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Authors' Comments 
on the Revised and Updated Printing 

Due to the strong interest in our book and its wide use in many different areas 
of application, in particular in finance, we have decided after a Second Printing 
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Printing. We have updated the Brief Survey of Stochastic Numerical Methods 
at the beginning of the book to make it even more useful to those readers who 
would like to get a first and up to date impression about the area. Within 
the main body of the book only a few misprints have had to be corrected. We 
would like to thank all those who pointed these out to us. The Bibliographical 
Notes at the end of the book have also been considerably extended. We have 
made an attempt to include almost all references that we know of and that 
appear to be relevant for the topics presented in the book. Accordingly, the 
list of references has been significantly increased. This also reflects the rapidly 
increasing literature on the topic and the growing importance of stochastic 
numerical methods in various fields of application. 
We hope that the Third Printing of our book will continue to be a resource 
for teaching, research and applications. Also in future we would appreciate 
receiving any suggestions for further improvements. 

April 1999 
Eckhard Platen 

Authors' Comments 
on the Corrected Second Printing 

Peter E. Kloeden 

The timely appearance of our book in July 1992 and its enthusiastic reception 
has lead to its being sold out in little more than two years. Springer's decision 
to reprint the book has provided us with the opportunity to correct some 
minor mathematical and typographical errors in the first printing of the book, 
as well' as to update the status of papers previously listed in the References 
as to appear. We thank all of those readers who have kindly pointed out 
misprints and errors to us and would appreciate receiving any suggestions for 
further improvements that could be incorporated into a future revised edition 
of the book. 

March 1995 



Preface 

The aim of this book is to provide an accessible introduction to stochastic differ
ential equations and their applications together with a systematic presentation 
of methods available for their numerical solution. 

During the past decade there has been an accelerating interest in the de
velopment of numerical methods for stochastic differential equations (SDEs). 
This activity has been as strong in the engineering and physical sciences as it 
has in mathematics, resulting inevitably in some duplication of effort due to an 
unfamiliarity with the developments in other disciplines. Much of the reported 
work has been motivated by the need to solve particular types of problems, 
for which, even more so than in the deterministic context, specific methods 
are required. The treatment has often been heuristic and ad hoc in character. 
Nevertheless, there are underlying principles present in many of the papers, 
an understanding of which will enable one to develop or apply appropriate 
numerical schemes for particular problems or classes of problems. 

The present book does not claim to be a complete or an up to date account 
of the state of the art of the subject. Rather, it attempts to provide a sys
tematic framework for an understanding of the basic concepts and of the basic 
tools needed for the development and implementation of numerical methods for 
SDEs, primarily time discretization methods for initial value problems of SDEs 
with Ito diffusions as their solutions. In doing so we have selected special topics 
and many recent results to illustrate these ideas, to help readers see potential 
developments and to stimulate their interest to contribute to the subject from 
the perspective of their own discipline and its particular requirements. The 
book is thus directed at readers from quite different fields and backgrounds. 
We envisage three broad groups of readers who may benefit from the book: 

(i) those just interested in modelling and applying standard methods, typ
ically from the social and life sciences and often without a strong background 
in mathematics; 

(ii) those with a technical background in mathematical methods typical of 
engineers and physicists who are interested in developing new schemes as well 
as implementing them; 

(iii) those with a stronger, advanced mathematical background, such as 
stochasticians, who are more interested in theoretical developments and under
lying mathematical issues. 

The book is written at a level that is appropriate for a reader with an engineer's 
or physicist's undergraduate training in mathematical methods. Many chapters 
begin with a descriptive overview of their contents which may be accessible to 
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those from the first group of readers mentioned above. There are also several 
more theoretical sections and chapters for the more mathematically inclined 
reader. In the "Suggestions for the Reader" we provide some hints for each of 
the three groups of readers on how to use the different parts of the book. 

We have tried to make the exposition as accessible to as wide a readership 
as possible. The first third of the book introduces the reader to the theory 
of stochastic differential equations with minimal use of measure theoretic con
cepts. The reader will also find an extensive list of explicit solutions for SDEs. 
The application of SDEs in important fields such as physics, engineering, biol
ogy, communications, economics, finance, ecology, hydrology, filtering, control, 
genetics, etc, is emphasized and examples of models involving SDEs are pre
sented. In addition, the use of the numerical methods introduced in the book 
is illustrated for typical problems in two separate chapters. 

The book consists of 17 Chapters, which are grouped into 6 Parts. Part I on 
Preliminaries provides background material on probability, stochastic processes 
and statistics. Part II on Stochastic Differential Equations introduces stochas
tic calculus, stochastic differential equations and stochastic Taylor expansions. 
These stochastic Taylor expansions provide a universally applicable tool for 
SDEs which is analogous to the deterministic Taylor formula in ordinary cal
culus. Part IlIon Applications of Stochastic Differential Equations surveys 
the application of SDEs in a diversity of disciplines and indicates the essential 
ideas of control, filtering, stability and parametric estimation for SDEs. The 
investigation of numerical methods begins in Part IV on Time Discrete Ap
proximations with a brief review of time discretization methods for ordinary 
differential equations and an introduction to such methods for SDEs. For the 
latter we use the simple Euler scheme to highlight the basic issues and types of 
problems and objectives that arise when SDEs are solved numerically. In par
ticular, we distinguish between strong and weak approximations, depending on 
whether good pathwise or good probability distributional approximations are 
sought. In the remaining two parts of the book different classes of numerical 
schemes appropriate for these tasks are developed and investigated. Stochas
tic Taylor expansions play a central role in this development. Part V is on 
Strong Approximations and Part VI on Weak Approximations. It is in these 
two Parts that the schemes are derived, their convergence orders and stability 
established, and various applications of the schemes considered. 

Exercises are provided in most sections to nurture the reader's understand
ing of the material under discussion. Solutions of the Exercises can be found 
at the end of the book. 

Many PC-Exercises are included throughout the book to assist the reader to 
develop "hands on" numerical skills and an intuitive understanding of the basic 
concepts and of the properties and the issues concerning the implementation of 
the numerical schemes introduced. These PC-Exercises often build on earlier 
ones and reappear later in the text and applications, so the reader is encouraged 
to work through them systematically. The companion book 

P. E. Kloeden, E. Platen and H. Schurz: The Numerical Solution of Stochastic 
Differential Equations through Computer Experiments. Springer (1993). 
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contains programs on a floppy disc for these PC-Exercises and a more detailed 
discussion on their implementation and results. Extensive simulation studies 
can also be found in this book. 

To simplify the presentation we have concentrated on Ito diffusion processes 
and have intentionally not considered some important advanced concepts and 
results from stochastic analysis such as semimartingales with jumps or bound
aries or SDEs on manifolds. For a more theoretical and complete treatment 
of stochastic differential equations than we give here we refer readers to the 
monograph 

N. Ikeda and S. Watanabe: Stochastic Differential Equations and Diffusion 
Processes. North-Holland, Amsterdam (1981; 2nd Edition, 1989). 

In the few instances that we shall require advanced results in a proof we shall 
state a reference explicitly in the text. In addition, in the case studies of 
different applications of SDEs and numerical methods in Chapters 7, 13 and 17 
we shall indicate the names of the authors of the papers that we have consulted. 
Otherwise, and in general, further information and appropriate references for 
the section under consideration will be provided in the Bibliographical Remarks 
at the end of the book. 

Two types of numbering system are used throughout the book. Equations 
are numbered by their section and number in the section, for example (2.1), 
and are referred to as such in this section and within the chapter which includes 
it; the chapter number appears as a prefix when the equation is referred to in 
other chapters. The resulting numbers, (2.1) or (3.2.1) say, will always appear 
in parentheses. Examples, Exercises, PC-Exercises, Remarks, Theorems and 
Corollaries are all numbered by their chapter, section and order of occurrence 
regardless of qualifier. They will always be prefixed by their qualifier and 
never appear in parentheses, for example Theorem 3.2.1. Figures and Tables 
are each, and separately, numbered by the same three number system, with the 
third number now referring only to the occurrence of th~ Figure or the Table, 
respectively. The only exception to these numbering systems is in the "Brief 
Survey of Stochastic Numerical Methods" at the beginning of the book, where 
just a single number is used for each equation. 

During the writing of this book we have received much encouragement, sup
port and constructive criticism from a large number of sources. In particular, 
we mention with gratitude L. Arnold, H. Follmer, J. Gartner, C. Heyde, G. 
Kallianpur, A. Pakes, M. S~renson and D. Talay, as well as each others' in
stitutions, the Institute for Dynamical Systems at the University of Bremen, 
the Institute of Advanced Studies at the Australian National University and 
the Institute for Applied Mathematics of the University of Hamburg. Special 
thanks also go to H. Schur.z and N. Hofmann who programmed and tested the 
PC-Exercises in the book and produced the figures. 

Berlin, May 1991 Peter E. Kloeden 
Eckhard Platen 
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Suggestions for the Reader 

We mentioned in the Preface that we have tried to arrange the material of 
this book in a way that would make it accessible to as wide a readership as 
possible. Since prospective readers will undoubtedly have different backgrounds 
and objectives, the following hints may facilitate their use of the book. 

(i) We begin with those readers who require only sufficient understanding 
of stochastic differential equations to be able to apply them and appropriate 
numerical methods in different fields of application. The deeper mathematical 
issues are avoided in the following flowchart which provides a reading guide to 
the book for those without a strong background in mathematics. 

151.1 - 51.2 - 11.3 - 51.6 - 51.7 - §l.S I 

54.1 - 5404 
! 

I Chapter 61 
! 

I Ch&Pter 7 1 
! 

I ChapterSI 
! 

I 59.1 - 59.2 - 59.3 - 59.4 - 59.6 - 59•7 1 
! 

I 510.1 - 510.2 - 510.3 - 510.4 - 510•5 1 
! 

I 511.1 - 511.2 - 511.3 - 511.4 1 
! 

I 512.1 - 512.2 -+ 512.3 - 512.4 1 
! 

I 513.1 - 513.2 - 513•3 1 
! 

I SIU - 514.2 - SlU - 514.41 
! 

1 515.1 - 515.2 - 515.3 - 515.4 - 515.51 

I sl!6.11 
! 

I Chapter 17 I 



SUGGESTIONS FOR THE READER XVII 

(ii) Engineers, physicists and others with a more technical background in 
mathematical methods who are interested in applying stochastic differential 
equations and in implementing efficient numerical schemes or developing new 
schemes for specific classes of applications, could use the book according to 
the following flowchart. This now includes more material on the underlying 
mathematical techniques without too much emphasis on proofs. 

Chapter 1 

! 
Chapter 2 

! 
Chapter 3 

! 
Chapter 4 

! 
~ 

! 
1 Chapter 61 

! 
1 Chapter 71 

1 Cha;ter 81 
! 

1 Chapter 9 1 

! 
1 510.1 -+ 510.2 -+ 510.3 -+ 510.4 -+ 510.5 1 

! 
1511.1 -+ 511.2 -+ 511.3 -+ §11.41 

! 
1 §l2.1 -+ 512.2 -+ 512.3 -+ 512.41 

! 
I Chapter 13 I 

! I 514.1 -+ 514.2 -+ 514.3 -+ §1U I 
! 

1515.1 -+ 515.2 -+ 515.3 -+ 515.4 -+ 515.5 1 
! 

I Chapter 16 1 
! 

Chapter 17 I 



XVIII SUGGESTIONS FOR THE READER 

(iii) Mathematicians and other readers with a stronger mathematical back
ground may omit the introductory parts of the book. The following flowchart 
emphasizes the deeper, more theoretical aspects of the numerical approxima
tion of Ito diffusion processes while avoiding well known or standard topics. 

I 51.3 - 51.91 
! 

54.3 - 54.4 
! 

Chapter 5 

! 
Chapter 6 

! 
Chapter 7 

! 
Chapter 9 

! 
Chapter 10 

! 
Chapter 11 

! 
Chapter 12 

! 
I Chapter 13 

! 
Chapter 14 

! 
Chapter 15 

! 
Chapter 161 

! 
Chapter 171 



Basic Notation 

o 

AUB 
AnB 
A\B 

~ 

~+ 

(a,b) 

[a, b] 

avb 

al\b 

n! 

[aJ 
~d 

Re(z) 

Im(z) 

the empty set 

a is an element of the set A 

a is not an element of the set A 

the complement of the set A 

the union of sets A and B 

the intersection of sets A and B 

the set of elements of set A that are not in set B 

defined as or denoted by 

identically equal to 

approximately equal to 

with distribution 

the set of real numbers 

the set of non-negative real numbers 

the open interval a < :c < b in !R 

the closed interval a =:; :c =:; b in !R 

the maximum of a and b 

the minimum of a and b 

the factorial of the positive integer n 

the largest integer not exceeding a 

the d-dimensional Euclidean space 

a vector :c E ~d with ith component :ci for i = 1, o. 0, d 

the scalar product of vectors :c, y E lRd 

the Euclidean norm of a vector :c E lRd 

transpose of the vector :c 

a matrix A with ijth component ai,j 

the square root of -1 

the real part of a complex number z 

the imaginary part of a complex number z 
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I: Q1 ---> Q2 

lA 

I' 
I" 
1(1<) 

O:x;'U, 8 .. 
"&X' 

O!i U, (8~.)k U 
c(~m,~n) 

Ck (~m, ~n) 

B 

£ 

E(X) 

6- -t,) 

o (rP ) 

o(rP ) 

a.s. 

w.p.l 

BASIC NOTATION 

a function f from Q1 into Q2 

the indicator function of the set A 

the first derivative of a function I : ~1 ---> ~1 

the second derivative of a function I : ~1 -+ ~1 

the kth derivative of a function f : ~1 ---> ~1 

the ith partial derivative of a function U : ~d -+ ~1 

the kth order partial derivative of U with respect to xi 

the space of continuous functions I : ~m -+ ~n 

the space of k times continuously differentiable functions 
I: ~n ---> ~n 

the (i-algebra of Borel subsets of ~1 

the (i-algebra of Lebesgue subsets of ~1 

the expectation of the random variable X 

the Kronecker delta symbol 

expression divided by rP remains bounded as r -+ 0 

expression divided by rP converges to zero as r ---> 0 

almost surely 

with probability 1 

Other notation will be defined where it is first used. Note that vectors and 
matrices will usually be indexed with superscripts. Parentheses will then be 
used when taking powers oftheir components, for example with (x i )3 denoting 
the cube of xi. Square brackets [.J will often be used to visually simplify nested 
expressions, with the few instances where it denotes the.integer part of a real 
number being indicated in the text. Function space norms will always be 
written with double bars II . II. often with a distinguishing subscript. 



Brief Survey of Stochastic 
Numerical Methods 

An Ito process X = {Xt, t ~ O} has the form 

(1) Xt = Xo + lot a (Xs) ds + 10\ (Xs) dWs 

for t ~ o. It consists of an initial value Xo = Xo, which may be random, a 
slowly varying continuous component called the drift and a rapidly varying 
continuous random component called the diffusion. The second integral in (1) 
is an Ito stochastic integral with respect to the Wiener process W = {Wt, t ~ 
O}. The integral equation (1) is often written in the differential form 

(2) 

and is then called an Ito stochastic differential equation (SDE). For simplicity, 
in this survey we shall restrict our attention to a 1-dimensional Ito process X 
with a I-dimensional driving Wiener process W. 
Unfortunately explicitly solvable SDEs such as those listed in Section 4 of 
Chapter 4 are rare in practical applications. There are, however, now an in
creasing number of numerical methods for the solution of SDEs mentioned in 
the literature. A crucial task is the systematic development of efficient nu
merical methods for SDEs, a task to which this book is addressed. Obviously 
such methods should be implement able on digital computers. They often in
volve the simulation of a large number of different sample paths in order to 
estimate various statistical features of the desired solution. Modern super
computers with their parallel architecture are well suited to such calculations; 
see Petersen (1987) and Hausenblas (1999b). 
Here we shall survey various time discrete numerical methods which are ap
propriate for the simulation of sample paths or functionals of Ito processes. 

Numerical Approaches to Stochastic Differential Equations 

To begin we shall briefly mention several different approaches that have been 
suggested for the numerical solution of SDEs. On the very general level there 
is a method due to Boyce (1978) by means of which one can investigate, in 
principle at least, general random systems by Monte Carlo methods. For 
SDEs this method is somewhat inefficient because it does not use the special 
structure of these equations, specifically their characterization by their drift 
and diffusion coefficients. 



XXII BRIEF SURVEY OF STOCHASTIC NUMERICAL METHODS 

Kushner (1974) and Kushner & Dupuis (1992) proposed the discretization of 
both time and space variables, so the approximating processes are then finite 
state Markov chains. These can be handled on digital computers through 
their transition matrices. Higher order Markov chain approximations are de
veloped in Platen (1992). In comparison with the information encompassed 
succinctly in the drift and diffusion coefficients of an SDE, transition matrices 
contain a considerable amount of superfluous information which must be re
peatedly reprocessed during computations. Consequently such a Markov chain 
approach seems applicable only for low dimensional problems on bounded do
mains. Similar disadvantages also arise, in higher dimensions at least, when 
standard numerical methods are used to solve parabolic partial differential 
equations, such as the Fokker-Planck equation and its adjoint, associated with 
functionals of the solutions of SDEs. These are, of course, also methods for 
computing the probability densities of Ito diffusions. 
The most efficient and widely applicable approach to solving SDEs seems to 
be the simulation of sample paths of time discrete approximations on digital 
computers. This is based on a finite discretization of the time interval [0, T) 
under consideration and generates approximate values of the sample paths 
step by step at the discretization times. The simulated sample paths can 
then be analysed by usual statistical methods to determine how good the 
approximation is and in what sense it is close to the exact solution. The state 
variables here are not discretized as in Kushner's Markov chain approach and 
the structure of the SDE as provided by the drift and diffusion coefficients 
is used in a natural way. An advantage of considerable practical importance 
of this approach is that the computational costs such as time and memory 
required increase only polynomially with the dimension of the problem. A 
multi-faceted variety of reseach topics on numerical methods for SDEs has 
emerged over the last twenty years. Many of these can be linked to complexity 
theory, see e.g., Thaub, Wasilkowski & Wozniakowski (1988), Wozniakowski 
(1991) and Sloan & Wozniakowski (1998), where it was shown that simulation 
approaches, including those of stochastic numerical analysis, are optimal with 
respect to average case complexity. 

Time Discrete Approximations 

Simulation studies and theoretical investigations by Clements & Anderson 
(1973), Wright (1974), Fahrmeir (1976), Clark & Cameron (1980), Riimelin 
(1982) and others showed that not all heuristic time discrete approximations 
of an SDE converge in a useful sense to the solution process as the maximum 
step size 8 tends to zero. In particular, it was found that one cannot simply use 
a deterministic numerical method for ordinary differential equations, such as 
a higher order Runge-Kutta method. Consequently a careful and systematic 
investigation of different methods is needed in order to .select a sufficiently 
efficient method for the task at hand. 
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We shall consider a time discretization (T h with 

(3) ° = TO < Tl < ... < Tn < ... < TN = T 

of a time interval [0, TJ, which in the simplest equidistant case has step size 

(4) 

We shall see in Chapter 9 that general time discretizations, even with random 
times, are possible, but usually a maximum step size 5 must be specified. 
The simplest heuristic time discrete approximation is the stochastic gener
alization of the Euler approximation which is sometimes called the Euler
Maruyama approximation, see Maruyama (1955), but often just the Euler 
approximation. For the SDE (2) it has the form 

(5) 

for n = 0, 1, ... , N - 1 with initial value 

(6) 

where 
(7) 

and 
(8) 

Yo = XO, 

for n = 0, 1, ... , N - 1. Essentially, it is formed by fixing the integrands 
in (1) to their values at the beginning of each discretization time subinterval. 
The recursive scheme (5) obviously gives values of the approximation only 
at the discretization times. If values are required at intermediate instants, 
then either piecewise constant values from the preceding discretization point 
or some interpolation, especially a linear interpolation, of the values of the 
two immediate enclosing discretization points could be used. 
The random variables tl.Wn defined in (8) are independent N(Oj tl.n ) normally 
distributed random variables, that is with means and variances 

and 

respectively, for n = 0, 1, ... , N - 1. In simulations we can generate such 
random variables from independent, uniformly distributed random variables 
on [0, 1], which are usually provided by a pseudo-random number generator 
on a digital computer. We shall discuss and test random number generators 
in Sections 3 and 9 of Chapter 1. 
In practice, linear or non-linear congruential pseudo-random number genera
tors are often used. An introduction to this area is given by Ripley (1983a). 
Books that include chapters on random number generation include Ermakov 
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(1975), Yakowitz (1977), Rubinstein (1981), Ripley (1983b), Morgan (1984), 
Ross (1990), Mikhailov (1992), Fishman (1996) and Gentle (1998). We men
tion also the papers by Box & Muller (1958), Marsaglia & Bray (1964), Brent 
(1974), Eichenauer & Lehn (1986), Niederreiter (1988), Sugita (1995), Antipov 
(1995) and Antipov (1996). 

The Strong Convergence Criterion 

In problems such as those that we shall consider in Chapter 13 involving direct 
simulations, filtering or testing estimators of Ito processes it is important that 
the trajectories, that is the sample paths, of the approximation be close to 
those of the Ito process. This suggests that a criterion involving some form 
of strong convergence should be used. Mathematically it is advantageous to 
consider the absolute error at tb.e final time instant T, that is 

(9) 

which can be estimated from the root mean square error via the Lyapunov 
inequality 

(10) 

The absolute error (9) is certainly a criterion for the closeness of the sample 
paths of the Ito process X and the approximation Y at time T. 
We shall say that an approximating process Y converges in the strong sense 
with order'Y E (0,00] if there exists a finite constant K and a positive constant 
00 such that 
(11) E (IXT - YNI) :5 K fiY 

for any time discretization with maximum step size 0 E (0,00). In the de
terministic case with zero diffusion coefficient b == 0 this strong convergence 
criterion reduces to the usual deterministic criterion for the approximation of 
ordinary differential equations. The order of a scheme is sometimes less in 
the stochastic case than in the corresponding deterministic one, essentially 
because the increments aWn of the Wiener process are of root mean square 
order 01/ 2 and not o. In fact, the Euler approximation (5) for SDEs has strong 
order 'Y = 0.5 in contrast with the order 1.0 of the Euler approximation for 
ordinary differential equations. 
Publications related to the development of higher order strong approximations 
include Franklin (1965), Shinozuka. (1971), Kohler & Boyce (1974), Roo, Bor
wanker & Ramkrishna (1974), Dsagnidse & Tschitashvili (1975), Harris (1976), 
Glorennec (1977), Kloeden & Pearson (1977), Clark (1978), Nikitin & Razevig 
(1978), Helfand (1979), Platen (1980a), Razevig (1980), Greenside & Helfand 
(1981), Casasus (1982), Clark (1982), Guo (1982), Talay (1982a, 1982b, 1982c, 
1983), Drummond, Duane & Horgan (1983), Casasus (1984), Guo (1984), 
Janssen (1984a, 1984b), Shimizu & Kawachi (1984), Tetzlaff & Zschiesche 
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(1984), Unny (1984), Clark (1985), Averina & Artemiev (1986, 1988), Drum
mond, Hoch & Horgan (1986), Kozlov & Petryakov (1986), Greiner, Strittmat
ter & Honerkamp (1987), Liske & Platen (1987), Platen (1987), Milstein 
(1987, 1988b), Shkurko (1987), ROmisch & Wakolbinger (1987), Golec & 
Ladde (1989), Feng (1990), Nakazawa (1990), Bensoussan, Glowinski & Ras
canu (1992), Feng, Lei & Qian (1992), Artemiev (1993b), Kloeden, Platen & 
Schurz (1993), Saito & Mitsui (1993a, 1996), Petersen (1994b), Torok (1994), 
Ogawa (1995), Gelbrich & Rachev (1996), Grecksch & Wadewitz (1996), New
ton (1996), Schurz (1996b), Yannios & Kloeden (1996), Artemiev & Averina 
(1997), Denk & Schaffer (1997), Abukhaled & Allen (1998) and Schein & Denk 
(1998). 

The Weak Convergence Criterion 

In many practical situations, some of which will be described in Chapter 17, 
it is not necessary to have a close pathwise approximation of an Ito process. 
Often one may only be interested in some function of the value of the Ito 
process at a given final time T such as one of the first two moments E(XT) 
and E«XT)2) or, more generally, the expectation E(g(XT» for some function 
g. In simulating such a functional it suffices to have a good approximation 
of the probability distribution of the random variable X T rather than a close 
approximation of sample paths. Thus the type of approximation required here 
is much weaker than that provided by the strong convergence criterion. 
We shall say that a time discrete approximation Y converges in the weak sense 
with order {3 E (0,00] if for any polynomial 9 there exists a finite constant K 
and a positive constant do such that 

(12) 

for any time discretization with maximum step size 8 E (0, do). In Section 7 
of Chapter 9 we shall generalize slightly the class of test fuctions 9 used here. 
When the diffusion coefficient in (1) vanishes, this weak convergence criterion 
with g(x) == x also reduces to the usual deterministic convergence criterion for 
ordinary differential equations. 
Under assumptions of sufficient regularity Milstein (1978) showed that an Eu
ler approximation of an Ito process converges with weak order {3 = 1.0, which 
is greater than its strong order of convergence 'Y = 0.5. On the other hand, 
Mikulevicius & Platen (1991) proved that the Euler scheme still converges, 
but with weak order less than 1.0, when the coefficients of (1) are only Holder 
continuous, that is Lipschitz-like with a fractional power. Some of the papers 
in which the Euler method has been studied include Allain (1974), Yamada 
(1976), Gikhman & Skorokhod (1979), Clark & Cameron (1980), Ikeda & 
Watanabe (1989), Janssen (1984a, 1984b), Atalla (1986), Jacod & Shiryaev 
(1987), Kaneko & Nakao (1988), Kanagawa (1988, 1989, 1995, 1996, 1997), 
Golec & Ladde (1989), Mackevicius (1994), Cambanis & Hu (1996), Gelbrich 
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(1995), Bally & Talay (1995, 1996a, 1996b), Jacod & Protter (1998), Kohatsu
Higa & Ogawa (1997) and Chan & Stramer (1998). 
Higher order weak approximations have been investigated, e.g., by Milstein 
(1978), Platen (1984), Talay (1984), Mikulevicius & Platen (1991). In par
ticular, weak approximations of the Runge-Kutta type have been proposed 
and studied by Greenside & Helfand (1981), Talay (1984), Platen (1984), 
Klauder & Petersen (1985a), Milstein (1985), Haworth & Pope (1986), Ave
rina & Artemiev (1986), Mackevicius (1994) and Komori & Mitsui (1995). 
Wagner (1987b) has investigated the use of unbiased weak approximations, 
that is with (3 = 00, for estimating functionals of Ito diffusions. 

Stochastic Taylor Formulae 

A natural way of classifying numerical methods for SDEs is to compare them 
with strong and weak Taylor approximations. The increments of such approx
imations are obtained by truncating the stochastic Taylor formula, also called 
Wagner-Platen formula, see Wagner & Platen (1978). This result was then 
extended and generalised in Platen (1981a, 1982b), Platen & Wagner (1982), 
Azencott (1982), Sussmann (1988), Yen (1988, 1992), BenArous (1989), Kloe
den & Platen (1991a, 1991b), Hu (1992, 1996), Hu & Watanabe (1996), 
Kohatsu-Higa (1997), Liu & Li (1997) and Kuznetsov (1998). 
A Stratonovich version of the stochastic Taylor formula was presented in Kloe
den & Platen (1991a, 1991b) and can be found together with results on mul
tiple stochastic integrals in Chapter 5. 
The Wagner-Platen formula allows a function of an Ito process, that is I(Xt ), 

to be expanded about I{Xto ) in terms of multiple stochastic integrals weighted 
by coefficients which are evaluated at Xto' These coefficients are formed from 
the drift and diffusion coefficients of the Ito process and their derivatives up 
to some specified order. The remainder term in the formula contains a finite 
number of multiple stochastic integrals of the next higher multiplicity, but 
now with nonconstant integrands. For example, a Wagner-Platen formula for 
the Ito process (1) for t E [to, T] may have the form 

with coefficients 

ct{x) = a (x)!, (x) + ~ {b (x»2 I" (x) , 

C2{X) = b(x)!,(x) , 

C3 (x) = b (x){b (x) !" (x) + b' (x) I' (x)) . 
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Here the remainder R consists of higher order multiple stochastic integrals 
with nonconstant integrands involving the function f, the drift and diffusion 
coefficients and their derivatives. A Wagner-Platen formula can be thought 
of as a generalization of both the Ito formula and the deterministic Taylor 
formula. If we use the function f(x) == x in the formula (13) we obtain the 
following representation for the Ito process (1): 

By truncating stochastic Taylor expansions such as (14) about successive dis
cretization points we can form time discrete Taylor approximations which we 
may interpret as basic numerical schemes for an SDE. In addition we can 
compare other schemes, such as those of the Runge-Kutta type, with time 
discrete Taylor approximations to determine their order of strong or weak 
convergence. We shall see that we must include the appropriate terms from 
the corresponding stochastic Taylor expansion, that is the necessary higher 
multiple stochastic integrals, to obtain a numerical scheme with a higher or
der of strong or weak convergence. Thus to build a higher order scheme one 
does not only need more smoothness of the drift and diffusion coefficients but 
also more information about the driving Wiener processes. 

Strong Taylor Approximations 

The simplest strong Taylor approximation of an Ito diffusion is the Euler 
approximation 
(15) 

for n = 0, 1, ... , N - 1 with initial condition (6), where ~n and ~Wn are 
defined by (7) and (8), respectively, with the ~Wn representing independent 
N(O; ~n) normally distributed random variables. Here we have written a 
for a (Yn ) and b for b (Yn ), a convention which we shall henceforth use for 
any function. In addition, as here, we shall not repeat the standard initial 
condition (6) in what follows. It was shown in Gikhman & Skorokhod (1972a) 
that the Euler scheme converges with strong order '"Y = 0.5 under Lipschitz 
and bounded growth conditions on the coefficients a and b. 
If we include the next term from the Wagner-Platen formula (14) in the scheme 
(15) we obtain the Milstein scheme 

(16) Yn+1 = Yn + a~n + b~Wn + ~bb' {(.6.Wn)2 - ~n} 

for n = 0, 1, ... , N -1; see Milstein (1974). The additional term here is from 
the double Wiener integral in (14), which can be easily computed from the 
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Wiener increment ~ Wn since 

(17) 

We shall see that the Milstein scheme (16) converges with strong order 'Y = 1.0 
under the assumption that E«XO)2) < 00, that a and b are twice continuously 
differentiable, and that a, a', b, b' and b" satisfy a uniform Lipschitz condition. 
For a multi-dimensional driving Wiener process W = (Wl, ... , wm) the gen
eralization of the Milstein scheme (16) involves the multiple Wiener integrals 

(18) 

for it, i2 E {I, ... , m} with il -=f i2, which cannot be expressed simply as in 
(16) in terms of the increments 6. W~l and ~ W~2 of the corresponding Wiener 
processes. In Section 8 of Chapter 5 we shall suggest one possible way of 
approximating higher order multiple stochastic integrals like (18). 
Close relationships exist between multiple Ito and Stratonovich integrals which 
form some kind of algebra. This algebra and certain approximations of multi
ple stochastic integrals have been described in Platen & Wagner (1982), Liske 
(1982), Platen (1984), Milstein (1988a, 1995a), Kloeden & Platen (1991a, 
1991b), Kloeden, Platen & Wright (1992), Hu & Meyer (1993), Hofmann 
(1994), Gaines & Lyons (1994), Gaines (1994, 1995a), Castell & Gaines (1995), 
Li & Liu (1997), Burrage (1998) and Kuznetsov (1998). 
Generally speaking we obtain more accurate strong Taylor approximations by 
including additional multiple stochastic integral terms from a stochastic Tay
lor expansion. Such integrals contain additional information about the sample 
paths of the Wiener process over the discretization subintervals. Their pres
ence is a fundamental difference between the numerical analysis of stochastic 
and ordinary differential equations. For example, the strong Taylor approxi
mation of order 'Y = 1.5 is given by 

(19) Yn+1 = Yn + a6.n + b6.Wn + ~bb' {(~Wn)2 - 6.n} 

+ba' 6.Z +! {aa' + !b2a"} 6.2 
n 2 2 n 

+ {ab' + ~b2b"} {~Wn ~n - ~Zn} 

+~b {bb" + (b')2} {~(~Wn)2 - 6.n } 6.Wn 

for n = 0, 1, ... , N -1. Here the additional random variable 6.Zn is required 
to represent the double integral 

(20) 
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which is normally distributed with mean, variance and correlation 

E(~Zn) = 0, 

respectively. All other multiple stochastic integrals appearing in the truncated 
Taylor expansion used to derive (19) can be expressed in terms of ~n, ~Wn 
and ~Zn, thus resulting in (19). It was shown in Wagner & Platen (1978) 
and Platen (1981a) that the scheme (19) converges with strong order 'Y = 1.5 
when the coefficients a and b are sufficiently smooth and satisfy Lipschitz and 
bounded growth conditions. We note that there is no difficulty in generating 
the pair of correlated normally distributed random variables ~Wn, ~Zn using 
the transformation 

and ~Zn = ~ ((n,1 + ~(n,2) ~:!2, 

where (11,1 and (n,2 are independent normally N(Oj 1) distributed random vari
ables. 
Following Platen (1981a), we shall describe in Chapter 10 how schemes of any 
desired order of strong convergence can be constructed from the corresponding 
strong Taylor approximations. The implementation of such schemes requires 
the generation of multiple stochastic integrals such as I(jl,h) and of higher 
multiplicity, which can be done by means of an approximation method which 
we shall describe in Chapter 5. Those readers who do not wish to use such 
multiple stochastic integrals could follow Clark (1978) and Newton (1986a, 
1986b), in which schemes only involving the increments of the Wiener process 
are proposed. These schemes, which we shall describe in Section 4 of Chapter 
13, are similar to the strong Taylor approximations above, but with the random 
variables modified. Moreover, they are optimal within the classes of strong 
orders 'Y = 0.5 or 1.0, respectively. 

Strong Runge-Kutta, Two-Step and Implicit Approximations 

A practical disadvantage of the above strong Taylor approximations is that 
the derivatives of various orders of the drift and diffusion coefficients must 
be determined and then evaluated at each step in addition to the coefficients 
themselves. There are time discrete approximations which avoid the use of 
derivatives, which we shall call Runge-Kutta schemes in analogy with similar 
schemes for ordinary differential equations. However, we emphasize that it is 
not always possible to use heuristic adaptations of deterministic Runge-Kutta 
schemes for SDEs because of the difference between ordinary and stochastic 
calculi. 
A strong order 1.0 Runge-Kutta scheme is given by 
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with supporting value 
Tn = Yn + b6.~2 

for n = 0, 1, ... , N - 1. This scheme can be obtained heuristically from the 
Milstein scheme (16) simply by replacing the derivative there by the corre
sponding finite difference; see Platen (1984). Clark & Cameron (1980) and 
Riimelin (1982) have shown that Runge-Kutta schemes like (22) converge 
strongly with at most order 'Y = 1.0. More general Runge-Kutta schemes 
can be found in Chapter 11, but they have usually only the strong order of 
convergence 'Y = 1.0 if just the increments 6. Wn of the Wiener process are 
used. Higher multiplicity stochastic integrals must be used to obtain a higher 
order of strong convergence. 
In Riimelin (1982), Gard (1988), Kloeden & Platen (1995,1992) and Artemiev 
(1993a, 1993b) further Runge-Kutta type schemes can be found. It is natural 
to ask whether the tree approach developed in Butcher (1987) can be trans
lated to the stochastic setting. Some results along these lines were given by 
Saito & Mitsui (1993b), Burrage & Platen (1994), Komori, Saito & Mitsui 
(1994), Komori & Mitsui (1995), Saito & Mitsui (1996), Burrage & Burrage 
(1996, 1997), Burrage, Burrage & Belward (1997), Komori, Mitsui & Sugiura 
(1997) and Burrage (1998). For instance, in the case of a single driving Wiener 
process, a rooted tree methodology has been described for Stratonovich SDEs 
by Burrage (1998). 
Four-stage Runge-Kutta methods of strong order 'Y = 1.5 can also be found in 
Burrage (1998). Similarly, in the context of filtering problems Newton (1986a, 
1986b, 1991) and also Castell & Gaines (1996) have proposed approximations 
that are, in some sense, asymptotically efficient with respect to the leading 
error coefficient within a class of Runge-Kutta type methods. 
Lepingle & Ribemont (1991) suggested a two-step strong scheme of first order. 
For the case of additive noise, b == canst., another two-step order 1.5 strong 
scheme which is due to the authors takes the form 

(23) Yn+1 = Yn + 2a6.n - a' (Yn-t) b (Yn-t) 6.Wn-l6.n + Vn + Vn-l 

with 
Vn = b6.Wn + a'b!:::'Zn, 

where 6.Wn and !:::.Zn are the same as in (21); see Chapter 12 for more details. 
What really matters in a numerical scheme is that it should be numerically 
stable, can be conveniently implemented, and generates fast highly accurate 
results. The well-known concept of A-stability, see Bjorck & Dahlquist (1974), 
can be directly generalised to the case of SDEs with additive noise, that is 
b(x) = const. in equation (1), see Milstein (1988a, 1995a), Hernandez & Spigler 
(1992) or Kloeden & Platen (1992). A typical implicit order 1.5 strong scheme 
for additive noise is 
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with supporting values 

where AWn and AZn are the same as in (21). Implicit or fully implicit schemes 
are needed to handle stiff SDEs, which will be discussed in Section 8 of Chapter 
9 and in Chapter 12; see Petersen (1987), Drummond & Mortimer (1991) and 
Hernandez & Spigler (1993). 

Milstein, Platen & Schurz (1998) have proposed a family of balanced methods 
that seem to be rather effective for stiff SDEs. Implicit schemes or different 
concepts of numerical stability have been suggested and studied in a variety of 
papers, including Talay (1982b, 1984), Klauder & Petersen (1985a), Pardoux 
& Talay (1985), Milstein (1988a, 1995a), Smith & Gardiner (1988), McNeil 
& Craig (1988), Artemiev & Shkurko (1991), Drummond & Mortimer (1991), 
Kloeden & Platen (1995, 1992), Hernandez & Spigler (1992, 1993), Artemiev 
(1993a, 1993b, 1994), Saito & Mitsui (1993b), Hofmann & Platen (1994), Mil
stein & Platen (1994), Hofmann (1995), Komori & Mitsui (1995), Hofmann 
& Platen (1996), Saito & Mitsui (1996), Schurz (1996a, 1996c), Ryashko & 
Schurz (1997), Burrage (1998), Fischer & Platen (1998), Higham (1998), Mil
stein, Platen & Schurz (1998) and Petersen (1998). 

Another type of strong approximations was investigated in Gorostiza (1980) 
and Newton (1990). In the I-dimensional case the time is here discretized in 
such a way that a random walk takes place on a prescribed set of threshholds in 
the state space, with the approximating process remaining on a fixed level for 
a random duration of time and then switching with given intensity to the next 
level above or below it. Finally, the reader is referred to Doss (1977), Sussmann 
(1978) and Talay (1982b) for other investigations of strong approximations of 
Ito diffusions. 

Weak Taylor Approximations 

When we are interested only in weak approximations of an Ito process, that 
is a process with approximately the same probability distribution, then we 
have many more degrees of freedom than with strong approximations. For 
example, it suffices to use an initial value Yo = .Ko with a convenient probability 
distribution which approximates that of Xo in an appropriate way. In addition 
the random increments AWn of the Wiener process can be replaced by other 
more convenient approximations AWn which have similar moment properties 
to the AWn. In a weak approximation of order f3 = 1.0 we could, for instance, 
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choose independent ~Wn for n = 0, 1, ... , N -1 with moments 

(25) 

where 
(26) 

r=Iand3 

r=2 

r = 4,5, ... 

for r = 4, 5, ... and some finite constant K > O. This means we could use an 
easily generated two-point distributed random variable taking values ±~ 
with equal probabilities, that is with 

(27) 

The simplest useful weak Taylor approximation is the weak Euler scheme 

(28) 

for n = 0, 1, ... , N - 1. It follows from results in Talay (1984) that (28) 
has weak order (3 = 1.0 if the coefficients a and b are four times continuously 
differentiable with these derivatives satisfying a growth bound. This contrasts 
with the order '"Y = 0.5 of the strong Euler scheme (15). 
We can construct weak Taylor approximations of higher order (3 = 2.0, 3.0, 
... by truncating the Wagner-Platen expansion. For example, the weak Tay
lor approximation of order f3 = 2.0 has, following Milstein (1978) and Talay 
(1984), the form 

(29) Yn+l = Yn+a~n+b~Wn+~bb' {(awn)2 -~n} 

+ba' ~Z +! faa' + !b2a'} ~2 n 2 2 n 

for n = 0, 1, ... , N -1. Here ~Wn approximates aWn and ~Zn the multiple 
stochastic integral (20). As with the weak Euler scheme (28) we can choose 
random variables ~Wn and ~Zn which have approximately the same moment 
properties as ~Wn and azn , For example, we could use 

(30) and 

with the ~Wn independent N(O;~n) normally distributed, or we could use 

(31) and 
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where the Tn are independent three-point distributed random variables with 

(32) 
2 

and P(Tn = 0) = 3. 

Multi-dimensional and higher order weak Taylor approximations also involve 
additional random variables, but these are much simpler than those in strong 
approximations as will be seen in Chapter 14. 
It was shown under appropriate assumptions in Platen (1984) that a Taylor 
approximation converges with any desired weak order j3 = 1.0, 2.0, ... when the 
multiple stochastic integrals up to multiplicity {3 are included in the truncated 
stochastic Taylor expansion used to construct the scheme. 

Weak Runge-Kutta and Extrapolation Approximations 

It is often convenient computationally to have weak approximations of Runge
Kutta type which avoid the use of derivatives of the drift and diffusion coef
ficients, particularly the higher order derivatives. An order 2.0 weak Runge
Kutta scheme proposed by Talay (1984) is of the form 

(33) Yn+1 = Yn+{a(Tn)-~b(Tn)b'(Tn)}~n 

+ { ~ b (An - Bn) + V2b (Tn) Bn } ~:!2 

+ {~ (b (Tn) b' (Tn) - bb') B~ - bb'AnBn} ~n 

with supporting value 

for n = 0, 1, ... , N -1, where the An and Bn are independent random variables 
which are, for example, standard normally distributed or as in (32). 
The scheme (33) still uses the derivative b' of the diffusion coefficient b. It is 
possible to avoid such derivative, as in the following order 2.0 weak Runge
Kutta scheme due to Platen: 

(34)Yn+1 = Yn + ~ {a (Tn) + a} ~n + ~ {b (T~) + b (T;;) + 2b} ~Wn 

+~ {b (T~) - b (T;;)} { (~Wn r -~n} ~;;1/2 
with supporting values 

Tn = Yn + a~n + bLlWn and T~ = Yn + a~n ± b~:!2 
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for n = 0, 1, ... , N - 1, where the aWn can be chosen as in (30) or (31). 
Weak second and third order Runge-Kutta type schemes have been proposed, 
for instance, by Kloeden & Platen (1992), Mackevicius (1994) and Komori & 
Mitsui (1995). 

Higher order approximations of functionals can also be obtained with lower or
der weak schemes by extrapolation methods. Talay & Tubaro (1990) proposed 
an order 2.0 weak extmpolation method 

(35) V:'2 (T) = 2E (g (Y&(T»)) - E (g (y2&(T»)) , 

where y& (T) and y2& (T) are the Euler approximations at time T for the 
step sizes 6 and 26, respectively. Higher order extrapolation methods from 
Kloeden & Platen (1991b) will also be presented in Section 3 of Chapter 15. 
Essentially, many order f3 weak schemes can be extrapolated with formulae 
similar to (35) to provide order 2{3 accuracy for f3 = 1.0, 2.0, .. " Further 
results on extrapolation methods can be found in Hofmann (1994), Goodlett 
& Allen (1994) and Mackevicius (1996). Artemiev (1985), Miiller-Gronbach 
(1996 ), Gaines & Lyons (1997), Mauthner (1998) and Burrage (1998) have 
derived results on step size control. Furthermore, Hofmann (1994), Hofmann, 
Miiller-Gronbach & Ritter (1998) have considered extrapolation methods with 
both step size and order control. 

An order 2.0 weak predictor-corrector scheme for SDEs proposed by Platen, 
which has the corrector 

(36) Yn+l = Yn + ~ {a (t n+l) + a} an + \lin 

with 

~ 1 I {( ~)2 } 1 { I 1 2 "} ~ \lin = baWn + '2 bb aWn - an + '2 ab + '2 b b aWn an 

and the predictor 

( ) ~ A 1 I A ~ A 1 { , 1 2 "} A 2 37 Tn+l=Yn+aL.l.n+\IIn+'2ab~Wn~n+'2 aa +'2 ba ~n' 

where aWn and 8.n can be as in (30) or (31)-(32), is an example of a simplified 
weak Taylor scheme. The corrector (36) resembles the implicit order 2.0 weak 
scheme 
(38) 

Higher order Runge-Kutta, predictor-corrector and implicit weak schemes as 
well as extrapolation methods will be examined in Chapter 15. 
Runge-Kutta schemes with convergence only in the first two moments have 
been considered in Greenside & Helfand (1981), Haworth & Pope (1986), 
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Helfand (1979), Klauder & Petersen (1985a) and Petersen (1987). This conver
gence criterion is weaker than the weak convergence criterion (10) considered 
here. Obviously, a scheme which converges with some weak order {3 will not 
only converge in the first two moments, but also in all higher moments with 
this same order {3 when they exist. Further papers that deal with weak higher 
order approximations and their numerical stability include Fahrmeir (1974), 
Milstein (1978, 1985, 1988a), Platen (1980b, 1984, 1995), Gladyshev & Mil
stein (1984), Talay (1984, 1986, 1990), Ventzel, Gladyshev & Milstein (1985), 
Haworth & Pope (1986), Talay & Tubaro (1990), Drummond & Mortimer 
(1991), Kloeden & Platen (1991b), Mikulevicius & Platen (1991), Kloeden, 
Platen & Hofmann (1992), Kannan & Wu (1993), Hofmann (1994,1995), Hof
mann & Platen (1994, 1996), Mackevicius (1994), Komori & Mitsui (1995), 
Bally & Talay (1996a, 1996b), Kohatsu-Higa & Ogawa (1997) and Milstein & 
Tretjakov (1997). 

