29
Transition path ensemble, 450
Transition path sampling

Example, 458, 460
Transition state ensemble, 462
Transition state theory, 437
Transposed matrix, 491
Trial moves

linear rigid molecules, 48
nonlinear rigid molecules, 48
nonrigid molecules, 49
orientational moves, 48
translations, 43

Trotter expansion
Nosé-Hoover algorithm, 536

Trotter identity, 79

Umbrella sampling
chemical potential, 192

United-atom model
alcohols, 374
alkenes, 374
alkylbenzenes, 374
branched alkanes, 374
linear alkanes, 374

Units, reduced, 40

Vacancies
concentration, 263
free energy, 263

Vapor-liquid equilibrium
Exercise, 224

Velocity autocorrelation function, 89
Algorithm, 91, 95

Velocity Verlet, 80
Velocity Verlet algorithm, 75

in Andersen thermostat, 143, 144
in Nosé-Hoover thermostat, 535
Liouville formulation, 425
multiple time step, 426

Velocity-corrected Verlet algorithm, 76
Verlet algorithm, 71, 74, 82

Algorithm, 70
in NVE simulation, 70

Verlet lists, 545
Algorithm, 547–549
Case Study, 554

Virial equation
pressure, 84

Viscosity, 518
Volume change

Algorithm, 122, 210
energy difference, cheap way of

calculating, 120
Gibbs ensemble technique, 206
molecules, 121

Water
Example, 460
orientational bias, 329

Widom method, 173
Algorithm, 175
Case Study, 175
Exercise, 224
mixtures, 226

Wigner-Seitz cell, 255, 263, 266
definition, 255

Zeolite
adsorption isotherm, 135
Example, 134, 368
structure solution, 393
structure, example of a, 134
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