Monte-Carlo Simulation and Variance Reduction 

Wagner (1987a, 1987b) has proposed another way of approximating weak ap
proximations of diffusion processes which is based on the Monte Carlo simu
lation of functional integrals and uses unbiased, variance reduced approxima
tions to estimate functionals of Ito diffusion processes. This will be described 
in Chapter 16. Useful references on variance reduction techniques in a more 
classical setting include Hammersley & Handscomb (1964), Ermakov (1975), 
Boyle (1977), Maltz & Hitzl (1979), Rubinstein (1981), Ermakov & Mikhailov 
(1982), Ripley (1983b), Kalos & Whitlock (1986), Bratley, Fox & Schrage 
(1987), Chang (1987), Wagner (1987a, 1988a, 1988b, 1989a, 1989b), Law & 
Kelton (1991) and Ross (1990). Other variance reduction methods use more 
structure of the underlying SDE, see e.g., Milstein (1988a), Glynn & Iglehart 
(1989), Goodlett & Allen (1994) and Newton (1994, 1997). 

To compute functionals of diffusions also quasi Monte Carlo methods have 
been employed, where the random variables are replaced by elements from 
some low discrepancy sequence or point set, see, e.g., the book by Niederreiter 
(1992). Low discrepancy point sets such as Sobol, Halton or Faure sequences, 
discussed for instance in Halton (1960), Sobol (1967), Tezuka (1993), Tezuka 
& Tokuyama (1994), Radovic, Sobol & Tichy (1996), Tuffin (1996, 1997), and 
Mori (1998), exhibit fewer deviations from uniformity compared to uniformly 
distributed random point sets. This can generally lead to faster rates of con
vergence compared to random sequences as discussed in Hofmann & Mathe 
(1997) and Sloan & Wozniakowski (1998). However the gain in efficiency is not 
always balanced with the bias that may result from the use of these methods. 

We conclude this brief survey with the remark that the theoretical understand
ing and practical application of numerical methods for stochastic differential 
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equations are still under development. An aim of this book is to stimulate an 
interest and further work on such methods. For this the Bibliographical Notes 
at the end of the book may be also of assistance. 



Chapter 1 

Probability and Statistics 

The basic concepts and results of probability and stochastic processes needed 
later in the book are reviewed here. The emphasis is descriptive and PC
Exercises (PC= Personal Computer), based on pseudo-random number gener
ators introduced in Section 3, are used extensively to help the reader to develop 
an intuitive understanding of the material. Statistical tests are discussed briefly 
in the final section. 

1.1 Probabilities and Events 

If we toss a die, then, excluding absurd situations, we always observe one of 
six basic outcomes; it lands with its upper face indicating one of the numbers 
1, 2, 3, 4, 5 or 6. We shall denote these outcomes by Wi, W2, W3, W4, W5 and 
ws, respectively, and call the set of outcomes 0 = {Wi, W2, W3, W4, W5, ws} the 
sample space. If we toss the die N times and count the number oftimes Ni that 
outcome Wi occurs, we obtain a relative lrequency li(N) = NdN. This number 
usually varies considerably with N, but experience tells us that as N becomes 
larger it approaches a limit limN_oo li(N) = Pi, which we call the probability 
of outcome Wi. Clearly 0 ::; Pi ::; 1 for each i = 1,2, ... ,6 and L~=lPi = 1; 
for a fair die each Pi = 1/6, giving a uniform distribution of probabilities over 
the outcomes. 

Often we are interested in combinations of outcomes, that is subsets of the 
sample space 0 such as the subset {Wi, W3, W5} of odd indexed outcomes. If we 
can distinguish such a combination by either its occurence or its nonoccurence 
we call it an event. Clearly if a subset A is an event, then its complement A C = 
{Wi EO: Wi f/. A} must also be an event. In particular, the whole sample space 
o is an event, which we call the sure event since one of its outcomes must always 
occur; its complement, the empty set 0, is also an event but can never occur. We 
might think that every subset A of 0 should be an event, in which case we could 
determine its probability peA) from those of its constituent outcomes, that is 
as peA) = Lw.eA Pi. However this corresponds to a situation of complete 
information about each of the outcomes, information which we may not always 
possess. For example, we may have only kept records of the occurences of odd 
or even indexed outcomes, but not of the actual outcomes themselves. Then we 
only distinguish and determine probabilities for the four subsets 0, 0 = {Wi, 

W3, W5}, E = {W2' W4, ws} and 0, which are thus the only events in this case. 
Actually, we could introduce new basic outcomes 0 (odd) and E (even) here; 
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then the sample space is {a, E} and all of its subsets are events. This shows 
that we have some flexibility in the choice of the sample space. 

Whatever the sample space n and the collection A of events, we would 
always expect that 0 and n are events and that 

(1.1) AC,A n B and AU B are events if A and B are events. 

Here the event AUB occurs if either the event A or the event B occurs, whereas 
An B occurs if both A and B occur. Then, supposing that we have determined 
the probability of each event from frequency records either of the event itself 
or of its constituent components, we would always expect these probabilities 
to satisfy 

(1.2) 0 ~ peA) ~ 1, P(AC ) = 1 - peA), P(0) = 0, pen) = 1 

and 

(1.3) P(AUB) = P(A) + P(B) ifAnB=0 

for any events A and B. From these we could then deduce for any positive 
integer n that 

n n 

(1.4) UAi and nAi areeventsifA 1 ,A2 , ••• ,An areevents 
i=1 i=1 

and that 

(1.5) P CQ Ai) = ~P(Ai) if A I ,A2 , ••• ,An are mutually exclusive, 

that is if Ai n Aj = 0 for all i, j = 1,2, ... , n with i i: j. 
A similar situation applies when we have a count ably infinite number of 

outcomes. Suppose we count the number of telephone calls arriving at an 
exchange during a specified time period. This will be a finite nonnegative 
integer i = 1, 2, ... , but, in principle, it can be arbitrarily large. An appropriate 
choice of sample space here is the countably infinite set n = {wo, WI, W2, 

... }, where the outcome Wi corresponds to the arrival of i calls. If we repeat 
these counts over sufficiently many time periods, we could then use the limits 
of relative frequencies of occurence to determine the probability Pi for each 
outcome Wi, obtaining 0 ~ Pi ~ 1 for each i = 0, 1, 2, ... with E~OPi = 1. 
As in the die example we call a subset of n an event if we can distinguish it by 
either its occurence or nonoccurence; not every outcome Wi need be an event. 
(Strictly speaking, no outcome Wi can be an event since it is an element and 
not a subset of the sample space n. However the singleton set {w;} may be 
an event, in which case we call it an elementary event, although it need not be 
an event). There may now be an infinite number of events, such as En = {wo, 
W2, ••• , W2n} corresponding to an even number of calls not exceeding 2n, for 
each n = 0, 1,2, .... Their countable union E = U~I En = {wo, W2, W4, ... } 
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occurs if there is an even number of calls, no matter how large, and so should 
also be an event if all of the En are events. In general, we would expect that 

00 00 

(1.6) UAi and nAiareeventsifAi,A2,Aa, ... are events 
i=i i=i 

and that 

(1.7) P CQ A) = %t P(Ai) if A i ,A2 ,Aa,··· are mutually exclusive 

for any countable collection Ai, A 2 , Aa, ... of events. Apart from this modifi
cation, things are then much the same as for a finite number of basic outcomes. 
An obvious difference is that a uniform distribution of probabilities over all 
outcomes is now impossible. 

For uncountably many basic outcomes matters are not so straightforward. 
Suppose that we wish to determine the speed of a car from its speedometer 
which ranges from 0 to 250 km/h. The interval 0 :s; w :s; 250 seems to be an 
appropriate choice for the sample space 0, but here the intrinsic limitations in 
the calibration of the speedometer prevent us from ever reading with complete 
accuracy any specific nonzero speed w; the best we can do is to assertain 
that the speed lies within some small interval (w - f, W + f) around W. Such 
subintervals are the natural events here. The singleton set {O} might also be 
an event since we can easily detect zero speed, though possible not solely from 
a speedometer. As in the previous examples, we would expect to obtain events 
when we took unions or intersections of events, and to be able to combine 
their probabilities accordingly. However, there may now be uncountably many 
events and this can cause problems. For example, if each singleton set A", = 
{w} is an event and has zero probability P(A..,) = 0, then n = U{A",;w En} 
is an uncountable union if n is uncountable. Obviously, pen) = 1, yet for any 
countable collection of the A.., we would have E:l P(A",,) = O. Worse still, 
the uncountable union or intersection of events need not itself be an event. 
We can fortunately avoid these difficulties by restricting attention to countable 
combinations of events. 

In each of the preceding examples the essential probabilistic information 
can be succinctly summarized in the corresponding triplet (0, A, P) consisting 
of the sample space n, the collection of events A and the probability measure 
P, where A and P satisfy the properties (1.1)-(1.7). We call such a triplet (0, 
A, P) a probability space. In our discussion above we have glossed over the 
conceptual subtleties associated with the use of limits of relative frequencies to 
define and to determine probabilities. These can lead to serious problems if we 
try to develop a logically consistent theory of probability from this direction. 
To circumvent these difficulties it is now usual to develop probability theory 
axiomatically, with a probability space as its starting point. The probabilities 
are now just numbers assigned to each event and the relative frequencies only 
suggestive of how such numbers might be obtained. This axiomatic approach 
to probability theory was first propounded by Kolmogorov in the 1930s. We 
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shall return to it in Chapter 2 and present definitions there. Some terminology 
will however be useful before then. In particular, the collection of events A is 
known technically as a CT-algebra or CT-field. While P(0) = 0 always holds, there 
may also be nonempty events A with peA) = 0; we call these null events. The 
sample space n is the sure event, and we say that any other event A with peA) 
= 1 occurs almost surely (a.s.) or with probability one (w.p.I). 

Regardless of how we actually evaluate it, the probability peA) of an event 
A is an indicator of the likelihood that A will occur. Our estimate of this 
likelihood may change if we possess some additional information, such as that 
another event has occured. For example, if we toss a fair die the probability of 
obtaining a 6 is P( {W6}) = P6 = 1/6 and the probability of obtaining an even 
number, that is the probability of the event E = {wa, W4, W6}, is peE) = Pa 
+ P4 + Ps = 1/2. If we know that an even number has been thrown, then, 
since this occurs in one of three equally likely ways, we might now expect that 
the probability of its being the outcome W6 is 1/3. We call this the conditional 
probability of the event {ws} given that the event E has occured and denote 
it by P({w6}/E), noting that 

P({ }IE) = P( {ws} n E) 
Ws peE) 

where peE) > O. In general, we define the conditional probability P(A/B) of 
A given that an event B has occured by 

(1.8) P(A/B) = peA n B) 
PCB) 

provided PCB) > 0 and define it to be equal to 0 (or we leave it undefined) in 
the vacuous case that PCB) = o. This definition is readily suggested from the 
relative frequencies 

where N AnB and N B are the numbers of times that the events A n Band B, 
respectively, occur out of N repetitions of what we usually call an experiment. 

It is possible that the occurence or not of an event A is unaffected by 
whether or not another event B has occured. Then its conditional probability 
P(AIB) should be the same as peA), which with (1.8) implies that 

(1.9) peA n B) = P(A)P(B) 

In this case we say that the events A and B are independent. For example, 
events A and B are independent if peA) = PCB) = 1/2 and peA n B) = 
1/4. This particular situation occurs if we toss a fair coin twice, with A the 
event that we obtain a head on the first toss and B a head on the second toss, 
provided that the way we toss the coin the second time is not biased by the 
outcome of the first toss. This may seem tautological; in fact, we shall use 
the independence of outcomes of a repeated experiment to define independent 
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repetitions of the experiment. Finally, we say that n events AI, A2, ... , An are 
independent if 

(1.10) 

for all nonempty subsets {iI, i2, ... , ik} of the set of indices {I, 2, ... , n}. 

1.2 Random Variables and Distributions 

We are often interested in numerical quantities associated with the outcome of 
a probabilistic experiment, such as our winnings in a gambling game based on 
tossing a die or the revenue made by a telephone company based on the number 
of calls made. These numbers, X(w) say, provide us with information about 
the experiment, which, of course, can never exceed that already summarized in 
its probability space (0, A, Pl. They correspond to the values taken by some 
function X : 0 -+ ~, which we call a random variable if its information content 
is appropriately restricted. 

Consider the indicator function IA of a subset A of 0 defined by 

(2.1) IA(w) = { O: w~A 
1 : wE A, 

which is thus a function from 0 into~. For IA to be a random variable we 
require A to be an event, or equivalently the subset 

a<O 
O:$a<1 
l:$a 

to be an event for each a E ~. 
In general, for a probability space (0, A, P) we say that a Junction X : 0 

-+ !R is a random variable if 

(2.2) {wEO:X(w):$a}EA foreach aE~, 

that is if {w EO: X(w) :5 a} is an event for each a E~. This is not quite 
so restrictive as it may seem because it implies that {w EO: X(w) E B} 
is an event for any Borel subset B of ~, that is any subset of ~ in the ()"
algebra 8 is generated from countable unions, intersections or complements of 
the semi-infinite intervals {x E lRj -00 < x :5 a}. 

We call the function Px defined for all B E 8 by 

(2.3) Px(B) = P({w EO: X(w) E B}) 

the distribution of the random variable X, and note that the ordered triple (!R, 
8, Px) is a probability space which contains all of the essential information 
associated with the random variable X. Since point functions are simpler than 
set functions we often restrict attention to the function Fx : !R -+ ~ defined 
for each x E !R by 
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(2.4) Fx(x) = Px«-<x>,x» = P({w En: X(w) < x}), 

which we call the distribution function of X. For example, if A is an event the 
distribution function for its indicator function fA is 

(2.5) 

x<O 
O~x<l 

l~x 

Since for any x < y we have {w En: X(w) ~ x} ~ {w En: X(w) ~ y} 
and hence P({w En: X(w) ~ x}) ~ P({w En: X(w) ~ y}), we can see that 
any distribution function Fx satisfies: 

(2.6) lim Fx(x) = 0 and lim Fx(x) = 1 
fC~-OO :c-++oo 

with 

(2.7) Fx(x) nondecreasing in x. 

The example (2.5) shows that Fx need not be a continuous function, but from 
properties (1.1)-(1.7) and (2.4) we can show that Fx is always continuous from 
the right, that is 

(2.8) lim Fx(x + h) = Fx(x) for all x E !R. 
h-+O+ 

Conversely, for any function F : !R -. !R satisfying properties (2.6)-(2.8), we 
can define a random variable X which has F as its distribution function. We 
can use (!R, B, Px) as the underlying probability space for this random variable, 
with Px defined for subintervals (-<X>, xl in terms of Fusing (2.4) and then 
extended appropriately to the more general Borel subsets. In this setting the 

O •• i-----

1.0 

Figure 1.2.1 Distribution (2.5) for P(A) = t. 
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random variable is the identity function on lR. Often we omit mention of this 
probability space and concentrate on the distribution function. 

In applications the following examples are frequently encountered. 

Example 1.2.1 The simplest nontrivial mndom variable X takes just two 
distinct real values %1 and %2, where %1 < %2, with probabilities P1 and P2 
= 1 - P1, respectively. It is often called a two-point random variable and its 
distribution fundion is given by 

% < %1 

%1:::; % < %2 

%2:::; % 

For instance, the indicator function IA of an event A is such a random 
variable with %1 = ° and %2 = 1 (see (2.5». Another two-point random variable 
arises in the gambling game where we win a dollar when a tossed coin shows a 
head and lose a dollar when it shows a tail; here %1 = -1 and %2 = +1. 

Example 1.2.2 In radioactive decay the number of atoms decaying per unit 
time is a random variable X taking values 0, I, 2, ... without any upper bound. 
The probabilities Pn = P(X = n) often satisfy the Poisson distribution with 

An 
Pn = -, exp(-A) n. 

for n = 0, 1, 2, ... , where A > ° is a given parameter. 

The above two examples are typical of a discrete random variable X taking 
a finite or count ably infinite number of distinct values %0 < %1 < ... < %n < 
... with probabilities Pn = P(X = %n) for n = 0, 1, 2, .... The distribution 
function Fx here satisfies 

Fhd 

1.01 

D.' 
Figure 1.2.2 Distribution for Example 1.2.1 with -Xl = X2 and P1 = 0.5. 
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... 

I 
• 4 • n 

Figure 1.2.3 Poisson probabilities for ..\ = 2. 

(2.9) % < %0 

%n ~ % < %n+1, n = 0,1, ... 

Fx is a step-function with steps of height Pn at % = %n. For such a random 
variable the set {Xo, %1, %2, ... } could be used as the sample space fl, with all 
of its subsets being events. 

In sharp contrast are the random variables taking all possible values in 3? 
We call such a random variable X a continuous mndom variable if the proba
bility P({w E (2: X{w) = %}) is zero for all % E lR. In this case the distribution 
function Fx is often differentiable, that is there exists a nonnegative function 
p, called the density function, such that Fk{%) = p(%) for each % E lR; when Fx 
is only piecewise differentiable this holds everywhere except at certain isolated 
points. Then 

(2.10) Fx{%) = 1~ pes) ds 

for all % E 3?, including the above mentioned exceptional points in the piecewise 
differentiable case. Such a distribution function is usually said to be absolutely 
continuous. The following are commonly occuring examples. 

Example 1.2.3 Consider a mndom variable X which only takes values in 
a finite interval a 5 % ~ b, such that the probability of its being in a given 
subinterval is proportional to the length of the subinterval. Then the distribution 
function is given by 

Fx(z) = { 

o %<a 
x-a 
o=a 

1 
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which is differentiable everywhere except at x = a and x = b. The corresponding 
density function is given by 

p(x) = { b~a 
x ~ [a, b] 

x E [a, b] 

We say that the random variable X in Example 1.2.3 is uniformly distributed 
on [a,b] and denote this by X "" U(a,b). Alternatively, we say that it has a 
rectangular density function. 

The U(O,l) random variables are a special case of the beta- distributed 
random variable with parameters a = (3 = 1. In general, the beta-distribution 
with positive parameters a and (3 has the density function 

(2.11) 

where 

x r;. [0,1] 

x E [0,1] 

B(a,(3) = 11 xa - 1(1- x).8- 1 dx. 

Example 1.2.4 The life-span of a light bulb is a random variable X which 
is often modelled by the exponential distribution 

Fx(x) = { 
0 

1-exp(-Ax) 

x<o 
x2:0 

for some intensity parameter A > O. Fx is differentiable everywhere except for 
x = 0 and has the density function 

p(x) = { 
Aexp(-Ax) 

o 

p()() 

1.0 +-1 ____ _ 

1.0 

Figure 1.2.4 The rectangular density with a = 0 and b = 1. 
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Figure 1.2.5 The exponential density with), = 2. 

pC)!;) 

D.' 

Figure 1.2.6 The standard Gaussian density. 

Example 1.2.5 The density function 

(2.12) p(x) = _l_exp (_.!.x2) 
.,j2; 2 

has a bell-shaped graph which is symmetric about x = O. The corresponding 
distribution function Fx(x) is differentiable everywhere and has a sigmoidal
shaped graph, but must be evaluated numerically or taken from tables since no 
anti-derivative is known in analytical form for (2.12). A random variable with 
this density function is called a standard Gaussian random variable. 

Gaussian random variables occur so commonly in applications, for example 
as measurement errors in laboratory experiments, that they are often said 
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to be normally distributed. Their ubiquity is explained by the fundamental 
theorem of probability and statistics, the Central Limit Theorem, which will 
be discussed in Section 5. 

In anticipation of the next section, we say that two random variables X 
and Yare independent if the events {w : X(w) E A} and {w : Yew) E B} are 
independent for all Borel sets A and B. Essentially, the values taken by either 
of the random variables are uninfluenced by those taken by the other. More 
will be said about this concept in Section 4. 

1.3 Random Number Generators 

The numerical simulation of a mathematical model of a complicated proba..
bilistic system often provides information about the behaviour of the model, 
and hopefully of the original system itself, which cannot be obtained directly 
or easily by other means. Numerical values of each of the random variables 
must be provided for a test run of the model, and then the outputs of many 
test runs are analysed statistically. This procedure requires the generation of 
large quantities of random numbers with the specified statistical properties. 
Originally such numbers were taken directly from actual random variables, 
generated, for example, mechanically by tossing a die or electronically by the 
noisy output of a valve, and often listed in random number tables. This proved 
impractical for large scale simulations and the numbers were not always sta
tistically reliable. In addition, a particular sequence of random numbers could 
not always be reproduced, an important feature for comparative studies, and so 
had to be stored. The advent of electronic computers lead to the development 
of simple deterministic algorithms to generate sequences of random variables, 
quickly and reproducably. Such numbers are consequently not truly random, 
but with sufficient care they can be made to resemble random numbers in most 
properties, in which case they are called pseudo-random numbers. 

These days most digital computers include a linear congruential pseudo
random number generator. These have the recursive form 

(3.1) X n +1 = aXn + b (mod c) 

where a and c are positive integers and b a nonnegative integer. For an integer 
initial value or seed Xo, the algorithm (3.1) generates a sequence taking integer 
values from 0 to c-1, the remainders when the aXn +b are divided by c. When 
the coefficients a, b and c are chosen appropriately the numbers 

(3.2) Un = Xn/c 

seem to be uniformly distributed on the unit interval [0,1]. Since only finitely 
many different numbers occur, the modulus c should be chosen as large as 
possible, and perhaps also as a power of 2 to take advantage of the binary 
arithmetic used in computers. To prevent cycling with a period less than c 
the multiplier a should also be taken relatively prime to c. Typically b is 
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chosen equal to zero, the resulting generator then being called a muUiplicative 
generator. A much used example was the RAN DU generator of the older 
IBM Scientific Subroutine Package with multiplier a = 65,539 = 216 + 3 and 
modulus c = 23.1; the IBM System 360 Uniform Random Number Generator 
uses the multiplier a = 16,807 = 75 and modulus c = 231 - 1, which is a prime 
number. 

The reader is referred to specialist textbooks for an extensive discussion on 
pseudo-random number generators and their properties. In Section 9 we shall 
mention some basic tests for checking their statistical properties and reliability. 
For the remainder of this section we shall assume that we have a subroutine 
RDN which provides us with U(O, 1) uniformly distributed pseudo-random 
numbers by means of (3.2) and a generator (3.1). We shall show how we 
can then use this subroutine to generate pseudo-random numbers with other 
commonly encountered distributions, in particular those described in Section 
2. 

A two-point random variable X (see Example 1.2.1) taking values Xl < X2 

with probabilities PI and P2 = 1 - PI can be generated easily from a U(O, 1) 
random variable U, namely with 

(3.3) 
O~U~Pl 

Pl<U51. 

This idea extends readily to an N-state random variable X takinSvvalues Xl 

< x2 < .. , < XN with nonzero probabilities PI, P2, ... , PN where Li=l Pi = 1. 
With So = 0 and Sj = L1=1 Pi for j = 1,2, ... , N we set X = Xj+l if Sj < U 5 
Sj+1 for j = 0, 1,2, ... , N -1. We could approximate an infinite-state Poisson 
distributed random variable (see Example 1.2.2) by an N-state random variable 
for some large N by coalescing all of the remaining, less probable, states into 
the final state. However, computationally more efficient algorithms for Poisson 
random variables have been developed, but will not be given here. 

The corresponding method for a continuous random variable X requires the 
probability distribution function Fx to be inverted when this is possible. For 
a number 0 < U < 1 we define x(U) by U = Fx(x(U», so x(U) = FX1(U) if 
Fx l exists, or in general 

(3.4) x(U) = inf{x: U 5 Fx(x)}. 

This is called the inverse transform method and is b~t used when (3.4) is easy 
to evaluate. For example, the exponential random variable with parameter 
A > 0 (see Example 1.2.4) has an invertible distribution function with 

x(U) = Fx 1(U) = -In(l- U)jA for 0 < U < 1. 

When U is U(O, 1) distributed, then so too is 1 - U and a little computational 
effort can be spared by using RD N directly to generate 1 - U. 

In principle the inverse transform method could be used for any continuous 
random variable, hut may require too much computational effort to evaluate 
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(3.4). This is the situation with the standard Gaussian random variable, since 
the integrals for its distribution function must be evaluated numerically. The 
Box-Muller method for generating standard Gaussian random variables avoids 
this problem. It is based on the observation that if Ul and U2 are two indepen
dent U(O, 1) uniformly distributed random variables, then Nl and N2 defined 
by 

(3.5) Nl = V-21n(Ud COS(2'11"U2) 

N2 = V-2In(ud sin(2'11"U2) 

are two independent standard Gaussian random variables. This can be verified 
with a change of coordinates from cartesian coordinates (NI' N2) to polar coor
dinates (r,O) and then to UI = exp(-ir2) and U2 = 0/2'11" (see Exercise1.4.11). 

A variation of the Box-Muller method which avoids the time consuming 
calculation of trigonometric functions is the Polar Marsaglia method. It is 
based on the facts that V = 2U - 1 is U( -1,1) uniformly distributed if U is 
U(O, 1) distributed and that for two such random variables VI and V2 with W 
= Vr + vj $ 1, W is U(O, 1) distributed and 0 = ardan(V!/V2) is U(0,2'11") 
distributed. Since the inscribed unit circle has '11"/4 of the area of the square 
[-1,1]2, the point (VI, V2) will take values inside this circle with probability 
11"/4 R::I 0.7864816···. We only consider these points, discarding the others. 
Using 

VI 
cosO = rw' . 0 V2 

sm = rw 
when W = Vr + Vj $ 1 we can rewrite (3.5) (see Exercise 1.4.11) as 

(3.6) NI = VIV-2ln(W)/W 

N2 = V2V-2In(W)/W 

Although a proportion of the generated uniformly distributed numbers are 
discarded, this method is often computationally more efficient than the Box
Muller method when a large quantity of numbers is to be generated. 

We shall use the above methods in exercises in the following sections, assum
ing that they do indeed generate random numbers with the asserted properties. 
In Section 9 we shall examine the validity of this assumption. 

PC-Exercise 1.3.1 Write a program for two-point, exponential and Gaus
sian random variables based on the above methods to generate a list of pseudo
random numbers. 
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1.4 Moments 

The values taken by a random variable X can vary considerably. It is useful if 
we can isolate some salient features of this variability, such as the average value 
and the way in which the values spread out about this average value. The first 
of these is an average weighted by the likelihood of occurence and is usually 
called the mean value or expected value and denoted by E(X). For a discretely 
distributed random variable it is defined as 

(4.1) E(X) = E XiPi, 

ieI 

where I = {O, ±1, ±2, ... }, which is readily suggested by the relative frequency 
interpretation of the probabilities; the summation is over all possible index 
values taken by the random variable. 

When the random variable has an absolutely continuous distribution the 
corresponding definition for its mean value is 

(4.2) E(X) = 1: xp(x)dx, 

since, roughly speaking, p(x) dx is the probability that X takes its value in 
the interval (x,x + dx). This assumes that the improper integral (4.2), and 
the infinite series (4.1) if countably infinite indices are involved, actually con
verge. This does not happen, for example, with the Cauchy probability density 
function 

(4.3) 

since it gives too much weighting to large values of x. 

Exercise 1.4.1 Show that the improper integral (l.e) diverges for the 
Cauchy density function (..1.9). 

For a particular random variable X we often use the notation I' = E( X) 
for the mean value. A measure of the spread about I' of the values taken by X 
is given by its variance which is defined as 

(4.4) Var(X) = E «X _ 1')2) , 

provided that the infinite series or improper integral involved converges. The 
variance is consequently always nonnegative and is often denoted by (T2 = 
Var(X), where (T is called the standard deviation of X. For the commonly 
encountered probability distributions considered in Section 2 the mean values 
and variances all exist and are listed in Table 1.4.1. 

Exercise 1.4.2 Expand E «X _1')2) to show that Var(X) = E(X2) _ 1'2. 

Exercise 1.4.3 Verify the means and variances in Table 1.,/.1. 
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Distribution I Example I Mean p Variance (12 

Poisson 1.2.2 .\ .\ 
Uniform U(a, 6) 1.2.3 (a + 6)/2 (6 - a)2/12 

Exponential 1.2.4 .\-1 .\-2 

Standard Gaussian 1.2.5 0 1 

Table 1.4.1 Means and variances of some common probability distributions. 

PC-Exercise 1.4.4 Use the RDN generator on your PC to generate N = 
104 U(O,I) uniformly distributed pseudo-random numbers. Partition the in
terval [0, 1] into subintervals of equal length 5 x 10-2 and count the number of 
generated numbers falling into each subinteT1Jal. Plot a histogram of the relative 
frequencies divided by the subinteT1Jal length. Does this histogram resemble the 
graph of the density function of a U(O, 1) random variable? In addition, evalu
ate the sample average PN and sample variance &1 for the generated numbers 
Xl, X2, ••. , XN, where 

(4.5) 

How do these compare with the mean 1/2 and variance 1/12 of a truly U(O, 1) 
distributed random variable'! What can you conclude about the statistical reli
ability of your RDN generator from this simple test? (Note that we divide by 
N - 1 here rather than by N in the sample variance in (4.5 ) as this provides 
an unbiased estimator of the true variance.) 

PC-Exercise 1.4.5 Repeat PC-Exercise L/.../ for exponentially distributed 
random numbers with the parameter value .\ = 2.0. Since the density function 
p(z) > 0 for all x ~ 0, you could partition the finite inteT1Jal [0,2]' say, into 
subintervals of equal length, with all of the values larger than 2 being discarded. 

PC-Exercise 1.4.6 Repeat PC-Exercise 1 . ../ . ../ for standard Gaussian ran
dom numbers generated by the Box-Muller and Polar Marsaglia methods. For 
this, partition the interval [-2.5, 2.5], say, into 102 subintervals of equal length, 
with fixed semi-infinite inteT1Jals (-00, -2.5) and (2.5,00) for the other values. 

The standard Gaussian distribution considered in Example 1.2.5 is a special 
case of the general Gaussian distribution with mean I' and variance u 2 • Its 
density function is given by 

(4.6) p(x) = _1_ exp (-(x _1')2) 
..j2;u 2u2 

and still has the bell-shaped graph, which is now centered on the mean value 
x = J.t and is stretched or compressed according to the magnitude of u 2 , its 
maximum value being 1/(V2iu) and its points ofin:8.ection at J.t ± u. We often 
write X '" N(I'; ( 2 ) for a random variable with this distribution. It is not hard 
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to see then that the transformed random variable Z = (X - Jl)/u satisfies the 
standard Gaussian distribution. The inverse transformation X = u Z + Jl con
verts a standard Gaussian random variable into an N(Jl; ( 2 ) distributed random 
variable X. We can use this to obtain an N(Jl; ( 2 ) distributed pseudo-random 
variable X from the output of the Box-Muller or Polar Marsaglia methods. 

We remark that in general we obtain another random variable when we 
combine random variables by the usual arithmetic operations. For a general 
transformation of a random variable, however, we need some restriction on 
the transforming function to ensure that the resulting variable satisfies the 
condition (2.2). Let us define Yew) = g(X(w» for all wEn, where X is a 
random variable and 9 : !R -+ !R a function. Then in order that Y be a random 
variable we require {w En: yew) E B}, or equivalently {w En: X(w) E 
g-l(B)}, to be an event for every Borel subset B of~. This is certainly the 
case when 9 is continuous or piecewise continuous; in fact, 9 could be even 
more irregular. When Y is a random variable its expected value, if it exists, is 
just 

(4.7) L9(Zi)Pi or 100
00 g(z)p(z) dz 

ieI 

when the distribution of X is discrete or absolutely continuous. Typical func
tions often considered are the polynomials g(z) = zP or g(z) = (z - Jl)P for 
integers P ;::: 1. The resulting expected values of Y = g(X) are then called 
the pth-moment or the pth-central moment; the variance Var(X) is thus the 
2nd order or squared central moment of X. Such moments convey information 
about the random variable, but the higher order moments need not always 
provide additional information; for example, the Gaussian distribution is com
pletely characterized by its first two moments, its mean Jl and variance u2 , and 
the Poisson distribution by its mean A. 

Exercise 1.4.7 For X,.., N(Jl;u2 ) and k = 0, 1,2, ... show that E«X
Jl)2k+ 1) = 0 and E«X - Jl)2k) = 1· 3 . 5 ... (2k _1)u21:, but E(IXI- 1 ) = 00. 

From the basic properties of integrals, or of infinite series in the discrete 
case, we always have 

(4.8) 

for any two random variables Xl. X 2 and any two real numbers a, P, provided 
the mean values here all exist. Also when X1(w) $ X2(W), almost surely, we 
have 
(4.9) 

Moreover, Jensen's inequality 

(4.10) g(E(X» $ E(g(X» 

holds for any convex function 9 : !R -+ !R, that is satisfying 

g(AZ + (1- A)Y) $ Ag(Z) + (1 - A)g(y) 



1.4. MOMENTS 17 

for all :c, y E ~ and 0 :5 >. :5 1. In particular, for g(:c) = l:cl and g(:c) = :c2 it 
gives, respectively, 

(4.11) IE(X)I :5 E (IXI) and IE(X)I:5 ,jE(X2) 

A generalization of this is the Lyapunov inequality: if X is not concentrated 
on a single point and if E(IXI6) exists for some 8 > 0, then for all 0 < r < s 
and a E ~ 

(4.12) 

For a nonnegative random variable X, that is with X (w) ~ 0 almost surely, 
we have the Markov inequality 

( 4.13) 
1 

P( {w : X(w) ~ a}) :5 -E(X) for all a> O. 
a 

From this we can deduce the Chebyshev inequality 

(4.14) 
1 

P ({w; IX(w)12 ~ an :5 _E(X2) for all a> O. 
a 

Exercise 1.4.8 Prove the Markov and Chebyshev inequalities. 

The mean value or expectation E(X) is the coarsest estimate that we have 
for a random variable X. If we know that some event has occured we may be 
able to improve on this estimate. For instance, suppose that the event A = 
{w EO: a :5 X(w) :5 b} has occured. Then in evaluating our estimate of the 
value of X we need only consider these values of X and weight them according 
to their likelihood of occurence, which is now the conditional probability given 
this event. The resulting estimate is called the conditional expectation of X 
given event A and is denoted by E(XIA). For a discretely distributed random 
variable the conditional probabilities for the event A = {w EO: a :5 X(w) :5 
b} satisfy 

P(X =:CiIA) = { / 0 
Pi Ea5Zj:9 Pj 

Zi < a or b < :Ci 

and so the conditional expectation 

(4.15) 

For a continuously distributed random variable with a density function p the 
corresponding conditional density is 

p(zIA) = { *) / f~ p(s) ds 

Z < a or b < Z 

with the conditional expectation 
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(4.16) E(X\A) = i: xp{x\A) dx = 16 
X p(x) dx / 16 

p(x) dx . 

Similar results hold for other kinds of events provided that they occur with 
nonzero probability. The conditional expectations so obtained satisfy proper
ties analogous to (4.8)-(4.11) for the usual expectations. Additional properties 
of this important concept can be found in Section 2 of Chapter 2. 

Exercise 1.4.9 Show that a random variable X distributed exponentially 
with parameter A (see Exercise 1.2.4) has conditional expectations 

E(X\X ~ a) = a + E(X) = a + A-I 

for any a > O. Here the event A = {w En: X(w) ~ a} is abbreviated to 
{X ~ a}. (This identity characterizes the exponential distribution; it says, for 
example, that the expected remaining life of a light bulb is independent of how 
old the bulb is.) 

PC-Exercise 1.4.10 Generate 103 exponentially distributed random num
bers with parameter>. = 0.5. Calculate the average of these numbers and the 
averages of those numbers ~ a where a = 1, 2, 3 and 4. Compare these with 
the identity in Exercise 1.4.9. 

Often we need to consider several random variables Xl> X 2 , ••• , Xn at the 
same time. These may, for example, be the components of a vector-valued 
random variable X : n -+ lRn or of a matrix-valued random variable, which 
are then called a random vector or a random matrix, respectively. As with 
a single random variable, we can form a distribution function for n random 
variables Xl, X2, ... , Xn which are defined on the same probability space; if 
they are not, we can always modify them to have Ii common probability space. 
The distribution function Fx1x'r'X" : lRn -+ [0,1], called the joint distribution 
/unction, is defined by 

(4.17) 

= P({w En: Xi(W) ~ Xi, i = 1,2, ... ,n}) 

Its properties are most apparent in the case of two random variables Xl and 
X2. Then Fx1x. satisfies 

(4.18) 

for i = lor 2, 

(4.19) 

and 

(4.20) FX1 X 2 is nondecreasing and continuous from the right in Xl and X2. 
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Moreover 

(4.21) 

and for i l =1 or 2 and i2 = 2 or 1 the marginal distribution FXi1 satisfies 

(4.22) 

Unlike the case of a distribution function of a single variable, properties (4.18)
(4.22) for a collection of functions must be strengthened to ensure that there 
exists a pair of random variables Xl, X 2 which has these functions as its joint 
and marginal distributions. For continuous random variables the joint dis
tribution function is often differentiable, except possibly at some isolated or 
boundary points, and there is a density function p : !R2 -+ 8t+ given by 

in which case 

( ) 02FXIX2( ) 
P Xl, X2 = () () Xl> X2 , 

Xl X2 

l X1 1X
' Fx1x. = -00 -00 p(Sl,S2)ds1ds 2 . 

When the density function is 

for some vector /1 = (1'1, 1'2) E ~2 and some 2x2 positive definite and symmetric 
matrix (thus with two real, positive eigenvalues) e = [ciJ ] with determinant 
dete, we say that the random variables are jointly Gaussian with mean vector 
I' and covariance matrix e- 1 , the ijth component of e- l being E«Xi -
/1;)(Xj - I'j» for i, j = 1, 2. Since there exists an invertible 2 x 2 matrix S 
such that e = ST S, the vector X = ST Z + I' is jointly Gaussian with mean 
vector I' and covariance matrix C- l = S-l(S-l)T whenever Z = (Zl, Z2) 
has independent standard Gaussian components Zl and Z2' The Box-Muller 
or Polar Marsaglia methods can thus be used to generate pairs of Gaussian 
pseudo-random numbers with any mean vector and covariance matrix. This 
reflects the important property that linear and orthogonal transformations of 
Gaussian random variables yield Gaussian random variables. 

Exercise 1.4.11 Show that the random variables N1 andN2 generated by the 
Box-Muller and Polar Marsaglia methods (see (9.5) and (9.6)) are Gaussian 
with zero mean vector and identity covariance matrix when Ul and U2 are 
independent U(O, 1) uniformly distributed random variables. 

PC-Exercise 1.4.12 Write a program to generate a pair of Gaussian 
pseudo-random numbers Xl, X2 with means 1'1 = E(Xt} = 0, /12 = E(X2) = 
o and covariances E(Xf) = h, E(Xi) = h3 /3 and E(X1X 2 ) = h 2/2 for any h 
> O. Generate 103 pairs of such numbers for h = 0.1, 1 and 10, and evaluate 
the sample averages and sample covariances, comparing these with the above 
values. 
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We say that two random variables Xl and X 2 are independent if their joint 
and marginal distribution functions satisfy 

(4.23) 

for all ~l, Xa E lR. This is equivalent to the independent- event definition given 
at the end of Section 2. If both FX1 and Fx", have density functions Pl and P2, 
respectively, and if Xl and X 2 are independent, then their joint distribution 
function FX1X", has a density function P which satisfies 

(4.24) 

Moreover, the product X l X2 of two independent random variables Xl and X 2 

has expectation given by 

(4.25) 

and the sum Xl + X 2 has variance 

(4.26) 

if these moments exist. Hence for two independent random variables both the 
means and variances are additive, and the means are also multiplicative. 

PC-Exercise 1.4.13 Check numerically whether or not the iointly Gaus
sian random variables XII X 2 with means and covariances given in PC-Exercise 
1..1.12 might be independent. 

Exercise 1.4.14 Verify analytically that the random variables Xl and X 2 

in PC-Exercise 1.,1.12 are dependent. 

The properties (4.18)-(4.22) generalize readily to any number n ~ 2ofrandom 
variables Xl, X 2, ••• , X n , but require somewhat more complicated terminology 
if they are to be expressed succinctly. We let {il' i2 , ••• , iA:} be any subset of 
{I, 2, ... , n} for 2 ~ k ~ n. Then the joint distributions Fx.1x.", ... x ... and the 
marginal distributions FX' l x.'" ... x'II defined by (4.17) satisfy 

(4.27) 

(4.28) 

lim Fx1x-r .x" (Xl, X2, ••• , Xn) = 0; -i--OO 
Bi=I,2:, ... ,. 

(4.29) FX1X", ... x .. is nonincreasing and continuous from the right in Xi 

for i = 1,2, ... , n; 
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with the marginal distributions Fx. x .... x· for 1 < k < n satisfying 
'1 '2'1r --

(4.31) 

= lim FXtX~ ... X .. (ZlIZ2"",Zn)' 
zi-+oo 

Vi;h 1 ,i2.···,i. 

Similarly the defirution and properties (4.23)-(4.26) generalize to n ~ 2 
independent random variables Xl, X 2 , ... , X n , with independence occuring if 
all of the joint and marginal distribution functions satisfy 

(4.32) FX'tx;~",x;" (Zip zi",' .. ,Zi,,) = FX't (Zit )FX;~(Zi~)' .. Fx;. (Zi.) 

for all {i1' i2, ... , i,,} ~ {I, 2, ... , n} and 1 :5 k :5 n. If each Fx. has density 
function Pi, then FX1X~ ... X .. has density function p given by 

(4.33) 

In addition, for n independent random variables the product X 1X 2 ·· ,Xn has 
expectation 

(4.34) 

whereas the sum E~=l Xi has variance 

(4.35) 

provided these quantities exist. 
When we are considering n different random variables Xl, X 2 , ••• , Xn at 

the same time it is often convenient to use vector notation. For vectors Z = 
(Zl' ... , zn) and Y = (Y1, ... , Yn) in lRn we recall that the Euclidean nQrm Izi 
and inner product (z, y) are defined by 

(4.36) 
~ n 

IZI=~t;tz~ and (z,y)=t;tZiYi' 

respectively. We note that for n = 1 the Euclidean norm coincides with the 
absolute value. It can be shown algebraically that these satisfy the triangle 
inequality 
(4.37) Iz + yl :5 Izi + Iyl 

and the Cauchy-Schwarz inequality 

(4.38) l(z,y)1 :5lzllYI 

for all z and Y in lRn. The former also holds for other norms on lRn and 
indeed for many vector spaces, such as a function space, on which a norm can 
be defined; the latter holds whenever the vector space has an inner product 
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compatible with a norm, that is with Ixl = J(x,x) for all vectors x in the 
space. An integral version of (4.38) is 

(4.39) 

provided these integrals are meaningful. A generalization of this is the Holder 
inequality 

(4.40) I b I (6 ) IIp ( b ) l/q 1 f(x)g(x)dx $ 1 P(x) dx 1 gq(x) dx 

where lip + llq = 1 with p, q > 1, provided the integrals exist. 
The following moment inequalities for random vectors X = (Xl, ... , Xn) 

and Y = (Yl, ... , Yn ) are often useful: 

(4.41 ) 

with Cr = 1 for r $ 1 and Cr = 2r - l for r ~ 1; 

for r ~ 1; and 
(4.43) E(I(X, Y)I) $ (E(IXIP»l/p (E(lYlq»l/q 

for p, q > 1 with lip + llq = l. 

Exercise 1.4.15 Prove inequalities (..1.41)-(..1.43). 

1.5 Convergence of Random Sequences 

In many situations we have an infinite sequence X 10 X 2, ••• , X n, .•. of random 
variables and are interested in their asymptotic behaviour, that is in the exis
tence of a random variable X which is the limit of the Xn in some sense. There 
are several different ways in which such convergence can be defined. Broadly 
speaking these fall into two classes, a stronger one in which the realizations of 
Xn are required to be close in some way to those of X and a weaker one in 
which only their probability distributions need be close. We can assume with
out loss of generality that the random variables are all defined on a common 
probability space. 

The following three convergences are the most commonly used ones in the 
strong class. 
I. Convergence with probability one (w.p.l): 

(5.1) P ({w En: lim IXn(w) - X(w)1 = O}) = l. 
n_oo 
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This is also known as almost sure convergence. 
II. Mean-square convergence: E(X~) < 00 for n = 1,2, ... , E(X2) < 00 and 

(5.2) lim E (lXn - X12) = o. 
n-+oo 

III. Convergence in probability: 

(5.3) lim P({w E n;IXn(w) -X(w)1 ~ (}) = o for all (> O. 
n-+oo 

Convergence in probability is also called stochastic convergence. It is equivalent 
to 

(5.4) 

which is sometimes more convenient since the expectation in (5.4) defines a 
distance function, known as a metric, between the random variables. 

Both (I) convergence w.p.l and (II) mean-square convergence imply (III) 
convergence in probability, the latter following directly from the Chebyshev 
inequality (4.14): 

P(IXn - XI ~ £) = P (IXn - XI2 ~ (2) ~ ;E (lXn - XI2). 
( 

Generally (III) does not imply either (I) or (II), nor does either of (I) or (II) 
imply the other. This can be demonstrated by counterexamples, such as in the 
following exercise. 

Exercise 1.5.1 Let n = [0,1] and let P([a, b]) = Ib - al for any subinterval 
[a, b] ~ [0,1]. For n = 1, 2, 3, ... let An =:: {w En: 0 ~ w ~ lin} and 
define Xn =:: .,fii [Aft' Evaluate E(X~) and P(Xn ~ () for all ( > 0 and n = 
1, 2, 3, .... Hence deduce that Xn converges to 0 in probability, but not in the 
mean-square sense. 
If, however, IXn(w)1 ~ IY(w)l, w.p.l, for some random variable Y with E(y2) 
< 00, then (I) implies (II) and (II) is equivalent to (III). This is a consequence 
of the Dominated Convergence Theorem, which will be stated in Section 2 of 
Chapter 2 (Theorem 2.2.3). 

For the class of weaker convergences we do not need to know the actual ran
dom variables or the underlying probability space(s), but rather we only need 
to know the distribution functions. We mention here the following convergences 
from this class. 
IV. Convergence in distribution: 

(5.5) lim Fx,,(x) = Fx(x) at all continuity points of Fx. 
n .... oo 

This is also known as convergence in law and refers to the distributions of the 
random variables Xn and X. 
V. Weak convergence: 

(5.6) 
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for all test functions I : !J? -+ !J?, usually continuous functions vanishing outside 
of a bounded interval which may depend on the particular function. Sometimes 
it is useful to consider weak convergence with respect to other sets of test 
functions. The integrals in (5.6) are (improper) lliemann-Stieltjes integrals, 
about which we shall say more in Chapter 2. If the distribution functions have 
densities, then (5.6) reduces to the more familiar (improper) Riemann integrals: 

(5.7) 

While they may appear more complicated, the integral limits (5.6) and (5.7) 
are often easier to verify in theoretical contexts than are the pointwise limits 
(5.5). 

Convergence in probability (ITI) implies convergence in distribution (IV), 
but the converse implication does not hold as the following counterexample 
shows. 

Exam.ple 1.5.2 Consider two independent two-point distributed random 
variables X and Y, both taking values 0 and 1 with equal probabilities 1/2, 
and let Xn = Y lor n = 1, 2, 3, .... Then Xn and X have the same distribu
tions, so they obviously converge in distribution, However, they do not converge 
in probability because j)(IXn - XI = 1) = 1/2 for n = 1, 2, 3, .... 

PC-Exercise 1.5.3 Define Yn = X + Zn where X is a U(O, 1) uniformly 
distributed random variable and Zn an independent N(O; lIn) Gaussian random 
variable for n = 1, 2, 3, .... For fixed but large n, say n = 103 , use the 
programs from PC-Exercise 1.9.1 to generate sufficiently many realizations of 
Yn . Calculate relative frequencies and plot a histogram to obtain an estimation 
of the graph of the density function ofYn . Then estimate the mean-square error 
E(lYn - X12) for large n. Does this suggest that the Yn converge to X in the 
mean-square sense? 

The intuitive idea of defining probabilities as the limits of relative frequen
cies determined from many repetitions of a given probabilistic experiment re
ceives some theoretical justification from an asymptotic analysis of sequences 
of independent identically distributed (i.i.d.) random variables Xl. X2, Xa, .... 
Let J.' = E(Xn) and 0-2 = Var(Xn). From this independence it follows (see 
(4.35» that the averaged random variables 

1 1 
An = - Sn = - (Xl + X 2 + ... + Xn) 

n n 

also have mean E(An) = i' and variance Var(An) = 0-2 In. The Law of Large 
Numbers, one of the fundamental theorems of probability and mathematical 
statistics, says that 

(5.8) An -+ J.' as n -+ 00 

with convergence in probability (ITI) in its weak version and convergence with 
probability one (I) or in mean-square (IT) in its strong versions. 
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PC-Exercise 1.5.4 Use the random number generators in Section :1 for 
uniform, two-point, exponential and Gaussian random numbers to verify the 
limit (5.8) in the mean-square sense by averaging (An - IJ)2 for sufficiently 
many different runs, say 102 , and for n = 10, 102 and 103 • 

Another fundamental result, the Central Limit Theorem, says that the nor
malized random variables 

(5.9) Z - (Sn - nIJ) 
n- t::' 

tTV n 

for which E(Zn) = 0 and Var(Zn) = 1, converge in distribution to a standard 
Gaussian random variable Z. This is also true under weaker assumptions than 
the i.i.d. assumption on the original random variables Xl! X 2 , Xs , ... and 
provides an explanation for the dominant role of the Gaussian distribution in 
probability and statistics. 

Exercise 1.5.5 Show that the Central Limit Theorem provides more infor
mation than the Law of Large Numbers about the limiting behaviour of the 
sequence At, A 2 , A 3 , 

PC-Exercise 1.5.6 As in PC-Exercise 1.5.4 generate sequences of random 
numbers and calculate their Zn values from (5.9). Using histograms of relative 
frequency plots obtain simulated approximations to the graphs of the density 
functions for the Zn and show that these approach the graph of the density 
function of the standard Gaussian distribution as n is taken larger and larger, 
specifically for n = 100, 500 and 1000. 

The Bernoulli trials are an illustration of the Law of Large Numbers and 
the Central Limit Theorem. They are independent repetitions of an experiment 
with two basic outcomes, such as heads and tails when a coin is tossed, with 
probabilities p and 1 - p, respectively. If we let Xn = 1 for a head and Xn 
= 0 for a tail, then we have an i.i.d. sequence Xl, X 2 , X 3 , ••• with mean 
E(Xn) = p and variance Var(Xn) = p(l - p). The sum Sn = Xl + X 2 + 
... + Xn is then just the number n(H) of heads occuring out of n tosses and 
An = Sn/n = n(H)/n is the relative frequency of tossing a head in n tosses. 
Of course, these relative frequencies are themselves random variables, but the 
Law of Large Numbers says that they converge to the common mean p, which 
is the probability of throwing a head in a single trial. 

As another illustration consider a fair coin and let Xn = +1 for a head and 
Xn = -1 for a tail. Then E(Xn) = 0 and Var(Xn) = 1, so by the Central 
Limit Theorem the random variables Zn = Sn/vn defined by (5.9) converge 
in distribution to a standard Gaussian random variable Z. This is more than 
we get from the Law of Large Numbers for the averages An = Sn/n, namely 
convergence to O. Alternatively, the random variables Sn are approximately 
N(O;n) distributed for large n. Such a sequence of sums of i.i.d. random 
variables is called a random walk on account of the appearance of its graph 
when plotted against n. 
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In 
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Sn - rand_ walk 
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o 80 100 n 
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-aD Figure 1.S.1 The random walk in PC-Exercise 1.5.7. 

PC-Exercise 1.5.7 Form a random walk Sn using the two-point random 
number generator (9.9) and plot Sn against n, joining the successive points 
in the (n, Sn) plane by straight line segments. Repeat this lor other sequences 
corresponding to different initial seeds and compare the plotted paths. 

1.6 Basic Ideas About Stochastic Processes 

A sequence of random variables Xl, X 2 , ••• , X n , ••. often describes, or may 
be conveniently imagined to describe, the evolution of a probabilistic system 
over discrete instants of time tl < t2 < ... < tn < .... We then say that it 
is a stochastic process and call the totality of its joint distribution functions 
{FXilXi2 ... Xi; : ij = 1,2, .. , and j = 1,2, ... } its probability law. Henceforth 
we shall write these distributions as Ft· f· ... f,·. to emphasize the role of the 

11 '2 J 

time instants. A sequence of i.i.d. random variables is a trivial example of a 
stochastic process in the sense that what happens at one instant is completely 
unaffected by what happens at any other, past or future, instant. Moreover its 
probability law is quite simple, since any joint distribution is given by 

(6.1) Ffilfi2 ... fi/XillXi" ... ,Xi;) = F(Xi 1 )F(Xi,)· .. F(x;j), 

where F is the common distribution function of the random variables. Another 
simple example are the iterates of a first order difference equation such as 

(6.2) 
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for n = 1, 2, 3, ... ; here each random variable is determined exactly from its 
predecessor, and ultimately from the initial random variable Xl. For most 
interesting stochastic processes encountered in applications the relationship 
between the random variables at different time instants lies somewhere between 
these two extremes. For instance, the joint distributions may all be Gaussian 
in which case we call the process a Gaussian process; they may satisfy (6.1), 
but generally need not. 

Stochastic processes may also be defined for all time instants in a bounded 
interval such as [0, 1] or in an unbounded interval such as [0, (Xl), in which case 
we call them continuous time stochastic processes. As an example, let A > 0 
be a fixed parameter and for each t > 0 define X(t) to be a Poisson distributed 
random variable with parameter At. Continuing with the radioactive decay 
interpretation of Example 1.2.2, X(t) then represents the number of atoms 
decaying in the time interval (0, t]. 

In general we shall denote the time set under consideration by T and assume 
that there is a common underlying probability space (0, A, Pl. A stochastic 
process X = {X(t), t E T} is thus a function of two variables X : Tx 0 - ~ 
where X(t) = X(t,·) is a random variable for each t E T. For each w E 0 we 
call X(·,w) : T - ~ a realization, a sample path or a trajectory ofthe stochastic 
process. The curves plotted in Figure 1.5.1 can be interpreted as the realizations 
of a stochastic process. The functions X cannot be completely arbitrary, but 
must satisfy information restrictions, both at specific time instants, to ensure 
that random variables result, and also between different time instants. The 
latter are particularly crucial, mathematically speaking, for continuous time 
processes and will be discussed in some detail in Chapter 2. 

For both continuous and discrete time sets T it is useful to distinguish 
various classes of stochastic processes according to their specific temporal rela
tionships. Assuming that the expressions exist, the expectations and variances 

(6.3) 1'(t) = E(X(t», /72(t) = Var(X(t)) 

at each instant t E T and the covariances 

(6.4) C(s, t) = E «X(s) - 1'(s»(X(t) - 1'(t))) 

at distinct instants s, t E T provide some information about the time variability 
of a stochastic process. 

Example 1.6.1 A Poisson process with intensity parameter A > 0 is a st
ochastic process X = {X(t), t ~ O} such that (i) X(O) = 0; (ii) X(t)- X(s) is 
a Poisson distributed random variable with parameter A(t - s) for all 0 ~ s < 
t; and (iii) the increments X(t2) - X(tt} and X(t4) - X(ta) are independent 
for all 0 ~ t1 < t2 ~ ta < t4 . . Its means, variances and covariances are I'(t) 
= At, /72(t) = At and C(s,t) = Amin{s,t}, respective/y, for all s, t > o. 

An important class of stochastic processes are those with independent in
crements, that is for which the random variables X(tj+d - X(tj), j = 0, 1, 
2, ... , n - 1 are independent for any finite combination of time instants to < 
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tl < ... < tn in T. If to is the smallest time instant in T then the random 
variables X(to) and X(tj) -X(to) for any other tj in T are also required to be 
independent. A Poisson process is an example of a continuous time stochastic 
process with independent increments. Another is the standard Wiener process 
W = {Wet), t ~ OJ, that is a Gaussian process with independent increments 
for which 

(6.5) W(O) = 0 w.p.l, E(W(t» = 0, Var(W(t) - W(s)) = t - s 

for all 0 ~ s ~ t. In fact, it can be shown that any continuous time stochastic 
process with independent increments and finite second moments E(X2(t» for 
all t is a Gaussian process provided X(to) is Gaussian for some to E T. 

The stationary processes are another interesting class of stochastic processes 
since they represent a form of probabilistic equilibrium in the sense that the 
particular instants at which they are examined are not important. We say that 
a process is strictly stationary if its joint distributions are all invariant under 
time displacements, that is if 

(6.6) 

for all ti, ti + hE T where i = 1,2, ... , n and n = 1, 2, 3, ... ; in particular, 
the X(t) have the same distribution for all t E T. For example, a sequence 
of i.i.d. random variables is strictly stationary. On the other hand, if there 
is a constant Il and a function c : ~ -;. ~ such that the means, variances and 
covariances of a stochastic process satisfy 

(6.7) pet) = Il, 0-2(t) = c(O) and C(s,t) = c(t - s) 

for all s, t ET, then we call the process wide-sense stationary. This means 
the process is only stationary with respect to its first and second moments. 
It is straightforward to show that a strictly stationary process is wide-sense 
stationary if its means, variances and covariances are all finite, but a wide
sense stationary process need not be strictly stationary. 

Example 1.6.2 The Ornstein-Uhlenbeck process X = {X(t), t E ~+} with 
parameter -y > 0 and initial value Xo E NCO; 1) is a Gaussian process with 
means E(X(t» = 0 and covariances E(X$Xt ) = exp(--Ylt - sl) for all s, t E 
~+. Hence it is a wide-sense stationary process. It is also strictly stationary, 
as will be seen from equation (7.4). 

Exercise 1.6.3 Show that a standard Wiener process W has covariances 
C(s, t) = min { s, t} and hence is not wide-sense stationary. 

Conditional probabilities provide a more refined tool than mean values and 
covariances for analysing the relationships between the random variables of a 
stochastic process at different time instants. To illustrate this let us consider a 
sequence of random variables Xl, X 2 , X 3 , ••• taking values in a discrete set X 
= {Xl, X2, X3, .•• }, which may be finite or infinite. We shall suppose that we 
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are at a time instant n and know the present outcome Zi .. , that is the value of 
X n , as well as the past outcomes Xl = Zh, X 2 = Zi~,"" X n - l = Zi"_l' Using 
this information we wish to predict something about the future outcomes, the 
values of X n+l, X n+2, "" in particular the value of the immediate future 
random variable X n +l , For this the conditional probabilities 

P(Xn+t = zjlXI = Zi l ,X2 = Zi3,' ,. ,Xn = Zi .. ) 

= P (Xl = Zip X2 = Zi3 , .•. ,Xn = Zi",Xn+1 = Zj) 

P(XI = Zil ,X2 = Zi3,·., ,Xn = Zi .. ) 

for each Zj E X are useful. Here we have abbreviated our notation for events 
using, for example, {Xl::: Zil} for {w EO: Xt(w) == Zil}' In principle, we 
could determine such conditional probabilities for all Zill Zi3' ... , Zi" in X 
and all n = 1,2,3, .... In a deterministic system governed, for instance, by a 
first order difference equation such as (6.2) only the present value Zi .. of Xn is 
needed to determine the future value of Xn +1; the past values of Xl, X 2 , ••• , 

Xn-t are involved only indirectly in that they determine the value of X n . This 
is just the common law of causality and there is a stochastic analogue called 
the Markov property, that is 

(6.8) P(Xn+l = zjlXn ::: Zi,,) 

P(Xn+t::: zjlX1 ::: Zil'X2 ::: Zi3""'Xn::: Zi,,) 

for all possible Zj, Zip Zi3 , .,., Zi .. in X with n = 1, 2, 3, .... A sequence of 
discrete valued random variables with this property is an example of a Markov 
process; in particular, we call it a discrete time Markov chain. 

While they are peripheral to the theme of this book, we shall look a little 
more closely at discrete time Markov chains with a finite number of states X = 
{ZI' Z2, ... , ZN} because they allow some important concepts to be introduced 
and understood in a relatively simple setting. For each n == 1,2,3, ... we define 
an NxN matrix pen) ::: [pi';(n)] componentwise by 

(6.9) 

for i, j = 1, 2, ... , N. Obviously 0 :::; pi,j(n) :::; 1 and, since X n+1 can only 
attain states in X, 

n 

(6.10) LpiJ(n) = 1 
j=1 

for each i ::: 1, 2, ... , N and n = 1, 2, 3, .... We call the matrix pen) the 
transition matrix of the Markov chain and its components (6.9) the transition 
probabilities at time n. A probability vector on X is a vector p = (PI, P2, ... , 
PN) E ~N with 0 :::; Pi :::; 1 for i = 1, 2, ... , N and E~IPi ::: 1. Thus if 
p( n) is the probability vector corresponding to the distribution of the random 
variable X n , that is if Pi(n) = P(Xn = Zi) for i = 1, 2, ... , N, then the 
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probability vector pen + 1) corresponding to X n +1 is related to it through the 
vector equation 

(6.11) pen + 1) = p(n)P(n). 

Hence, if we know the initial distribution probability vector p{I), then we have 

(6.12) pen) = p(I)P{I)P(2)··· Pen - 1) 

for n = 2, 3, ... by applying (6.11) recursively. In the case that the transition 
matrices are all the same, that is Pen) == P for n = 1, 2, 3, ... , we say that the 
Markov chain is homogeneous. For a homogeneous Markov chain (6.12) takes 
the form pen) = p(l)pn-l or, more generally, 

(6.13) pen + k - 1) = p(k)pn-l 

for any k = 1, 2, 3, ... and n = 2, 3, 4, .... 

Example 1.6.4 Suppose that a city with constant population has two dis
tricts, E and W, and that in any given year 100a% of the inhabitants of E 
move to Wand 100b% of those of W move to E, with the others remaining 
where they are. Taking E as the first state and W as the second, the matrix 

[ I-a a ] 
b I-b 

is the transition matrix of a homogeneous Markov chain for the (fractional) 
population distribution p = (PE,PW) of the two districts. If the population 
distribution of the city is initially p(I), then by (6.13) after n years it is p( n+ 1) 
=p(l)pn. 

PC-Exercise 1.6.5 Let a = 0.1 and b = 0.01 in the Markov chain described 
in Example 1.6.4 and consider a person originally living in district E of the 
city. Use the two-point random number generator to simulate this person's 
yearly district of residence. Assuming a lifespan of 100 years, estimate from 
100 simulations the probabilities of this person's residing in districts E and W. 
Repeat the calculations for a person originally living in district W. 

An interpretation of (6.13) is that the probability distribution depends only 
on the time that has elapsed rather on the actual time itself. This does not 
however say that a homogeneous Markov chain is a strictly stationary stochastic 
process. That requires the probability distributions for all instants of time to 
be identical, or equivalently the existence of a probability vector p such that 
pen) = p for each n = 1,2,3, .... The transition relationship (6.11) implies that 
such a probability vector p must satisfy the system of simultaneous equations, 
written here in vector form, 

(6.14) p=pP. 



1.6. BASIC IDEAS ABOUT STOCHASTIC PROCESSES 31 

Property (6.11) for a constant transition matrix P ensures that (6.14) has at 
least one solution which is a probability vector. Such a solution is called a 
stationary probability vector or distribution for the Markov chain. For example 

is a stationary probability vector for the Markov chain described in Example 
1.6.4, a fact which should have been discovered by those readers who did PC
Exercise 1.6.5. This particular p is the only stationary probability vector for 
this transition matrix. Other transition matrices may have more than one 
stationary probability vector. 

Exercise 1.6.6 Show that all olthe probability vectors P>. = ()"/2, ),,/2, 1-),,) 
lor each 0 ~ ),. ~ 1 satisfies (6.14) with the transition matrix 

[ 
0.5 0.5 0 1 

P = 0.5 0.5 0 . 
o 0 1 

A homogeneous Markov chain thus describes a strictly stationary stochastic 
process only if the initial random variable Xl is distributed according to one 
of its stationary probability vectors. 

Certain homogeneous Markov chains with a unique stationary probability 
vector p enjoy a powerful property called ergodicity relating the long-term 
time averages of its realizations to the spatial averaging with respect. to the 
stationary distribution. For any function 1 : X -+ lR we can form the time 
average 

(6.15) 
1 T 
rL1(X,) 

'=1 
of the values I(X,) taken by a sequence of random variables Xl, X 2 , ••• , Xt. 
... generated by the Markov chain. An obvious question is: what happens 
with these averages as T -+ oo? In fact, in the special case that I(z,,) = 1 
for some k and /(Zj) = 0 for all other j :F k the time average (6.15) is just 
the relative frequency of the chain's being in state z". We recall that for i.i.d. 
random variables Xl, X 2 , X 3 , ••• the Law of Large Numbers would tell us 
that the limit exists and is equal to the probability p". In general, we say 
that a Markov chain is ergodic if for every initial Xl the limits of the time 
averages (6.15) exist and are equal to the average of / over X with respect to 
the stationary probability vector p, that is if 

(6.16) 

A condition guaranteeing the ergodicity of a Markov chain is that all of the 
components of its unique stationary probability vector p are nonzero, that is 
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Pi > 0 for i = 1, 2, ... , N. A weaker condition is that all of the components of 
some kth power pA: of the transition matrix are nonzero. Ergodicity is thus an 
extension of the Law of Large Numbers to stochastic processes, but says much 
more about the stochastic process, for example, implying its eventual mixing 
over the states in X according to the stationary distribution. 

PC-Exercise 1.6.7 Verify (6.16) numerically for the Markov chain in Ex
ample 1.6.4, taking into account PC-Exercise 1.6.5. Consider functions f : {E, 
W} --+ ~ with: (i) feE) = 0, feW) = 1; (ii) feE) = 1, feW) = 0; (iii) feE) 
= 1, feW) = -1; (iv) feE) = -1, feW) = 1. In each case try a variety of 
initial distributions p(l) = (PE(I),pw(l» = (p, 1- p) for Xl, say with p = 0, 
0.1, 0.2, ... , 0.9, 1. Also try p = 1/11 = 0.09090909 .... 

We can handle continuous time Markov chains in a similar way. Let XCt) 
be distributed over a finite state space X = {Xl, X2, ... , XN} according to 
an N-dimensional probability vector pet) for each t ~ O. In this context the 
Markov property (6.8) takes the form 

(6.17) P (X(tI) = Xj IX(st} = Xi 1 ,' •• ,X(Sn) = Xi .. , X(to) = Xi) 

= P(X(t1) = XjIX(to) = xd 

for all 0 ~ Sl ~ 82 ~ .•• ~ Sn < to ~ tt and all Xi, Xj, Xi" Xi", ... , Xi .. EX 
where n = 1, 2,3, .... For each 0 ~ to ~ t1 we can define an NxN transition 
matrix P(to;tt} = [pi,j(to;tt}] componentwise by . 

for i, j = 1, 2, ... , N. Clearly then P(to;to) = I and the probability vectors 
p(to) and p(tt} are related by 

p(tt) = p(to)P(to; it). 

Applying this for to ~ t1 ~ t2 we have P(t2) = p(to)P(tO;t2) and 

p(t2) = p(t1)P(h;t2) = p(to)P(to;tt}P(t1;t2) 

for any probability vector p(to). From this we can conclude that the transition 
matrices satisfy the relationship 

(6.18) 

for all to ~ t1 ~ t2' In the special case that the transition matrices P(to; t 1) 
depend only on the time difference t1 - to, that is P(to; t 1) = P(O; t1 - to) for 
all 0 ~ to ~ t 1, we say that the continuous time Markov chain is homogeneous 
and write pet) for P(O; t). Then (6.18) reduces to 

(6.19) pes + t) = P(s)P(t) = P(t)P(s) 

for all s,t ~ O. 
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There exists an N X N intensity matrix A = (ai,j) with 

. . {limt_O t!..pl i :f. j 
a',J = .. 

. pl,l(t) - 1 hmt_O -t i = j 

which, together with the initial probability vector p(O), completely character
izes the homogeneous continuous time Markov chain. If the diagonal compo
nents ai,i are finite for each i = 1, ... , N, then the transition probabilities 
satisfy the Kolmogorov fOnJJard equation 

(6.20) 
d i,j N 
~(t) - '" pi,k(t) ak,j = 0 dt L..J 

k=l 

and the Kolmogorov backward equation 

(6.21) 
d i,j N 
~(t) - '" ak,i pk,j(t) = 0 dt L..J 

k=l 

for all i, j = 1, 2, ... , N. The waiting time of a homogeneous continuous 
time Markov chain, that is the time between transitions from a state Xi to any 
other state, is thus exponentially distributed with intensity parameter Ai = 
" ai,j L..Jj-I.i • 

ExftIDple 1.6.8 Consider a stochastic process X(t) taking only the two val
ues +1 and -1 with probabilities (p+(t),p-(t» = pet) and switching according 
to the homogeneous transition matrix 

for t ~ O. The intensity matrix here is 

A = [-0.5 0.5 ] 
0.5 -0.5 . 

For the initial probability vector p(O) = P = (0.5,0.5) we find that pP(t) = pet) 
== p for all t ~ 0, so P is a stationary probability vector for this Markov chain; 
the corresponding strictly stationary stochastic process is known as random 
telegraphic noise. 

PC-Exercise 1.6.9 Use exponentially distributed waiting times to simulate 
the telegraphic noise of Example 1.6.8 on the time interval [0,11 with T = 10. 
From a sample of 100 simulations calculate the frequency of being in the stale 
1 at time T. 
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We remark that a continuous time Markov chain is called ergodic if 

(6.22) 

that is with the time averages (6.15) in (6.16) now written in integral form. 
The random telegraphic noise process is an ergodic continuous time Markov 
chain. 

Exercise 1.6.10 For Example 1.6.8 show that the probability vectors pet) = 
p(O)P(t) -+ P as t -+ 00 for any initial probability vector p(O). 

As a final exercise we return to the Poisson process defined in Example 1.6.1, 
which is a continuous time Markov chain on a count ably infinite state space. 

Exercise 1.6.11 Show that the Poisson process is a continuous time ho
mogeneous Markov chain on the countably infinite state space {O, 1, 2, ... }. 
Determine its transition matrix pet). 

1.7 Diffusion Processes 

Markov processes taking continuous values in !R require a somewhat more com
plicatedmathematical framework than their discrete state counterparts, espe
cially when they also involve continuous time values. A rich and useful class 
of such Markov processes are the diffusion processes, which we shall define be
low after first considering some more general background material. In what 
follows we shall always suppose that for k = 1, 2, ... every joint distribution 
Ft1t,. ... t.(Zl, Z2, ... , Zk) of the process X = {X(t), t ~ O} under considera
tion has a density P(tlozl; t2,Z2; ... ; tk,Zk). Then we define the conditional 
probabilities 

(7.1) 

= 
fa p(tl, xl;t2, X2;··· ;tn,zn;tnH,Y) dy 

I: p(tl,Xl; t2, Z2;··· ;tn , xn;tn+l, y) dy 

for all Borel subsets B of~, time instants 0 < tl < t2 < ... < tn < tn+l and 
all states Xl, X2, ... , Xn E !R, provided the denominators are nonzero. (When 
the denominator in (7.1) is zero we either define the conditional probability to 
be zero or we leave it undefined). In this context the Markov property takes 
the form 

(7.2) P (X(tn+l) E BIX(tl) = Xl, X(t2) = X2,"" X(tn) = Xn) 

= P (X(tn+d E BIX(tn) = Xn) 
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for all Borel subsets B of lR, time instants ° < h < t2 < '" < tn < tn+! and 
all states Xl, X2, ... , Xn E lR for which the conditional probabilities are defined. 
If (7.2) is satisfied we call the stochastic process X(t) a Markov process and 
write its transition probabilities as 

pes, xit, B) = P(X(t) E BIX(s) = x), 

where s < t. For fixed s, x and t, pes, x; t,.) is a probability function (measure) 
on the u-algebra B of Borel subsets of lR. Under our assumption above it has 
a density pes, x;t, .), called a transition density, so 

P(S,xit,B) = lp(s,x;t,Y)dy 

for all B E B. For technical convenience we usually also define P( s, Xi s, B) 
= IB(X) for t = s, where IE is the indicator function of the set B. Analo
gously with Markov chains, we say that a continuous time Markov process is 
homogeneous if all of its transition densities pes, x;t, y) depend only on the 
time difference t - s rather than on the specific values of sand t. Examples of 
homogeneous Markov processes are the standard Wiener process (see equation 
6.5) with transition density 

(7.3) 1 ( (y- X)2) 
pes, x;t, y) = J21r(t _ s) exp - 2(t _ s) 

and the Ornstein-Uhlenbeck process with r = 1 (see Example 1.6.2) with tran
sition density 

(7.4) 
1 ( (y _ xe-(t-.») 2) 

pes, x; t, y) = J exp 2 (1 -2(t-$») . 
211" (1 _ e-2(t-o») - e 

Since pes, x; t, y) = p(O, x; t - s, y) we usually omit the superfluous first variable 
and simply write P(Xit - s,y), with P(x;t - s,B) = P(O,Xit - s,B) for the 
transition probabilities. 

The transition matrix equation (6.19) for continuous time Markov chains 
has a counterpart for the transition densities of a continuous state Markov 
process. This also follows from the Markov property and is called the Chapman
Kolmogorov equation: 

(7.5) P(S,xit,y) = 1: p(s,x;r,z)p(r,z;t,y)dz 

for all s ~ r ~ t and x, y E lR. For transition probabilities it takes the form 

(7.6) P(S,xit,B) = 1: P(T,z;t,B)P(S,XiT,dz), 

where B E B and the integral is an improper Riemann- Stieltjes integral. 
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Exercise 1.7.1 Verify that the transition density {7.9} of a standard Wiener 
process satisfies the Chapman-Kolmogorov equation {7.5}. What happens to the 
T variable in the integrand here? 

The transition density of the standard Wiener process is obviously a smooth 
function of its variables for t > s. Evaluating the partial derivatives of (7.3) 
explicitly, we find that they satisfy the partial differential equations 

(7.7) (s,z) fixed, 

and 

(7.8) 
op 102p 
os + 2' oz2 = 0, (t, y) fixed. 

The transition density (7.4) ofthe Ornstein-Uhlenbeck process satisfies related, 
but more complicated partial differential equations (see Exercise 1.7.2 below). 
Equation (7.7) is an example of a heat equation which describes the variation 
in temperature as heat diffuses through a physical medium. The same equation 
describes the diffusion of a chemical substance such as an inkspot. It should 
thus not be surprising that a standard Wiener process serves as a prototypical 
example of a (stochastic) diffusion process. To be specific, a Markov process 
with transition densities pes, Zj t, y) is called a diffusion process ifthe following 
three limits exist for all ( > 0, s ~ 0 and Z E !R : 

(7.9) lim_1_j p(s,zjt,y)dy=O, 
t,J.. t - s III-zl>£ 

(7.10) lim _1_1, (y - z)p(s, Zjt, y) dy = a(s, z) 
tl' t - s III-zl<£ 

and 

(7.11) 

where a and b are well-defined functions. Condition (7.9) prevents a diffusion 
process from having instantaneous jumps. The quantity a(s, z) is called the 
drift of the diffusion process and b(s,z) its diffusion coefficient at time sand 
position z. (7.10) implies that 

(7.12) a(s,z) = lim-1-E(X(t) - X(s)IX(s) = z), 
t,J.. t - s 

so the drift a( s, z) is the instantaneous rate of change in the mean of the process 
given that Xes) = z. Similarly, it follows from (7.11) that the squared diffusion 
coefficient 

(7.13) b2(s,z) = lim-1-E (X(t) - X(s»2IX(s) = z) 
t,J.. t - s 



1.7. DIFFUSION PROCESSES 37 

denotes the instantaneous rate of change of the squared fluctuations of the 
process given that Xes) = x. 

Exercise 1.7.2 Show that the standard Wiener process is a diffusion process 
with drift a(s, x) == 0 and diffusion coefficient b(s, x) == 1, and that the Ornstein
Uhlenbeck process with r = 1 is a diffusion process with drift a( s, x) = -x and 
diffusion coefficient b( s, x) == V2,. 

When the drift a and diffusion coefficient b of a diffusion process are mod
erately smooth functions, then its transition density pes, x; t, y) also satisfies 
partial differential equations, which reduce to (7.7) and (7.8) for a standard 
Wiener process. These are the K olmogorov fon.vard equation 

(7.14) 
{}p {} 1 {}2 2 
{}t + {}y {a(t,y)p} -"2 {}y2 {b (t,y)p} = 0, (s, x) fixed, 

and the K olmogorov backward equation 

(7.15) 
op {}p 1 2 {}2p 
-{} + a(s, x)-{} + -b (s, x){} 2 = 0, 

S x 2 x 
(t, y) fixed, 

with the former giving the forward evolution with respect to the final state (t, y) 
and the latter giving the backward evolution with respect to the initial (s, x). 
The forward equation (7.14) is the formal adjoint of the backward equation 
(7.15) and is commonly called the Fokker-Planck equation. Both follow from 
the Chapman-Kolmogorov equation (7.5) and (7.9)-(7.11). Instead of present
ing a rigorous proof, which is intricate, we shall derive the backward equation 
(7.15) in a rough, yet illustrative way. For this we approximate the diffusion 
process by a discrete-time continuous staJprocess with two equally prob_able 
jumps from (s, x) to (s + ~s, x + a~s ± b2~s) where a = a(s, x) and b2 = 
b2(s, x), which is consistent with the interpretations (7.11) and (7.12) of the 
drift and diffusion coefficients. For this approximate process we have 

pes, x;t, y) = ~ {pes + ~s, x+; t, y) + pes + ~s, x-; t, y)} 

where x± = x+a~s±v'1)2~s. Taking Taylor expansions up to the first order 
in ~s about (s, xit, y) we find that 

0= (}p ~s + a ap ~s +! 1)2 a2p ~s + O«~s)3/2) 
as ax 2 {}x2 

where the partial derivatives are evaluated at (s, x; t, y). Since this discrete
time process converges in distribution to the diffusion process, we obtain (7.15) 
when we take the limit ~s -+ o. 
Exercise 1.7.3 Use the results of Exercise 1.7.2 to write down the K 01-
mogorov forward and backward equations for the Ornstein-Uhlenbeck process 
with parameter'Y = 1. Then verify that the transition density (7.4) satisfies 
the backward equation. 
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For a stationary diffusion process there usually exists a stationary probability 
density p(y) such that 

p(y) = l: p(S,z;t,Y)P(Z)dZ 

for all 0 ~ 8 ~ t and y E~. This density p then satifies the correspond
ing stationary or time-independent Fokker-Planck equation, which, in this 1-
dimensional case, is the ordinary differential equation 

(7.16) 
d 1 d2 

dy {a(y)p(y)} - "2 dy2 {b2(y)p(y)} = 0 

with drift a and diffusion coefficient b independent of time t. Naturally p(y) ~ 
o for all y E ~ and f~oo p(y) dy = 1. Such a diffusion process X = {X(t), t ~ 
O} is said to be ergodic if the following time average limit exists and equals the 
spatial average with respect to p, w.p.1, that is if 

(7.17) liT 100 
lim T f(X(t» cit = f(z)p(z) dz, 

T-oo 0 _00 

for all bounded measurable functions f : ~ -+~. However, unlike its coun
terparts (6.16) and (6.20) for Markov chains, (7.17) is usually quite difficult to 
verify directly for a diffusion process. 

Exercise 1.7.4 Solve (7.16) for the stationary probability density of the dif
fusion process with drift aCyl = lIy - y2 and diffusion coefficient bey) = -/2y 
for y ~ O. Assume that p and its derivative p converge to 0 exponentially fast 
as y -+ 00. Distinguish the cases where 1/ < 1, 1 ~ II < 2 and 1/ ~ 2. 

We would expect from (7.9) that a diffusion process should have well -
behaved sample paths. In fact these are, almost surely, continuous functions 
of time, although they need not be differentiable, as we shall show later for 
the Wiener process. We can define the continuity of a stochastic process X(t) 
in t in several different ways corresponding to the different convergences of 
sequences of random variables introduced in Section 5. In particular we have 
at a fixed instant t: 

I. Continuity with probability one: 

(7.18) P ({w E (l : lim IX(s,w) - X(t,w)1 = OJ) = 1; __ f 

II. Mean-square continuity: E(X(t)2) < 00 and 

(7.19) limEOX(s)-X(t)12) =0; __ f 

III. Continuity in probability: 

(7.20) lim P( {w E (l : IX(s,w) - X(t,w)1 ~ f}) = 0 for all f> 0; and _-f 
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IV. Continuity in distribution: 

(7.21) lim F,(z) = Ft(z) for all continuity points of Ft. ,_t 
These are related to each other in the same way as the convergences of random 
sequences. In particular, (I) and (II) both imply (III), but not each other, 
and (III) implies (IV). Moreover (III) can be written in terms of the metric 
(5.4) as 

(7.22) r E ( IX(s) - X(t)1 ) - 0 
,~ 1 + IX(s) - X(t)1 - . 

The random telegraphic noise process (Example 1.6.8) is a continuous time 
Markov chain with two states -1 and + I, so it is obviously not a diffusion 
process. Its sample paths are piecewise continuous functions jumping between 
the two values ±1 with equal probability. It follows from its transition matrices 
that the covariances are 

E (lX(s) - X(t)12) = 2(I-exp(-ls - tl» 

for all s, t ~ 0, so this process is mean-square continuous at any instant t and 
hence also continuous in probability and in distribution. It is also known that 
the telegraphic noise process is continuous with probability one at any instant t. 
This may seem surprising in view of the fact that its sample paths are actually 
discontinuous at the times when a jump occurs. There is, however, a simple 
explanation. Continuity with probability one at the time instant t means that 
the probability peAt) = 0 where At = {w EO: lima-+t IX(s,w) - X(t,w)1 =1= 
a}. Continuity of almost all of the sample paths, which we call sample-path 
continuity, requires peA) = 0 where A = Ut>oA,. Since A is the uncountable 
union of events At it need not be an event, i~ which case peA) is not defined, 
or when it is an event it could have peA) > 0 even though peAt) = 0 for every 
t ~ O. The second of these is what happens for the telegraphic noise process. 

For a diffusion process the appropriate continuity concept is sample-path 
continuity. There is a criterion due to Kolmogorov which implies the sample
path continuity of a continuous time stochastic process X = {X(t), t E T}, 
namely the existence of positive constants o:,p,C and h such that 

(7.23) 

for all s, t E T with It - sl :s h. For example, this is satisfied by the standard 
Wiener process W = {Wet), t ~ O}, for which it can be shown that 

(7.24) E (lW(t) - W(sW) = 31t - sl2 

for all s, t ~ O. Hence the Wiener process has, almost surely, continuous sample 
paths. 

Exercise 1. 7.5 
(7.2-1). 

Use properties (6.5) of a standard Wiener process to prove 
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We conclude this section with the remark that the uncountability ofthe time set 
is responsible for many subtle problems concerning continuous time stochastic 
processes. These require the mote rigorous framework of measure and inte
gration theory for their clarification and resolution. We shall consider some of 
these matters in Chapter 2. 

1.8 Wiener Processes and White Noise 

We have already introduced the standard Wiener process in Section 6 and have 
considered some of its basic properties. Recalling (6.5), we define a standard 
Wiener process W = {Wet), t ~ O} to be a Gaussian process with independent 
increments such that 

(8.1) W(O) = 0 w.p.I, E(W(t» = 0, Var(W(t) - W(s» = t - s 

for all 0 ::; 8 ::; t. This process was proposed by Wiener as a mathematical 
description of Brownian motion, the erratic motion of a grain of pollen on a 
water surface due to its being continually bombarded by water molecules. The 
Wiener process is sometimes called Brownian motion, but we will use separate 
terminology to distinguish between the mathematical and physical processes. 

We can approximate a standard Wiener process in distribution on any finite 
time interval by a scaled random walk. For example, we can subdivide the unit 
interval [0, 1] into N subintervals 

o = t~N) < 4N) < ... < t~N) < ... < tW) = 1 

of equal length ~t = 1/ N and construct a stepwise continuous random walk 
SN(t) by taking independent, equally probable steps of length ±$t at the 
end of each subinterval. As already mentioned in the paragraph preceding 
PC- Exercise 1.5.7, we start with independent two-point random variables Xn 
taking values ±I with equal probability. Then we define 

(8.2) 

with 

(8.3) 

(N) (N) . on tn ::; t < tn+! for n = 0, 1, ... , N - 1, where SN(O) = O. ThIS random 
walk has independent increments Xl.../Ki, X2$t, X3$t, ... for the given 
subintervals, but is not a process with independent increments. It follows that 

E(SN(t» = 0, Var(SN(t» = ~t [~t] 

for 0 ::; t ::; 1, where [r] denotes the integer part of r E !R , that is [r] = k if k ::; 
r < k+ 1 for some integer k. Now Var(SN(t» -+ t as N = l/~t -+ 00 for any 
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o ~ t ~ 1. Similarly, it can be shown for any 0 ~ s < t ~ 1 that Var(SN(t) -
S N (s» --+ t - s as N --+ 00. Hence it follows by the Central Limit Theorem (see 
Section 5) that SN(t) converges in distribution as N --+ 00 to a process with 
independent increments satisfying conditions (8.1), that is a standard Wiener 
process. 

Exercise 1.8.1 Verify that Var(SN(t) - SN(S» --+ t - s as N --+ 00 where 
o ~ s < t ~ 1 for the process SN(t) defined by {8.2} and {8.9}. 

PC-Exercise 1.8.2 Generate and plot sample paths of the process SN(t), 
defined on 0 ~ t ~ 1 by {8.2} and {8.9}, for increasing values of N = 10, 20, 
... , 100. To compare approximations of the same sample path with, say, N 
= 50 and N = 100, generate 100 random numbers Xl. X 2 • ••• , X IOO and use 
them to determine a sample path of S100(t). Then add successive pairs to form 
Xl = Xl + X 2 , X2 = X3 + X 4 , ••• , X50 = X99 + X100 and use Xli X2 , ••• , 

Xso to determine the corresponding sample path of S50(t). 

Exercise 1.8.3 Construct an interpolated random walk on 0 ~ t ~ 1 by 
using linear interpolation within each subinterval instead of {8.3}. Determine 
its means and variances and their limits. Show that this process is not a process 
with independent increments, but still converges in distribution to a standard 
Wiener process. 

We saw at the end of Section 7 that a Wiener process is sample-path contin
uous, that is its sample paths are almost surely continuous functions of time. 
From (8.1) we see that the variance grows without bound as time increases 
while the mean always remains zero. This says that many sample paths must 
attain larger and larger values, both positive and negative, as time increases. 
In analogy with the strong version ofthe Law of Large Numbers one finds that 
with probability one 

(8.4) lim Wet) = 0 
t_oo t 

Exercise 1.8.4 Use the properties {8.1} of a Wiener process to prove {8.4}. 

A much sharper growth rate is given by the Law of the Iterated Logarithm, 
which says that 

(8.5) lim sup Wet) = +1, 
t-oo .j2t In In t 

liminf Wet) = -1 
t_oo ../2t In In t 

with probabilty one. This can be interpreted as saying that there is a sequence 
tn --+ 00 for which the values ofthe ratios converge to +1 and another sequence 
t~ --+ 00 for which they converge to -1. Since it can be shown that {tW(l/t), 
t ;::: O} is also a Wiener process, we can rewrite (8.5) in the form 

(8.6) lim sup Wet) . = +1, 
t!O ';2t In In(l/t) 

liminf Wet) = -1. 
t!O ';2t In In(1/t) 
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Exercise 1.8.5 Show that t W(l/t) and Wet + s) - W(s), for any fixed s 
~ 0, are Wiener processes when Wet) is a Wiener process. 

PC-Exercise 1.8.6 As in PC-Exercise 1.B.2 generate random walks SN(t) 
on 0 $ t $ 1 for increasing N to approximate the same sample path in the 
limiting process. For fixed N, say 20, evaluate the mtios 

SN(h + 0.5) - SN(0.5) 
h 

for successively smaller values of h and plot the linearly interpolated ratios 
against h. Repeat this for larger values of N, say 50 and 100. What do these 
results suggest about the differentiability of the limiting sample path at t = 0.5 If 

Using Exercise 1.8.5, let us now apply (8.6) to show that the process {Wet + s) 
- W(s), t ~ O} is not differentiable at t = O. From (8.6) for any f > 0 there 
exist sequences tn, t~ ! 0 (depending on the sample path) such that 

and 

W(tn +:~ -W(s) ~ (1- f) 2ln In(l/tn) 
tn 

W(t~ + s) - W(s) (1 ) 2Inln(l/t~) 
t ' $-+f , 

n tn 
when n is sufficiently large. Now we have 

2Inln(l/t»/t -+ 00 as t! 0, 

so 
(W(tn + s) - W(s» /tn -+ 00 

and 
(W(t~ + s) - W(s» /t~ -+ -00 

as tn,t~ ! O. Hence the sample path of Wet) under consideration cannot be 
differentiable at t = s. Since the limits hold almost surely and s ~ 0 was 
arbitrary, we have thus shown that the sample paths of a Wiener process are, 
almost surely, nowhere differentiable functions of time. We shall give another, 
more direct and rigorous proof of this unusual property in Section 4 of Chapter 
2. 

A Wiener process Wet) has by definition the initial value W(O) = 0, w.p.I. 
By sample-path continuity and the Law of the Iterated Logarithm (8.5) it 
follows that, almost surely, the sample paths sweep in time repeatedly through 
the real numbers, both positive and negative. In some applications it is useful 
to have a modification of a Wiener process for which the sample paths all pass 
through the same initial point x, not necessarily 0, and a given point y at a 
later time t = T. Such a process B~:(t) is defined sample pathwise for 0 $ t 
$ Thy 

(8.7) Ty t 
Bo,~ (t,w) = z + W(t,w) - T{W(T,w) - y + z} 
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and is called a Brownian bridge or a tied-down Wiener process. It is a Gaussian 
process satisfying the constraints B~:(O,w) = z and B~:(T,w) = y, so in a 
manner of speaking can be consider~d as to be a kind of conditional Wiener 
process. Since it is Gaussian it is determined uniquely by its means and co
variances, which are 

(8.8) pet) = x - ~ (x - y) and C(s, t) = min{s, t} - ~ 

for 0 :5 s, t :5 T (see (6.3) and (6.4) ). 

Exercise 1.8.7 Show that a Brownian bridge B~:(t) forO:5 t :5 T is Gaus
sian with means and covariances {8.8}. 

PC-Exercise 1.8.8 Modify the random walks SN(t) on 0 :5 t :5 1 in PC
Exercise 1.8.2 to obtain approximations of the Brownian bridge B~:g. For N = 
10, 20, ... , 100 plot approximations to the same limiting sample path against 
time t for 0 :5 t :5 1. 

In many time-invariant engineering systems the (time-independent) vari
ance of a stochastic process X(t) can be interpreted as an average power (or 
energy) and is written as 

(8.9) Var(X(t» = c(O) = L: S(v) dv 

where c(O) is the value of the covariance e(t - s) at s = t and S(v) denotes the 
spectral density measuring the average power per unit frequency at frequency 
v. S(v) is real-valued and nonnegative with S( -v) = S(v) for all v, and can 
be extracted from (8.9) by an inverse Fourier transform giving 

(8.10) S(v) = I: e(s)exp(-211ws)ds = I: e(s)cos(27rvs)ds. 

This brings us to Gaussian white noise, which can be thought of as a zero-mean 
wide-sense stationary process with constant nonzero spectral density S(v) = So. 
The name white noise comes from the fact that its average power is uniformly 
distributed in frequency, which is a characteristic of white light. Hence its 
covariances e( s) satisfy formally 

(8.11) e(s) = So 6(s) 

for all s, where 6(s) is the Dirac delta function, a generalized function with 
6(s) = 0 for all s #= 0 such that 

I: l(s)6(s)ds = 1(0) 

for all functions I continuous at s = O. This suggests that Gaussian white noise 
W is an unusual stochastic process. To elaborate on this, let W = {Wet), t ~ 
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O} be a standard Wiener process and for fixed h > 0 define a new process X h 

= {Xh(t), t ~ O} by 

(8.12) 

for all t ~ O. This is a wide-sense stationary Gaussian process with zero means 
and with covariances 

(8.13) c(t - s) = X max {O, 1- Xlt - sl} j 

it thus has spectral density 

(8.14) Sh(II) = .!.lh (1- M) cos(211'IIs)ds = (sin(211'IIh»)2 
h -h h 1I'IIh 

This density is very broad for small h and, indeed, converges to 1 for all II 
:F 0 as h converges to O. which suggests that the processes X h converge in 
some sense to a Gaussian white noise process Wash converges to 0 and hence 
that a Gaussian white noise process is the derivative of a Wiener process. 
We have however already noticed above that. almost surely, the sample paths 
of a Wiener process are not differentiable anywhere. Thus a Gaussian white 
noise process cannot be a stochastic process in the usual sense, but must be 
interpreted in the sense of generalized functions like the Dirac delta function. It 
cannot be realized physically, but it can be approximated to any desired degree 
of accuracy by conventional stochastic processes with broad banded spectra, 
such as (8.12). which are commonly called coloured noise processes. 

Exercise 1.8.9 Verify (8.19) and (8.Lt). 

Exercise 1.8.10 Show that the Ornstein-Uhlenbeck process with parameter 
1 > 0, that is with covariance function c(s) = exp( -1 lsI), has spectral density 

What happens as 1-+ oo'! What does this suggest about the Ornstein-Uhlenbeck 
process'! 

1.9 Statistical Tests and Estimation 

So far we have glossed over some very basic issues concerning the use of pseudo
random number generators. In the preceding PC-Exercises we have assumed 
that the pseudo-random number generators actually do generate independent 
random numbers with the desired distribution and have never really specified, 
for example, just how many terms of a random sequence are required to pro
vide a good approximation or estimation of their limit. These issues are closely 
interconnected and an extensive theory and array of tests have been proposed 
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for their resolution. In principle we should only interpret a given sequence of 
numbers as the realization of a sequence of random variables with respect to 
a set of specified tests that it can pass. Unfortunately none of the tests is 
completely definitive and an element of subjectivity is often involved in their 
use. Moreover, where answers can be provided they are in the form of confi
dence intervals and levels of significance rather than certainties. We shall give 
a brief sketch of this important topic here and refer the reader to the extensive 
literature for more details. 

We can calculate an estimate of an unknown mean value and determine 
the number of terms of an approximating sequence needed for a good estimate 
with the aid of the Law of Large Numbers (5.8), or the Central Limit Theorem 
(5.9) and the Chebyshev inequality (4.14). To see how, consider the Bernoulli 
trials with a sequence of i.i.d. random variables Xl,X2 , ••• , X n , ... taking the 
value 1 with probability p and the value 0 with probabilty 1 - p, where p is 
unknown. Then E(Xn) = p and Var(Xn) = p(l - p) and so, by independence, 
E(Sn) = np and Var(Sn) = np(l- p) for the sum Sn = Xl + X 2 + ... + X n . 
Alternatively, E(An) = p and Var(An) = p(l - p)/n for the sample averages 
An = Sn/n. The weak version of the Law of Large Numbers tells us that An 
converges to p in distribution, but gives no more information about the rate of 
convergence. For this we can apply the Chebyshev inequality (4.14) to An - P 
and the approximation p(l - p) ~ 1/4 for 0 ~ p ~ 1 to obtain 

(9.1) P({w En: IAn _ pi ~ a}) ~ p(~:;p) < _1_ 
- 4na2 

for all a > 0 and so (omitting the w) 

1 
P (IAn - pi < a) = 1 - P (IAn - pi ~ a) ~ 1 - -4 2· 

na 

Thus for any 0 < a < 1 and a > 0 we can conclude that the unknown mean p 
lies in the interval (An(w) - a, An(w) + a) with at least probability 1- a when 
n ~ n(a,a) = 1/(4aa2 ). In statistical terminology we say that the hypothesis 
that p lies in the interval (An(w)-a, An(w)+a) for n ~ n(a, a) is acceptable at 
a 100a% level of significance, and call (An -a, An +a) a 100(1-a)% confidence 
interval. For example, (An - 0.1, An + 0.1) is a 95% confidence interval when 
n ~ n(0.1,0.05) = 500. 

The number n( a, a) above is usually larger than necessary because of the 
coarseness of the inequalities in (9.1). We can sometimes determine a lower 
value by using the Central Limit Theorem instead of the Law of Large Numbers. 
Since the inequality IAn - pi ~ a is equivalent to IZn I ~ b where 

Zn = (Sn - np) / Jnp(l- p) 

and b = aJn/p(l - p) and since, by the Central Limit Theorem, Zn is approx
imately standard Gaussian for large n we have 

(9.2) P(IAn - pi < a) = P(IZnl < b) ~ 2~(b) 
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for sufficiently large n, where 

For a given IOOa% significance level we can read the standard Gaussian sta
tistical tables backwards to determine a value b = b(a) > 0 satisfying ~(b) = 
(1 - a)/2. If we know that, say, p E <-1. i), then for a given a we solve the 
inequality 

b(a) = a.jn/p(I- p) :5 4avn 
for 

n ~ n(a, a) = b2(a)/I6a 2 • 

This will give us a IOO(I-a)% confidence interval (An(w)-a, An(w)+a) when 
n ~ n(a, a). For example, when a = 0.05 we solve ~(b) = 0.475 for b ~ 1.96, so 
for a = 0.1 we calculate n(O.I,O.05) ~ 25, which is considerably smaller than 
the n(0.I,O.05) = 500 determined above. 

Exercise 1.9.1 Repeat the above analysis for a sequence of independent 
U(O,I) uniformly distributed random variables to obtain the corresponding es
timates for n(a, a) and n(a, a). 

If we do not know the variance (T2 or do not have an estimate for it as with 
the Bernoulli trials, we can sometimes use the sample variance fT2 instead. Let 
Xl, X2, ... , Xn be n independent Gaussian random variables with known mean 
JJ and unknown variance (T2. As before we define the sample mean fJn = An = 
Ei=l Xi/n and the sample variance as 

(9.3) ~2 1 ~(X ~)2 
(Tn = n _ 1 L.J i - JJn , 

i=1 

where we divide by n - 1 instead of by n since this has been found to give an 
unbiased estimate of the true variance. Henceforth we shall use a hat "'>, on 
sample statistics to distinguish them from the true statistics. Then for n > 3 
the random variable 

satisfies the Student t-distribution with n - 1 degrees of freedom, mean zero 
and variance (n -1)/(n - 3). Similarly to (9.2) we have 

Table 1.9.1 Values of tl-Q,n-l for the Student t-distribution 
with n - 1 degrees of freedom for ex = 0.1 and 0.01. 
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P(lfin -1'1 < a) = P(ITnl < t) 

where t = a";n/u~. For a given 100a% significance level, we check whether or 
not the test variable 

with hypothesized mean 1'0 satisfies the inequality 

IT.? I < ft-a,n-l 

where tl-a,n-l can be found in statistical tables; some typical values of 
t1-a,n-l are given in Table 9.1.1. If this is not the case, then we reject the 
null hypothesis Ho that I' = 1'0. Otherwise, we accept it on the basis of this 
test. In addition, we form the corresponding 100(1 - a)% confidence interval 
(fin - a, jJn + a) with 

a = tl-a,n-l JuVn. 
This contains all of the values of Ilo for which the null hypothesis would be 
accepted by this test. 

The t-test requires the original random variables to be Gaussian. When 
they are not, we can resort to the Central Limit Theorem and use the test 
asymptotically. We take n batches of m random variables X~j), X~j), ... , xM) 
for j = 1, 2, ... , n, which are independent and identically distributed (i.i.d.) 
with mean I' and variance (72. Then we form the sample means A~) and the 
sample variances (u~»2 for each batch j = 1, 2, ... , n and use the Central Limit 
Theorem to conclude that the A~) are approximately Gaussian. The preceding 
t-test is then approximately valid for these batch averages rather than for the 
original X!i); in practice it has been found that each batch should have at 
least m ~ 15 terms. For pseudo-random number generators each batch could 
be determined from a different seed or starting value, thus allowing different 
sequences to be tested. If a parallel computer is available, the batches and their 
sample statistics can be calculated simultaneously. 

PC-Exercise 1.9.2 Simulate M = 20 batches of length N = 100 of U(O, 1) 
distributed random numbers and evaluate the 90% confidence interval for their 
mean value. 

PC-Exercises 1.4.4, 1.4.5 and 1.4.6 required frequency histograms for the 
outputs of various random generators to be plotted and compared visually with 
the graphs of the density functions that they were supposed to simulate. There 
are various statistical tests which allow less subjective comparisons, the X2-

goodness- of- fit test being one of the most commonly used. To apply it we 
need a large number N of values of i.i.d. random variables. From these we form 
a cumulative frequency histogram FN(X) which we wish to compare with the 
supposed distribution F(x). We subdivide our data values into k + 1 mutually 
exclusive categories and count the numbers Nt, N2 , ••• , N"+l terms falling 
into these categories; obviously Nl + N2 + ... + Nk+1 = N. We compare 
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these with the expected numbers NplI NP2, ... , Npl;+l for each category for 
the distribution F. To do this we calculate the Pearson statistic 

(9.4) 

which should be small if our null hypothesis Ho that the data generating mech
anism has F(x) as its distribution function is to be acceptable at a reasonable 
significance level. It is known that the Pearson statistic is distributed asymp
totically in N according to the X2-distribution with k-degrees of freedom with 
E(X2 ) = k and Var(x2) = 2k. To complete the test we pick a 100a% sig
nificance level and determine from statistical tables a value XLa 1: such that 
P(X2 < XLa,k) = 1 - a. If our X2 value from (9.4) satisfies X2 < X~-a,k' 
then we accept our null hypothesis at the significance level 100a%; otherwise 
we reject this hypothesis. For instance, X~.95,30 RI 43.8 and X~.99,30 RI 50.9. 

PC-Exercise 1.9.3 Use the X2-goodness-of-fit test with k = 30 degrees of 
freedom, N = 1()3 generated numbers and significance levels 1% and 5% to test 
the goodness-of-fit of the U(O,I) uniformly distributed pseudo-random number 
generator on your PC: Repeat these tests for the exponentially distributed ran
dom number generator with parameter A = 1.0 and for the Box-Muller and 
Polar Marsaglia N(O; 1) generators. In each case repeat the calculations using 
different seeds for the random number generator. 

For continuously distributed random variables the discrete categories of 
the X2-goodness-of-fit test are artificial, subjective and do not take fully into 
account the variability in the data. These disadvantages are avoided in the 
K olmogorov-Smirnov test. This is based on the Glivenko-Cantelli theorem 
which says that DN -+ 0 almost surely as N -+ 00, where 

DN = sup IFN(X) - F(x)l· 
-00<0:<00 

We recall that the sample frequency histograms FN here are themselves random 
variables. Kolmogorov and Smirnov proved for any continuous distribution F 
that ..[N DN converges in distribution as N -+ 00 to a random variable with 
the Kolmogorov distribution 

00 

H(x) = 1- 2 L(-ly-l exp (_2j2 X 2) 

j=l 

for x > 0 with H(O) = 0, the values of which can be found in statistical tables. 
To apply the test at a lOOa% significance level we compare the value of..[N DN 
calculated from our data with the value Xl_a satisfying H(Xl- a ) = 1 - a. If 
..[NDN ~ Xl-a we accept at the lOOa% significance level the null hypothesis 
Ho that the data generating mechanism has F(x) as its distribution function; 
otherwise we reject it. In general N > 35 suffices for this test, but for pseudo-
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random number generators a larger value should be taken in order to test a 
more representative sample of generated numbers. For instance, 2:0.95 ~ 1.36 
and XO.99 ~ 1.63. 

PC-Exercise 1.9.4 Repeat PC-Exercise 1.9.9 using the Kolmogorov
Smirnov test at 1% and 5% significance levels and N = 103 U(O,l) random 
numbers. Compare the results with those for the x2-test in PC-Exercise 1.9.3. 

Over recent decades it has been found that most commonly used pseudo
random number generators fit their supposed distributions reasonably well. 
The results of PC-Exercise 1.9.3 should concur with this perception. In con
trast, the generated numbers often seem not to be independent as they are 
supposed to be, which is not surprising since, for congruential generators at 
least, each number is determined exactly by its predecessor. However, in prac
tice statistical independence is an elusive property to confirm definitively for 
pseudo-random numbers generated by digital computers, and tests for it are 
nowhere near as satisfactory as those above for the goodness-of-fit of distribu
tions. We shall restrict our remarks here to U(O, 1) uniformly distributed linear 
congruential generators as described by (3.1) which have the form Un = Xn/c 
where 

Xn +1 = aXn + b (mod c). 

A simple test for independence involves plotting the successive pairs 
(U2n- 1 , U2n ) for n = 1, 2, ... as points on the unit square with the U2n - 1 

as the x-coordinate and the U2n as the y-coordinate. These points lie on one of 
e different straight lines of slope a/e and a large number of them should fairly 
evenly fill the unit square. The presence of patches without any of these points 
is an indication of bias in the generator. One way to avoid it is to introduce a 
shufJling procedure. For this we generate a string of 20 or more numbers and 
choose one number with equal probability from the string. We take this num
ber as the output of our shuffling procedure and then generate a new number 
to replace it in the string. Repeating this step as often as required, we obtain a 
shuffled sequence of pseudo-random numbers. We note that this requires more 
numbers to be generated than for an unshuffled sequence of the same length 
since a random number must also be generated at each step in order to choose 
the number to be taken from the string. Shuffling procedures have been found 
to be quite effective in reducing patchiness in poor generators. 

PC-Exercise 1.9.5 Plot 103 points (U2n- 1 ' U2n ) using the linear congruen
tial generator (9.1) with parameters a = 1229, b = 1 and c = 2048, using the 
seed Xo = o. Add a shufJling procedure to the generator and repeat the above 
plots. Does the shufJling subroutine make a noticeable difference'! 

PC-Exercise 1.9.6 Repeat PC-Exercise 1.9.5 using the U(O,l) random 
number generator on your PC. 

The preceding test is useful in eliminating glaringly biased generators, but is 
no guarantee of an unbiased generator. For example, the RAN DU generator 
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HuMber af waner.ted paints [U(2~1).U(2~)] : n = 1000 
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with shuffling 
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1 

Figure 1.9.1 Result of PC-Exercise 1.9.5. 

X n +1 = 65,539Xn (mod 231 ) appears relatively unbiased, but successive 
triples (Xn' X n+1, Xn+2) satisfy Xn+2 = (6Xn - 9Xn+1) (mod 231). This 
relationship was, however, discovered long after the RAN DU generator was 
introduced and lead to its demise. There are many other tests for independence, 
including the runs test in which the number and lengths of runs of successively 
increasing numbers are analysed statistically, but their validity is still unclear. 

To conclude this section we remark that there are generators which are fairly 
successful at mimicking the salient properties of truly independent random 
sequences on digital computers and that in applications the negative properties 
of such sequences often play no role. Thus, while they are far from perfect, 
pseudo-random number generators are often adequate for the task at hand. We 
shall assume in our simulations that they do have the asserted independence 
and distributions. An advantage of pseudo-random generators over random 
number generators based on natural physical noise sources is that they are 
reproducible. 



Chapter 2 

Probability Theory 
and Stochastic Processes 

Like Chapter 1, the present chapter also reviews the basic concepts and results 
on probability and stochastic processes for later use in the book, but now the 
emphasis is more mathematical. Integration and measure theory are sketched 
and an axiomatic approach to probability is presented. Apart form briefly 
perusing the chapter, the general reader could omit this chapter on the first 
reading. 

2.1 Aspects of Measure 
and Probability Theory 

The axiomatic development of probability theory was initiated by Kolmogorov 
in the early 1930's. It is based on measure theory, but it has developed charac
teristics and methods of its own. The fundamental concept in this approach to 
probability theory is the probability space, an ordered triple (n, A, P) consist
ing of an arbitrary nonempty set n called the sample space, a O'-algebra A of 
subsets of n called events and a probability measure P on A assigning to each 
event A E A a number peA) E [0,1] called its probability. 

Definition 2.1.1 A collection A of subsets ofn is a O'-algebra if 

(1.1) 

(1.2) 

(1.3) 

n 
A" 

co 

UAn 
n=l 

E A 
E A if A E A 

E A if Al,A2, ... ,An' ... EA. 

A O'-algebra A is thus a collection of subsets of n which contains n and 
is closed under the set operations of complementation and countable unions. 
These defining properties are minimal and imply that 0 E A and that f1n~1 An 
E A whenever AlJ A 2 , •• • ,An, ... E A, that is A is also closed under countable 
intersections. The possible O'-algebras for a given set n range from the coarsest 
{0, n} to the finest pen) consisting of all of the subsets of n. Often we have 
a collection C of subsets of n which is not a O'-algebra and require au-algebra 
containing C. Obviously C is contained in pen), but there is a smallest 0'

algebra containing C which we denote by A(e) and call the O'-algebra genemted 
by C. For example, if C = {G} then A(C) = {0, G, G", O}. Another example 
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is the u-algebra B of Borel subsets of!R, generated by the collection C of semi
infinite intervals {or E !R : -00 < or $ c} for all c E !R. 

A measurable space is an ordered pair (0, A) consisting of an arbitrary 
nonempty set 0 and a u- algebra A of subsets of O. A measure I' on (0, A) is 
a countably additive set function assigning to each set A E A a nonnegative, 
possibly infinite, number I'(A). To be specific 

Definition 2.1.2 A measure I' on a measurable space (0, A) is a nonneg-
ative valued set function on A satisfying 

(1.4) 1'(0) = 0 

and 

(1.5) 

for any sequence At. A2 , ••• , An, ... E A with Ai nAj = 0 for if j where i, 
j = 1,2,3, .... 

For any measure I' on a measurable space (0, A) we have a measure space 
(0, A, Pl. From (1.5) it follows that I'(A) $ I'(B) for all A ~ B in A. We 
say that I' is finite if 1'(0) < 00, in which case I'(A) $ 1'(0) < 00 for all A E 
A. Definition 2.1.2 does not exclude the trivial case that I'(A) = 0 for all A E 
A, but we shall not consider such trivial measures here. For 0 < 1'(0) < 00 we 
can normalize the measure I' and obtain a probability measure P with peA) 
= I'(A)/I'(O) E [0,1] for all A E.A. 

Definition 2.1.3 A probability measure P is a measure on a measurable space 
(0, A) for which P(O) = 1. 

A probability space (0, A, P) is thus a measurable space with a probability 
measure. From Definitions 2.1.1, 2.1.2 and 2.1.3 we clearly have 

(1.6) 

(1.7) 

P(0) = 0, P(O) = Ii 

0$ peA) $ PCB) $ 1 

for all A, B E A with A ~ Bi 

(1.8) 

for all A E Ai and 

(1.9) 

for any mutually exclusive All A2 , ••• , An, ... E A, that is with Ai n Aj = 0 
for all i f j and i, j = 1, 2, 3, .... A little harder to prove is the continuity 
result 

(1.10) 

for any Al :::> A2 :::> ••• :::> An :::> ••• with AI, A 2 , ••• , An, ... EA. 
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Another elementary consequence is the deceptively powerful Borel- Cantelli 
Lemma: 

Lemma 2.1.4 For any sequence 01 events All A2 , ••• , An ... E A 

The event r1:'=1 L4=n AI: consists of all those outcomes occuring in infinitely 
many of the events AI, A 2 , .•. , An, ... and is thus a null event if the series 
2::=1 P(An) converges. 

An important measure is the Borel measure I'B on the u-algebra B of Borel 
subsets of!R, which assigns to each finite interval [a, b] = {x E !R : a ::; x ::; b} = 
its length, that is I'B([a, b]) = b - a. Consequently I'B is not a finite measure, 
but it is u-finite on !R in that we can write !R = U:=l[-n, n] with I'B([-n, n]) 
= 2n < 00 for each n = 1,2,3, .... 

The measure space (!R, 8, I'B) is not complete in the sense that there exist 
subsets B'" of!R with B'" rt. B but B'" C B for some B E 8 with I'(B) = O. 
Intuitively we would expect such subsets to have zero measure too. A procedure 
of measure theory allows us to enlarge the u-algebra B to au-algebra C and 
to extend the measure I'B uniquely to a measure I'L on C so that (lR, C, I'd 
is complete, that is L" E C with I'L(L"') = 0 whenever L'" C L for some L E 
C with I'L(L) = O. In particular, we have I'L(B) = I'B(B) for each B E 8, 
whereas for each L E C \ 8 there exists aBE 8 and an L'" E C so that L 
= B U L· with I'L(L) = I'B(B) and I'L(L·) = O. We call C the u-algebra of 
Lebesgue subsets of!R and I'L the Lebesgue measure on lR. 

Many other measures can also be defined on (lR, C). We say that a measure 
I'is singular with respect to the Lebesgue measure JJL, written I' .1 JJL, if there 
exists a subset SEC with I'(S) > 0, but JJL(S) = O. On the other hand, we 
say that I' is absolutely continuous with respect to I'L, written I' < JJL, if JJ(L) 
= 0 whenever JJdL) = 0 for any L E C. In general a measure I' on (lR, C) will 
be neither singular nor absolutely continuous with respect to JJL, but in these 
cases the Lebesgue Decomposition Theorem says that it can always be written 
as the sum of a singular and an absolutely continuous measure. 

If (O}, Ad and ({h, A2) are two measurable spaces we call a function 1 : 
0 1 --+ O2 measurable, to be precise Al :,,42-measurable, if 1- 1(A2 ) = {WI E 0 1 

: I(WI) E A 2} ~ Al for all A2 E ,,42. In particular, we say that a function is 
Borel (or Lebesgue) measurable when O2 = !R and,,42 = 8 (or C). When (Ol! 
AI, P) is a probability space and (02 , A2) is either (!R, B) or (!R, C) we call a 
measurable function 1 : 0 1 --+ lR a random variable, and usually denote it by 
X. For a Borel measurable random variable X we can express measurability 
equivalently by requiring X-l« -00, xl) E A1. that is to be an event, for every 
x E lR. As we saw in Section 2 of Chapter 1 a random variable X induces 
a probability distribution Px on (lR, 8) defined by Px(B) = P(X- 1(B» for 
all B E 8. Px is a probability measure, but the resulting probability space 
(lR, B, Px) is not complete. However we can complete it to (lR, C, Px) by 
extending Px to the Lebesgue subsets of lR, where for convenience we use the 
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same symbol Px for the extended measure. One advantage of working with this 
completed probability space is that every subset of a null event is itself a npll 
event. Thus if X is a (Lebesgue measurable) random variable and if Yew) = 
X(w), w.p.l, then Y is also a random variable; Y is essentially indistinguishable 
from X and in this sense can be considered to be equivalent to X. Another 
advantage is that Px and, of greater practical significance, the corresponding 
distribution function Fx defined by Fx(x) = Px«-oo,x]) for all x E~, can 
be related to the Lebesgue measure PL on (~, C). For example, when we have 
an absolutely continuous probability measure Px <: PL, then there is a density 
function and the integral relationship (1.2.10) holds. On the other hand, when 
X is a discrete random variable then we have a singular probability measure 
Px.L PL· 

From measure theory we know that a measurable function results when we 
perform count ably many basic arithmetic operations on measurable functions 
defined on a common space, where the operations are defined pointwise with 
respect to the common domain of the functions. The same thus also holds 
for random variables. In particular, if X and Yare random variables on a 
probability space (0, A, P) and if e E ~, then X + e, eX, X + Y, X - Y, 
XY and X!Y (provided for the last one that Y = 0 only on null events) are 
random variables. Moreover, for a sequence of random variables Xl, X 2 , ••• , 

Xn , ... the functions defined by 

max X,., min X,. sup X,. and inf X,. 
I~i~n l~i~n' i!?:l i!?:l 

are random variables, as are 

(1.12) lim sup Xn = inf sup Xi and 
n!?:li!?:n 

lim inf Xn = sup inf X,.. 
n!?:1 "!?:n 

If the limit supremum and limit infimum in (1.12) are equal, except possibly on 
a null event, then their common value limXn is just the limit for convergence 
with probability one. 

Often the u-a1gebra A of events in a probability space (0, A, P) contains 
much more information than is detectable by looking at the values taken by a 
particular random variable X. For this reason it is often useful to consider the 
u-algebraA(X) generated by subsets of the form X- 1(L) for all L E C. This is 
the coarsest u-a1gebra consistent with the measurability of X, or equivalently 
minimal with respect to the events detectable by X. For example, A(lA) = {0, 
A, AC, O} for the indicator fA of an event A E A (see 1.2.1). The u-algebra 
A(Xl , X 2 , ••• , Xn) for a collection of random variables X lt X 2 , •• "' Xn can 
be defined in an analogous way. 

Finally, we consider product u-algebras and product measures. Let (01 , 

.At, I'd and (02, .A2. P2) be two measure spaces. Then we define the product 
u-algebra Al ®A2 on 0 1 X 02 to be the u-algebra generated by the subsets 
Al X A2 for all Al E Al and A2 E A2. The product measure 1'1 X 1'2 is the 
extension to a measure on Al®..42 of a set function satisfying 1'1 XP2 (AI xA2) 
= Pl(Al)P2(A2) for any Al E Al and A2 E ..42. In the case that the measurable 
spaces coincide, we write 0 2 for OxO and A2 for A®A; note that the product 
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O'-algebra A2 also contains sets which are not product sets, for example the 
diagonal set D = {(w,w) : wE OJ. When 0 = !R and A = e we obtain the 0'

algebra e2 of two-dimensional Lebesgue subsets and call the product measure 
I'L x I'L the 2-dimensional Lebesgue measure. Analogous definitions apply for 
the n-dimensional products ~n and en. 

2.2 Integration and Expectations 
Mathematical expectations and stochastic integration playa central role in this 
book. Hence in this section we shall summarize the basic concepts and results 
for deterministic integration, expectations and conditional expectations. 

The standard integral of deterministic calculus is the Riemann integral, 
which is defined as the limit of the sums of areas of approximating rectangles. 
Let f : [a, b] --+ ~ be a continuous function on a bounded interval [a, b] and let 

(n) (n) (n) (n) b 
a = Xl < x2 < ... < Xi < ... < xn+1 = 

be an arbitrary partition of [a, b] into n subintervals [xi, xi+t1 of (not necessar

ily equal) length c5~n) = X~~)l - x~n) where i = 1,2, ... ,n. On each subinterval 
we determine the minimum and maximum values of function f, 

(2.1) 

and form the sums of the areas of the lower and the upper rectangular approx
imations to the graph of f on the subintervals, namely 

n n 

Ln = Em~n)c5~n), Un = EMi(n)c5~n). 
i=1 i::::1 

If we choose the partitions so that c5(n) = maxl<i<n c5~n) --+ 0 as n --+ 00, 

then both of the limits 

L = lim Ln , U = lim Un 
n-oo n-oo 

exist and are equal. We call their common value the Riemann integral of f on 
[a, b] and denote it by 

(R) lb f(x)dx. 

we have 
n 

Ln ~ Ef (e!n») $ Un 
i::::1 

and hence 
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that is, when a Riemann integral exists, the approximating rectangles can be 
evaluated at any point within a partition subinterval. 

Exercise 2.2.1 Determine the lower and upper rectangular sums of the 
function f(x) = 2x on the interval [0,1] and use them to evaluate its Riemann 
integral on this interval. 

Every continuous function is Riemann integrable on a closed and bounded 
interval, but not all discontinuous bounded functions are, even if we replace the 
minimum and maximum in (2.1) by the infimum and supremum. For example, 
the indicator function IQ for the set Q of rational numbers has Ln = 0 and 
Un = b - a for n = 1,2,3, ... on any bounded interval [a, b], so is not Riemann 
integrable there. It is obviously a Lebesgue measurable function, and so in 
a probabilistic context could be a random variable with an expectation and 
moments, properties which are usually expressed in terms of integrals. To 
handle such functions, we must use the definition of an integral due to Lebesgue. 
The Lebesgue integral has the same value as the Riemann integral when the 
latter exists, but has the added advantage of being the appropriate definition 
for the development of a unified, abstract theory of integration. 

Let (0, A, ,,) be a measure space and suppose that" is finite, for otherwise 
we can restrict attention to the subsets in A with finite" measure. A simple 
function on (O,A,,,) is a real valued function of the form ~ = 2:~1 aiIAi' where 
aI, a2, ... ,aN E ~ and the sets AI, A 2, ••• , AN E A are pairwise disjoint. The 
Lebesgue integral of such a simple function ~ over a measurable subset A E A 
is defined as 

(2.2) 

The Lebesgue integral of a real-valued A : C- measurable function f : 0 -+ ~ is 
then built up systematically from this definition. We shall henceforth omit the 
qualifier Lebesgue unless it is necessary to distinguish the integral from another 
kind of integral. Suppose that the function f is nonnegative and bounded, that 
is with 0 ~ few) < N for all wE 0 and some finite N. Then we define 

r f djJ = sup r ~ djJ, JA q,~J JA 
where the supremum is taken over all simple functions ~ with ~(w) ~ few) for 
all w E A; it is finite since the integrals of these simple functions are bounded 
from above by N ,,(A). As an example of such simple functions consider ~n = 
2:7':-01 (iN/n) IEi(A;n), where the subsets 

{ . '+ 1 } (2.3) Ei(A;n)=An wEO:;;N~f(w)<7N 

belong to A since A does and f is measurable; these tPn satisfy tPn(w) ~ few) 
with ~n(w) -> few) as n -> 00 for all wE A. 
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In general, when I is nonnegative but unbounded we define 

where IN(w) = min {f(w) , N}, but here the supremum may be infinite. Finally, 
for a measurable functionl of unrestricted sign we write I = 1+ - 1-, where 
I+(w) = max{f(w),O} and I-(w) = max{-/(w),O}, and define 

(2.4) 

provided at least one of the integrals on the right side of (2.4) is finite. If both 
are finite we say that I is (Lebesgue) integrable, which is equivalent to III 
being integrable since III = 1+ + 1-. We denote the set of all A: C-measurable 
functions which are integrable on n (and hence on any subset A E A) with 
respect to I' by L 1(n,A,I'). 

Exercise 2.2.2 Use simple functions approximating the function I(x) = 2x 
on the interval [0,1] to evaluate its Lebesgue integral. 

From the linearity of the summation in (2.2) we can easily show for any 
I,g E L 1(n,A,I') and real constants a,p that al + pg E L1(n,A, 1') with 

(2.5) L (al + pg) dl' = a L I dl' + 13 L 9 dl', 

(2.6) L I dl' ~ L 9 dl' if I(w) ~ g(w) for all w E A 

and 

(2.7) 

for any disjoint subsets A, B E A with finite I'-measure. The pointwise inequal
ity in (2.6) can be weakened to all w in A except those in a subset Ao C A of 
zero I'-measure, that is for almost all w E A. In addition, we obviously have 

(2.8) 

A deeper result is the Dominated Convergence Theorem 01 Lebesgue: 

Theorem 2.2.3 Suppose that I,g E L1(n,A,I') where I'(n) < 00 and that 
11'/2,/3, ... is a sequence oIA:C-measurablefunctions with I/n(w)1 ~ Ig(w)1 
lor almost all wEn and n = 1,2,3, .... Then 

lim f In dl' = f I dl' 
n ..... ooln ln 

i/ 
lim In(w) = I(w) 

n-oo 

lor almost all wEn and n = 1,2,3, .... 
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If a Lebesgue integrable function I : !R - !R is Riemann integrable on a 
bounded interval [a, b], then it is Lebesgue integrable on [a, b] (with respect to 
the Lebesgue measure I'L) and the two integrals are equal, that is 

(2.9) (R) {6 I(z) dz = 1 I(z) dl'L. Ja [0,6] 

For a continuous function I with 0 :5 I(z) :5 N for z E [a, b] this follows from 
the fact that the subset 

{ , '+ 1 } Ei(n) = z E [a, b] : .; N :5 I(z) :5 7 N 

is the union of a finite number of subintervals [Zij' Zij+d for i = 1, 2, ... , 
I«i,n). In each of these we can find an eij such that I(eij) = iN/n and then 
calculate the sum of the areas of the corresponding rectangles for all of the 
subintervals, obtaining 

The general result is proved in much the same way. As a consequence we shall 
often write the Lebesgue integral (2.9) in the more convenient form f: I(z) dz. 
There are however quite elementary functions which are Lebesgue integrable 
but not Riemann integrable; for example, the indicator function of the ratio
nal numbers IQ has Lebesgue integral f: IQ dz = b - a, but is not Riemann 
integrable. 

As mentioned in Section 1 there are many measures on (!R, C) other than 
the Lebesgue measure I'L. For such measures an integral fA I dl' is sometimes 
called a Lebesgue- Stieltjes integral. Of particular interest are those measures 
I' which are absolutely continuous with respect to I'L, that is I' <: I'L. This 
certainly holds if there is a measurable function p : !R - !R which is nonnegative, 
except possibly on a set of I'L-measure zero, such that I'(A) = JAPdl'L for all 
A E C. The converse of this statement also holds and is a major result of 
integration theory. It is known as the Radon-Nikodym Theorem and, in fact, 
asserts that the function p is unique in the sense that any other function with 
the same property differs from p on at most a set of I'L-measure zero. We 
often write this relationship between measures symbolically as dl'/dl'L = p. If 
IE L 1(0,C,I'), we have Ip E L 1(0,C,l'd and 

1. I dp = 1. Ipdl'L 

for each A E C. In the case that Px <: I'L for a probability measure Px induced 
on (!R,.c) by a random variable X the function p = dPx /dl'L is the density 
of the distribution function Fx and is sometimes called a Radon-Nikodym 
derivative. 
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The above discussion also applies for measures on a measurable product 
space such as (~n, en). This raises the question, which is of some practical 
significance, as to whether or not an integral with respect to a product measure 
JJI x JJ2 X ... x JJn on such a space can be evaluated as a succession of integrals 
with respect to each of the constituent measures JJl, JJ2, ... ,JJn' To be specific, 
let (OI,AI.Il.) and (02,A2,JJ2) be two complete measure spaces and let I E 
Ll (n1 x n2, Al xA2' JJIXJJ2)' Can the integral fAlxA2 I dJJ1 XJJ2' where Al E Al 
and A2 E A 2 , be evaluated in terms of one or both of the iterated integrals 

The answer is affirmative and is provided by Fubini's Theorem, which says that 
the three integrals are equal. It also says, necessarily, that the intermediate 
functions and integrals of a single variable are integrable on the appropriate 
subset Al or A2 • There is a catch here: the function I(Wl,') E £1(02 , A 2 , JJ2) 
only for almost all (JJl-measure) WI E 0 1 rather than for all WI E n1 , and 
analogously for the functions ILw2). Apart from technicalities in proofs this 
is not a problem because the exceptional points have no effect on the value of 
the final integral. 

The preceding concepts and results specialize to probability spaces and 
random variables. Let X be a random variable on a probability space (0, A, P) 
and let Px be its probability distribution on (~, e). If x is integrable, that is 
if X or equivalently IXI belongs to LI(O,A, P), then we define the expectation 
of X as 

(2.10) E(X) = 10 XdP= l xdPx 

where these integrals are of the Lebesgue or Lebesgue-Stieltjes types. This 
definition holds for both continuous and discrete valued random variables, for 
if X takes only the discrete values Xl, X2,X3, ••• then the integrals in (2.10) 
reduce to a finite or an infinite sum and 

(2.11) E(X) = L xiP(Ai ) 
i~1 

where Ai = {w EO: X(w) = Xi} for i = 1,2,3 , .... The absolute convergence 
of the sum (2.11), that is the ''integrability'' of lXI, is still necessary here in the 
infinite case to ensure that we can rearrange terms without causing difficulties. 
Obviously here Px J.. ilL. In the case that Px <: JJL we obtain integral 
expressions for the expectations involving density functions as in Section 4 of 
Chapter 1. In both the continuous and discrete valued cases the properties 
(2.5) and (2.6) of integrals give us 

(2.12) E(aX + ,BY) = aE(X) + ,BE(Y) 

and 

(2.13) E{X) :::; E(Y) if X:::; Y w.p.1 
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for any X, Y E Ll(O,A,P) and a, (J E lR, and also Jensen's inequality (1.4.10), 
provided the functions involved are integrable. In addition, since a probability 
space is finite, we have a generalization of the Markov inequality (1.4.13) 

(2.14) 
1 

P({w EO: IX(w)1 ~ a}) 5 -pE(IXIP) 
a 

for any a,p > OJ this requires IXIP E L1(0,A, P), which we write as X E 
LP(O,A, P). Using Jensen's inequality we obtain 

(2.15) 

for all 0 < q 5 p, so X E L9(0, A, P) for all 0 < q 5 p whenever V(O,A, 
P). As mentioned in Section 4 of Chapter 1, the number E (IXIP) is called the 
pth-moment ofthe random variable X. One consequence of (2.14) is that mean
square convergence of a sequence of random variables implies its convergence 
in probability. These results also apply for vector and matrix valued random 
variables, with the expectation being defined componentwise. 

The Radon-Nikodym Theorem plays a central, and informative, role in 
the definition of conditional expectations of a random variable. Let X be 
an integrable random variable on a complete probability space (0, A, P) and 
let S be a sub-u-algebra of A, thus representing a coarser profile of information 
than is available in A. We define the conditional expectation of X with respect 
to S or the expectation of X conditioned on S, which we denote by E(XIS), 
as any S- measurable random variable Y satisfying 

(2.16) Is Y dP = Is X dP, 

w.p.l, for all S E S. The existence ofY = E(XIS) and its uniqueness, w.p.l, 
are guaranteed by the Radon-Nikodym Theorem. In the special case that 
X ~ 0, w.p.l, we can define a measure J.'x on (0, S) by 

J.'x(S) = Is XdP 

for each S E S. Clearly J.'x < P and the function Y = dJ.'x /dP has the desired 
properties. In the general case, we write X = X+ - X- where X± ~ 0 and 
take Y = y+ - Y- where the y± correspond to the X± as above. As examples 
we have E(XI{0,0}) = E(X}j 

(2.17) { 
-L fA XdP 

E(XIS)(w) = P(1) 
~fAcXdP 

wEA 

where S = {0, A, AC, OJ for some A E A with 0 < peA) < Ij and E(XIA) = X, 
w.p.1. The conditional probability E(XIS) is a random variable on the coarser 
probability space (0, s, P), and hence on (0, A, P) too. In contrast, X need r 

not be a random variable with respect to (0, s, P) since it need not be S : £-
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measurable, but when it is we have E(XI8) = X, w.p.1. Roughly speaking, the 
conditional expectation E(XI8) is the ''best'' approximation of X detectable 
by the events in 8 and is obtained by smoothening X over these events, as 
in (2.17). Thus the finer the u- algebra 8, the more E(XI8) resembles the 
random variable X. In addition, for nested u-algebras SeT c A we have 

(2.18) E(E(XIT) 18) = E(XIS), w.p.l, 

and when X is independent of the events in 8 we have E(XIS) = E(X), w.p.I. 

Exercise 2.2.4 Verify the identity (2.18) for the u-algebras S = A( {A}) 
and T = A( {A, B}), where A and B are two arbitrary nonempty sets. 

In general, conditional expectations have similar properties to those of or
dinary integrals, for example counterparts of the linearity (2.12) and order 
preserving (2.13) properties, Jensen's inequality (1.4.10) and the Dominated 
Convergence Theorem (Theorem 2.2.3). 

If Y is a second random variable on (n, A, P) we define the expectation of X 
conditioned on Y, written E(XIY), as the conditional expectation E(XIA(Y» 
where A(Y) is the (sub-) u-algebra generated by Y. Then we have 

(2.19) 

for all A: £-measurable functions f : n -+ ~, so we can think of E(X IY) as the 
best mean-square approximation for X amongst the random variables fey) for 
all such functions f. Moreover, when X = fA for some event A E A and 8 is 
a sub-u-algebra of .A, we write P(AIS) for E(IA 18) and call it the probability 
of A conditioned on 8. While P(AI8)(w) appears to satisfy the properties of 
a probability measure on A for each wEn, it is not a probability measure 
because it is only defined with probability one on 0, with the exceptional set 
depending on the particular event A. 

Exercise 2.2.5 Prove inequality (2.19). 

Let us now consider a continuous valued random variable X on a complete 
probabilty space (n, A, P). Then, we define the distribution function Fx of X 
as a Lebesgue-Stieltjes integral 

(2.20) Fx(x) = 1 1 dPx 
(-oo,zj 

for each x E ~, where Px is the probability distribution of X on (~, C). (In 
Chapter 1 we found it more convenient to write Px(dx) instead of dPx in 
integrals similar to (2.20), particularly on those involving transition properties 
of Markov processes). When Px ~ I'L there is an integrable density function 
p = dPx / dPL and we can write (2.20) as 

(2.21) Fx(x) = 1 pdPL 
(-00 ,zj 
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for each z E lR. Moreover, if p is sufficiently regular, say piecewise continuous, 
we can evaluate the integral (2.21) as an improper Riemann integral. We could 
use a proper Riemann integral if instead we evaluated Fx(z) - Fx(a) for a 
bounded interval [a, z]. In other cases we can often use a generalization of the 
Riemann integral called the Riemann-Stieltjes integral, which is defined on a 
bounded interval [a, b] with respect to a function F of bounded variation on 
[ b] L t (n) (n) (n) b b b·t ·t· f a, . e a = z1 < z2 < ... < zn+l = e an ar 1 rary partI IOn 0 

[a, b] with 6(n) = maxl~i~n 6}n) -+ 0 as n -+ 00 where 6~n) = z~~l _ z~n) 
for i = 1,2, ... , n. We define the total variation V;(F) of F on [a, b] as the 
supremum over all such partitions of the sums 

and if V;(F) < 00 we say that F is of bounded variation on [a, b], which we 
denote by F E BV(a, b). Now it can be shown that a function F E BV(a,b) 
if and only if its derivative F'(z) exists for almost all (I'L-measure) z E [a, b]. 
Consequently, an absolutely continuous distribution function Fx, that is one 
with a density function, is of bounded variation. There are however distribution 
functions of bounded variation which are not absolutely continuous, for instance 
if Fx has jumps in its graph. We define the Riemann-Stieltjes integral of a 
function 1 with respect to an FE BV(a, b) on a bounded interval [a, b] as the 
limit 

(2.22) 

if these exist and are equal, for arbitrary e}n) E [z~n), z~~{] where 6(n) -+ 0 as 

n -+ 00, and denote it by 

(2.23) 1b l(z)dF(z). 

This integral exists, for example, when 1 is continuous on [a, b], in which case 
it equals the Lebesgue integral ~/J.b] 1 F' dl'L or the Lebesgue-Stieltjes integral 

~/J.bl 1 dF when F is defined by F(L) = fL F' dl'L for any L E {, is a measure on 
(lR, (,) (this happens if F'(z) ~ 0 for almost all z E [a, b]). When the derivative 
F' is continuous on [a, b] the Riemann-Stieltjes integral (2.23) reduces to the 

usual Riemann integral f: l(z)F'(z)dz. 

Exercise 2.2.6 Show that a bounded function F is 01 bounded variation on 
an interval [a, b] il and only il F is the difference 01 two monotonic real valued 
lunctions on [a, b]. 
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2.3 Stochastic Processes 

We shall now look more closely at stochastic processes from the perspective 
of measure theory. Recall that a stochastic process X = {X(t), t E T} is a 
collection of random variables on a common probability space (O,A, P) indexed 
by a parameter t ETC lR, which we usually interpret as time. It can thus be 
formulated as a function X : Tx{'} -+ lR such that X(t,·) is A :C-measurable in 
w E {'} for each t E T; henceforth we shall often follow established convention 
and write X t for X(t). When T is a countable set, the stochastic process is 
really just a sequence of random variables X'l' X," ... , X,,., ... , the analysis of 
which is relatively straightforward. In contrast, when T is an interval, bounded 
or unbounded, the relationship between the X, random variables at different 
instants t can lead to some delicate mathematical problems. We shall address 
these in this section, assuming from now that T is an interval. 

In many practical situations involving stochastic processes we are not given 
the probability space (0, A, P), but rather the finite dimensional distributions, 
that is the totality of distribution functions F'l" __ -'" for all finite combinations 
of time instants tl < t2 < ... < tn in Twith n = 1,2,3, .... Kolmogorov showed 
how we can then construct a probability space (O,A, P) and a function X such 
that X is a stochastic process with the given finite dimensional distributions, 
provided these distribution functions satisfy consistency and compatibility re
lationships like (1.4.27)-(1.4.31). Essentially he took 0 = lRT , the set of all 
functions w : T -+ lR, and defined X(t,w) = wet), so that w not only labels the 
sample path but is the sample path. Then he defined A to be the O'-algebra 
generated by cylinder sets which typically have the form 

A = {w EO: X(ti'W) E Li for i = 1,2, .. . ,n} 

where ti E T and Li E C, to each of which he assigned the probability 

(3.1) peA) = [ IAdFt1 ,, ___ , .. (Xl,X2, •.• ,Xn ). 
lLlxLiK---xL,. 

Finally, he extended this set function (3.1) to the whole 0'- algebra to obtain 
a probability measure. Other probability spaces are possible, and for a given 
space there may exist distinct stochastic processes X = {X" t E T} and Y = 
{Y" t E T} with the same distribution functions. We say that such processes are 
equivalent and that one is a version of the other. For example, Xt(w) == ° and 
Y,(w) = I{w}(t), the indicator function of the singleton set {w}, are equivalent 
stochastic processes for t E [0, I] on the probability space ([O,l],C,J-tL). For 
equivalent processes we have peA,) = 0 for all t E T where At = {w EO: 
Xt(w) :f. Y,(wH· As the example shows such processes need not have the 
same sample paths, even with probability one, for that requires the set A = 
{w EO: X,(w) :f. Y,(w) for some t E T} to be an event. However, as an 
uncountable union of events A = UteTAt may not even be an event, let alone 
a null event. 

While at the most general level no restrictions are imposed on the rela
tionship between the random variables X t at different time instants t E T, in 
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practice it is useful to do so. A very broad class of stochastic processes, called 
separable processes, was introduced by Doob in order to circumvent difficulties 
arising from the uncountability of the time interval T. He called a stochastic 
process X = {X"~ t E T} defined on a complete probability space (O,A, P) a 
separable process if there is a count ably dense subset S = {S1' S2, S3, ... } of T, 
called a separant set, such that for any open interval 10 and any closed interval 
Ie the subset 

A = U {w EO: Xt(w) E Ie} 
tETn10 

of 0 differs from the event 

A = U {w EO: X,,(w) E Ie} 
.;ESnlo 

by a subset of a null event. By the completeness of the probability space the 
set A is thus itself an event and peA) = peA). Consequently, for a separable 
process X = {X"t E T} sets like {w EO: X,(w) ~ 0 for all t E T} are events 
and the functions defined, w.p.I, by 

inf X.(w), 
·9 

supX,(w), 
·S' 

lim X,(w) 
.-.t 

are random variables, if they exist. In our previous example the process defined 
by Xt(w) :: 0 is a separable process, whereas Yi(w) = I{w}(t) is not. 

Loeve showed that for any stochastic process X = {Xt, t E T} there is 
always an equivalent process Xt = {Xt, t E T} defined on the same probability 
space which is separable, although his proof required the Xt to be extended 
random variables, that is possibly taking values ±oo. When the process X = 
{X" t E T} is continuous in probability for each t E T matters are much nicer: 
there is an equivalent separable process X, = {Xt,t E T} which is jointly 
measurable, that is the function X : T x 0 -+ !R is measurable with respect to 
the product measure (TxO,.cxA,/-'L xP), and for this process any countably 
dense subset of T is admissible as a separant set. In this situation, the typical 
one encountered in this book, we can without any loss of generality replace the 
original process by such a separable version; indeed, we shall always assume 
that this has been done. 

If a jointly measurably process X = {X" t E T} is integrable on TxO, that 
is if X E L 1 (TxO,.cxA,/-'LXP), then we can apply Fubini's Theorem to any 
[to, tj x 0 ~ Tx 0 to conclude that 

(3.2) 1: E (x.) ds = E (1: x. dS) . 

In addition we have that Zt(w) = 1,'0 X.(w) ds is well-defined, w.p.1, for almost 
all (ilL-measure) t E T and is integrable in w. Thus Zt is itself a random 
variable on (O,A,P). 

In Section 7 of Chapter 1 we mentioned the Kolmogorov criterion (1.7.23) 
for a stochastic process to be sample-path continuous, that is with almost 
surely continuous functions of t as its sample paths. We saw that this criterion 
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was satisfied by the standard Wiener process and thus concluded that this 
process is sample-path continuous. Strictly speaking, the criterion assures that 
there is a jointly measurable and separable version of the process which is 
sample-path continuous, the process itself need not be. Compare Xt(w) == 0 
and Y,(w) = I{w} (t). For convenience, we usually talk about this separable, 
sample-path continuous version as if it were the given process. In fact, the 
standard Wiener process is now commonly defined on a canonical probability 
space 0 = Co([O, 00), R), the space of continuous functions w : [0,00) -+ ~ with 
w(O) = O. 

Conditional expectations with respect to a family of sub-u- algebras offer 
a succinct way of expressing the temporal relationship of a stochastic process. 
Let X = {X"~ t E T} be a jointly measurable and separable stochastic process 
on a probability space (0, A, Pl. Then X t is A: .c-measurable for each t E T, 
but in general the u-algebra A contains many more events in addition to those 
detectable by X t at a particular instant t E T, events of the form X t- 1 (L) for 
L E .c. For the sake of discussion we shall suppose that T = [0,00) and denote 
by At the sub-u-algebra of A generated by the totality of subsets 

(3.3) A={wEO:X.;(w)ELi for i=I,2, ... ,n} 

of 0 for any 0:5 SI < S2 < ... < Sn :5 t and L 1 ,L2 , ••• ,Ln E.c where n = 
1,2,3, .... Thus A .. ~ At for any 0 :5 S :5 t and we have an increasing family 
{At, t ~ O} of sub-u-algebras of A, this corresponding to the fact that more 
information about the stochastic process becomes available with increasing 
time. Obviously X t is At : L:-measurable for each t ~ O. Conversely, we 
may be given an increasing family {At, t ~ O} of sub-u-algebras of A and 
require that a stochastic process tXt, t ~ O} defined on a probability space 
(0, A, P) have X t At : L:-measurable for each t ~ O. In that case we say that 
the process tXt, t ~ O} is adapted to the family {A" t ~ O} of sub-u-algebras. 
Generally, by enlargening the u-algebras, we can assume that such an increasing 
family {At, t ~ O} of sub-u-algebras is right-continuous, that is it satisfies At 
== nf>oAHf for all t ~ O. Further, we can always assume that At is complete 
for each t ~ O. These assumptions allow many technical simplifications in 
proofs. Such a family of sub-u-algebras is then called a filtration. Usually we 
are given a filtration in addition to the underlying probability space. For a 
given stochastic process X the simplest filtration is formed from sets defined 
by (3.3) and is often written {Af ,t ~ OJ. 

Let X == {Xtl t ~ O} be a stochastic process with 

(3.4) E(Xt - X.IA.) = 0, w.p.l, 

for all 0 :5 S < t, where {Atlt ~ O} is a filtration to which the process is 
adapted. Since E(X .. IA.) = X., w.p.l, we can write (3.4) as 

(3.5) E(XtIA.) = X., w.p.l, 

for all 0:5 s < t. We call such a process a martingale with respect to {At. t ~ O} 
or simply a martingale. If the equality sign in (3.5) is replaced by a :5 then we 
call X a supermartingaie. or a submartingale if it is replaced by a ~. Thus a 
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Wiener process is a martingale, but there are also many other processes which 
are martingales. 

Example 2.3.1 For a standard Wiener process W = {W"t ~ O} the pro
cesses W? - t and exp (W, - it) are martingales with respect to any family 
{At, t ~ O} of sub-CT- algebras to which W is adapted. 

A separable martingale X = {X" t ~ O} with finite pth- moment satisfies the 
maximal martingale inequality 

(3.6) 

for any a > 0 and, for p > 1, the Doob inequality 

(3.7) 

These important inequalities find many appplications since they give powerful 
uniform estimates of the sample paths of a process over a finite time interval 
rather than at a specific time instant, such as provided by the generalized 
Markov inequality (2.14), namely 

1 
P({w EO: IX,(w)1 ~ a}):5 aPE(IX,IP). 

Exercise 2.3.2 Apply the maximal martingale and Doob inequalities {3.6} 
and (3.7) with p = 2 to w,2 - t on the interval [0, 1]. In both cases simplify the 
bound on the right hand side of the inequalities. 

Variations of inequalities (3.6) and (3.7) also hold for supermartingales and 
submartingales. Taking limits as t -+ 00, we can then obtain estimates for 
the sample paths over all time 0 :5 S < 00 provided the limit lim,_oo E(IXt I2) 
exists. In fact, martingale convergence theorems guarantee the existence of such 
limits. For example, for a positive supermartingale {X" t ~ O} there exists a 
nonnegative random variable Xoo with finite mean such that X, -+ X oo , w.p.l, 
and E(Xt ) -+ E(Xoo) as t -+ 00. For a discrete-time martingale XO,Xt.X2,'" 
the identity (3.5) simplifies to 

E(XnIXn-d = Xn-t, w.p.l, 

for n = 1,2,3, .... Interpreted in a gambling context, it says that the expected 
winnings of the next game conditioned by knowledge of what was won in games 
up to the present game is exactly the winnings of the present game. Inequalities 
(3.6) and (3.7) also have analogues for discrete-time martingales. 

Example 2.3.3 Let X be a random variable on a probability space (O,A, P) 
and let {An, n = 0,1,2, ... } be an increasing family of sub-CT-algebras of A. 
Then XO,Xt,X2, ... defined by 

Xn = E(XIAn) 

for n = 0, 1,2, ... is a discrete-time martingale. 
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The Markov property (see (1.6.5), (1.6.14), (1.7.2» implies a useful ex
pression in terms of expectations conditioned on time-dependent O'-algebras of 
events. This is possible for both discrete-time and continuous-time processes, 
but here we shall concentrate on the technically more complicated continuous
time case. We consider a separable stochastic process X = {Xt, t ~ O} defined 
on a probability space (O,A, P), which is at least continuous in probability and 
is adapted to a filtration {At, t ~ O}. Then for each t ~ 0 we define At to be 
the sub-O'-algebra of A generated by the totality of subsets of the form (3.3) for 
any t ~ Sl ~ S2 ~ ••• ~ Sn and L 1 , L 2 , ..• , Ln where n = 1,2,3, .... Conse
quently X. is At :£-measurable for each s ~ t and, in fact, At is the smallest 
O'-algebra with this property. It is the collection of all events detectable by the 
stochastic process at some future time if t is considered to be the present. The 
Markov property implies that 

(3.8) E(YIAt ) = E(YIXt ), w.p.1, 

for all t ~ 0 and all At :£-measurable Y, for example X. for any S ~ t and 
fB for any BEAt. Essentially (3.8) says that the expectation of some future 
event given the past and the present is always the same as if given only the 
present. It follows from this that 

(3.9) E (ZYIXt ) = E (ZIXt ) E (YIXt ) , w.p.l, 

for all At : £-measurable Z , all At : £-measurable Y and all t ~ O. This says 
that the future and the past are conditionally independent given the present. 
For a Markov process X = {Xt,t ~ O} it also follows from (3.8) and (2.18) 
that 

for any 0 ~ to ~ t and any At : £- measurable Y. This corresponds to the 
Chapman-Kolmogorov equation (1.7.6). 

Let {At, t ~ O} be a filtration on a probability space (0, A, P). We call a 
nonnegative random variable Ton (O,A, P) a Markov time if the event {W E 
0: T(W) ~ t} E At for each t ~ O. This means that by observing a sample path 
X. (wo) over an interval 0 ~ s ~ t for a stochastic process adapted to {At, t ~ O} 
we can always determine whether T(WO) ~ t or T(WO) > t. In defining Markov 
times it is convenient to allow T to take the value +00 in addition to finite 
values. Then for a sample-path continuous process {Xt,t ~ O} and a closed 
subset F C ~ 

(3.10) T(W) = inf {t ~ OjXt(w) E F} 

defines a Markov time with respect to a family of sub-O'- age bras to which the 
process is adapted, which may take infinite values. We call it the hitting time 
of the set F or the first exit time of its complement Fe. Often we say that 
a Markov time is a stopping time, particularly when we are only interested 
in observing a process until a certain time which depends on the sample path 
under consideration. We remark that T+t, TAt = min{T,t}, TAO', TVt = 
max{ T, t} and TV 0' are Markov times when T and 0' are Markov times. 
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2.4 Diffusion and Wiener Processes 

Let X = {Xt,t ~ O} be a vector-valued stochastic process on a probability 
space (0,04, P) and taking values in 1Rd with X t being A : .cd-measurable for 
each t ~ O. Similarly to Section 7 of Chapter 1 for a I-dimensional process, we 
define the transition probabilities for such an d-dimensional process by 

( 4.1) pes, x;t, L) = P (Xt E LIX. = x) 

for all 0 .::; s < t, x E 1Rd and L E Cd. Apart from the obvious change 
in dimension, we are now using the slightly more general Lebesgue subsets 
of !Rd instead of the Borel subsets. The Markov property (1.7.2) can be re
stated with the obvious changes. We note that the individual components of 
a vector Markov process need not themselves be Markov processes. A similar 
generalization applies for the definition of a vector diffusion process. Since the 
transition densities need not always exist, we shall reformulate the defining 
properties (1.7.9)-(1.7.11) in terms of the transition probabilities (4.1) using 
the Lebesgue-Stieltjes integrals over subsets of 1Rd. We require the following 
limits to exist for any £: > 0, s ~ 0 and x E 1Rd: 

(4.2) lim-l-j P(s,x;t,dy) = 0, 
tl- t - s Iy-:rl>t 

(4.3) lim-l-j (y-x)P(s,x;t,dy) = a(s,x) 
tl- t - s ly-:rI:S;t 

and 

(4.4) lim_I_j (y - x)(y - x? P(s,x;t,dy) = B(s,x)B(s, x? 
t!. t - s ly-:rI:S;< 

where a is an d-dimensional vector valued function and D = BBT is a symmet
ric, positive definite dx d-matrix valued function. We are using the Euclidean 
norm (1.4.36) here and interpret the vectors as column vectors, 80 yyT is an 
d x d-matrix with ijth component YiYj' If its transition probabilities satisfy 
(4.2)-(4.4) we call the process a vector diffusion process. The drift vector a 
and the diffusion matrix D have similar interpretations to their I-dimensional 
counterparts, except here the off-diagonal components of D are the instanta
neous rates of change in the conditioned covariances between the corresponding 
components of the vector process, namely 

~J(s,x) = lim-I-E (X; - X!)(Xf - X~)IX_ = x). 
tl. t - s 

Compare this with (1.7.13) and note that we are using superscripts to index 
the components of vector-valued stochastic processes here. 

When the drift vector and the diffusion matrix are moderately regular func
tions, the transition probabilities (4.1) have densities p( s, Xj t, y) which satisfy 
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the K olmogorov forward equation, perhaps better known as the Fokker-Planck 
equation, 

(4.5) Op ~ () { . } 1 ~ {)2 {" } - + L.,.,- a'(t,y)p - - L.,., -- d','(t,y)p = 0 
{)t i=l {)Yi 2 ij=l OYi{)Yj 

(s, Z in p fixed) with the initial condition 

limp(s,z;t,y) = 6(z - y), 
fl· 

where 6 is the Dirac delta function on ~d. The density p is thus a fundamental 
solution of the parabolic partial differential equation (4.5), which we can write 
more compactly in operator form as 

~~-.c*p=o 
where .c* is the formal adjoint of the elliptic operator .c defined as 

d. Ou 1 d . . ()2u 
.cu(s,z) = La'(s,z)~(s,z)+2 L d"'(s,z){) .() .(s,z). 

i=l Z, i,j=l Z, Z, 
(4.6) 

The K olmogorov backward equation is then 

(4.7) 

and is satisfied by u(s, z) = pes, Zjt,y) for fixed t and y. It also has the solution 

(4.8) u(s,z)=E(f(Xf)IX,=z)= f I(y)p(s,zjt,y)dy 1.4 
corresponding to the final time condition 

limu(s,z) = I(z) 
'Tt 

for any sufficiently smooth function I : lnd -+~. Equation (4.8) is often called 
the Kolmogorov lormula. 

For a given (bounded) domain 1) C lnd the inhomogeneous equation 

(4.9) 
Ou 
Os+.cu=-l for zE1) 

with boundary condition u(s, z) = 0 for z E 1) is satisfied by 

u(s,z) = E (T"z) - s 

where 
T"II'(W) = inf{t ~ s: Xt(w) E {)1J where X.(w) = z} 

is the first exit time of the process from 1) given that it starts at x at time s. 
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Exercise 2.4.1 Use integration by parts to show that 

1 I Cg dz -1 9 C* ldz = 0, 
R4 R4 

where I, 9 and their derivatives vanish as z -> 00. Hence derive C" from C 
when d = 1. 

The simplest nontrivial d-dimensional vector diffusion process corresponds 
to the zero drift vector a( s, z) == 0 and the identity diffusion matrix D( s, z) == I. 
This is the d- dimensional vector Wiener process Wt = (Wl, Wl, ... , Wl), 
the components of which are pairwise independent standard Wiener processes 
satisfying conditions (1.8.1). In fact, similar conditions for a vector process 
with independent increments completely characterize a vector Wiener process. 
A theorem of Doob says that such a process {X, = (Xl, ... , xt), t ~ O} 
adapted to an increasing family {At, t ~ O} of iT-algebras is a vector standard 
Wiener process if and only if 

(4.10) X~ = 0, E (X; - X!IA.) = 0, 

E (X; - X;)(X! - XnIA.) = {ji,j (t - s), 

w.p.l, for all i, j = 1, ... , d and 0 :s; s :s; t, where Ci,j is the Kronecker delta 
symbol defined by 

fl .. _ { 1 
1,1 - 0 

for i,j = 1,2, ... , d. These conditions are weaker than (1.8.1) in that they in
volve conditional expectations with respect to the coarser iT-algebras At rather 
than A. The identity (1.7.24) for a I-dimensional standard Wiener process now 
takes the form 

for a d-dimensional Wiener process. Hence we can use Kolmogorov's criterion 
(1.7.23) directly to conclude that there is a jointly measurable and separable 
version which is sample-path continuous. As for the one-dimensional case we 
shall always assume that we are using such a version. 

A standard Wiener process W = {W"~ t ~ O} consists of uncountably many 
random variables. However, it is possible to represent it on any bounded inter
val 0 :s; t :s; T in terms of only countably many independent Gaussian random 
variables. This representation is very similar to a Fourier series with the ran
dom variables as its coefficients and is called the Karhunen-Loeve expansion of 
the process. In the sense of mean-square convergence, we have 

00 

(4.11) Wt(w) = L Zn(w)4>n(t) for O:S; t :s; T 
n=O 
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where the Zo, Zl,"" Zn,'" are independent standard Gaussian random vari
ables and the ¢o, ¢1, ... , ¢n, ... are the nonrandom functions 

(4.12) A.. ()_ 2m . (2n+ 1)1I't) 
'l'n t - (2n+ 1)11' sm 2T 

for n = 0,1,2, .... These time functions are themselves orthogonal with respect 
to an integral inner product, namely 

(¢i,¢j) = loT ¢i(t)¢j(t)dt = 0 

if if:. j for any i, j = 0,1,2, ... , and satisfy 
00 

2::¢n(S)¢n(t) = min{s,t}, 
n=O 

which is the covariance function ofthe process. In our case the random variables 
Zo, Z 1, Z2, ... are determined in an almost identical way to the coefficients of 
a Fourier series, with 

(4.13) 2 (2n + 1)11')2 fT 
Zn(w) = T 2m Jo Wt(W)¢n(t) dt 

for n = 0,1,2, ... and are independent standard Gaussian random variables. 
Obviously, both the random variables (4.13) and the time functions (4.12) 
depend on the particular time interval 0 ~ t ~ T. 

The expansion (4.11) has both theoretical and practical uses. For example, 
if we differentiate the series term by term the resulting series is divergent. This 
again suggests the non differentiability of the Wiener process. In addition, we 
can use a truncation of the series to generate an approximation of a Wiener 
process. 

PC-Exercise 2.4.2 Generate 50 independent standard Gaussian pseudo
random numbers for use as realizations of the first 50 random coefficients Zo, 
Zl, ... , Z49 in the series expansion (4.11). Then plot the graphs of the partial 
sums 

49 

2:: Zn(w)¢n(t) 
n=O 

against t on the interval 0 ~ t ~ 1. 

We can also form Karhunen-Loeve expansions using other nonrandom func
tions than those in (4.12), for example the Baar functions defined in the next 
exercise. 

Exercise 2.4.3 
and 

The Haar functions Hn : [0,1] --+ ~ defined by H 1(x) == 1 

o 

o ~ x < 2-m - 1 

2-m - 1 ~ x < 2- m 

otherwise 
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XU) Figure 2.4.1 Results of PC-Exercise 2.4.2. 
a 

1 

o 
1 

-1 

-I 

with H 2"'+j(z) = H2m+1(z - (j - 1)/2m) for i = 1,2, ... , 2m and m = 0,1,2, 
... are a complete and orthonormal system with 

i=i 
i::/=i 

Sketch the first eight Haar functions and verify directly that they satisfy the 
preceding orthonormality condition. Then determine the K arhunen-Loeve ex
pansion for a standard Wiener process on the interval 0 ~ t ::; 1 with respect 
to the system of Haar functions. 

In Section 8 of Chapter 1 we used the Law of the Iterated Logarithm prop
erty (1.8.5) of a 1-dimensional standard Wiener process to show that its sample 
paths are nowhere differentiable functions of time. We shall now show directly 
that they do not have bounded variation on any finite time interval. We take 
a bounded interval a ~ t ::; b which we partition into subintervals [t1") , t111] 
of equal length 2-n (6 - a), where t1n ) = a + 1.:2-"(b - a) for k = 1,2, ... ,2". 
Then we define 

2"-1 

= L (A".I:(w) - 2-"(b - a» 
1:=0 
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where we have written 

Since Sn is the sum of independent random variables, each of which has zero 
mean, we have E (Sn) = 0 and 

2" 1 

~ (E (~~,k) - 2-n+1(b - a)E (~n.k) + 2-2n (b - a)2) 

2"-1 

E (b - a)22- 2n+l by (1.7.24) and (1.8.1) 
k=O 

Obviously, then Sn - 0 as n - 00 in mean-square convergence. More impor
tantly, by the Markov inequality (2.14) for any ( > 0 we have 

Hence the positive series 2:;:'=1 P( {w En: ISn (w) I ~ f}) is bounded above by 
(b - a)2/(2 and so is convergent. By the Borel-Cantelli Lemma 2.1.4 we can 
then conclude that the events {w En: ISn(w)1 ~ (} occur for at most finitely 
many n, w.p.1. Consequently we have with probability one 

( 4.15) 
2"-1 2 

lim ~ (Wt (,,) (w) - Wt (,,) (w») = b - a. 
n-+oo L...J "+1 Ie k=O 

In fact, this holds for any partitioning of the interval [a, b) with 

6(n) = max It(n) - In)l_ 0 as n - 00 
k~O k+1 k 

provided 2:;:'=16(n) < 00. From it we can deduce that Wt(w) is, with proba
bility one, not of bounded variation on [a, b). Indeed from (4.15) we have 

2"-1 

b - a ~ limsup max IWt (,,) (w) - Wt(n) (w)1 E IWt (,,) (w) - Wt(n) (w)1 
n_oo 0$k$2"-1 10+, I< k=O 1<+1 k 

and since, from sample-path continuity, 
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K(U Figure 2.4.2 A trajectory of a Wiener process. 
a 

1 

o 
t 

-1 

-2 

w.p.1 as n -+ 00, we have 

w.p.1 as n -+ 00. Thus, almost surely, the sample paths do not have bounded 
variation on a $ t $ b. They cannot then be differentiable, except possibly on 
a time subset of Lebesgue measure zero. Roughly speaking, (4.15) says that 
WtH{W) - Wt(w) is of order .,f6 and so 

WtH{W) - Wt(w) 
6 

is of order 1/../6, which suggests that its limit as 6 -+ 0+ cannot exist. 

PC-Exercise 2.4.4 Generate and plot the linearly interpolated trajectory of 
a Wiener process on [0,1] at the time instants tl< = k2- 9 for k = 0, I, ... , 29 

using independent Gaussian increments. 



Chapter 3 

Ito Stochastic Calculus 

This chapter provides an introduction to stochastic calculus, in particular to 
stochastic integration. A fundamental result, the Ito formula, is also derived. 
This is a stochastic counterpart of the chain rule of deterministic calculus and 
will be used repeatedly throughout the book. Section 1 summarizes the key 
concepts and results and should be read by nonspecialists. Mathematical proofs 
are presented in the subsequent sections. 

3.1 Introduction 

The stochastic calculus of Ito originated with his investigation of conditions 
under which the local properties of a Markov process could be used to char
acterize this process. By local properties here we mean quantities such as the 
drift and the diffusion coefficient of a diffusion process. These had been used 
some time earlier by Kolmogorov to derive the partial differential equations 
(1.7.14)-(1.7.15), which now bear his name, for the transition probabilities of a 
diffusion process. In contrast, Ito's approach focused on the functional form of 
the processes themselves and resulted in a mathematically meaningful formu
lation of stochastic differential equations, which until then had been heuristic 
and inadequate. A similar theory was developed independently at about the 
same time by Gikhman. 

An ordinary differential equation 

(1.1) . dx ( ) x=-=at,x 
dt 

may be thought of as a degenerate form of a stochastic differential equation, 
as yet undefined, in the absence of randomness. It is therefore useful to review 
some of its basic properties. We could write (1.1) in the symbolic differential 
form 

(1.2) dx = a(t, x) dt, 

or more accurately as an integral equation 

(1.3) x(t) = Xo +1.' a(s,x(s))ds 
to 
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where x(t) = x(t; Xo, to) is a solution satisfying the initial condition x(to) = Xo. 
Some regularity assumption is usually made on a, such as Lipschitz continuity, 
to ensure the existence of a unique solution x(t; Xo, to) for each initial condi
tion. These solutions are then related by the evolutionary property (1993). 

(1.4) x(t;xo,to) = x(t;x(s;xo,to),s) 

for all to ~ s ~ t. Together these say that the future is determined completely 
by the present, with the past's being involved only in that it determines the 
present. This is a deterministic version of the Markov property (1.7.2); indeed, 
(1.4) is just the Chapman-Kolmogorov equation (1.7.5) for degenerate transi
tion probabilities with densities p(to,xo;t,x) = 6(x - x(t;xo,to», where 6 is 
the Dirac delta function (see (1.8.11». 

Following Einstein's explanation of observed Brownian motion during the 
first decade of this century, attempts were made by Langevin and others to 
formulate the dynamics of such motions in terms of differential equations. The 
resulting equations were written in the form as 

(1.5) dXt = aCt, X,) dt + bet, X,) et dt 

with a deterministic or averaged drift term (1.1) perturbed by a noisy, diffusive 
term bet, X,) et, where the et were standard Gaussian random variables for each 
t and bet, x) a (generally) space-time dependent intensity factor. This symbolic 
differential was interpreted as an integral equation 

(1.6) Xt(w) = Xto(w) + ta(s,X.(w»ds+ tb(s,x.(w»e.(w)ds 1to 1to 
for each sample path. When extrapolated to a limit, the observations of Brow
nian motion seemed to suggest that the covariance e(t) = E(e.e.+t) of the pro
cess e: had a constant spectral density, that is with all time frequencies equally 
weighted in any Fourier transform of e(t). Such a process became known as 
Gaussian white noise, particular in the engineering literature. For the special 
case of (1.6) with a == 0, b == 1 we see that et should be the derivative of pure 
Brownian motion, that is the derivative of a Wiener process Wt , thus suggesting 
that we could write (1.6) alternatively as 

(1.7) Xt(w) = Xto(w) + t a(s, X .. (w» ds + [t b(s, X .. (w»dW. (w). 
1to 1to 

The problem with this is, as we saw in Section 4 of Chapter 2, that a Wiener. 
process Wt is nowhere differentiable, so strictly speaking the white noise process 
et does not exist as a conventional function of t; indeed, a flat spectral density 
implies that its covariance function e(t) is a constant multiple of the Dirac 
delta function 6(t). Thus the second integral in (1.7) cannot be an ordinary 
Riemann or Lebesgue integral. Worse still, the continuous sample paths of a 
Wiener process are not of bounded variation on any bounded time interval, so 
the second integral in (1.7) cannot even be interpreted as a Riemann-Stieltjes 
integral for each sample path. 



3.1. INTRODUCTION 77 

For constant b(t,:z:) == b we would expect the second integral in (1.7), how
ever it is to be defined, to equal b{W,(w) - Wto(w)}. This is the starting point 
for Ito's definition of a stochastic integral. To fix ideas, we shall consider such 
an integral of a random function lover the unit time interval 0 ~ t ~ 1, 
denoting it by l(f), where 

(1.8) 1 (f) (w) = 11 I(s,w) dW,(w). 

For a nonrandom step function I(t,w) = h on ti ~ t < tj+1 for j = 1,2, ... , n 
where 0 = t1 < t2 < ... < tn+l = 1 we should obviously take, at least w.p.l, 

n 

(1.9) 1 (f)(w) = LJi {WtH'(w) - Wtj(w)}. 
j=1 

This is a random variable with zero mean since it is the sum of random variables 
with zero mean. For random step functions appropriate measurability condi
tions must be imposed to ensure the nonanticipativeness of the integrand. To 
be specific, suppose that {At,t ~ O} is an increasing family of (1'- algebras 
such that Wt is At-measurable for each t ~ o. Then we consider a random 
step function I(t,w) = h(w) on ti ~ t < tj+1 for j = 1,2, ... , n where 
o = t1 < t2 < ... < tn+! = 1 and!; is Ati-measurable, that is observable by 
events that can be detected at or before time ti. We shall also assume that each 
f; is mean-square integrable over n, hence E(fJ) < 00 for j = 1,2, ... ,n. Since 
E(WtH' - WtjlAtJ = 0, w.p.l, it follows that the product Ij{WtH , - W,), 
which is At H' -measurable and integrable, has expectation 

E (Ii {WtH' - Wtj }) = E (Ii E (WtH' - W tj IAtj)) = 0 

for each j = 1,2, ... ,n. Analogously to (1.9) we define the integral l(f) by 
n 

(1.10) 1 (f)(w) = Eli(W) {Wtj+!(w) - Wtj(w)} , 
j=l 

w.p.1. Since the jth term in this sum is Atj+,- measurable and hence A1-
measurable, it follows that l(f) is A 1-measurable. In addition, J(f) is inte
grable over n and has zero mean; in fact, it is mean-square integrable with 

n 

(1.11 ) E (I (f)2) = E E (IJ E (IWt,+! - Wtj 12IAt,)) 
i=1 

n 

= E E (If) (tj+1 - ti) 
i=1 

on account of the mean-square property of the increments W,H, - W" for 
j = 1,2, ... , n. Finally, from (1.10) we obviously have 

(1.12) 1 (Otl + pg) = Otl (f) + PI (g), 

w.p.1, for any Ot, p E ~ and any random step functions I, 9 satisfying the above 
properties, that is, the integration operator 1 is linear in the integrand. 
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For a general integrand I : [0,1] x n -+ ~ we shall define I(f) as the limit 
of integrals l(f(n» of random step functions I(n) converging to I. To do this 
we need to specify conditions on I and determine an appropriate mode of 
convergence for which such an approximating sequence of step functions and 
limit exist. For the moment we shall assume that I is continuous in t for all 
wEn and that for each 0 ~ t ~ 1 the random variable I(t,.) is Armeasurable 
and mean-square integrable with E(f(t, .»2 continuous in t. Then we form a 
partition 0 = 4n ) < t~n) < ... < t~11 = 1 with 

c5(n) = max {t(n) - t(n)} -+ 0 as n -+ 00 
1:S;:Sn )+1 ) 

and define a step function I(n) by I(n)(t,w) = I(Tt),w) on ttl ~ t < tJ~1 
£, h · f (n) t· f· ten) < (n) ten) h . 1 2 or some c 01ce 0 Tj sa 18 ymg; _ T; < ;+1, were J = , , ... , n. 

For a choice tjn) < Tf") < tj~I' the random variable I(n)(t,.) need not be 

At-measurable for each tjn) ~ t < tj~l nor independent of the increment 
Wti+l - Wtj , that is the step function t<n) may depend on future events. To 

avoid this we must take Tln) = tjn) for all j = 1,2, ... , n and n = 1,2,3, .... 
We shall assume that we have done this and, for now, that the step functions 
I(n) converge to the integrand I in an appropriate mode of convergence. The 
problem is to characterize the limit of the finite sums 

(1.13) 

with respect to an appropriate mode of convergence. The Wiener process has 
well-behaved mean-square properties, in particular E«Wt - W,,)2) = t - s. 
Moreover for the step functions I(n) the equality (1.11) gives 

(1.14) 

and this converges to the Riemann integral f; E(f(s, .)2) ds for n -+ 00 since 
E(f(t, .)2) has been assumed to be continuous in t. Together these suggest that 
we should use mean-square convergence, and this is exactly what Ito did. If we 
assume that E(l/(n)(t,.) - I(t, ·W) -+ 0 as n -+ 00 for all t E [0,1], then it is 
not hard to show that the mean-square limit of the l(f(n» exists and is unique, 
w.p.1. We shall denote it by I(f) and call it the Ito stochastic integral, or just 
the Ito integml, of Ion 0 ~ t ~ 1. l(f) turns out to be an AI-measurable 
random variable which is mean-square integrable on 0 with E(l(!) = 0 and 

(1.15) 

In addition, I(f) inherits the linearity property (1.12) from the sums (1.13). 
Later in this chapter we shall drop the requirement that I has continuous 
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sample paths, where the Ito integral is defined as above and has the same 
properties. 

The Ito integral is defined similarly on any bounded interval [to, tl, resulting 
in a random variable 

(1.16) Xt(w) = It l(s,w)dW,(w) 
to 

which is Armeasurable and mean-square integrable with zero mean and 

E (xi) = It E (I(s, .)2) ds. 
to 

From the independence of nonoverlapping increments of a Wiener process in 
the step function sum (1.13), and in their mean-square limit, we have 

w.p.l, for any to ~ tl ~ t2; hence {Xt, t 2:: O} is a martingale (2.3.5). Then, for 
example, the maximal martingale inequality (2.3.6) gives 

for any a > O. 
The time-dependent Ito integrals (1.16) also satisfy the linearity property 

(1.12) and the additivity property 

1t2 1tl Ih I(s,') ds = I(s,·) ds + I(s,·) ds, 
to to t 1 

w.p.l, for any to ~ tl ~ t2, properties which it shares with the conventional 
Riemann and Riemann-Stieltjes integrals. However the Ito integral also has 
the peculiar property, amongst others, that 

(1.17) 

w.p.1, in contrast to 

l t lW(t) (1 ) 1 
o w(s) dw(s) = 0 d '2 w2 = '2 w2 (t) 

from classical calculus for a differentiable function w(t) with w(O) = O. The 
equality (1.17) follows from the algebraic rearrangement 

for any 0 = tl < t2 < ... < tn+! = 1 and the fact that the mean-square limit 
of the sum of squares on the right is equal to t. 
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We could write the equality (1.17) symbolically in terms of differentials 
as E«dWt )2) = dt, which has an interesting consequence in the following 
stochastic counterpart of the chain rule. For each t ~ to we define a stochastic 
process Yi by 

Yi(W) = U(t,Xt(w» 

where U{t,x) has continuous second order partial derivatives and X t is given 
by (1.16) or, equivalently, by the stochastic differential dXt = fdWt . If X t 

were continuously differentiable, the chain rule of classical calculus would give 
as the differential for Yi 

(1.18) 
au au 

dYi = Tt (t,X,) dt + ax (t,Xt ) dXt . 

This follows from the first few terms in the Taylor expansion for U in 6.Yi = 
U(t + 6.t, X t + 6.Xt ) - U(t, X,), with the second and higher order terms in 6.t 
and fl.X, being discarded. In this case the only first order partial derivatives of 
U remain. In contrast, when Xt is given by (1.16) we need to take into account 
that (dXt )2 = f2(dWt )2 and hence E«dXt )2) = E(f2)dt, giving us a first order 
"dt" term coming from the second order part of the Taylor expansion for U. 
To be specific we have 

6.Yi = U (t + fl.t, X t + 6.Xt ) - U (t, X,) 

= { au 6.t + au 6.x} 
at ax 

1 {a2U 2 a2u a2u 2} +'2 at2 (6.t) + 2 atax 6.t 6.x + ax2 (6.x) 

+ ... 

where the partial derivatives are evaluated at (t,Xt ). Thus, as we shall see in 
Section 3, we obtain 

(1.19) 

with equality interpreted in the mean-square sense. This is a stochastic chain 
rule and is known as the Ito formula. It contains an additional term not 
present in the usual chain rule (1.18), and this gives rise to the extra term in 
integrals like (1.17). For example, with X t = Wt and Yi = xl, so f == 1 and 
U(t,x) = x2, we have 

dYi = d (xl) = 1 dt + 2Xt dXt 

or 
1 ( 2) 1 W, dW, ="2d Wt -"2 dt. 
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Hence in integral form 

l' W,dW. 

since Wo = 0, w.p.1. 
It is usual to express the Ito formula in terms of the differentials dt and 

dW,. This is easily done in (1.19) since dX, = f dW,. In the general case a 
stochastic differential can also include a "dt" term, that is, it has the form 

dXt(w) = e(t,w)dt + f(t,w)dW,(w). 

Then the Ito formula has the form 

(1.20) {au au 1 2a2U} au dYi = - + e- + - f - dt + f- dW, at ax 2 ax2 ax 
where the partial derivatives of U are evaluated at (t, X,). 

When U is linear in x we have 

a2u 
-=0 ax2 

and the Ito formula (1.20) reduces to the usual chain rule (1.18). 

3.2 The Ito Stochastic Integral 

In this section we shall consider the Ito stochastic integral and its properties 
from a more thorough mathematical perspective, at the same time extending 
the definition to a wider class of integrands than that mentioned in Section 
1. For this we suppose that we have a probability space (O,A, P), a Wiener 
process W = {W" t ~ O} and an increasing family {At, t ~ O} of sub -u
algebras of A such that Wt is Ar measurable with 

E(WtlAo) = 0 and E(Wt - W.IA.) = 0, 

w.p.l, for all 0 ::; s ::; t. Here the u-algebra At may be thought of as a collection 
of events that are detectable prior to or at time t, so that the At-measurability 
of Z, for a stochastic process {Z" t ~ O} indicates its nonanticipativeness with 
respect to the Wiener process W. 

For 0 < T < 00 we define a class Ct of functions f : [0, T]xO -+ 3? satisfying 

(2.1) f is jointly C x A-measurable; 

(2.2) 
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(2.3) 

and 

(2.4) 
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E (J(t, .)2) < co for each O:S t :S T; 

I(t,.) is At-measurable for each 0::; t ::; T. 

In addition we consider two functions in Ct to be identical if they are equal 
for all (t,w) except possibly on a subset of PLxP-measure zero. Then with the 
norm 

(2.5) 

C} is a complete normed linear space, that is a Banach space, provided we 
identify functions which differ only on sets of measure zero (in fact, it is a 
Hilbert space). 

We remark that conditions (2.1)-(2.4) are stronger than I E L2([O, T] x 0, 
CxA, PL xP) which, by Fubini's Theorem guarantees (2.3) only for almost all 
(PL-measure) t E [0,11, rather than for all t E [0,11, as will be required below. 

For any partition 0 = t1 < t2 < ... < tn+! = T and any mean-square 
integrable Ati-measurable random variables 1;, j = 1,2, ... ,n, we define a step 
function I E C} by I(t,w) = hew), w.p.l, for tj ::; t < tj+! and j = 1,2, ... , n. 
Here the integral in (2.2) takes the form 

(2.6) 

We denote by Sf the subset of all step functions in Ct. Then we can ap
proximate any function in C} by step functions in Sf to any desired degree of 
accuracy in the norm (2.5). To be specific we have 

Lemma 3.2.1 Sf is dense in (C}, II ·1I2.T). 

Proof We shall consider partitions of [0,11 of the form 0 = 4n ) < t~n) 
< .,. < t~~l = T with t~~l - t~n) -+ 0 for j = 1,2, ... , n as n -+ co.When I is 
mean-square continuous in t, that is when E(f(t, .)2) is continuous, we define 
a sequence of step functions I(n) by I(n)(t,w) = I(t~n),w), w.p.l, in t}n) ::; t 
< t~~l for j = 1,2, ... ,n and n = 1,2,3, .... Clearly then I(n) E Sf for each 
n = 1, 2, 3, ... and 

for each t E [0,71. Hence by the Lebesgue Dominated Convergence Theorem 
2.2.3 applied to the space L1([0,11,C,pL) we have 
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Now a function I E C} is generally not mean-square continuous, but we can 
approximate it arbitrarily closely in the norm (2.5) by one that is. To begin, 
we approximate I by a bounded function IN E C} defined by 

IN(t,w) = max{-N,min{f(t,w),N}} 

for some N > O. Obviously lIN (t,w)1 ~ N, with IN(t,w) = I(t,w) for those 
(t,w) for which I/(t,w)1 ~ N. Moreover 

so by the Dominated Convergence Theorem 2.2.3 applied to the functions 
E(I/N (t,·) - l(t,·)12) in L 1([0,11,C,lld it follows that 

iT E (1/N(t, .) - I(t, .)12 ) dt -+ 0 as N -+ 00. 

Then for such an IN we define a function gk for k > 0 by 

From the properties of IN and the fact that the above integrand does not 
involve values of IN for times exceeding t, it follows that gk is jointly C x A
measurable and that gk(t,.) is At-measurable for each t E [0,11. Also from the 
bound on I/NI we have 

IUk(t,w)1 ~ N (1- e-kt ) , 

so E(Uk(t, .)2) is finite and integrable over 0 ~ t ~ T; hence gk E C}. Finally, 
the sample paths of U,. satisfy 

Ig,.(t,w) - gk(s,w)1 ~ 2kN It - sl 
and are thus continuous. In fact this bound also implies that E(Uk(t, .)2) is 
continuous, that is Uk is mean-square continuous. Consequently we can ap
proximate it by a step function I(n) E Sf as in the first part of the proof. For 
any given f> 0 we can choose IN, Uk and I(n) successively so that 

1 1 
III - INII2,T < 3f , II/N - ukll2,T < 3f , 

IIg,. - l(n)1I2,T < ~f. 
Then by the triangle inequality (1.4.37) we have 

III - l(n)lb,T < f, 

which is what we were required to prove. 0 
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Now let I be a step function in Sf corresponding to a partition 0 = tl < 
t2 < ... < tn+l = T and random variables 11,12, ... ,In. We define the Ito 
stochastic integral for this lover the interval [0,11 by 

n 

(2.7) 1 (I)(w) = I:/j(w) {WtHI (w) - Wt;(w)} , 
j=1 

w.p.1. Since /j is At;-measurable and WtHI - W,; is A tHI -measurable, 
where At; ~ A t;+I' their product Ij{Wt;+1 - Wt;J is A tHI -measurable for 
j = 1,2, ... ,n; hence 1(1) is AT-measurable. In addition, each product is inte
grable over fl, which follows from the Cauchy-Schwarz inequality (1.4.38) and 
the fact that each term is mean-square integrable; hence 1(1) is integrable. In 
fact 

n 

E(I(f) = I:E(/j {WtHI - W,;}) 
;=1 

n 

I: E (lj) E (WtHI - W,; IAtJ = 0 
;=1 

since E(WtHI - W,; IAt;) = O. Also /j and /j/i {Wt.+1 - We;} are At;
measurable for any i < j. Thus 

n 

E (1(1)2) = I:E (If {WtHI - Wt;}2) 
j=1 

n n 

+2 I: I: E (/iIi {WtHI - W t;} {Wti+1 - Wt;}) 
j=1 ;=;+1 

n 

= I: E (If) E ({WtHI - W,;} 2IAt;) 
i=1 

n n 

+2 I: I: E (1;1. {Wt;+l - Wt;}) E (Wti+l - Wt• IAtJ 
j=1 i=i+l 

n 

I: E (If) (tj+l - tj) 
i=1 

where we have used E(WtHl - W,; IAt;) = 0, E( {Wt;+l - Wt;FIAtJ = ti+l -t; 
and the definition of the Lebesgue (or Riemann) integral for the nonrandom 
step function E(f(t, .)2). Finally we note that for I, 9 E Sf and a, f3 E !R we 
have al + f3g E Sf, with the combined step points of I and g, so by algebraic 
rearrangement we obtain, w.p.l, 
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1(0:1 + f3g) = 0:1 (f) + 131 (g). 

Collecting these results we thus proved 

Lemma 3.2.2 For any I, 9 E Sf and 0:,13 E ~ the Ito stochastic integral 

(2.7) satisfies 
(2.8) I (f) is AT-measurable, 

(2.9) E (I (f» = 0, 

(2.10) E (I (/)2) = lT E (/(t, .)2) dt, 

and 

(2.11 ) 1(0:1 + f3g) = 0:1(1) + 131 (g) , w.p.l. 

For an arbitrary function IE£} Lemma 3.2.1 provides us with a sequence 
of step functions I(n) E Sj. for which 

The Ito integrals 1(f(n» are well-defined by (2.7) and, since 1(f(n»-I(f(n+m» 
= 1(1(n) - I(n+m», they satisfy 

E (II (/(n») _ I (/(n+m») 12) 

= E (II (/(n) _ I(n+m») 12) 

= loT E (I/(n)(t, .) - I(n+m)(t,.) r) dt, 

which, by the inequality (a + b)2 ~ 2(a2 + b2 ) gives 

(2.12) E (II (,en») _ I (/(n+m») 12) 

< 21T E (I,en)(t,.) - I(t, .)12
) dt 

+21T E (I/(t,.) _ I(n+m)(t, .)1 2
) dt. 

This says that I(f(n» is a Cauchy sequence in the Banach space L2(0, A, P), 
and so there exists a unique, w.p.l, random variable I in L2(0, A, P) such that 
E(ll(f(n» - 112) -+ 0 as n -+ 00. This I is AT-measurable since it is the limit 
of AT-measurable random variables. Moreover we obtain the same limit I for 
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any choice of step functions converging to I in .c~. To see this let j(n) be 
another sequence of step functions converging to I and suppose that I(j(n» 
converges to i. Then 

where we estimate the second term as in {2.12) with j(n) replaciI,!;g I(n+m). 

Taking limits as n -+ 00 we obtain EOI - 112) = 0, and hence I = I, w.p.1. 
We define the Ito stochastic integral I(f) of a function I E .c~ to be the 

common mean-square limit of sequences of the sums (2.7) for any sequence of 
step functions in Sf converging to I in the norm (2.5). It obviously inherits 
the properties listed in Lemma 3.2.2 for the step functions, so we have 

Theorem 3.2.3 The Ito stochastic integral I(f) satisfies properties (2.8)
(2.11) lor functions I E .c~. 

From the identity 4ab = (a + b)2 - (a - b)2, the linearity of Lebesgue and 
Ito integrals and property (2.10) of the Ito integral we can show the following 
relationship. 

Corollary 3.2.4 For any I, 9 E 4 

E(I(f)I(g» = loT E(f(t,.)g(t,.» dt. 

So far we have only considered the Ito integral I(f) of a function I E 4 
over a fixed time interval [0, T]. We shall continue to assume that I E 4 
and take any Borel subset B of [0, T]. Then the Ito integral of lover the 
subset B is just the Ito integral I(fIB) of lIB over [O,T], where IB is the 
indicator function of Bj clearly lIB E .c~. Usually we consider subintervals 
[to, tl] of [0, T] and denote the resulting Ito integral by J,'l I dW •. We could 
alternatively define this directly in terms of step functio~ defined only on 
[to, tl]' For ° ~ to < t1 < t2 ~ T we have 

II[to.t2] = II[to,tl] + II[tlh)' 

except at the instant t = tl, and so from the linearity property (2.11) we obtain, 
w.p.I, 

(2.13) 1'2 I(s,w) dW.(w) = 1'1 I(s,w) dW.(w) + 1'2 I(s,w) dW.(w). 
to to tl 

For a variable subinterval [to, t] ~ [0, T] we form a stochastic process Z = 
{Zt,to ~ t ~ T}, defined by 

Zt(w) = 1.' I(s,w) dW.(w), 
'0 

(2.14) 
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w.p.l, for to ~ t ~ T. Replacing 0 by to and T by t in Theorem 3.2.3, we see 
that Zt is At-measurable with E(Zt) = ° and 

E (Zi) = It E (I(s, .)2) ds. 
to 

(2.15) 

From (2.13) and (2.14) we then obtain for any 0 ~ t f ~ t ::::; T 

E (IZt - Ztll2) = 1,t E (I(s, .)2) ds, 

from which it follows that Zt is mean-square continuous. Thus it has a separable 
and jointly C x A-measurable version, which we shall use from now on. In fact 
this version has, almost surely, continuous sample paths, which we shall prove 
in Theorem 3.2.6 using the following martingale property of Z. 

Theorem 3.2.5 For to ::::; s ::::; t ::::; T we have 

E(Zt - Z.IA.) = 0, w.p.l. 

Proof We shall write Z}n) for the integral (2.14) when the integrand is a step 
function fen). Then we have, w.p.I, 

Z}n)(w) _ z~n)(w) = it f(n)(u,w)dWu(w). 

Restricting attention to the subinterval [s, t] with a partition s = t~n) < 4n ) < 
... < t~~l = t and j(n)(t;n),w) = f?)(w), we see that fjn) is At(n)-measurable, 

J 

whereas E(Wln+)1 - Wt(n) IAt <.,,» = 0, w.p.I, for j = 1,2, ... , n. Hence 
J J J 

w.p.I, for j = 1,2, ... , n. Taking successive conditional expectations with re
spect to the coarser u-algebras At(n) , At(n) , ... , At(n), A. of the corresponding 

ft n-l :J 

sum (2.7) for the Ito integral of the step function f(n)over [s, t], we obtain 

(2.16) E (Z}n) - Z~n) IA.) = 0, w.p.I, 

on account of the properties of nested conditional expectations. The stated 
result then follows because (2.16) is preserved in the mean- square limit. 0 

Since Zt defined by (2.14) is a mean-square continuous martingale, the 
maximal martingale inequality (2.3.6) with (2.15) implies that 

(2.17) P ( sup IZ.I ~ a) ::::; -; It E (I(s, .)2) ds 
to$'9 a to 

for any a> 0, and the Doob inequality (2.3.7) with (2.15) yields 

(2.18) E( sup Iz.12 ) ::::;41tE(I(s,.)2) ds. 
toS'St to 
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The difference of two martingales with respect to the same increasing family 
of u-algebras is itself a martingale. Hence for I E .c} and {fen)} a sequence of 
step functions converging to I in .c}, the difference Zt - zIn) is a martingale, 
where Zt and Z~n) are defined as in (2.14) for I and I(n), respectively. Then 
by the inequality (2.17) we have 

p ( sup IZt - Z~n)1 ~ .!.) :::; n21T E (I/(S,.) - ,cn)(s, .)1 2
) ds < ~ 

to~.~T n to - n 2 

if we choose the step functions ,en) such that 

for n = 1,2,3, .... The infinite series 

1 
ds< -

- n 4 

is thus convergent, and so by the Borel-Cantelli Lemma 2.1.4 

is a null event, that is for wEN the inequality 

can occur for at most a finite number of n. Thus for w rt. N 

lim sup IZ,(w) - ZJn)(w)1 = o. 
n .... oo to~.~T 

Now the sample paths of Z~n)(w) are obviously continuous on to :::; t :::; T. 
Since Zt(w) is the uniform limit of continuous functions, it is itself continuous. 
Thus we have proven 

TheoreIIl 3.2.6 A separable, jointly measurable version 01 Z, defined by 

Zt(w) = i' l(s,w)dW.(w) 
to 

lor t E [to,11 has, almost surely, continuous sample paths. 

We recall that A(Zt) denotes the u-algebra generated by the random vari
able Z,. When Z, is defined by (2.14) it is A(Zt)-measurable and A(Zt) ~ 
At. Thus from the properties of conditional expectations we have for any 
to:::; t1 :::; h ~ T 
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E (Ztl - ZtIIA(Ztl» 

E(E(Ztl - ZtllAtl) IA(Zt') 

= E(OIA(Ztl» = 0, 

w.p.l, since Zt is an At-martingale. Consequently 

(2.19) 

w.p.l, so Zt is also an A(Zt)-martingale. 

Exercise 3.2.7 Show that 

iT f(t) dWt = f(T)WT -iT !'(t)Wt dt 

89 

for any continuously differentiable function f : [0,11 -!R. Find the mndom 
functions, if there are any, for which this formula is valid. 

In many ways a sample-path continuous version Zt of an Ito integral (2.14) 
resembles a Wiener process. It is A t- measurable with Zto = 0 and E( Zt -
Z.IA.) = 0, w.p.l, for to ~ s ~ t ~ T. The main difference is that we have 

w.p.l, instead of equalling t - s as it would for a Wiener process. When the 
integrand f is nonrandom, that is f(t,w) == let), we can transform the time 
variable to convert Z into a Wiener process. To show this we shall suppose 
that to = 0 and define 

let) = 1t feu? du 

This is nondecreasing, but for simplicity we shall assume that it is strictly 
increasing and hence invertible. We define Zf = ZtCi) and Af = At(f), where 

t(l) is the inverse of let). Then Zf is Ai-measurable with 

Zo =0, E (Zf - ZIIAi) = ° 
and 

E (IZf - z.r IAi) = 1t f(u)2 du = l- s, 

w.p.!. Hence by a theorem of Doob (see 2.4.10) the process {z;.i ~ O} is a 
Wiener process with respect to the family of u-algebras {Af, l ~ OJ, at least 
for 0 ~ l ~ l(T). 

Exercise 3.2.8 Is Zf = J~ 2s dW. with i = ~ t3 a standard Wiener process 
with respect to the Af'l 
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To conclude this section we shall extend the Ito integral to a wider class of 
integrands than those in the space C}. We shall say that I belongs to CT if I 
is jointly C x A-measurable, I(t, .) is At-measurable for each t E [0, T] and 

(2.20) !aT l(s,w)2 ds < 00, 

w.p.l; hence 4 C Cr. We then define In E £T by 

In(t,w) = { I(t~w) J; l(s,w)2 ds ~ n 

otherwise 

The Ito stochastic integrals [(In) of the In over 0 ~ t ~ T are thus well
defined. It can then be shown that they converge in probability to a unique, 
w.p.l, random variable, which we shall denote by [(I) and call the Ito stochastic 
integral of I E CT over the interval 0 ~ t ~ T. Apart from those properties 
explicitly involving expectations, which may now not exist, the Ito integrals of 
integrands I E £T satisfy analogous properties to those of integrands I E £}. 
It is no longer a mean-square integrable martingale, but it is the convergence 
in probability limit of such martingales. Useful information can be deduced 
from this, such as the following counterpart to the estimate (2.17) 

(2.21) P (sup IZ,I > N) ~ P (1t l(s,w)2 ds > M) + ~ 
'o~'$t to N 

for any IE £T where Zt is defined as in (2.14). This inequality can be used 
to show that Z, has, almost surely, continuous sample paths. 

Exercise 3.2.9 Prove inequality (2.21). 

3.3 The Ito Formula 

The martingale property E(Z,IA.) = Z., which follows from Theorem 3.2.5, 
and its useful technical consequences, is one of the most advantageous features 
of the Ito stochastic integral. There is however a price to be paid for this, 
namely that stochastic differentials, which are interpreted in terms of stochastic 
integrals, do not transform according to the chain rule of classical calculus. 
Instead an additional term appears and the resulting expression is called the Ito 
formula. Roughly speaking, the difference is due to the fact that the stochastic 
differential (dW,)2 is equal to dt in the mean-square sense, which we used in 
our formal derivation of the Ito formula in Section 1. We shall now present a 
rigorous justification for the Ito formula. 

Let e andl be two functions with .jjej and I E £T' so that e and I satisfy 
the properties required of a function in £T except that the integral of e( t, w)2 
is replaced by 

!aT le(s,w)lds < 00, w.p.1. 
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Then, by a stochastic differential we mean an expression 

dXt(w) = e(t,w)dt + l(t,w)dWt(w), 

which is just a symbolical way of writing 

(3.1) Xt(w) - X.(w) = 1t e(u,w)du + 1t l(u,w)dWu(w), 

w.p.1, for any 0 ~ s ~ t ~ T. The first integral in (3.1) is an ordinary Riemann 
or Lebesgue integral for each w E () and the second is an Ito integral. 

Since the Ito integral for an integrand 1 E £'1- is defined as the limit of Ito 
integrals for integrands in Ct, we shall also consider the special case that M 
and 1 E .ct. In addition we shall always suppose that Xt is a separable, jointly 
measurable version of (3.1) with, almost surely, continuous sample paths. When 
e and 1 do not depend on t they are Ao-measurable random variables. The 
increments X t - X. are then Gaussian and independent on nonoverlapping 
intervals with 

(3.2) E (Xt - X.) = E(e)(t - s), Var (Xt - X.) = E (J2) (t - s). 

Other properties, or their analogues, considered in the previous section for 
the special case e == 0 also hold. For example, Xt is At-measurable provided 
Xo is assumed to be Ao-measurable. In addition, from the linearity of the 
Lebesgue and Ito integrals, we have 

(3.3) d (aX!l) + PX!2») = (ae(l) + Pe(2») dt + (af (1) + PI(2») dWt 

for any a,p E lR, where 

(3.4) 

for i = 1 and 2. 
For nonlinear combinations or transformations of stochastic differentials we 

must use the Ito formula. We shall prove it now for a scalar transformation of 
a single stochastic differential, and then consider its multi-component (vector) 
form in the next section. For our proof we shall use the following lemma, which 
is a simple consequence of the Taylor and Mean Value Theorems of classical 
calculus. 

Lemma 3.3.1 Let U : [0, T] x ~ ~ ~ have continuous partial derivatives 
~~, ~~ and fIf. Then/or any t,t+.6.t E [O,T] and %,%+.6.% E ~ there exist 
constants 0 ~ a ~ 1, 0 ~ P ~ 1 such that 

(3.5) U(t + .6.t,% + .6.%) - U(t,%) 

aU aU at (t + a.6.t, %).6.t + a% (t, %) .6.% = 
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We shall write ef and If for e( t, w) and I (t, w ), respectively in the following 
theorem and proof. In it we would gain little from the stronger assumption that 
vfej, I E C} because that does not guarantee that the integrand It ~~ (t, Xt) 
of the Ito integral there belongs to 4 too; we can only conclude that it is in 
c;., but that also holds when vIeT, I E c;.. A multi-dimensional version of 
the Ito formula will be given in the next section; see (3.4.6) and (3.4.7). 

Theorem 3.3.2 (The Ito Formula) Let Yi = U(t, X.!l for ° ~ t ~ T 
where U is as in Lemma 9.9.1 and X t satisfies (9.1) with vie!, I E C~. Then 

Proof To begin we suppose that e and I do not depend on t, so they are 
Ao-measurable random variables. We choose a sample-path continuous version 
of X f and fix a subinterval [s, t] ~ [0, T), of which we consider partitions of the 
r (n) (n) (n) . h A (n) (n) (n) Th 10rm s = t1 < t2 < ... < tn+l = t Wit ~tj = t;+1 - t j . en 

n 

Yi - Y. = U(t'Xf) - U(S,X.) = Eaujn) 
j=1 

where 
~ut) = U (t~~1' XtwJ - U (t~n), Xt~")) 

for j = 1,2, ... , n. Applying Lemma 3.3.1 on each subinterval [t~n), t~~1J for 

each wE 0, we have Q~n)(w), .Bjn)(w) E [0,1] such that 

(3.7) 

{)U ( (n) ) (n) + {)z tj ,Xt~") ~Xj 

+! {)2U (t<n) X ( ) + f.l~n) ~X~n») (ax~n»)2 
2 {)z2 J ' t j " JJJ J J' 

w.p.l, where axjn) = Xt}~)l -Xt}") for j = 1,2, ... ,n. By the continuity of ~~ 

and f;!f, and the sample-path continuity of Xf, we have for each j = 1,2, ... , n 
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(3.8) w.p.I, 

and 

( ) lPU ( (n) (n) (n») a2U ( (n) ) 
3.9 ax2 tj ,X,~ .. ) + Pj ~Xj - ax2 tj ,X,~ .. ) - 0, w.p.l, 

where .s(n) = maxl:5j:5n ~tt) - 0 as n - 00. 

For e and f independent of t, the increments are of the form ~X;n) 
A (n) f AW(n) h AW(n) - Wen) Wen) r . -eutj + u j were u j - 'i+1 - 'i lor J - 1,2, ... , n. Hence 

(3.10) 

n 2 n 

= e2 L: (~tt») +2ef L:~WIn)~t;n), 
j=l j=l 

which tends to 0 in probability for 6(n) - 0 as n - 00. Combining (3.7)-(3.10) 
we find for convergence in probability that 

(3.11) Y; - Y, 

. ~ aU ( (n) ) (n) + l~m L..J f -;:;- tj ,X,,,,) ~ Wj 
~( ) ... 0 • 1 uX J 
,.._00 J= 

The first two limits on the right side of (3.11) are the terms on the right 
side of (3.6), so we need to show that the last limit vanishes. For this we shall 
write rt) = (~WJn»)2 - ~tt) and denote by I~~) the indicator function of 
the set 

A~~) = {w En: Ix,\,,>1 ~ N for i = 1,2, ... , j} 
for j = 1,2, ... , n. For fixed n the random variables r;n) are independent with 

E (r;n») = 0 and E ((r;n)f) = 2 (~t)n)f. From this it follows that 
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~ 2Clt - 816(n) -+ 0 

since 6(n) -+ 0 as n -+ 00; here 

1
02U 12 

C = max: 0 ... 2 (u,z) < 00. 
'S-S' .... I",ISN 

This implies that the last limit in (3.11) vanishes provided that P (A~») -+ 1 
as N -+ 00, but this follows from the fact that 

jQ (A~)r ~ B(N) = {w En: .~~~t IX .. (w)l > N}, 
where P (B(N») -+ 0 as N - 00 by inequality similar to (2.21). The proof is 
thus complete for functions e and 1 which do not depend on t. It is similar for 
step functions since these do not vary within common partition subintervals. 

For general intergrands e and 1 with v'Iei, 1 E C~ we can find sequences 
of step functions {e(n)}, {J(n)} in Cf such that the integrals 

1t le(n)(u,w) - e(u,w)1 du, 1t Iln)(u,w) - l(u,w)1 2 du 

converge in probability to zero. Then the sequence defined by 

x~n) = X. + 1r e~n) du + 1r I~n) dW .. 

converges in probability to Xr as n -+ 00 for each 8 ~ r ~ t. By taking sub
sequences if necessary, but retaining the original index for simplicity, we can 
replace each of these convergences in probability by convergence with proba
bility one; moreover we can do this uniformly on the interval [8, t). As Ito's 
formula holds for step functions we have 
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w.p.l, for each n. Now X~n) -+ Xu in probability as n -+ 00. By the triangle 
inequality it thus follows for convergence in probability that 

and 

In fact, taking subsequences if necessary, these can be considered to hold with 
probability one. Now each path of the process X t is continuous, w.p.l, and 
thus bounded, w.p.!. This means that for each path all of the terms appearing 
in (3.11) are bounded, so we can apply the Lebesgue Dominated Convergence 
Theorem 2.2.3 to each continuous sample path to conclude that the first integral 
in (3.12) converges, w.p.l, to the first integral in (3.6). Similarly we have 

It"~n)~~ (u,x~n»)r du-lt"u~~ (U,Xu)1 2 du, 
w.p.!. Thus the second integral in (3.12) converges in probability and hence, 
using a subsequence if necessary, also with probability one to the second integral 
in (3.6). Combining these results we have thus shown that the right side of 
(3.12) converges with probability one to the right side of (3.6). This completes 
the proof of Theorem 3.3.2. 0 

Example 3.3.3 Let dXt = ItdWt and Yt = U(t,Xt ). With U(t,x) = eX 
the Ito formula gives 

(3.13) 1 2 
dVi = '2 It Vi dt + It Vi dWt, 

whereas with U(t, x) = exp (x - ! f~ I~ dU) it gives 

(3.14) dYt = It Yt dWt · 

Equations (3.13) and (3.14) are examples of stochastic differential equations. 
The latter shows that the counterpart of the exponential in the Ito calculus is 

exp ( X t - ~ 1t f; dU) = exp (It lu dWu - ~ 1t I; dU) 
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rather than the exp (X,) of conventional calculus. This indicates that solv
ing Ito stochastic differential equations directly by quadrature will be more 
complicated than for ordinary differential equations. 

Exercise 3.3.4 Use the Ito formula to show that 

d (xl") = n(2n - 1) fl Xr- 2 dt + 2n It Xr- 1 dW, 

for n ~ I, where dX, = f, dW,. Hence determine d (W,2n) for n ~ 1. 

3.4 Vector Valued Ito Integrals 

Let W = {W"t ~ O} be an m-dimensional Wiener process with independent 
components associated with an increasing family of O'-algebras {A" t ~ O}. 
That is, W, = (W,t, W,2, ... , W,m) where the W; for j = 1, 2, ... ,m are scalar 
Wiener proc~ses with respect to {A" t ~ O}, which are pairwise independent. 
Thus each WI is A,-measurable with 

E (W!IAo) = 0, E (w/ - W!IA.) = 0, 

w.p.l, for 0 $ s $ t and j = 1,2, ... , m. In addition, 

(4.1) E (W; - W;)(W! - WI)IA.) = (t - s) Di,i' 

w.p.l, for 0 $ s $ t and i,j = 1,2, ... ,m, where DiJ is the Kronecker delta 
symbol (see (2.4.10». 

We shall consider d-dimensional vector functions e : [0, T] x {} -+ lRd with 
components ek satisfying vfeIi E q. (or C}) for Ie = 1, 2, ... ,d and d x m
matrix functions F : [0,11 x {} -+ ~dxm with components FiJ E q. (or C}) 
for Ie = 1,2, ... , d and j = 1,2, ... , m. In analogy with the scalar case we 
denote bye, and F, the vector and matrix valued random variables taken by 
e and F at an instant t. Then we write symbolically as a d-dimensional vector 
stochastic differential 

(4.2) dX, = e, dt + F, dW, 
the vector stochastic integral expression 

(4.3) X t - X. = /.' eu du + l' Fu dWu 

for any 0 $ s $ t $ T, which we interpret componentwise as 

(4.4) 1t m l' X t'" - xII: - ell: du + '"' FII:J dWi 
• - u L...J u U' 

II ;=1 II 

w.p.l, for Ie = 1,2, ... ,d. When d = 1 this covers the scalar case with several 
independent noise processes. For a preassigned Ao-measurable X 0 the resulting 
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d-dimensional stochastic process X = {X, = (Xl, X;, ... ,xl), t ~ O} enjoys 
similar properties componentwise to those listed in the previous sections for 
scalar differentials involving a single Wiener process, with additional properties 
relatinche different components. The actual properties depend on whether 
the v'lel: I and F",j belong to .cf for all components or just to .c~. In the 
former case with e == 0, for example, we have 

E (xf - X:IA.) = 0 

and 

(4.5) E «Xf - X:) (X; - X;) IA.) = t l' E (F:J F!J) du, 
j=l • 

w.p.l, for 0 ~ s ~ t ~ T and k,i = 1,2, ... ,d. Here (4.5) follows from the 
independence of the components of W and the identity (4.1), which we could 
write symbolically as E(dWfdW!) = 6iJ dt. As in the scalar case this leads to 
additional terms in the chain rule formula for the transformation of the vector 
stochastic differential (4.2). 

Let U : [0, 1'] x ~d -+ ~ have continuous partial derivatives 1!£-, I¥;;, a::~% i 
for k, i = 1,2, ... , d, and define a scalar process {yt, 0 ~ t ~ T} by 

yt = U(t,X,) = U (t,x,l,X;, ... ,xt), 
w.p.l, where X, satisfies the differential (4.2). Then the stochastic differential 
for yt is given by 

(4.6) dyt = 

m d 0 
+ "" "" Fi,j ...!!.... dWj 

L..J L..J 'Oz- t , 
j=l i=l I 

where the partial derivatives are evaluated at (t, X t ). This is the multi
component analogue of the Ito formula (3.6), by which name it is also known. 
In vector-matrix notation it has the condensed form 

(4.7) dyt = {~~ + eiVU + ~tr (F,F,TV[VU]) } dt + VUT Ft dW" 

where V is the gradient operator, T the vector or matrix transpose operation 
and "tr" the trace of the inscribed matrix, that is the sum of its diagonal com
ponents. Thus VU is the vector of the first order spatial partial derivatives of U 
and V[VU] the matrix of the second order spatial partial derivatives of U _ The 
proof of this vector version of the Ito formula is a straightforward modification 
of the proof in the scalar case (Theorem 3.3.2). A formal derivation similar to 
that in Section 1 is quicker and insightful; it uses the equality in mean of the 
differentials dwfdwl and 6ij dt in the Taylor expansion for U. 
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Example 3.4.1 Let Xl and X,2 satisfy the scalar stochastic differentials 

dX: = e: dt + It dWt (4.8) 

for i = 1,2 and let U(t, Xl, X2) = X1X2' Then the stochastic differential for the 
product process 

yt = xl xl 

depends on whether the Wiener processes Wi and Wl are independent or de
pendent. In the former case the differentials (l.8) can be written as the vector 
differential 

d ' = ' dt+' d' ( Xl) (e1
) [1,1 0 1 (W1) 

Xl e~ o!l wl 
and the transformed differential is 

(4.9) dyt = (e:Xl + e~Xn dt + l,t xl dW,t +!l xl dW,2. 

In contrast, when Wl = Wl = W, the vector differential for (l.8) is 

d ( xl ) = ( e! ) dt + ( fl ) dW; 
X2 e2 /,2' , , , 

and there is an extra term !l!l dt in the differential ofyt, which is now 

(4.10) dyt = (e:Xl + e~XI +!l fn dt + (Ilxl + flXI) dWt · 

Exercise 3.4.2 Show that 

d (wlw,2) = Wt2 dW,t + wl dWt2 

for independent Wiener processes wl and W,2, whereas 

d (W,)2) = 1 dt + 2Wt dW, 

when Wi = Wl = W,. 

The Ito formula also holds for a vector valued transformation U : [0, 11 X~d 
-+ ~l: resulting in a vector valued process yt = U(t, X,). For such processes 
the Ito formula (4.6) is applied separately to each component Y,' = U'(t,X,) 
for I = 1, 2, ... , k. 

Exercise 3.4.3 Show that 

d(cos W,) = -4 cos Wt dt - sin W, dW, 

and 

d(sin W,) = -4 sin W, dt + cos W, dW,. 
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The process Yt = (cos W t , sin Wt ) is a Wiener process on the unit circle. Rewrit
ing the differentials in Exercise 3.4.3 in terms of the components (Yl, Y,2) of 
Yi, we see that Yi is a solution of the system 01 stochastic differential equations 

1 1 1 2 dY, = -2 Y, dt - Y, dWt 

2 1 2 1 dY, = - 2 Y, dt + Y, dW, 

or, equivalently, of the vector stochastic differential equation 

(4.11) dY, = -4Yidt+ [~ ~1] YidW, 

with the constraint that 

Exercise 3.4.4 Derive the vector stochastic differential equation satisfied by 
the process 

Yi = (y,1, y,2) = (exp (W,) , W, exp (W,)). 

3.5 Other Stochastic Integrals 

The Ito integral JOT I(t,w) dW,(w) for an integrand 1 E Cf is equal to the 
mean-square limit of the sums 

(5.1) 

with evaluation points e;n) = t)n) for partitions 0 = t~n) < t~n) < ... < t~~l 
= T for which 

Other choices of evalution points t}n) ~ ejn) ~ t}'21 are possible, but generally 
lead to different random variables in the limit. While arbitrarily chosen evalu
ation points have little practical or theoretical use, those chosen systematically 
by 
(5.2) e;n) = (1 - A)tt) + A t)~l 
for the same fixed 0 ~ A ~ 1 lead to limits, which we shall denote here by 
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These are related in a simple, but interesting manner. We note that the case ~ 
= 0 is just the Ito integral. The other cases 0 < ~ ~ 1 differ in that the process 
they define with repect to a variable upper integration endpoint is in general 
no longer a martingale. 

When the integrand f has continuously differentiable sample paths we ob
tain from Taylor's Theorem 

f ((1- ~)t}n) + ~t~~1'W) = (1- ~)f (t~n),w) + ~f (t}~.tw) 

+0 (/t~~1 - t~n)D . 
Since the higher order terms do not contribute to the limit as 6(n) -+ 0, we see 
that the (~)-integrals could then be evaluated alternatively 88 the mean-square 
limit of the sums 

(5.3) 
n 

Sn(W) = L {(1-~)f (t~n),w) + ~I (t~~\,w)} 
j:;;1 

x {Wt~i?l (w) - Wt~")(w)}. 

In the general case the (~)-integrals are usually defined in terms of the sums 
(5.3) rather than (5.1) with evaluation points (5.2), and we shall follow this 
practice here. As an indication of how the value of these integrals vary with ~ 
we observe that for f(t,w) = W,(w) we have 

(5.4) (~) loT Wt(w)dW,(w) = ~WT(w)2 + (~-~) T. 

This follows using (2.4.14) in the following mean-square limits 

n 1 1 L Wt(,,) {Wt<.a)l - Wt(ft) } --+ '2 wi - '2T 
j=1' ,+ , 

and 

-+ T + (~ wj - ~ T) = ~ wi + ! T 
2 2 2 2' 

which are multiplied by (1-~) and ~, respectively, to give (5.4). Unlike any of 
the others, the symmetric case ~ = i of the integral (5.4), which was introduced 
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by Stratonovich, does not contain a term in addition to that given by classical 
calculus. It is now known as the Stratonovich integral and denoted by 

loT It odWt 

for an integrand I E 4 i it can be extended to integrands in £T in the same 
way as for Ito integrals. 

Usually only the Ito and Stratonovich integrals are widely used. As sug
gested by (5.4) the Stratonovich integral obeys the transformation rules of cIa
sical calculus, and this is a major reason for its use. To see this, let h : ~ --+ !R 
be continuously differentiable and consider the Stratonovich integral of h(Wt ). 
By the Taylor formula we have 

h (Wt~i!J = h (Wt~-») + h' (Wt~n») {Wt}i!l - Wt}-)} + higher order terms, 

so the sum (5.3) with A = ! is 

+ higher order terms 

--+ loT h (Wt) dWt + 4 loT h' (Wt ) dt 

in the mean-square sense. Hence 

Now let U be an anti-derivative of h, so U'(x) = h(x) and hence U"(x) = h'(x). 
Applying Ito's formula to the transformation Yf = U(W,), we obtain 

U(WT)-U(Wo)=4loT h'(Wt)dt+ loT h(Wt)dW,. 

Thus from (5.5) the Stratonovich integral 

loT h(Wt)odW,=U(WT)-U(WO), 

as in classical calculus. 

EX8IIlpie 3.5.1 For h(x) = e:t an anti-derivative is U(x) = e:t, so 

loT exp (W,) 0 dWt = exp (WT) - 1, 
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since Wo = O. Thus Yi = exp (Wt ) is a solution of the Stratonovich stochastic 
differential equation 

(5.6) dYi = Yi 0 dWt • 

In contrast the Ito stochastic differential equation 

dYi = Yi dWt 

has the solution Yi = exp (Wt - !t) for the same initial value Yo = 1. 

The major advantage of the Stratonovich stochastic integral is that it obeys 
the usual transformation rules of calculus. For this reason it is often used to for
mulate stochastic differential equations on manifolds such as a circle or sphere, 
as is required, for example, for a stability analysis of stochastic dynamical sys
tems. It is also useful via the identity (5.5) for explicitly evaluating certain Ito 
integra.ls. Stochastic processes defined by Stratonovich integrals over a varying 
time interval do not, however, satisfy the powerful martingale properties of 
their Ito integral counterparts as we have already mentioned. 

Exercise 3.5.2 Use deterministic calculus to solve the Stratonovich stoch
astic differential equation 

dYi = exp ( - Yi) 0 dWi 

for Yo = O. Hence determine the Ito stochastic differential equation that is 
satisfied by this solution. 



Chapter 4 

Stochastic Differential Equations 

The theory of stochastic differential equations is introduced in this chapter. 
The emphasis is on Ito stochastic differential equations, for which an existence 
and uniqueness theorem is proved and the properties of their solutions investi
gated. Techniques for solving linear and certain classes of nonlinear stochastic 
differential equations are presented, along with an extensive list of explicitly 
solvable equations. Finally, Stratonovich stochastic differential equations and 
their relationship to Ito equations are examined. 

4.1 Introduction 

The inclusion of random effects in differential equations leads to two distinct 
classes of equations, for which the solution processes have differentiable and 
non differentiable sample paths, respectively. They require fundamentally dif
ferent methods of analysis. The first, and simpler, class arises when an ordinary 
differential equation has random coefficients, a random initial value or is forced 
by a fairly regular stochastic process, or when some combination of these holds. 
The equations are called random differential equations and are solved sample 
path by sample path as ordinary differential equations. The sample paths of 
the solution processes are then at least differentiable functions. As an example 
consider the linear random differential equation 

(1.1) i = ~; = a(w)x + b(t,w) 

where the forcing process b is continuous in t for each w. For an initial value 
xo(w) at t = 0, the solution is given by 

(1.2) 

Its sample paths are obviously differentiable functions of t. 
The second class occurs when the forcing is an irregular stochastic pro

cess such as Gaussian white noise. The equations are then written symboli
cally as stochastic differentials, but are interpreted as integral equations with 
Ito or Stratonovich stochastic integrals. They are called stochastic differential 
equations, which we shall abbreviate by SDEs, and in general their solutions 
inherit the nondifferentiability of sample paths from the Wiener processes in 
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the stochastic integrals. In many applications such equations result from the 
incorporation of either internally or externally originating random fluctuations 
in the dynamical description of a system. An example of the former is the 
molecular bombardment of a speck of dust on a water surface, which results in 
Brownian motion. The intensity of this bombardment does not depend on the 
state variables, for instance the position and velocity of the speck. Taking X, 
as one of the components of the velocity of the particle, Langevin wrote the 
equation 

(1.3) 
dX, 
- = -aX,+be, dt 

for the acceleration of the particle. This is the sum of a retarding frictional 
force depending on the velocity and the molecular forces represented by a white 
noise process e" with intensity b which is independent of the velocity. Here a 
and b are positive constants. We now interpret the Langevin equation (1.3) 
symbolically as a stochastic differential 

(1.4) dX, = -aX, dt + b dW" 

that is as a stochastic integral equation 

(1.5) X, = X'D -1' aX. ds + l' b dW. 
'0 '0 

where the second integral is an Ito stochastic integral. Similar equations arise 
from electrical systems where X, is the current and e, represents thermal noise. 
Additional examples will be given in Chapter 7. 

With external fluctuations the intensity of the noise usually depends on 
the state of the system. For example, the growth coefficient in an exponential 
growth equation i = az may fluctuate on account of environmental effects, 
taking the form a = a + be, where a and b are positive constants and e, is a 
white noise process. This results in the heuristically written equation 

(1.6) 
dX, "'dt = aX, + bX,e,· 

To be precise, it is a stochastic differential 

(1.7) dX, = aX, dt + bX, dW, 

or, equivalently, a stochastic integral equation 

X, = X'D + l' aX, ds + l' bX. dW,. 
'0 '0 

(1.8) 

The second integral is again an Ito integral, but now involves the unknown 
solution. 

In the physical sciences the random forcing in (1.3)-(1.5) is called additive 
noise, whereas in (1.6)-(1.8) it is called multiplicative noise. Both cases are 
included in the general differential formulation 

(1.9) dX, = a(X,) dt + b(X,) dW, 
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or equivalent integral formulation 

(1.10) Xc = Xto + 1f a(X.)ds+ 1C b(X.)dW., 
Co fo 

for appropriate coefficients a(z) and b(z), which may be constants. Using Ito 
calculus we can verify that 

(1.11) 

is a solution of (1.3)-(1.5) and that 

(1.12) Xc = Xo exp ( ( a - ib2) t + bWt ) 

is a solution of (1.6)-(1.8). The former is similar to (1.2), but involves an Ito 
integral rather than a Riemann integral. We must however impose some restric
tion on the initial value Xo here so the solution process Xc is nonanticipative 
with respect to the Wiener process Wc, and hence so the Ito integrals in (1.5) 
and (1.8), the latter in particular, are meaningful. For this we need Xo to be 
independent of Wc for all t > 0, which follows if Xo is Ao-measurable, where 
{At, t ~ O} is the family of increasing O'-algebras associated with the Wiener 
process {W"~ t ~ O}, because X t is then At-measurable for each t ~ O. 

The explicit solutions (1.11) and (1.12) are the only solutions for their 
respective equations and given initial values in the sense that any other solution 
is an equivalent stochastic process, that is with the same finite dimensional 
probability distributions. In fact, a stronger form of uniqueness holds here: 
any equivalent version Xt with continuous sample paths has, almost surely, the 
same sample paths as X t , that is 

p (sup IXc - Xt I > 0) = 0 
O:9~T 

for any T> O. We then say that the solutions are pathwise unique. 
In writing (1.11) and (1.12) we have assumed implicitly that we have a 

prescribed Wiener process {Wt, t ~ O}. Were we to change the Wiener process 
we would again obtain a unique solution, given by the same formula with the 
new Wiener process in it. We call such a solution a strong solution of the 
stochastic differential equation and use the term weak solution for when we 
are free to select a Wiener process and then find a solution corresponding to 
this particular Wiener process. Some stochastic differential equations may only 
have weak solutions and no strong solutions. 

As with most ordinary differential equations we cannot generally find ex
plicit formulae like (1.11) and (1.12) for the solutions of stochastic differential 
equations and thus need to use a numerical method to determine the solutions 
approximately. For this we need to know that the equation actually does have a 
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solution, a unique solution preferably, for a given initial value. For an ordinary 
differential equation 

(1.13) . dz () z=-=az 
dt 

this kind of information is provided by an existence and uniqueness theorem. A 
sufficient condition for the existence and uniqueness of a solution x(t; xo) with 
initial value z(O; zo) = zo is that a = a( z) satisfies the Lipschitz condition 

(1.14) la(z) - a(y)1 ~ K Iz - yl 

for all x,y E ~, where K is a positive constant. The usual proof involves the 
Picard-Lindelof method of successive approximations {x(")} with 

x("+1){t) = zo + l' a (x(")(s») ds 

for n = 0, 1,2, ... , where z(O)(t) = zoo The Lipschitz condition (1.14) provides 
a crucial inequality 

This is used to establish the uniform convergence of the successive approxima
tions to a continuous solution of the integral equation 

z{t) = zo + l' a(z(s»ds, 

which is thus a solution of the original differential equation (1.13). The unique
ness of the solution then follows by a similar application of the Lipschitz con
dition. A serious deficiency is that this solution may become unbounded after 
a small elapse of time. For example, the solution x(t) = zo/{l - zot) of the 
differential equation z = x2 blows up at time t = T(zo) = l/xo. To ensure 
the global existence of a solution, that is existence for all time t > 0, we need 
a growth bound on a = a(z) such as 

(1.15) 

for all x E ~, where L is a positive constant. 
An analogous existence and uniqueness result holds for strong solutions of 

an SDE (1.8)-(1.9) provided both coefficients a = a(x) and b = b(x) satisfy a 
Lipschitz condition (1.14) and a growth bound (1.15). Here the Wiener process 
{W" t ~ Q} with associated family of u-algebras {At, t ~ O} is preassigned and 
the initial value Xo must be 040- measurable. The proof also uses successive 
approximations 
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for n = 0, 1,2, ... where X}O) == Xc. A simple case assumes that E (X~) < 00 

and then the growth bound is used to show that 

E ( sup Xl) < 00 
O~'~T 

for any fixed 0 < T < 00. The Lipschitz condition is used in a similar way to 
the deterministic case to show the mean-square convergence of the successive 
approximations and the mean-square uniqueness of the limiting solution. The 
Borel-Cantelli Lemma 2.1.4 is then applied to establish the stronger pathwise 
uniqueness of the solutions. We shall present the details of this proof in Section 
5. Variations are possible, though technically more complicated. For example, 
the requirement that E (X~) < 00 can be dropped and the Lipschitz condition 
(1.14) weakened to a local Lipschitz condition 

la(z) - a(y)1 ~ KN Iz - yl 

for all lxi, IYI ~ N, where KN is a positive constant for each N > O. (From 
the Mean-Value Theorem of Calculus the latter holds for any continuously dif
ferentiable function a = a(x». Growth bounds such as (1.15) are not required 
for existence or uniqueness, but their absence may result in the sample paths 
blowing up in a finite time, that is 

IX,(w)l- 00 as t -+ T(Xo(w». 

Here T(Xo(w» is called the explosion time. The coefficients of the SDE 

(1.16) 
1 

dX, = -2 exp(-2Xt) dt+exp(-Xt) dWt 

do not satisfy a growth bound for x < O. The unique solution 

X t = In (Wt + exp(Xo» 

of (1.16) exists only for 0 ~ t < T(Xo(w» where 

T(Xo(w» = min {t ~ 0 : Wt(w) = -exp(Xo(w»}. 

From their construction, the successive approximations X}n) above are obvi
ously At-measurable and have, almost surely, continuous sample paths. These 
properties are inherited by a limiting strong solution X t of the SDE (1.9)
(1.10). Such a solution, or more precisely the family of solutions X~,:r: with 
initial values xg,:r: = x, w.p.1, for all x E ~, is a homogeneous Markov process 
and is often called an Ito diffusion. 

When the coefficients a = a(x) and b =: b(x) of the SDE are sufficiently 
smooth the transition probabilities of this Markov process have a density p = 
pes, Xj t, y) satisfying the Fokker-Planck equation 
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ap a 1 a2 
at + ay (ap) - "2 ay2 (up) = 0 

with u = b2 (see (2.4.5)). 
The question of whether or not a process with a density satisfying the 

Fokker-Planck equation is necessarily an Ito diffusion underlies the interest 
in weak solutions of stochastic differential equations. While it is not true in 
general, an affirmative answer can be obtained when the coefficients satisfy 
certain basic smoothness and bounded ness properties which we shall mention in 
Section 7. There is, however, some ambiguity here for usually the diffusion term J x) = b( x)2, but not b( x) itself, is specified. Instead of the scalar coefficient 

u(x), we could also have a vector function b(x) = (b1(x), b2(x), ... , b"'(x» 
with ~=1(bi(x))2 = u(x) and X, may also be the solution of the SDE 

k 

(1.17) dX, = a(X,) dt + l: bi(X,) dW; 
;=1 

for some k-dimensional Wiener process W, = (Wl, W? , ... ,wl) where k > 
1. In this way the density may be solve the Fokker-Planck equation of several 
different stochastic differential equations. Equations such as (1.17) and more 
general vector stochastic differential equations will be considered in Section 8. 

Stochastic differential equations can also be formed with more general co
efficients than those in (1.9). The most apparent generalization is to allow the 
coefficients to be nonautonomous, that is, to depend explicitly on t so now a = 
a(t,x) and b = b(t, x). In this case the resulting solutions are now inhomoge
neous Markov processes. The coefficients must be at least measurable in t, and 
the Lipschitz condition (1.14) and the growth condition (1.15) must hold uni
formly on 0 :5 t :5 T to ensure the existence and uniqueness of strong solutions 
on 0 :5 to :5 t :5 T. 

Another common extension is for the coefficients to be random, that is a 
= a(t,x,w) and b = b(t,x,w). Appropriate measurability restrictions, such as 
A,-measurability, must be imposed to ensure that the integrands are nonantic
ipative. This situation occurs in stability analysis when we linearize about a 
solution X, of (1.9). With Z, = X, - X, we then obtain the linear SDE 

(1.18) dZt = a' (X,) Z, dt + b' (Xt ) Z, dWt 

with coefficients a(t,z,w) = a'(X,(w» z and bet, z,w) = b'(X,(w» z. 
We shall restrict our attention now to stochastic differential equations 

(1.19) dX, = aCt, X,) dt + bet, X,) dW, 

with nonrandom coefficients. A simple modification of the Ito formula (3.3.6) 
shows that a function Y, = U(t, X,) of a strong solution of (1.19) satisfies 
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for U = U(t, x) sufficiently smooth, where the coefficients are evaluated at 
(t, X,). We can use this to solve some elementary stochastic differential equa
tions explicitly. For example, we know from Chapter 3 that 

X t = Xoexp (Wt - 4t ) 

is a solution of the SDE dXt = X t dWt . Then y, = U(Xt ) = (Xt )2 satisfies 
the SDE 

dYt = Y, dt + 2Y, dWt , 

so 
Yt = Yo exp (2Wt - t) 

is a solution of this SDE. In fact, this is a special case of (1.12). 
In some applications it is more appropriate to formulate stochastic differen

tial equations in terms of Stratonovich rather than Ito stochastic integrals. We 
call such an equation a Stratonovich stochastic differential equation, writing it 
in differential form as 

(1.20) dXt = .!l(t, X,) dt + b(t, X,) 0 dWt 

or in the equivalent integral equation form 

(1.21) X t = Xto + it ,get, X,) dt + l' bet, X,) 0 dWt 
to to 

The "0" notation here denotes the use of Stratonovich calculus. It turns out 
that the solutions of the Stratonovich SDE (1.20)-(1.21) also satisfy an Ito SDE 
with the same diffusion coefficient bet, x), but with the modified drift coefficient 

1 ab 
aCt, x) = .!l(t, x) + '2 b(t, x) ax (t, x). 

For example, the Stratonovich SDE 

dXt = 2Xt 0 dWt 

and the Ito SDE 
dXt = 2Xt dt + 2Xt dWt 

have the same solutions 

X t = Xto exp (2(Wt - W,o» . 
In the case of additive noise the corresponding Ito and Stratonovich SDEs have 
the same drift coefficients a == .!l. 

Various considerations, to be discussed in Chapters 6 and 7, determine 
whether the Ito or the Stratonovich interpretation of an SDE is appropriate 
in a particular context. However, we can always switch to the corresponding 
SDE in the other interpretation to take advantage of the special properties of 
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that stochastic calculus. For instance, simple Stratonovich SDEs can be solved 
directly by methods of classical calculus, whereas the appropriate drift and 
diffusion coefficients for the Fokker-Planck equation are those of the Ito SDE. 

4.2 Linear Stochastic Differential Equations 

As with linear ordinary differential equations, the general solution of a linear 
stochastic differential equation can be found explicitly. The method of solution 
also involves an integrating factor or, equivalently, a fundamental solution of 
an associated homogeneous differential equation. We shall describe it here for 
scalar equations and consider their vector counterparts in Section 8. 

The general form of a scalar linear stochastic differential equation is 

where the coefficients 01, 02, 61, 62 are specified functions of time t or constants. 
Provided they are Lebesgue measurable and bounded on an interval 0 ::; t 
::; T, the existence and uniqueness theorem applies, ensuring the existence 
of a strong solution X, on to ::; t ::; T for each 0 ::; to < T and each A,o
measurable initial value X'o corresponding to a given Wiener process {W" t ~ 
o} and associated family of u-algebras {A" t ~ o}. When the coefficients are 
all constants the SDE is autonomous and its solutions, which exist for all t -
to ~ 0, are homogeneous Markov processes. In this case it suffices to consider 
to = O. When 02(t) == 0 and 62(t) == 0, (2.1) reduces to the homogeneous linear 
SDE 
(2.2) dXt = Ol(t)X, dt + 61(t)X, dW" 

Obviously X, == 0 is a solution of (2.2). Of far greater significance is the 
fundamental solution ~t.to which satisfies the initial condition ~to.to = 1 since 
all other solutions can be expressed in terms of it. The problem is to find such 
a fundamental solution. 

When 61(t) == 0 in (2.1) the SDE has the form 

(2.3) 

that is the noise appears additively. In this case we say that the SDE is linear 
in the narrow-sense. The homogeneous equation obtained from (2.3) is then 
an ordinary differential equation 

(2.4) 

and its fundamental solution is 

~,.,o = exp (1: Ol(S) dS) . 

Applying the Ito formula (3.3.6) to the transformation U(t, or) = ~~:o or and 
the solution X, of (2.3), we obtain 
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smce 

The right hand side of 

d (if?i;lox:) = a2(t)if?i;lo dt + b2 (t)if?i;lo dWt 

only involves known functions of t and w, so can be integrated to give 

Since if?to,to = 1 this leads to the solution 

of the narrow-sense linear SDE (2.3) where 

(2.6) if?t,to = exp (1: al (s) dS) . 

Example 4.2.1 The Langevin equation (L-O is linear in the narrow-sense 
with coefficients al(t) == -a, a2(t) == 0, b1(t) == 0 and b2(t) == b. Thus the 
fundamental solution if?:,:o = exp( -aCt - to» and the solution {2.5} reduces to 
(J.11) for to = O. This solution is an Ornstein-Uhlenbeck process. 

The solution (2.5) is a Gaussian process whenever the initial value Xto is 
either a constant or a Gaussian random variable. Its mean and second order 
moment then both satisfy ordinary differential equations. These are stated 
below in (2.10) and(2.11) for the general linear SDE (2.1), but the solution is 
now generally not Gaussian. 

Exercise 4.2.2 Verify that the solution {2.5} is a Gaussian process when 
X:o is a constant or a Gaussian random variable. 

The general linear case is more complicated because the associated homo
geneous equation (2.2) is a genuine stochastic differential equation. The fun
damental solution (2.6) of the narrow-sense linear case satisfies the (ordinary) 
differential equation d(ln if?:,to) = al (t) dt. Using this as a clue, it follows by the 
Ito formula (3.3.6) that the transformed process In if?t,fo for the fundamental 
solution if?t,to of (2.2) satisfies 
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d (In C)"'o) = (a1 (t)C)",o C)t;lo - 4 6~(t)c)~"o C);;lo) dt + 61 (t)C)",o C)t;lo dWt 

= (a1(t)-46~(t») dt+6I(t)dW" 

which consists only of known functions of t and IN. Hence 

InC)",o = 1: (a1(s) - 4 6~(S») ds + 1: 61(s)dW., 

since C)'o"o = I, or 

which in fact reduces to (2.6) when 61(t) == O. Similarly, applying the Ito 
formula to C);;lo we obtain 

Then, as with the narrow-sense case considered above, the process C);;,~Xt for 
a solution X, of the general linear equation (2.1) has an explicitly integrable 
stochastic differential. However, here both of the terms C)"'o and X, have 
stochastic differentials involving the same Wiener process W" so the Ito for
mula must be used with the two component transformation U(XP),x}2» = 
XP) X~2), as in Example 3.4.1, with X~l) = C);;lo and X~2) = X,. The result 
is equation (3.4.10) with the coefficients of (2.1) and (2.8), that is 

d(C)t;loX,) = [( -aI(t) + 6~(t» X, + (a1(t)X, + a2(t» ]C);;lo dt 

-61 (t) [61 (t)X, + 62(t)] C);;lo dt 

+ [ - 61 (t)C)t;loX, + (61 (t)X, + 62(t» C);;lo] dW, 

= (a2(t) - 61 (t)62(t» C)t;lo cIt + 62(t)C)t;lo dW,. 

Integrating and using C)'o"o = 1 we obtain 

and hence 

(2.9}X, = C)"'o (X'o + 1: (a2(8) - 61(8)62(8» C);':o ds + 1: 62 (8)C);':o dW,) 

where C)t"o is given by (2.8). Applying this to the linear SDE (1.7), where a1(t) 
== a, 61(t) == 6 and a2(t) == ~(t) == 0, yields the solution (1.11). We observe 
that (2.9) reduces to the narrow-sense solution (2.5) when 61(t) == O. 
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If we take the expectation of the integral form of equation (2.1) and use 
the zero expectation property (3.2.9) of an Ito integral, we obtain an ordinary 
differential equation for the mean met) = E (X,) of its solution, namely 

(2.10) 

We also find that the second order moment pet) = E (Xl) satisfies the ordinary 
differential equation 

(2.11) d~t) = (2a1(t) + b~(t)} pet) + 2m(t) (a2(t) + b1(t)b2(t» 

+b~(t). 

To derive (2.11) we use the Ito formula to obtain an SDE for Xl and then take 
the expectation of the integral form of this equation. Both (2.10) and (2.11) 
are linear and can be solved using integrating factors. In the special case of 
a narrow-sense linear SDE (2.3) equation (2.10) remains the same, whereas 
equation (2.11) simplifies to 

(2.12) 
dP(t) 
---;;:;:- = 2a1 (t)P(t) + 2m(t)a2(t) + b~(t). 

Exercise 4.2.3 Derive the ordinary differential equation (e.11) for the sec
ond order moment pet). 

Exercise 4.2.4 Solve (2.10) and (2.11) for the Langevin equation (1.,,1) and 
for the SDE (1.7). 

In Section 8 the corresponding results are stated for vector linear SDEs. 
These also apply to scalar SDEs driven by a vector Wiener process such as 
(1.17). 

4.3 Reducible Stochastic 
Differential Equations 

With an appropriate substitution X, = U(t, Yi) certain nonlinear stochastic 
differential equations 

(3.1) dY, = aCt, Yi) dt + bet, Yi) dW, 

can be reduced to a linear SDE in X, 

(3.2) dX, = (a1(t)X, + a2(t» dt + (b1(t)X, + ~(t» dW,. 
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If ~(t, y) :f:. 0, the Inverse Function Theorem ensures the existence of a 
local inverse y = Vet, z) of:c = U(t, v), that is with z = U(t, Vet, z» and y 
= Vet, U(t, v)). A solution Yi of (3.1) then has the form Yi = V{t,X,) where 
X, is given by (3.2) for appropriate coefficients ai, a2, 61 and 62 , From the Ito 
formula (3.3.6) 

where the coefficients and the partial derivatives are evaluated at (t, Yi). This 
coincides with a linear SDE of the form (3.2) if 

(3.3) 
8U 8U 1 2 82U 
-at(t, y) + aCt, y) {)y (t, y) + '2 6 (t, y) {)y2 (t, y) 

= a1(t)U(t, y) + a2(t) 
and 

(3.4) 
8U 

6(t, y) 8y (t, y) = 61 (t)U(t, y) + 62(t). 

At this level of generality there is little more that can be said that is straight
forward or specific. Specializing to the case where a1(t) == 61(t) == 0 and writing 
a2(t) = net) and 62(t) = pet), we obtain from (3.3) the identity 

82U () ( {)U 1 2 ()2U ) 
8t8v (t, y) = - ()y aCt, y) 8v (t, y) + '2 6 (t, y) 8v2 (t, y) 

and, from (3.4), the identities 

8 ( ()U ) 8v bet, v) 8y (t, v) = 0 

and 
82U 8b 8U I 

bet, V) {)t8v (t, y) + at (t, V) 8y (t, V) = P (t). 

Assume for now that bet, y) :f:. O. Then, eliminating U and its derivatives we 
obtain 

I _ ( 1 {)6 8 (a(t,y») 1 ()2b ) 
P (t) - P(t)6(t, y) 62(t, V) at (t, y) - 8y bet, y) + '2 8y2 (t, y) . 

Since the left hand side is independent of y this means 

where 
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1 Bb a (a(t, y) 1 ab ) 
(3.5) r(t, y) = b(t, y) at (t, y) - b(t, y) ay b(t, y) - 2 By (t, y) . 

This is a sufficient condition for the reducibility of the nonlinear SDE (3.1) to 
the explicitly integrable SDE 

(3.6) dX, = a(t) dt + (J(t) dW, 

by means of a transformation x = U(t, y). It can be determined from (3.3) and 
(3.4) which, in this special case, reduce to 

and 
BU 

b(t, y) By (t, y) = (J(t), 

resulting in 

U(t, y) = C exp (1' r(s, y) dS) 1" b(t\) dz 

where C is an arbitrary constant. We remark that this method can also be 
used to reduce certain linear SDEs to stochastic differentials of the form (3.6). 

A variation of the procedure is applicable to reduce a nonlinear autonomous 
SDE 

(3.7) dyt = a(yt) dt + b(yt) dW, 

to the autonomous linear SDE 

(3.8) 

by means of a time-independent transformation X, = U(yt). In this case the 
identities (3.3) and (3.4) take the form 

(3.9) 

and 

(3.10) 

Assuming that b(y) =1= 0 and b1 ::fi 0, it follows from (3.10) that 

(3.11) 

where 

b2 
U(y) = Cexp(b1B(y» - b1 

f" ds 
B(y) = 1"0 b(s) 
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and C is an arbitrary constant. Substituting this expression for U(y) into (3.9) 
gives 

(3.12) (b1A(Y)+~b~-a1) Cexp (b1B(y»=a2 -a1!: 
where 

aCyl 1 d6 
A(y) = bey) - 2 dy (y). 

Differentiating (3.12), multiplying the result by 6(y) exp (-61B(y» /61 and then 
differentiating again, we obtain the relation 

(3.13) 61-+- 6- =0. dA d ( dA) 
dy dy dy 

This is certainly satisfied if ¥u = 0 or if 

(3.14) 

provided 61 is chosen so that 

d (6 dA) 
61 = _ dy dA dy . 

dy 

If b1 :f:. 0 the appropriate transformation is 

(3.15) U(y) = Cexp(61B(y» , 

whereas if b1 = 0 it takes the form 

(3.16) U(y) = b2B(y) + C 

where b2 is chosen so that (3.10) is satisfied. 

Example 4.3.1 For the nonlinear SDE 

(3.17) 
1 

dYi = -2 exp (-2Yi) dt + exp (-Yi) dW, 

aCyl = -t exp( -2y) and bey} = exp( -y}, so A(y) == O. Thus (9.19) is satisfied 
with any 61 . Forb1 = 0 and b2 = 1 a solution of (9.10) is U = exp(y) by (9.16). 
Substituting this into (3.9) results in a1 = a2 = O. Hence X, = exp(Yi) and 
(3.8) reduces to the stochastic differential dX, = dW" which has solution 

X, = W, + Xo = W, + exp(Yo). 
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The original nonlinear SDE {3.7} thus has solution 

Y, = In (Wt + exp(Yo» , 
which is valid until the sample-path dependent explosion time 

T(Yo(w» = min {t ~ 0: Wt(w) + exp(Yo(w» = O}. 

Exercise 4.3.2 Show that the SDE 

dXt = 4 g(Xt)g'(Xt) dt + g(Xt ) dWt , 

where g is a given differentiable function, is reducible and has the general so
lution 

with 

(3.18) y = h(z) = fll: g~:)" 
Exercise 4.3.3 Repeat Exercise 4.3.f for the SDE 

dXt = (ag(Xt) + 4 g(Xt)g'(Xt») dt + g(Xt ) dWt 

to show that its general solution is 

X t = h-1(at + Wt + h(Xo». 

Exercise 4.3.4 Determine the general solution of the SDE 

dX, = (P9(Xt)h(Xt) + 4 g(X,)g'(X,») dt + g(Xt ) dW" 

where h(z) is given by {3.18}, by first reducing it to a Langevin equation. 

Exercise 4.3.5 Write the SDE in Exercise 4.9.f as a Stratonovich SDE and 
solve it directly using the rules of classical calculus. 

4.4 Some Explicitly Solvable SDEs 

In this section we shall list some explicitly solvable stochastic differential equa
tions and their general solutions, which we have found in various books and 
papers. These are presented here primarily for use in case studies to check the 
accuracy of numerical methods, but can also be used for practicing solution 
techniques, and for verifying the theoretical estimates that arise, for instance, 
in existence and uniqueness considerations. For convenience we include the 
linear SDEs already treated in Section 2. All of the nonlinear SDEs in our list 
are reducible to these linear SDEs. We classify them according to the relation-
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ship between their drift and diffusion coefficients, and remark that in many 
cases where the solution is a standard function of the Wiener process the drift 
coefficient is simply the Stratonovich correction term and the corresponding 
Stratonovich SDE is drift free. Most of the other examples are variations of 
this relationship (see Exercises 4.3.2-4.3.5). We also include some complex 
valued SDEs. For brevity we shall not indicate the interval of existence of the 
general solutions or the restrictions on the solutions required for them to be 
meaningful. 

Linear SDEs: Additive Noise 

Constant coefficients: homogeneous 

(4.1) dX. = -aX. dt + O'dW. 

Constant coefficients: inhomogeneous 

(4.2) dX. = (aX. + b) dt + cdWt 

Variable coefficients: 

(4.3) dXt = (a(t)X, + b(t» dt + c(t) dW. 

with fundamental solution 

4)"'0 = exp (1: a( s) ds ). 

For example, 

(4.4) dX. = (I! t X. + b(l + t)2) dt + b{l + t)2 dW. 

has fundamental solution 4)"'0 = (l:.~) 2 and general solution 
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Usually the Wiener process will appear in an integral, as for 

(4.5) (b - Xt) dXt = T _ t dt + dW, 

which is satisfied by the process 

( t) t 1'1 X t = Xo 1 - T + b T + (T - t) 0 T _ s dW. 

on the interval 0 ::; t ::; T. 

Linear SDEs: Multiplicative Noise 
Constant coefficients: homogeneous 

(4.6) dX, = aX, dt + bX, dW, 

X, = Xo exp ( (a -% b2 ) t + b W,). 

The two most important examples are the Ito exponential SDE 

(4.7) 
1 

dX, = '2X,dt + X,dW, 

X, = Xo exp(W,) 

and the corresponding drift-free SDE 

(4.8) dX, = X,dW, 

X, = Xoexp (w, -%t) . 
Constant coefficients: inhomogeneous 

(4.9) dX, = (aX, + c) dt + (bX, + d) dW, 

X, = ~, (Xo + (c - 6d) l' ~;1 ds + d l' ~;1 dW.) 

with fundamental solution 

~, = exp ( (a -% 62) t + bW,) . 

Variable coefficients: homogeneous 

(4.10) dX, = a(t)X, dt + b(t)X, dW, 

119 
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Variable coefficients: inhomogeneous 

(4.11) dX, = (a(t)X, + e(t» dt + (b(t)X, + d(t» dW, 

X, = cIl"to ( Xto + 1: cIl;':o(e(s) - b(s)d(s» ds + 1: cIl;'~o des) dW,) 

with fundamental solution 

cIlt,to = exp (1: (a(s) - 4 b2{s») ds + 1: b{s) dW,) . 

Reducible SDEs: Case 1 

The Ito SDE 

(4.12) 
1 

dX, = '2 b(X,)b'(X,) dt + b(X,) dW, 

for a given differentiable function b is equivalent to the Stratonovich SDE 

(4.13) dX, = b(X,)odW,. 

We can either reduce the Ito SDE (4.12) to a linear SDE (see Exercise 4.3.2) 
or integrate the Stratonovich SDE (4.13) directly (see Exercise 4.3.5) to obtain 
the general solution 

where 

(4.14) j :l: ds 
y = h( z) = b( s) . 

Most standard functions of a Wiener process satisfy SDEs of the form (4.12). 
Examples include the linear SDE (4.7) and the following SDEs. 

(4.15) dX, = ~ a(a - I)X,1-2/a dt + aX:- 1/ O dW, 

( 1/0)° X, = W, +Xo ; 

(4.16) 1 2 dX, = '2,a X, dt + aX, dW, 

X, = Xo exp (aW,)j 

(4.17) 
1 

dX, = '2 (In a)2 X, dt + (In a)X, dW, 

X, = Xoawc = Xo exp (W,Ina) j 
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(4.18) dXt = (21nb)-lb-2Xt dt + (lnb)-lb-Xt dWt 

X t = 10gb (aWt + bXo ); 

(4.19) dXt = -4 a2 X t dt + a../l- xl dWt 

(4.20) 

(4.21) 

(4.22) 

X, = sin (aWt + arcsin Xo); 

dXt = -4 a2 X t dt - a../l - Xl dWt 

Xt = coe(aWt + arccosXo); 

dXt = a2Xt (1 + X?) dt+a(I+Xl) dWt 

X, = tan (aWt +arctanXo); 

dXt = a2X, (1 + Xl) dt - a (1 + Xi) dWt 

X t = cot (aW, + arccot Xo); 

(4.23) dXt = 4 a2 x, (2X; - 1) dt + aXt../ Xl- 1 dWt 

X t = sec (aWt + arcsec Xo) ; 

(4.24) dX, = 4 a2 X t (2X; -1) dt - aXt../Xl- IdWt 

(4.25) 

(4.26) 

(4.27) 

X t = csc(aWt + arccscXo); 

1 
dX, = 2' a2 tanXt sec2 X, dt + a sec X, dW, 

X t = arcsin(aW, +sinXo); 

1 2 2 dX, = -2' a cot X, csc X, dt - a esc X, dW, 

X, = arccos (aW, +cosXo); 

dXt = _a2 sin X, coea X, dt + a coe2 X, dWt 

X, = arctan (aW, +tanXo)j 
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122 CHAPTER 4. STOCHASTIC DIFFERENTIAL EQUATIONS 

(4.28) dX, = a2 cos X, sin3 X, dt - a sin2 X, dW, 

(4.29) 

(4.30) 

X, = arc cot (aW, + eotXo); 

dX, = ~ a 2 X, dt + aJ xl + 1 dW, 

X, = sinh (aW, + arcsinhXo) i 

dXt = ~ a2Xtdt + aJXl- IdWt 

Xc = cosh (aWt + arccoshXo) i 

(4.31) dX, = _a2 X, (1- xl) dt + a (1- xl) dWt 

X t = tanh (aW, + arctanh Xo) , (see (4.40»; 

(4.32) dXc = a2 X, (1- xl) dt - a (1- Xl) dW, 

X, = eoth (a W, + arccothXo); 

(4.33) 
1 

dXc = -'2 a2 tanh Xt sech 2 X t dt + asech X, dW, 

Xc = arcsinh (a Wc + sinh Xo); 

(4.34) 
1 

dXt = -'2 a2 eoth X, esch 2 Xc dt + a csch Xc dW, 

Xc = arccosh (a Wt + coshXo) j 

(4.35) dX, = a2 sinh X, cosh3 X, cit + a cosh2 Xc dW, 

X, = arctanh (a W, + tanhXo); 

(4.36) dX, = a2 cosh X, sinh3 Xc cit - a sinh2 X, dWc 

Xc = areeoth (a Wc + coth Xo); 

(4.37) dX, = 1 dt + 2..jX; dW, 

X, = (W, + $or j 
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(4.38) dX, = -X, (21nX, + 1) dt - 2X,vI-lnX, dW, 

X, = exp (_ (Wt + vI-lnXo )2) ; 

(4.39) 

X - (X1- m ( 1) W, )l/(l-m). ,- 0 -am-, , 

(4.40) dX, = -/32 X, (1- Xl) dt + /3 (1 - xl) dW, 

(4.41 ) 

X _ (1 + Xo) exp(2/3Wt ) + Xo - 1 
,- (1 + Xo) exp(/3W,) + 1 - Xo ' 

dX, = ~ X;/3 dt + X?/3 dW, 

X, = (X~/3 + ~ W,) 3 

(see (4.31»; 
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This last SDE has nonunique solutions for Xo = 0; for example, X, == 0 is also 
a solution. 

Reducible SDEs: Case 2 

The Ito SDE 

(4.42) dX, = (ab(X,)+~b(X,)bl(X'») dt+b(X,)dW, 

is equivalent to the Stratonovich SDE 

(4.43) dX, = ab(Xt)dt + b(X,) odW, 

and is reducible to the stochastic differential 

dYt = adt +dW, 

for Y, = heX,), where h is given by (4.14). Its general solution is thus 

X, = h-l(at + W, + h(Xo». 

All of the examples in Case 1 can be modified to provide examples for this case. 
In particular we consider 
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(4.44) dXt = (1 + X,) (1 + Xl) dt + (1 + Xl) dW, 

X, = tan (t + Wt + arctan Xo); 

(4.45) dX, = (4Xt+VXl+l) dt+VX1+ldW, 

X, = sinh(t + W, + arcsinhXo); 

(4.46) dX, = -(a + p2 X,)(1 - xl) dt + P(l - Xl) dWt 

X _ (1 + Xo)exp(-2at + 2PW,) + Xo - 1 
t - (1 + Xo)exp(-2at + 2PW,) + 1- Xo' 

Reducible SDEs: Case 3 

The Ito SDE 

(4.47) dXt = (a b(X,)h(X,) + 4 b(Xt)b'(Xt») dt + b(X,) dW, 

where h is given by (4.14) is reducible to the Langevin SDE (1.4) with b = I 
in the variable for y, = heX,). Its general solution is thus 

X, = h-1 (ea'h(Xo) + eat 1t e-a• dW,) . 

All of the examples in Case 1 can be modified to provide examples for this case. 
In particular we consider 

(4.48) dXt = - (sin2Xt + ~ Sin4Xt) dt + V2 cos2 Xt dWt 

Xt = arctan (e- t tanXo + V2e-t 1t e' dW,,) ; 

(4.49) dXt = - tanhXt (a + 4 b2 sech 2Xt) dt + bsechXt dW, 

Xt = arcsinh (e-at sinh Xo + e-at l' e'U dW,,) . 

Reducible SDEs: Miscellaneous 

We shall give some examples of nonlinear reducible SDEs not included in the 
preceding three cases. The first is the most general form of a reducible SDE 
with polynomial drift of degree n. 
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(4.50) dX, = (aX:' + bX,) dt + eX, dW, 

( 
') l/(l-n) 

X, = a, XJ-n + a(1 - n) 1 a~-l dB 

with 

6 t = exp ( (b - 4 e2) t + eWt ). 

The substitution y = h(z) = zl-n reduces the SDE (4.50) to a linear SDE 
with multiplicative noise. A special case for n = 2 is the stochastic Verhulst 
equation 

(4.51) dXt = (~Xt - X:) dt + uXt dWt 

Xo exp ( (~ - ~ ( 2 ) t + UW,) 

For n = 3 we have the stochastic Ginzburg-Landau equation 

(4.52) dX, = (-X: + (0+4u2 ) X,) dt+uX,dW, 

Xt = --;:==X==o=ex=P=(bo=t=+=u=w.~,)====, 

1 + 2X~ l' exp (208 + 2uW.) ds 

Another example, which uses the exponential substitution y = h(z) = 
exp(-ez), is 

(4.53) dX, = (aexp (eXt) + b) dt + udW, 

X, = Xo + bt + uW, -.; In (1- ac l' exp(eXo + bcs + ucW.) dS) . 

Complex-Valued SDEs 

Here a = A, Zt is a complex-valued Ito process and W, is a real-valued 
Wiener process. 

(4.54) 
1 

dZt = - '2 Z, dt + a Z, dW, 

Z, = Zoexp (a W,)j 
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(4.55) dZ, = ,Z, dW, 

Z, = Zo exp (, w, + 4t) ; 

(4.56) 
1 

dZ, = 2' z, dt + .../i z, dW, 

Z, = Zo exp ( ..ji W,) ; 

(4.57) dZ, = ).Z, dt + 1 Z, dW, 

Z, = Zoexp (1W, + (). - ~12) t) ; 

(4.58) dZ, = Z:dt - zldw, 

Z _ Zo ,-
I +ZoW, 

These complex-valued SDEs can be written alternatively as 2-dimensional vec
tor SDEs in the real and imaginary parts. 

Linear SDEs with 2-dimensional Noise 

As a generalization of (4.6) we have 

(4.59) dX, = aX, dt + b1 X, dwl + b2 X t dW,a 

X, = Xoexp ((a - 4 (b1)2 + (b2)2) ) t + b1Wl + b2W,2) . 

To compare the output of numerical schemes applied to the above SDEs 
with their explicit solutions we must evaluate these solutions numerically. This 
is easy to do when the explicit solutions do not contain stochastic integrals, as 
in the following PC-Exercise. 

PC-Exercise 4.4.1 Use a Gaussian random number generator to simulate 
the increments ~Wi = W(i+1)h - Wih for i = 0, 1, ... , n - 1 with n = 29 

of a standard Wiener process {W" t ~ O} on the unit interval [0,1] for time 
steps h appropriate for the resolution of your PC screen. Hence evaluate the 
explicit solution X, of the SDE (1.37) with the initial value Xo = 100 and plot 
it against t E [0,1]. 
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K(t) Figure 4.4.1 Results of PC-Exercise 4.4.1. 
150 

125 

100 

50 

4.5 The Existence and Uniqueness 
of Strong Solutions 

t 

A statement and proof of an existence and uniqueness theorem for strong solu
tions of Ito stochastic differential equations, foreshadowed in Section 1, will be 
presented in this section. We shall do this in the slightly more general context 
of a non autonomous scalar stochastic differential equation 

(5.1) 

As mentioned earlier, (5.1) is interpreted as a stochastic integral equation 

(5.2) X t = Xto + 1t a(s, X,) ds + 1t b(s,X,) dW" 
to to 

where the first integral is a Lebesgue (or Riemann) integral for each sample path 
and the second integral is an Ito integral. A solution tXt, t E [to, Tj} of (5.2) 
must thus have properties which ensure that these integrals are meaningful. 
This holds if, for e and f defined by 

e(t,w) = f(t,w) = 0 for 0::; t < to 

and 

e(t,w) = a(t,Xt(w», f(t,w) = b(t,Xt(w» for to::; t::; T, 
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the functions y'jej and f belong to the spaces .cf or .c!f, which were defined in 
Section 2 of Chapter 3. In turn, this follows if the coefficient functions a and 
b are sufficiently regular and if the process X t is regular and non anticipative 
with respect to the given Wiener process W = {Wt,t ~ OJ, that is A·-adapted 
where A* = {At, t ~ O} is the family of O'-algebras associated with the Wiener 
process. In addition, the integrals in (5.2) should exist, at least w.p.!, for each 
t E [to,1} We then call the process X = {X"~ to ~ t ~ T} a solution of 
(5.2) on [to, T]. For fixed coefficients a and b, any solution X will depend on 
the particular initial value Xto and Wiener process W under consideration. If 
there is a solution for each given Wiener process we say that the stochastic 
differential equation has a strong solution. Such a solution can be roughly 
thought of as a functional of the initial value Xto and of the values W. of the 
Wiener process over the subinterval to ~ s ~ t. For a specified initial value Xto 

the uniqueness of solutions of (5.1) refers to the equivalence (P almost surely) 
of the solution processes that satisfy the stochastic integral equation (5.2). If 
there is a solution, then there will be a separable version which has, almost 
surely, continuous sample paths. We shall subsequently consider only this kind 
of solution. If any two such solutions X t and Xt have, almost surely, the same 
sample paths on [to, T], that is if 

(5.3) p ( sup IXt - Xt I > 0) = 0, 
to~t~T 

we say that the solutions of (5.1) are path wise unique. 
The hypotheses of an existence and uniqueness theorem are usually suffi

cient, but not necessary, conditions to ensure the conclusion of the theorem. 
Some of those that we shall use here are quite strong, but can be weakened in 
several ways. In what follows the initial instant 0 ~ to < T is arbitrary, but 
fixed, and the coefficients functions a, b : [to, T]x!R - !R are given. Most of the 
assumptions concern these coefficients. 

Al (Measurability): a = aCt, z) and b = bet, z) are jointly (.c 2_) measurable 
in (t, z) E [to, T] x!R; 

A2 (Lipschitz condition): There exists a constant J{ > 0 such that 

la(t,z} - a(t,Y)1 ~ J{ Iz - yl 

and 
Ib(t,z) - b(t,y)1 ~ J{ Iz - yl 

for all t E [to, T] and z, y E ~j 

A3 (Linear growth bound): There exists a constant J{ > 0 such that 

and 
Ib(t, z W ~ J{2(1 + 1.:z:12) 

for all t E [to, T] and z, y E ~. 
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We shall henceforth hold fixed a Wiener process W = {Wt, t ~ O} and 
an associated family of u-algebras {At, t ~ O} for which the properties listed 
in the first paragraph of Section 4 of Chapter 3 are satisfied. The remaining 
assumption concerns the initial value. 

A4 (Initial value): Xto is Ato-measurable with E(IXtoI2) < 00. 

The Lipschitz condition A2 provides the key estimates in both the proofs 
of uniqueness and of existence by the method of successive approximations. To 
these estimates we shall then apply the following inequality of Gronwall, which 
is easily proved. 

Lemma 4.5.1 (The Gronwall Inequality) Let a, (3 : [to, T] -+ ~ be 
integrable with 

o ~ aCt) ~ (3(t) + L 1t a(s) ds 
'0 

for t E [to, T] where L > O. Then 

aCt) ~ (3(t) + L 1t eL(t-.) (3( s) ds 
'0 

fort E [to, T]. 

Assuming that strong solutions of (5.1) exist, we can show their pathwise 
uniqueness using just the measurability assumption Al and the Lipschitz con
dition A2. The proof would be simpler if we could also assume that the initial 
value had finite second moment, as in assumption A4, because, by Theorem 
4.5.3 below, the solutions would then have finite second moments. Without 
this property we are forced to use a truncation procedure. 

Lemma 4.5.2 If Ai and A2 hold, then the solutions of (5.2) corresponding 
to the same initial value and the same Wiener process are pathwise unique. 

Proof Let X, and X, be two such solutions of (5.2) on [to, T] with, almost 
surely, continuous sample paths. Since they may not have finite second mo
ments, we shall use the following truncation procedure: for N > 0 and t E 
[to, T] we define 

IXu(w)l, IXu(w)1 ~ N for to ~ u ~ t 
otherwise. 

Obviously I,(N) is At-measurable and I}N) = I}N) I~N) for to ~ s ~ t. Conse
quently the integrals in the following expression are meaningful: 

(5.4) Z}N) = I~N) 1t I~N) (a(s, X.) - a(s,x.») ds 
'0 

+I~N) 1.t I~N) (b(s, X.) - b(s, X.») dW. 
'0 
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where Z~N) = I~N)(Xt - Xt). From the Lipschitz condition A2 we then have 

(5.5) max { II!N) (a(s, X.) - a(s, X.») I, II!N) (b(s, X.) - b(s, X.») I} 

for to ~ s ~ t. Thus the second order moments exist for ZJN) and the two 
integrals in (5.4). Using the inequality (a+b)2 ~ 2(a2+b2), the Cauchy-Schwarz 
inequality (1.4.38) and the property (3.2.10) of an Ito integral we obtain from 

(5.4) 
E (lzJN)r) 

< 2E (11: I!N) (a(s, x.) - a(s,X.») dsl2) 

+2E (11: I~N)(b(s, x.) - b(s, x.) dW. r) 
~ 2(T- to) 1: E(lI5N) (a(s,x.)-a(s,x·»)r) ds 

+21: E (lI!N) (b(s, x.) - b(s, x.») r) ds, 

which we combine with (5.5) to get 

(5.6) 

for t E [to, 11 where L = 2(T-to+l)K2. We then apply the Gronwall inequality 
(Lemma 4.5.1) with aCt) = E(IZJN)12) and f3(t) == 0 to conclude that 

and hence that ~N) Xt = I}N) Xt, w.p.l, for each t E [to,11. Since the sample 
paths are continuous almost surely they are bounded almost surely. Thus we 
can make the probability 

P (IJN) 1E 1 'tit E [to,Tj) ~ p ( sup IXtl > N) + P ( sup IXtl > N) 
to$t$T to$t$T 

arbitrarily small by taking N sufficiently large. This means that P (Xt f Xt ) 

= 0 for each t E [to, Tj, and hence that P (Xt f Xt : tED) = 0 for any count-
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ably dense subset D of [to, T]. As the solutions are continuous and coincide 
on a countably dense subset of [to, T], they must coincide, almost surely, on 
the entire interval [to, T]. Thus (5.3) holds, that is the solutions of (5.2) are 
pathwise unique. 0 

Theorem 4.5.3 Under assumptions Al-A." the stochastic differential equa
tion (5.1) has a pathwise unique strong solution X t on [to, T] with 

sup E (IXt I2 ) < 00. 
to~'~T 

Proof In view of Lemma 4.5.2 we have only to establish the existence of a 
continuous solution X t on [to, T] for the given Wiener process W = {W" t 2: O}. 
We shall do this by the method of successive approximations, first defining xIO) = X to and then 

for n = 0,1,2, .... Iffor a fixed n 2: 0 the approximation xIn) is At-measurable 
and continuous on [to, T], then it follows from assumptions AI, A2 and A3 that 
the integrals in (5.7) are meaningful and that the resulting process XIn+l) is 
At-measurable and continuous on [to, T]. As XJO) is obviously At-measurable 
and continuous on [to, T], it follows by induction that so too is each XJn) for n 
= 1,2,3, .... 

From assumption A4 and the definition of XJO) it is clear that 

sup E (lxIO) 12) < 00. 
t09~T 

Applying the inequality (a + b + c)2 :::; 3(a2 + b2 + e2), the Cauchy-Schwarz 
inequality (1.4.38), the identity (3.2.10) and the linear growth bound A3 to 
(5.7) we obtain 

E Ox~n+1)r) 

< 3E (IXto I2) + 3E (11: a (s,x~n») dSr) 

+3E (11: b (s,x~n») dW.r) 

:::; 3E (IXto 12) + 3(T - tolE (1: la (8, x~n») r dS) 
+3E (1: Ib (s,x~n») r dS) 



132 CHAPTER 4. STOCHASTIC DIFFERENTIAL EQUATIONS 

for n = 0,1,2, .... By induction we thus have 

(5.8) sup E (Ix}n) 12) :::; Co < co 
to~t~T 

for n = 1, 2, 3, .... 
Similarly to the derivation of the inequality (5.4), except now factors like 

I~N) are not required because of (5.8), we can show that 

for t E [to, T) and n = 1,2,3, . .. where L = 2(T - to + 1)K2. Then using the 
Cauchy formula 

1t It .. -1 lt1 1 lt 
... f(s)dsdt 1 .•. dtn_1=( -1)1 (t- st-1f(s)ds 

to to to n . to 

in repeated iterations of (5.9), we obtain 

(5.10) E (lx!n+1) - x!n)r) 

:5 (n~n1)!1:(t-st-1E(lx~1)-X~0)/2) ds 

for t E [to, T] and n = 1, 2, 3, .... Also, using the growth bound A3 instead of 
the Lipschitz condition A2 in the derivation of (5.9) for n = 0, we find that 

E (lx!n+l) - x!nf) 

:5 L 1: (1 + E (lx~O)r)) ds 

< L(T-to) (1+E(IXto I2)) =c1. 

On inserting this into (5.10) we get 

E (lx!n+l) _ x!n)/2) :5 CILn~!- tot 

for t E [to, T] and n = 0, 1, 2, ... , and hence 

(5.11) 
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for n = 0, 1, 2, .... This implies the mean-square convergence of the successive 
approximations uniformly on [to, 11, but we need the almost sure convergence 
of their sample paths uniformly on [to, 11· To show this we define 

Z - Ix(n+l) x(n)1 n - sup t - f 
fo$f$T 

for n = 0, 1, 2, ... and so from (5.5) obtain 

Using the Doob inequality (2.3.7), the Cauchy-Schwarz inequality (1.4.38) and 
the Lipschitz condition A2 we determine 

E (IZnI2) < 2(T - to)K21: E (lx}n) - x}n-l)1 2
) ds 

+8K21: E (lx}n» - x!n-l)12) ds 

::; 2(T - to + 4)K21: E (lx!n) - x!n-l)r) ds, 

which we combine with (5.11) to conclude that 

E (IZ 12) < C2Ln- 1(T - to)"-l 
n - (n-l)! 

for n = 1,2,3, ... where C2 = 2C1K2(T-to+4)(T-to). Then, after applying 
the Markov inequality (2.2.14) to each term and summing, we have 

~P(Zn > n~) :$C2~ (n~41)!Ln-l(T-to)n-l, 
where the series on the right side converges by the ratio test. Hence the series on 
the left side also converges, so by the Borel-Cantelli Lemma 2.1.4 we conclude 
that the Zn converge to 0, almost surely, that is the successive approximations 
XJn) converge,almost surely, uniformly on [to,11 to a limit Xf defined by 

00 

XI = Xto + L {X~n+1) - X~n)}. 
n=O 

It follows from (5.8) that X is mean square bounded on [0,11. As the limit of 
A*-adapted processes, X is A*-adapted and as the uniform limit of continuous 
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processes it is continuous. In view of this and the growth bound A3, the right 
side of the integral equation (5.2) is well defined for this process Xt . It remains 
to show that it then equals the left side. Taking the limit as n -I> 00 in (5.7) we 
see that X is a solution of (5.2). The left side of (5.7) converges to Xt uniformly 
on [to, T]. Comparing the right sides, we have by the Lipschitz condition A2 

11t a(s,x!n»ds -1.t a(s,x.)dsl $ Klt Ix!n) - X.I ds --+ 0 
~ ~ ~ 

and 

w.p.I, which imply that 

l ' a(s,x!n»ds --+ l' a(s,X,)ds, 
'0 '0 

w.p.1, and 

l' b(s,x~n»dW, _1' b(s, x.) dW., 
'0 '0 

in probability, as n -I> 00 for each t E [to, T]. Hence the right side of (5.7) 
converges to the right side of (5.2), and so the limit process X satisfies the 
stochastic integral equation (5.2). 

This completes the proof of the existence and uniqueness of a strong solu
tion of the stochastic differential equation (5.1) for an initial value X'D with 
E(lXto 12) < 00. 0 

Variations of Theorem 4.5.3 are possible with weakened assumptions. The 
most obvious is to drop the requirement that the initial value X'D satisfies 
E(IX,o 12) < 00. The proof must then be modified with a truncation proce
dure similar to that used in the proof of Lemma 4.5.2, because the successive 
approximations and their limit may now not be mean-square bounded. An
other obvious generalization is to replace the global Lipschitz condition A2 by 
a local one, that is with the condition holding with possibly different constants 
KN for lxi, lui $ N and each N > O. This significantly enlarges the class of 
admissible coefficients since by the Mean Value Theorem every continuously 
differentiable function satisfies a local Lipschitz condition. In this case a trun
cation argument must also be used in the proof. A key step is the observation 
that if the coefficients of two stochastic differential equations coincide on some 
interval - N $ x ~ N, then the first exit times TN and TN ~ to of their solu
tions (with the same initial value) from this interval are equal, w.p.1, and the 
solutions coincide until this common exit time. In the proof of existence here, 
for each N > 0 the successive approximations are stopped on reaching ±N and 
a limiting solution X!N) is obtained. As N increases the exit times TN of the 
solutions X!N) increase, and for any two N, N ' the corresponding solutions 
X!N) = X!N') for 0 $ t $ min {TN , TN'}, w.p.I. Taking the limit as N -I> 00 
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gives the desired global solution Xc, that is a solution existing on the entire in
terval [to, 11, provided a growth bound such as A3 is satisfied. As for ordinary 
differential equations a Lipschitz condition, global or local, is not necessary in 
order to prove the existence of solutions of stochastic differential equations, 
but without such a condition the method of successive approximations cannot 
be used and the uniqueness of solutions is not assured. For example, the SDE 
dX, = IX,IO' dW, has a unique solution X, == 0 for Xo = 0 when a ;::: 1/2, but 
has infinitely many solutions for this initial value when 0 < a < 1/2. This 
compares with the ordinary differential equation i: = xO' which has infinitely 
many solutions for Xo = 0 when 0 < a < 1. The functions xO' and IxlO' are 
not differentiable at x = 0 for 0 < a < 1 and do not satisfy a local Lipschitz 
condition in a neighbourhood of x = O. 

In some cases it is possible to replace the Lipschitz condition on b by the 
weaker Yamada condition: there exists an increasing function p : [0,00) -+ !R 
with p(O) = 0 and fo+ p-2(U) du = +00 such that 

Ib(t, x) - bet, y)1 ::; p (Ix - yl) 

for all x, y E !R and t E [to, 11. This also implies an existence and uniqueness 
theorem of stron solutions. For example, p may be p(u) = uO' for 1/2 ::; a ::; 
lor p(u) = lu In ul. With the first of these it can be concluded that the SDE 
dX, = IX, 10' dWt has the unique strong solution Xt == 0 for Xo = 0 when 1/2 
::;a::;1. 

A useful extension to the existence and uniqueness theorem is to weaken the 
linear growth bound A3, which essentially says that the coefficients must not 
grow faster than linearly in magnitude for large Ixl. This excludes drift terms 
such as a( x) = x - x3 • For the corresponding ordinary differential equation 
i: = a( x) the solutions satisfy 

for aU x E !R, from which it follows that x2(t) ::; x2(0)e2t for all t ;::: 0; hence 
its solutions cannot explode in finite time. In fact, the growth bound on a = 
aCt, x) in A3 can be replaced by 

with b = bet, x) still satisfying the original growth bound, and the existence of 
a global solution of the stochastic differential equation (5.1) remains true. The 
absence of some kind of growth bound on either of the coefficients may lead to 
explosions in the solutions. 

In some instances stronger results can be obtained by strengthening the as
sumptions of the existence and uniqueness theorem. The next theorem provides 
useful upper bounds on the higher even order moments of the solution. When 
the initial value is a constant it implies the existence of all such moments. 
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Theorem 4.5.4 Suppose that Al-A" hold and that 

E (IXto 12n) < 00 

for some integer n ~ 1. Then the solution X t of (5.1) satisfies 

(5.12) 

and 

(5.13) E (IXt - Xto l2n) ~ D (1 + E (IXto I2n)) (t - to)neC(t-to) 

for t E [to, T] where T < 00, C = 2n(2n + 1)K2 and D is a positive constant 
depending only on n, K and T - to. 

Proof It follows from the Ito formula (3.3.6) that IXt 12n satisfies the stoch
astic differential equation 

(5.14) IXt l2n = IXto l2n + 1t 2n IX,12n- 2 X, a(s,X,)ds 
to 

+ 1t n(2n -1) IX.12n- 2 b2(s, X.) ds 
to 

+1t 2n IX,12n- 2 X. b(s,X,)dW,. 
to 

Since E( IX to 12n) < 00 we can use an analogous argument to that in the proof of 
Theorem 4.5.3 to show that E(IXt I2n) < 00 for t E [to,11. Hence the function 
f defined by f(t,w) = 0 for 0 ~ t < to and f(t,w) = 2n IXt (w)12n-2 Xt(w) 
b(t,Xt(w» for to ~ t ~ T belongs to 4,80 by (3.2.9) 

E (1: 2n IX.12n- 2 X. b(s,X.) dW.) = 0 

for each t E [to,11. Taking expectations on both sides of (5.14) we obtain 

< E (IXto /2n) + 1t E (2n /X./ 2n - 2 X. a(s,X.») ds 
to 

+1t E (n(2n - 2) /X,12n- 2 b2(s, X.») ds 
to 

where we have used the growth bound A3. Then, since (l+a2 )a2n- 2 ~ 1+2a2n , 

we have 
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E (lXtI2n) ~ E (IX,oI2n) + n(2n + I)K2(t - to) 

+2n(2n + I)K21' E (IX,12n-2) ds 
'0 

and hence from the Gronwall inequality (Lemma 4.5.1) 

E (IX,12n) ~ f3(t) + 2n(2n + I)K21' exp (2n(2n + I)K2(t - s» (3(s) ds 
'0 

where f3(t) = E(IX,o 12n) + n(2n + I)K2(t - to). We obtain (5.12) when we 
evaluate the integral here. 

To establish (5.13) we use the inequality (a + b)2n ~ 22n-l(a2n + b2n ) and 

E (IX, - X'ol2n) 

E (11: a(s,X,)ds+ 1: b(s,X,)dW, rn) 
< 22n- 1 { E (11: a(s, X,) dsI2") + E (11: b(s,X,) dW,)1

2n
) } 

< 22n- 1(t _ to)2n- 1 1' E (la(s,X,)12n ) ds 
'0 

+22n- 1(t _ to)n-l[n(2n _I)]n l' E (lb(s,X,)1 2n ) ds. 
'0 

The last line follows from the Holder inequality (1.4.40) and the fact that 

(5.15) E (11: I(s,w) dw.1 2n
) 

~ (t - to)"-I[n(2n _I)]n l' E (1/(s,w)1 2n ) ds, 
'0 

for any 1 with r E £f, which can be verified inductively with the help of 
the Ito formula. Using the growth bound A3 in the above integrals and the 
inequality (1 + a2)n ~ 22n- 1(I + a2n ), we obtain 

E (IX, - X'ol2n) ~ 22n-1 K2n{(T - to)" + [n(2n - 1)]n} 

X(t-to)"-11' E((I+IX,12)") ds 
'0 
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~ ~D(t-tO)"-l1.t (1+E(1+IXtoI2n)eCC.-to») ds 
to 

where we have used (5.12), which has already been proved, and 

D = 22C2n-l) K 2n {(T - to)n + [n(2n - 1»)"}. 

Finally, integrating and then using the inequality (eO: - 1)/ x ~ eX, we obtain 

1 1 (( ))eCCt-tO)_l 
< 2 D(t - to)" + 2 D(t - to)" 1 + E IXto l2n C(t _ to) 

< ~ D(t - to)" + ~ D(t - to)n (1 + E (IX,o 12n) ) eCC,-to) 

< D (1 + E (IX,o 12n)) (t - to)neCCt-to), 

which is the desired result. 0 

Exercise 4.5.5 By modifying the proof of Theorem {5.4 and using the Doob 
inequality (2.3.7) derive the following uniform moment estimates: 

(5.16) 

and 

(5.17) E ( sup IX, - Xtol2n ) 
toS'ST 

~ D (1 + E (IX'oI2n)) (T - to)neCCT-to), 

for positive constants C and D depending only on n, K and T - to. 

With similar inequalities to those in the proof of the existence and unique
ness theorem (Theorem 4.5.3) we can show that the solution of a stochastic 
differential equation depends continuously on a parameter when the coefficients 
do. For a parameter v we consider a family of stochastic differential equations 
in integral form 

(5.18) XCII) = XCII) + 1.' aCII) (s XCII») ds + 1.' bCII) (s XCII») dW , to , • ,," 
to '0 

where the initial value X};) may also depend on the parameter. In the case 
that only the initial value depends on the parameter we obtain the continuous 
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dependence on initial conditions. Analogous results to those in the following 
theorem also hold for sequences if we replace v by lIn and va by O. 

Theorem 4.5.6 Suppose that Al-A4 are satisfied l1y (5.18) for each v E ~ 
and that 

(5.19) 

and 

(5.20) 

for each t E [to,1'] and N > O. Then the solutions X(II) of (5.18) satisfy 

lim sup E (IXt(lI) - X~lIo)/2) = O. 
11-110 te[to,T] 

Proof The solutions X~") exist and are unique and mean-square bounded by 
Theorem 4.5.3. Subtracting (5.18) for va, squaring and then taking expecta
tions we obtain 

E (lX~II) _ X~IIO)/2) 

< 3E (lx~:) _ X[;,0)/2) 

+3E (11: (a(II)(8, X~"» - a(IIO)(8, X~IIO») d8r) 

+3E (11: ("(11)(5, X!"» - 11(110 )(8, X!"O») dw_1 2
) 

< 3E (Ix}:) -xtof) 
+3(T - to) 1: E (la(II)(8, X!"» - a(lIo) (5, X:o»/2) d8 

+31: E (1"(11)(8, X$"» - 11(110 )(8, X!"o»/2) d8, 

by the Cauchy-Schwarz inequality (1.4.38) and the linearity of Ito integrals in 
their integrands. Now 
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la(II)(t, X~"» - a(IIO)(t, X~IIO»r 

< 2Ia(II)(t,X~II» - a(II)(t,X~IIO»12 + 2Ia(II)(t,X~IIo» _ a(IIO)(t,X~IIO»12 

~ 2K2IX[") - X["o)r + 2Ia(II)(t, X["O» - a(IIO)(t, X["O» 12 , 
and similarly for the b(II) coefficients. Hence 

E (Ix!") -x!"o)r) 
~ 3E (lx[:) - X[:O) 12) 

+6(T - to) 1: E (la(")(s,X5"o» - a(IIO)(8,X~IIO»r) ds 

+61: E (lb(")(s,X5"o» - b(IIo)(s,X~IIo»12) ds 

+6K2(T - to + 1) 1: E (lX~II) - X5"°)r) ds 

,8<")(t) + L 1: E (lX~II) - X~IIO)12) ds 

where p(II)(t) and L denote the corresponding expressions in the preceding line. 

Then by Gronwall's inequality (Lemma 4.5.1) we get 

E (lX[") - X~IIO)r) :5 p(II)(t) + L 1: eL(t - s) ,8<")(S) ds 

for each t E [to, TJ. By the convergence assumptions (5.19)-(5.20) the f1CII)(t) 
- 0 as v - vo, and thus the stated result follows. 0 

We remark that as in Exercise 4.5.5 we can strengthen the convergence of 
the preceding theorem to the mean-square uniform convergence 

In addition, we can obtain analogous convergence results for the derivatives 
I;X~"), which are defined in the mean-square sense, and also satisfy stochastic 
differential equations. 

Example 4.5.7 
tions 

Consider the solutions of the stochastic differential equa-
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with the same initial value X~II) = Xo for each v ~ O. For v = 0 the solution 
is obviously X~O) = Xo + W,. Thus by Theorem 4.5.6 we have 

for each t E [0,11. 

Exercise 4.5.8 Determine the mean-square limit as v -+ 0 of the solutions 
of the stochastic differential equations 

dX~II) = a (t,X~II») dt + vdWt 

with the same deterministic initial value X~II) = Xo for each v ~ o. 

4.6 Strong Solutions as Diffusion Processes 

Possibly the most attractive and important property of the solutions of stoch
astic differential equations is that they are usually Markov processes, in fact 
in many cases diffusion processes. As a consequence of this we can apply the 
powerful analytical tools that have been developed for Markov and diffusion 
processes to the solutions of stochastic differential equations. In discussing 
such solutions below we shall always assume that we have chosen a separable 
version with, almost surely, continuous sample paths. In addition, we shall 
often denote by X,(to, %0) the solution with fixed initial value X'o = %0. 

Under assumptions A1-A4, which were stated at the beginning of Section 5, 
the solution X of the stochastic differential equation (5.1) is a Markov process 
on the interval [to, 11 with transition probabilities 

pes, Zj t, B) = P (X, E BIX. = x) = P (Xt(s, x) E B) 

for all to :5 s :5 t :5 T, Z E !R and Borel subsets B of !R. 
For an autonomous stochastic differential equation 

(6.1) dX, = a(Xt ) dt + b(X,) dWt 

the solutions X are homogeneous Markov processes, that is their transition 
probabilities P(s,Zjt, B) depend only on the elapsed period of time t - s ~ 
o rather than on the specific values of s and t. In this case we usually write 
P(Zjt - s,B) for P(s,zjt,B) and can, without loss of generality, take 8 = 
O. The solution of an autonomous SDE will be a stationary Markov process 
with stationary distribution P if there exists a probability measure P on (!R,8) 
satisfying 

(6.2) PCB) = 1. P(Zjt, B)P(dz) 
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for all t ~ 0, x E !R and B E B. Various analytical conditions on the coeffi
cients a and b are known which ensure the existence of a density function p for 
such a stationary distribution as the solution of the stationary Fokker-Planck 
equation. 

In general, the solutions of a stochastic differential equation 

(6.3) dX, = aCt, X,) dt + bet, X,) dW, 

are diffusion processes with their transition probabilities satisfying the three 
limits (1.7.9)-(1.7.11) for the drift a(t,x) and diffusion coefficient b(t,x). We 
shall prove this below under assumptions A2-A4 and the additional assumption 
that the coefficients of (6.3) are continuous (which implies AI, and is implied 
by the Lipschitz condition A2 when the differential equation is autonomous). 
A weakening of assumptions A2-A4 is possible provided the existence of unique 
solutions still holds. 

Theorem 4.6.1 Assume that a and b are continuous and that A2-A-I hold. 
Then the solution X, of (6.9) for any fixed initial value X'o is a diffusion 
process on [to,1'] with drift aCt, x) and diffusion coefficient bet, x). 

Proof From inequality (5.13) with n = 2 we have 

for to :5 s :5 t :5 T and some constant C which depends on to, T and x. Hence 
for any (> 0 

1. P(s,xjt,dY):5 (-4 ~ly-xI4P(s,xjt,dy) 
I!I-Ill>f 1ft 

so 

lim-I-I. P(s,x;t,dy) = 0, '1. t - s I!I-Ill>f 

which is the first of the three required limits (1.7.9)-(1.7.11). To verify the 
other two limits it suffices for us to show that 

(6.4) 

and 

(6.5) 

lim_l_ E(X,(s,x) - x) = a(s,x) '1. t - s 

Taking the expectation of the integral equation form of (6.3) for the solution 
X,(s,x) and using property (3.2.9) ofIto integrals, we obtain 

E (X,(s, x) - x) = l' E (a(u, XtI(s, x))) du 



4.6. DIFFUSION PROCESSES 143 

= (t - s) i1 E (a(s + v(t - s), X.+v(t_,)(s,x))) dv. 

From the continuity of the sample paths of Xt(s,x), almost surely, and the 
continuity of a we have 

lim a (s + v(t - s), X,+v(t_,)(s, x;w)) = a(s, x), 
tl, 

w.p.1. In addition, from the growth bound A3 

la(s + v(t - s),XHv(t_,)(s,x))1 2 ~ K2 (1 + IX,+v(t-.)(s,x)n 

and the mean-square boundedness of the solution, we have 

E i 1 la (s + v(t - s), X,+v(t-,)(s, x») 12 dv < 00. 

Hence by a theorem of Lebesgue on the interchange of limit and integration 
operations we conclude that 

i1 E (a (s + v(t - s),X.+v(t_.)(s,x»)) dv -+ a(s,x) 

as t ! s, from which (6.4) then follows. 
The remaining limit (6.5) is established in a similar way after first using the 

Ito formula to obtain a stochastic integral equation for (Xt(s,x) - x)2. The 
details are left to the interested reader as an exercise. 0 

In simple cases we can verify directly that the solution of a stochastic dif
ferential equation is a diffusion process. For example, when the coefficients of 
(6.3) are both constants the solution is 

Xt=Xto+a(t-s)+b(Wt-W.), so 

E (Xt - xiX. = x) = a (t - s) and 

E (Xt - x)2IX. = x) = b2(t - s) + a2(t - s)2. 

Consequently the transition probabilities pes, x; t, .) are Gaussian with means 
x + aCt - s) and variances b2(t - s). lithe initial value Xto is Gaussian, then 
X, is Gaussian and the solution process is a Gaussian process, which is often 
called a Gauss-Markov process. 

Exercise 4.6.2 Show directly that the solution of the Langevin equation 

is a diffusion process when its initial value Xo is deterministic. 

Exercise 4.6.3 Prove {6.5}. 
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4.7 Diffusion Processes as Weak Solutions 

We shall now turn to the converse problem of whether or not a given diffusion 
process with probability density satisfying the Fokker-Planck equation is the 
solution of some stochastic differential equation. Closely related to this is the 
question of the existence of weak solutions of a stochastic differential equation. 
From Section 1 we recall that a weak solution is a solution of a stochastic differ
ential equation for which the coefficients of the equation, but not the Wiener 
process, are specified. For a diffusion process these coefficients are obtained 
from the drift a(t,z) and diffusion term eT(t,z) = b2(t,z) of the process, al
though, as indicated in Section I, not without ambiguity. On a superficial 
level, the question has a simple affirmative answer: if Y; is the diffusion process 
with drift a and diffusion term eT = b2 , or even if just these coefficients are 
specified, then we can take the stochastic differential equation 

(7.1) dX, = a(t,X,)dt + b(t, X,) dW, 

with the initial value X'o = Y;o, for any Wiener process W = {W" t ;::: O}. 
Provided the coefficients satisfy appropriate properties, such as assumptions 
AI-A3 of Theorem 4.5.3, there will be a solution X for each Wiener process. 
Such a solution is then an equivalent stochastic process to the given diffusion 
process Y, that is it has the same probability law. In general, however, it will 
not be sample path equivalent to Y;. To guarantee this we must choose the 
Wiener process with more care. 

Let Y be a given diffusion process on [0, T] with drift aCt, y) and strictly 
positive diffusion coefficient bet, y). Under assumptions which we shall specify 
later we define functions g and a by 

(7.2) 1" dz 
g(t,y) = 0 b(t,z) 

and 

(7.3) _ (Og og 1 2 (29) ( -1( » a(t,z) = at + a oy + '2b oy2 t,g t,z 

with a and b evaluated at (t, y), where y = g-l(t, z) is the inverse of z = get, y). 
Then we define a process Z, = get, Y;), which is a diffusion process with drift 
aCt, z) and diffusion coefficient I, and a process 

(7.4) W, = Z, - Zo -1' a(s, z.) ds, 

which will turn out to be a Wiener process. Consequently (7.4) will be equiv
alent to the stochastic differential equation 

dZ, = aCt, Z,) dt + 1 dW" 

which, by (7.2), (7.3) and Ito's formula, will imply that Y; is a solution of the 
stochastic differential equation 

(7.5) dY; = aCt, Y;) dt + bet, Y;) dW" 
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that is of (7.1) with the Wiener process W,. In order to justify these steps we 
need to impose some regularity conditions on the diffusion process Yi and its 
coefficients a and b. 

Theorem 4.7.1 Let Y be a diffusion process on [0, T] with coefficients 
aCt, y) and bet, y) > 0 satisfying for all V E ~ and t E [0, T] the following 
conditions: 

(1) aCt, V) is continuous in both variables and 

la(t, y)1 ::; K (1 + Ivl) 

for some positive constant K; 

(2) bet, y) is continuous in both variables, bet, V)-1 is bounded, and the partial 
derivatives ~ and ~ are continuous and bounded; 

(3) There exists a function tjJ(v) > 1 + Iyl such that 

(i) sUPO~t~T E (tjJ(Y,» < 00, 

(ii) E (IYi - Y.IIY. = y) + E (IY, - Y.12 IY. = V) ::; (t - s) tjJ(V) , 

(iii) E(lYiIIY. = V) + E (IYiI2 IY. = V) ::; tjJ(V)· 

Then W defined by (7,,1) is a Wiener process and Y is a solution of the stoch
astic differential equation (7.5). 

Proof We shall first show that Z, = get, Yi) is a diffusion process with drift 
a and diffusion coefficient 1. For this we use a change of variables argument. 
Since 9 is monotone in V, Zt is a Markov process and its transition probabilities 
are 

p(s,Zjt,A) = P (s,g-1(s,z)jt,g-1(t,A» , 

where the pes, Vj t, B) are the transition probabilities of the given diffusion 
process Yt and g-l(t, A) = {V : get, y) E A}. From the assumptions the function 
Z = get, V) and its inverse V = g-1(t, z) are continuous, so with V = g-1(t, z), 
T} = g-1(t,e) and 6 = 6(t:) > 0 we have 

lim _1_ f P (s,g-l(t, z)jt,g-l(t,de» 
Il. t - s Ae-el>6 

= lim-I-I. P(s,yjt,dT}) = O. 
Il. t - s 1'(.,1/)-9(1,'1)1>6 

This is the first requirement (1.7.9) on the transition probabilities for the pro
cess Zt to be a diffusion process. The other two, (1.7.10) and (1.7.11), are also 
inherited by Z, from the original diffusion process yt. By the assumptions of 
the theorem, g( t, V) is continuously differentiable in t and twice continuously 
differentiable in V. Also by the Taylor Theorem there exist numbers 91 , 92 E 
(0,1) such that 
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(7.6) 

= -t 1 1 (g(t, '1) - g(s, y» pes, Yj t, d'1) 
- s Ig("y)-g(t,I'/)I~6(f) 

= 88g (s + (h(t - s), y) 1 pes, Yjt, d'1) 
s 19(1,1I)-9(t,I'/)I:::;6(f) 

1 8g 1 +-t --8 (s,y) ('1- y)P(s,Yjt,d'1) 
- s Y Ig("y)-g(t,I'/)I~6(f) 

1 1 1 82 g 2 +-t - -28 2 (S+02(t-S),y)('1-Y) P(S,Yi t ,d'1). 
- s Ig("y)-g(t,I'/)I~6(f) y 

The first integral in the last part of (7.6) can be written as 

I P(S,Yit,d'1) = 1-1 P(s,yjt,d7J), 
J1g( .. ,y)-9(t,1'/ )1~6( f) 19(' ,y )-g(t,I'/)1 > 6( f) 

and thus converges to 1 as t ! s by the limit (1.7.9) for the transition proba
bilities of the given diffusion process Yi and the continuity of the function g. 

Similarly, by choosing f sufficiently small, we can make ~(s + 02(t - s), y) 

arbitrarily close to ~(s,y). Finally, from the limits (1.7.10) and (1.7.11) for 
the transition proba~ilities of Yi we see that the limit as t ! s of the right side 
of (7.6) equals 

( 89 8g 1 2829) ( -1( ») 8t +a 8y +'2b 8y2 s,g t,z , 

which is just a(s, y) defined in (7.3). Thus the requirement (1.7.10) of a diffusion 
process is satisfied by the transition probabilities of Zt. The final requirement 
(1.7.11) is satisfied with the diffusion coefficient 1 since, similarly to above, we 
can show that 

since ~ = l/b from (7.2). This shows that Zt is a diffusion process and that 

the process Wt is well defined by (7.4). 
We need now to show that Wt is a Wiener process. Let At denote the (T

algebra generated by Z, for 0 ::; s ::; t. By (7.4) Wt is At-measurable for each 
t E [0, T). Obviously Wo = 0, w.p.1, and Wt has, almost surely, continuous 
sample paths. Defining t[;(t,z) = ,p(g-l(t,z», we have by assumption (3i) that 

sup E(t[;(t,Zt» = sup E(,p(Yi» < 00. 
O~t~T O~t~T 
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Then by the Taylor Theorem there are constants (h,82 E (0,1) such that 

E (Z'+h - Z,IZt) = E (g(t + h, Yt+h) - get, Yt)IYt) 

= E (~ (t + 81h, Yt)IYt ) h + E (::(t, Yt)(Yt+h - Yt)IYt ) 

From the assumptions on the coefficient b and the definition of function g, we 
have Ig(t, y)1 ~ Cjyl for some constant C and, in addition, that the partial 
derivatives ~ and ~ are bounded. Then from assumption (3) we obtain 

for some constant C1. Using this, the definition (7.4) of W, and a growth bound 
on the coefficient ii, we have 

IE (WHh - WtlAt) I 
= IE (Z'+h - Z,!Z,) - 1. ... E (a(s, Z.)IA.) dsl 

IHh 
~ C1 ~(t, Zt)h + C2 t E (1 + IY.IIAt ) ds 

< Ca(~(t,ZI)+l) h 

for appropriate constants C2 and Ca. Hence 

(7.7) lim E (WI+h - WIIAt) = O. 
h.lO 

Similarly, we can show that 

and also that 

(7.8) . 1 (( _ _)2) 
~n:hE Wt+h - W, IAI = 1. 

Finally, it can be deduced from (7.7) and (7.8) that 
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w.p.l. Hence, by the theorem of Doob mentioned in Section 4 of Chapter 2, Wt 

is a Wiener process with respect to the family of u-algebras {At, 0 :5 t :5 T}. 
This completes the proof of the theorem. 0 

The rather strong conditions in the preceding theorem are sufficient, but 
not necessary for the existence of weak solutions. We remark that in some 
cases the SDE may have only weak solutions and no strong solutions. 

Example 4.7.2 The stochastic differential equation 

where sgn z: = + 1 if z: ~ 0 and -1 if z: < 0, only has weak solutions, but 
no strong solution for the initial value Xo = O. In fact, if X t is such a weak 
solution for the Wiener process W, then -Xt is a weak solution for the Wiener 
process - W. These solutions have the same probability law, but not the same 
sample paths. 

Theorem 4.7.1 tells us that there is a Wiener process such that the given 
diffusion process satisfies a stochastic differential equation with its drift and 
diffusion coefficient and with this particular Wiener process. In the proof we 
used not only the drift and diffusion coefficient, but also the diffusion process 
itself. If we know only the coefficients we can determine the diffusion process 
by a method proposed by Stroock and Varadhan connected with the martingale 
problem. This requires us to solve the equation 

(7.9) I(Xt) - I(Xo) + 1t £/(X,) ds + Mt = 0 

where f is any twice continuously differentiable function vanishing outside of a 
bounded interval and M t is some continuous (locally-) square integrable martin
gale and C is the elliptic operator (2.4.6) in the Kolmogorov backward equation 
with the given drift and diffusion coefficients. It can be shown under suitable 
assumptions that (7.9) has a solution which is unique in law for all such func
tions f. 

Exercise 4.7.3 Use the Ito formula to derive equation (7.9) for the 
Ornstein- Uhlenbectprocess with drift a( z:) = -z: and diffusion coefficient b( z:) 
==../2, What is the martingale Mt here? 

4.8 Vector Stochastic Differential Equations 

The relationship between vector and scalar stochastic differential equations is 
analogous to that between vector and scalar stochastic differentials. In what 
follows we interpret a vector as a column vector and its transpose as a row 
vector. We consider an m- dimensional Wiener process W = {Wt, t ~ O} with 
components wl, wl, ... , W:", which are independent scalar Wiener processes 
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with respect to a common family of iT-algebras {At, t ~ O}. Then we take a 
d-dimensional vector function a : [0,1'] xlRd - lRd and a dxm-matrix function 
b : [0,1'] x ~ - ~dxm to form a d-dimensional vector stochastic differential 
equation 

(8.1) 

We interpret this as a stochastic integral equation 

(8.2) X t = Xto + It a(s,X.)ds + 1t b(s,X.)dW. 
to '0 

where the Lebesgue and Ito integrals are determined component by component, 
with the ith component of (8.2) being 

, m t 

xt = xto + 1 ai(s,X,) ds + L: 1 bi,j(s, X,) dWj. 
to ;=1 to 

Analogous definitions of strong and weak solutions apply here, with the result
ing process X t required to be At-measurable. The existence and uniqueness 
theorem for strong solutions, Theorem 4.5.3, carries over verbatim to the vector 
case provided the absolute values in the assumptions and proof are replaced 
by vector and matrix norms, such as the Euclidean norms (1.4.36). Theorems 
4.5.4 and 4.5.5 on estimates for the 2nth order moments and on the continuity 
in a parameter also carryover to the vector context. 

Vector stochastic differential equations arise naturally in systems described 
by vector valued states, some examples of which will be presented in Chapter 
7. They also occur when certain scalar equations not in the form (8.1) are 
reformulated to have this form. For example, when the coefficients of a scalar 
equation also depend explicitly on W, as in 

dYi = a(t, Yi, W,) dt + b(t, Yi, W,) dWt , 

we can rewrite the equation as the 2-dimensional vector SDE 

dX, = dt + dW, ( a(t, X,) ) ( b(t, X,) ) 
o 1 

with state components xl = Yi and Xl = W,. Similarly, we can reformulate 
a second order differential equation disturbed by white noise e, such as 

Y, = a(t, Yi, Y,) + b(t, Yi, Y,){t 

as the 2-dimensional vector stochastic differential equation 

dX, = dt+ dW, ( Xl) (0) 
a(t, X,) b(t, X,) 

with state components xl = Yt and xl = Y,. We observe in this case that 
the scalar process Yi is continuously differentiable whereas its derivative Y, is 
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only continuous, so the vector process X, = (XI,xn is continuous, but not 
differentiable. 

Another situation in which vector stochastic differential equations arise is 
when processes are restricted to lie on certain manifolds, such as the unit circle 
8 1 which is a I-dimensional compact manifold. We saw in Section 4 of Chapter 
3 that a Wiener process on 8 1 satisfies the vector differential equation 

1 [0 -1] dX'=-2'X,dt+ 1 0 X,dWt , 

with the constraint IX,I = 1, where W, is a scalar Wiener process. 
For a sufficiently smooth transformation U : [0, I1x!Rd -+ !Rk of the solution 

X t of (8.1) we obtain a k-dimensional process Yi = U(t,Xt ). This process 
will have a vector stochastic differential which can be determined by applying 
the Ito formula (3.4.6) to each component. The resulting expression is more 
transparent in component form 

(8.3) dY! = ( 8UP + tai8UP +.!. t Ebi'/bi" 82UP ) dt 
at i=1 8zi 2 i,;=1 1=1 8Z i 8Zj 

for p = 1, 2, ... , k where the terms are all evaluated at (t,Xt ). As in the 
scalar case, we can use this formula to determine the solutions of certain vector 
stochastic differential equations in terms of known solutions of other equations, 
for example linear equations. 

The general form of a d-dimensional linear stochastic differential equation 
IS 

m 

(8.4) dX, = (A(t)Xt + aCt»~ dt + L (B'(t)X, + b'(t») dW; 
1=1 

where A(t), B1(t), B2(t), ... , Bm(t) are dxd-matrix functions and aCt), b1(t), 
b2(t), ... , bm(t) are d-dimensional vector functions. When the B' are all iden
tically zero, we say that (8.4) is linear in the narrow-sense and when a and the 
b' are all zero we call it a homogeneous equation. Duplicating the argument 
used for the scalar case in Section 2, we find that the solution of (8.4) is 

(8.5) Xt = ~"'o (Xto + l' ~;':o (a(s) - EBI(S)bl(S») ds 
'0 1=1 

where ~",o is the d x d fundamental matrix satisfying ~to.to = I and the ho
mogeneous matrix stochastic differential equation 
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(8.6) 
m 

d~t,to = A(t)~t,to dt + E B' (t)~t,to dwl, 
1=1 
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which we interpret column vector by column vector as vector stochastic differ
ential equations. Unlike the scalar homogeneous linear equations, we cannot 
generally solve (8.5) explicitly for its fundamental solution, even when all of 
the matrices are constant matrices. If, however, the matrices A, B 1, B2, ... , 
B m are constants and commute, that is if 

(8.7) 

for all k, I = 1, 2, ... , m, then we obtain the following explicit expression for 
the fundamental matrix solution 

~t,to = exp ((A - ~ ~ (BI)2) (t -to) + ~BI (wI - WIo») . 

In the special case that (8.4) is linear in the narrow-sense this reduces to 

(8.8) ~t,to = exp (A(t - to» , 

which is the fundamental matrix of the deterministic linear system 

:i:=A:z:. 

In such autonomous cases ~t,to = ~t-to,O, so we need only to consider to = 0 
and can write ~t for ~t ,0. 

Exercise 4.8.1 Solve the random oscillator equation 

dXt = [~ ~1] X t dt + ( ~2 ) dWt , 

where X t = (Xl, xl) and Wt is a scalar Wiener process, by first showing that 
the fundamental matrix is 

~ = [ c~st 
t smt 

- sin t ] 
cost . 

Exercise 4.8.2 Verify (8.8). 

In the same way as for scalar linear SDEs in Section 2, we can derive vector 
and matrix ordinary differential equations for the vector mean met) = E(Xt ) 
and the d x d matrix second moment pet) = E (xtx,T) of a general vector 
linear SDE (8.4). Recall that for d-dimensional vectors :z: and y, the product 
:z:y T is a d x d matrix with ijth component :z:iyi. Thus pet) is a symmetric 
matrix. We then obtain 
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(8.9) 

and 

(8.10) 
dP 
dt 
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dm dt = A(t)m + aCt) 

m 

= A(t)P + PACt? + LB'(t)PB'(t)T 
1=1 

+a(t)m(t)T + m(t)a(t)T 
m 

+ L (B'(t)m(t)b'(t)T + b'(t)m(t)T B'(t) + b'(t)b'(t)T) , 
'=1 

with initial conditions m(to) = E (Xto) and P(to) = E (XtoX,:). 

Exercise 4.8.3 Derive equations (8.9) and (8.10). 

Exercise 4.8.4 Solve the ordinary differential equations (8.9) and (8.10) 
corresponding to the 2-dimensionallinear SDE 

[ 0 -1] dX, = -2Xt dt + 1 0 X t dWt , 

where X, = (Xl, Xl) T and W, is a scalar Wiener process. 

Exercise 4.8.5 Solve the scalar SDE 

1 1 2 dXt = -'2X, dt + X, dW, + X t dWt , 

where wl and W,2 are independent scalar Wiener processes. 

In the remaining part of this section we shall list several important results 
which we shall use later. The reader may wish to omit it now and refer back 
to it when the results are first used. 

The solution X, ofa vector stochastic differential equation (8.1) is a Markov 
process. Under smoothness conditions on its coefficients, like those in the Ex
istence and Uniqueness Theorem 4.5.3, X, is also a diffusion process with drift 
vector aCt, z) and dx d diffusion matrix D(t, z) = bet, z)b(t, z)T, or in com
ponent form cJi,j(t,z) = L~l bi ,'(t,z)lP(t,z) for i, j = 1, 2, ... , d. The 
transition probabilities then satisfy the Kolmogorov backward equation with 
these coefficients. Generally, the diffusion matrices D are only positive semi
definite rather than positive definite, and this may lead to singularities in the 
transition densities. Many difficulties can thus arise in functional analytical 
investigations of these partial differential equations, but, as we shall see, these 
can often be circumvented by the use of probabilistic methods. An impor
tant situation where this happens is in the verification of that the Kolmogorov 
formula 

(8.11) 

gives a solution of the Kolmogorov backward equation (2.4.7) 
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(8.12) 
ou 
-+Cu=O 
os 
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for ° ~ s ~ T, where C is the elliptic operator (2.4.6), with the final condition 

(8.13) u(T, x) = f(x) 

for a sufficiently smooth function f : lRd -+ ~. 
To be more specific, let C' (lRd,~) denote the space of I times continuously 

differentiable functions w : ~d -+ ~ and C}.(~d,~) the subspace of functions 
w E C'(lRd,!R) for which all partial derivatives up to order I have polynomial 
growth, that is for which there exist constants K > 0 and r E {I, 2, 3, ... }, 
depending on w, such that 

for all y E lRd and any partial derivative ~ w of order j ~ I. Then we have the 
following theorem due to Mikulevicius, which we shall use in the chapters on 
weak approximations. 

Theorem 4.8.6 Suppose that f E C~(")'+1)(lRd, lR) for some r = 1, 2, 3, ... 
and that X t is a homogeneous diffusion process for which the drift vector and 
diffusion matrix components ai, bii E C~(")'+l)(lRd, lR) with uniformly bounded 
derivatives. Then u : [0, T] x lRd -+ ~ defined by (8.11) satisfies the final value 
problem (8.12)-(8.13) with ~~ continuous and u(s,·) E C~(")'+1)(~d, lR) for each 

° ~ s ~ T. 

We remark that the diffusion process may be degenerate here, that is with the 
diffusion matrix vanishing at various points in !Rd. The Ito formula is used 
to show that the function u given by (8.11) is a solution of the Kolmogorov 
backward equation (8.12). It can be used in a similar way under analogous 
smoothness assumptions to show that the Feynman-Kac formula 

(8.14) 

where g is a bounded function, is a solution of the partial differential equation 

(8.15) 
ou 
-+Cu+gu = 0 
os 

with the final condition (8.13) and elliptic operator (2.4.6). 

Exercise 4.8.7 Use the Ito formula to verify that (8.11) satisfies (8.12). 

In nonlinear filtering and other applications we often encounter a "drifted" 
Wiener process X on a probability space (n, A, P) with a filtration A* = {At. 
t E [0, T]}. This is defined by 

(8.16) X t = Xo + 1t A(s)ds + Wt 
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for t E [0, T], where A is an ,A--adapted, right-continuous process and W 
is an ,A--adapted Wiener process with respect to the probabiljty measure P. 
In general X is not a Wiener process with respect to the given probability 
measure, but it is sometimes useful to interpret it as one with respect to another 
probability measure. We can do this by using the Girsanov transformation to 
transform the underlying probability measure P on the canonical sample space 
o = Co ([0 , 11,!R) to an absolutely continuous probability measure Px with the 
Radon-Nikodym derivative 

(8.17) dP ( iT 1 IT ) d; = exp - 0 A(s)dW& - "2 Jo 1 A(s) 12 ds . 

The ,A·-adapted process X turns out then to be a Wiener process on the 
canonical probability space (0, A, Px). A heuristic justification of the formula 
(8.17) will be given in Section 4 of Chapter 6. 

We have already mentioned an ergodic theorem for Markov chains in Section 
6 of Chapter 1 (see (1.6.22». An analogous result also holds for Ito diffusions. 
We say that a d-dimensional Ito process X = {X" t ;::: O} is ergodic if it has a 
unique invariant probability law JJ such that 

(8.18) lim.! l' f (x~·.,) ds = I fey) dJJ(Y), 
t-oo t 0 J.d 

w.p.l, for any JJ-integrable function f : !Rd -10 ~ and any deterministic initial 
condition Xo = x. The following sufficient condition for a process to be ergodic, 
which is quite strong, is due to Hasminski. 

Theorem 4.8.8 Suppose that the drift a and diffusion coefficient b of an 
autonomous Ito process X are smooth with bounded derivatives of any order, 
b is bounded and there exists a constant (J > ° and a compact subset I( C ~d 
such that 

(8.19) 

for all :z: E lRd \ J(. Then X is ergodic. 

Exercise 4.8.9 Show that the I-dimensional Ito process with drift and dif
fusion coefficients a(x) = 1-:z: and b(:z:) = 1 is ergodic. 

4.9 Stratonovich Stochastic 
Differential Equations 

In Chapter 3 we saw that a stochastic differential equation 

(9.1) dXt = aCt, Xc) dt + bet, X,) dWt 

must be interpreted mathematically as a stochastic integral equation 
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(9.2) x, = X'o + l' a(s,X.)ds+ l' b(s,X.)dW. 
to to 

where the second integral is a stochastic integral. Apart from a brief discussion 
in Section 5 of Chapter 3, we have so far taken a stochastic integral to be 
an Ito stochastic integral, in which case we could call (9.1) an Ito stochastic 
differential equation. 

With different choices of stochastic integrals we would generally obtain dif
ferent solutions for the above integral equation, which would justify our saying 
that we have different stochastic differential equations, even though they have 
the same coefficients. Of all these integrals, the one proposed by Stratonovich, 
in which the integrand is evaluated, essentially, at the midpoint !(tJn) + t)~l) 
of each partition subinterval [t)n), t)".:.\], is the most appealing because it alone 
satisfies the usual transformation rules of classical calculus. If we use the Strat
onovich stochastic integral, it is appropriate to say that we have a Stratonovich 
stochastic differential equation. We shall denote it by 

(9.3) dXt = get, X,) dt + bet, X,) 0 dWt 

or 

(9.4) X t = X'o + 1.' g(s, X.) ds + 1.' b(s, X.) 0 dW., 
to to 

and reserve (9.1) and (9.2) for the Ito case. 
In Section 5 of Chapter 3 we defined the Stratonovich integral only for 

integrands of the form f(t,w) and h(Wt(w». Since there is a slight ambiguity 
as to how this should be extended to integrands of the form h(t, Xt(w» for a 
function h = h( t, z) and a diffusion process X t , we shall define the Stratonovich 
integral 

(9.5) lT h (s, X.(w» 0 dW. 

to be the mean-square limit of the sums 

N 

(9.6) Sn(w) = Lh (tt),4 (Xt(n) +Xt(R»)) {Wt(R) - Wt(ft)} 
j=1 3 3+1 J+l 3 

for partitions 0 = t~n) < t~n) < ... < t~nJ1 = T with 

6(n) = max It<n+)1 - t<n)l-+ 0 as n - 00. 
1:Si:Sn J J 

Alternatively, averaging h(t, X,) over its values at the endpoints tt) and t)~l 
will give the same value if h is sufficiently smooth. To ensure that the limit 
exists, we need to impose some restrictions on h and X t. Let W = {Wt, t ~ O} 
be a Wiener process with an associated family {At, t ~ O} of increasing (7-

algebras. We shall suppose that X t is a diffusion process in !R for 0 ~ t ~ T 
with continuous drift a = a(t,z) and diffusion coefficient b = b(t,z), and that 
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h: [0, T]x!R -+ ~ is continuous in t with the partial derivative ~ continuous in 
both t and z. Finally, we shall suppose that the function f defined by f(t,w) = 
h(t,X,(w» belongs to the function space £f, defined in Section 2 of Chapter 
3, which in particular requires X, to be A,-measurable for each ° ~ t ~ T and 

Under these conditions the above limits exist and are unique, w.p.l, so the inte
gral (9.5) is meaningful. Moreover the identity (3.5.5) with A = 1/2 generalizes 
to 

(9.7) loT h(t, X,) 0 dW, = loT h(t, X,) dW, + 4 loT 6(t, X,) ~~ (t, X,) dt 

or, equivalently, in differential form 

(9.8) 
1 oh 

h(t,X,) 0 dW, = h(t, X,) dW, + '2 6(t, X,) oz (t, X,) dt. 

The proof is similar. Using the Taylor Theorem and the Mean Value Theorem, 
we have 

h (tt),~ (X,~,,) +X,wJ) - h (t~n),X,~ .. ») 

= 4 :~ (t~n), ~ (2 - OJ)X,}R) + OjX,wJ ) {X'WI - X,~ .. )} 

for some (random) OJ E [0,1] for j = 1,2, ... , n. Since X, is a diffusion process 

lJ&X,<.,,) = X,< .. ) - X,< .. ) 
J HI i 

= a (t~n), x,~ .. ») lJ&tt) + 6 (t~n), x,~ .. ») .6.W,~ .. ) 

+ higher order terms, 

where lJ&t~n) = t)~l - t~n) and lJ&W,~,,) = W'WI -W,~ .. ) for j = 1, 2, ... , n. 

Thus each term in the sum (9.6) equals 

( (n») 1 oh I h tj , X,~.) .6. Wla) + 2 8" .6.X,~.) lJ& W,~ .. ) 
J J Z Ii J J 

( (n») 1 oh I ( (n) ) ( ) 2 = h tj ,X,(,,) .6.W,(a) + 28 6 tj ,X'<.") .6.W,~a) 
J J Z 'i J J 
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+ higher order terms, 

where 

Taking into account the continuity of the coefficients and the facts that 
E(.6.W,<.al)2 = at}n) and E(.6.t}n) .6.Wt (al) = 0, we obtain (9.7) in the mean-

J J 

square limit. 
From property (3.2.9) of Ito integrals we have 

(9.9) 

Such a property is not, generally, enjoyed by the Stratonovich integral. Taking 
expectations of both sides of (9.7) and using (9.9), we obtain 

which need not be zero. 
When the diffusion process X, satisfies an Ito SDE (9.1), we see from (9.8) 

with h == b that X t is also a solution of the Stratonovich SDE 

(9.11) dXt = ~(t, X,) dt + bet, X,) 0 dWt 

with modified drift j! defined by 

1 8b 
j!(t, z) = aCt, z) - 2 bet, z) 8z (t,z). 

Exercise 4.9.1 Let yt = U(t,X,), where X, is a solution of the Stmtonovich 
SDE (9.9) and U(t, z) is sufficiently smooth. Apply the Ito formula to the 
corresponding Ito SDE (9.1) and show that 

dyt = 

where all of the functions are evaluated at (t, X,), 

The two stochastic differential equations (9.1) and(9.11) have the same co
efficients if the diffusion coefficient b is independent of z, that is when the noise 
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appears additively. In general the drift terms will differ. For example, the 
diffusion process 

is a solution of the Ito SDE 

(9.12) dX, = aXt dt + bX, dW, 

and of the Stratonovich SDE 

dX, = (a - ~ 62) X, dt + bXt 0 dW,. 

If we start with the Stratonovich SDE (9.3), then the corresponding Ito 
SDE is 

(9.13) dX, = a(t,X,)dt + b(t,X,)dW, 

with the drift modified to a defined by 

1 8b 
a(t,z) = !!(t,z) + 2 b(t,z) 8z(t,z). 

For example, the diffusion process 

X, = X'o exp (a(t - to) + b(W, - Wto» 

is ~ solution of the Stratonovich SDE 

(9.14) dXt = aX, dt + bXt 0 dW, 

and of the Ito SDE 

dXt = (a + ~ b2 ) X t dt + bXt dW,. 

The Ito and Stratonovich linear SDEs with the same drift and diffusion 
coefficients, (9.12) and (9.14) respectively, thus have distinct solutions. More
over, these solutions may behave quite differently; for example, convergence to 
0, w.p.l, as t --+ 00 holds for the Ito solution if a < !b2 , but only if a < 0 
for the Stratonovich solution. How we interpret a stochastic differential equa
tion may thus have critical consequences, which must be borne in mind when 
constructing models involving stochastic differential equations. 

Whichever interpretation of an SDE is deemed appropriate in a particu
lar situation, we can always switch to the corresponding SDE in the other 
interpretation when this is advantageous. For instance, we can use the ex
istence and uniqueness results of Section 5 for an Ito SDE (9.13) to obtain 
analogous results for the corresponding Stratonovich SDE (9.11). Similarly we 
must use the corresponding Ito SDE to determine the appropriate coefficients 
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of the Fokker-Planck equation for a diffusion process arising as the solu tion of a 
Stratonovich equation. On the other hand the Stratonovich stochastic calculus 
obeys the same transformation rules of classical calculus, so methods that have 
been developed to solve ordinary differential equations can sometimes be used 
successfully to solve Stratonovich SDEs. 

Exercise 4.9.2 Determine and solve the Stratonovich SDE correponding to 
the Ito SDE 

To conclude this section we state without proof the vector analogues of 
the above relationships between Ito and Stratonovich stochastic integrals and 
differential equations. In particular we take X, to be a solution of the vector 
Ito stochastic differential equation 

(9.15) dX, = a(t, X,) dt + bet, X,) dW, 

where a, X E ~d, b E ~dxm and W E ~m. For a dxm matrix valued function 
h we define a d-dimensional vector valued function c = c(t, X) componentwise 
by 

. 1 d m. ohi,lc 
c'(t,X) = 2 EEb',Ic(t,X) oz. (t,X), 

j=lk=l J 

for i = 1, 2, ... , d. Then the Ito and Stratonovich integrals of h(t,X,) are 
related by 

or in equivalent differential form 

h(t, X,) 0 dW, = h(t, X,) dW, + c(t, X,) dt. 

With h == b it follows that the Stratonovich SDE corresponding to the Ito SDE 
(9.15) is 

(9.16) dX, = ~(t, X,) dt + bet, X,) 0 dW, 

where the modified drift is defined componentwise by 

~i(t,X) = ai(t, X) - ci(t, X) 

To obtain the Ito SDE corresponding to a given Stratonovich SDE we must 
modify the drift to 

aCt, X) = ~(t, X) + c(t, X), 

now adding rather than subtracting the correction term. 
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Exercise 4.9.3 Detennine the vector Stratonovich SDE describing a 
Wiener process on the unit circle, that is corresponding to the vector Ito SDE 

1 [0 -1] dX, = -2 x, tit + lOX, dWt , 

with the constraint IXtl = I, where Wt is a scalar Wiener process. 

Unlike in the scalar case, the vector Ito and Stratonovich SDEs may now have 
the same drift term when the diffusion coefficients depend on X. 

Example 4.9.4 The drift correction term c(t, X) == 0 in 2-dimensional 
SDEs involving a scalar Wiener process occurs, for instance, when the diffusion 
coefficient b = (b1, b2 ) satisfies 

b1(%1' %2) = -b2 (%lJ %2) = %1 + %2· 



Chapter 5 

Stochastic Taylor Expansions 

In this chapter stochastic Taylor expansions are derived and investigated. They 
generalize the deterministic Taylor formula as well as the Ito formula and allow 
various kinds of higher order approximations of functionals of diffusion pro
cesses to be made. These expansions are the key to the stochastic numerical 
analysis which we shall develop in the second half of this book. Apart from Sec
tion 1, which provides an introductory overview, this chapter could be omitted 
at the first reading of the book. 

5.1 Introduction 

Deterministic Taylor expansions are well known. We shall review them here 
using terminology which will facilitate our presentation of their stochastic coun
terparts. To begin we shall consider the solution X t of a I-dimensional ordinary 
differential equation 

(1.1) 

with initial value X to , for t E [to, 1') where 0 ~ to < T. We can write this in 
the equivalent integral equation form 

(1.2) x, = X'o + 1t a(X,) ds. 
to 

To justify the following constructions we shall require the function a to satisfy 
appropriate properties, for example to be sufficiently smooth and to have a 
linear growth bound. Let I : !R - !R be a continuously differentiable function. 
Then by the chain rule we have 

(1.3) 

which, using the operator 

(1.4) 

d 8 
d/(Xt ) = a(X,) 8z / (Xt ), 

8 
L=a-, 

8z 
we can express as tbe integral relation 

I(X,) = I(X,o) + 1t LI(X,) ds 
to 
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for all t E [to,T]. When I(x) == x we have LI = a, L21 = La, ... and (1.5) 
reduces to 

(1.6) X t = Xto + It a(X6) ds, 
to 

that is to equation (1.2). 
If we now apply the relation (1.5) to the function I = a in the integral in 

(1.6), we obtain 

(1.7) X t = Xto + 1: (a(xto ) + 1: La(Xz ) dZ) ds 

Xto + a(Xto) It ds + It 16 
La(Xz) dz ds, 

to to to 

which is the simplest nontrivial Taylor expansion for X t . We can apply (1.5) 
again to the function I = La in the double integral to derive 

(1.8) X t = Xto + a(Xto) It ds + La(Xto) It 16 
dz ds + R3 

to to to 

with remainder 

(1.9) 

for t E [to, 11. For a general r + 1 times continuously differentiable function I : 
~ ..... ~ this method gives the classical Taylor lormula in integrallorm: 

(1.10) 

for t E [to, 11 and r = 1, 2, 3, .... 
The Taylor formula (1.10) has proven to be a very useful tool in both 

theoretical and practical investigations, particularly in numerical analysis. It 
allows the approximation of a sufficiently smooth function in a neighbourhood 
of a given point to any desired order of accuracy. This expansion depends on 
the values of the function and some of its higher derivatives at the expansion 
point, weighted by corresponding multiple time integrals. In addition, there is 
a remainder term which contains the next multiple time integral, but now with 
a time dependent integrand. 

To expand the increments of smooth functions of Ito processes, for instance 
in the construction of numerical methods, it is advantageous to have stochastic 
expansion formulae with analogous properties to the deterministic Taylor for
mula. There are several possibilities for such a stochastic Taylor formula. One 
is based on the iterated application of the Ito formula (3.3.6), which we shall 
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call the Ito- Taylor expansion. We shall indicate it here for the solution X, of 
the I-dimensional Ito stochastic differential equation in integral form 

(1.11) X, = Xto + 1t a(X.)ds + l' b(X,)dW, 
'0 '0 

for t E [to, T], where the second integral in (1.11) is an Ito stochastic integral and 
the coefficients a and b are sufficiently smooth real-valued functions satisfying 
a linear growth bound. Then, for any twice continuously differentiable function 
/ : ~ --+ ~ the Ito formula (3.3.6) gives 

for t E [to, T]. Here we have introduced the operators 

(1.13) 

and 

(1.14) Ll-b~ - ax· 
Obviously, for lex) == x we have LO / = a and Ll/ = b, in which case (1.12) 
reduces to the original Ito equation for X" that is to 

(1.15) X, = X'o + 1.' a(X,) ds + 1t b(X,) dW,. 
to '0 

In analogy with the above deterministic expansions, if we apply the Ito formula 
(1.12) to the functions / = a and / = bin (1.15) we obtain 

(1.16) X t = X'o 

+ 1.' (a(X,o) + r LOa(X.;) dz + l' L 1a(X.;) dW,,) ds 
to lto to 

+ 1.' (b(Xto) + l' LOb(X.,) dz + l' L1b(X,z) dWz) dW, 
to 10 '0 

= X'o + a(Xto ) 1t ds + b(Xto ) l' dW. + R 
to to 
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with remainder 

This is the simplest nontrivial Ito-Taylor expansion. We can continue it, for 
instance, by applying the Ito formula (1.12) to f = LIb in (1.16), in which case 
we get 

(1.17) x, = x'o + a(X,o) 1.' ds + b(Xto) 1.t dW, 
to to 

+LIb(Xto) 1.t 1.' dWz dW, + R 
to to 

with remainder 

R = 1.tl' LOa(Xz)dZdS+1.t 1.' LIa(Xz)dWzds 
to to to '0 

In Section 5 we shall formulate the Ito-Taylor expansion for a general function 
f and arbitrarily high order. Nevertheless, its main properties are already 
apparent in the preceding example. In particular, we have an expansion with 
the multiple Ito integrals 

1., ds, 
'0 

1., dW" 
'0 1.t 1.' dWz dW, 

to to 

and a remainder term involving the next multiple Ito integrals, but now with 
nonconstant integrands. The Ito-Taylor expansion can, in this sense, be inter
preted as a generalization of both the Ito formula and the deterministic Taylor 
formula. 

We sha.ll now consider another representation for the increments of a func
tion of an Ito process X, which we shall call the Stratonovich- Taylor expansion. 
For this we start with the I-dimensional Stratonovich stochastic differential 
eqpation in integral form 

(1.18) Xt = Xto + 1.t ~(X.) ds + ft b(X,) 0 dW, 
to 1'0 
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for t E [to, 71, where the second integral in (1.18) is a Stratonovich stochastic 
integral and the coefficients 11 and b are sufficiently smooth real valued functions 
satisfying a linear growth bound. From Chapter 4 we recall that when 

1 bb' a,=a-'2 

the Ito equation (1.11) and the Stratonovich equation (1.18) are equivalent and 
have the same solutions. We know from Exercise 4.9.1 that the solution of a 
Stratonovich SDE transforms according to the deterministic chain rule, so for 
any twice continuously differentiable function f : !R - !R we have 

(1.19) it a 
f(X,) = f(Xto ) + H(X')-a f(X.) ds 

to Z 

i t a 
+ b(X')-a f(X,) 0 dW. 

to Z 

for t E [to, 71, with the operators 

(1.20) 

and 

(1.21) L 1 - bi!.
- - az' 

Obviously, for f(z) == z we have LO f = .!! and Il f = b, in which case (1.19) 
reduces to the original Stratonovich equation 

(1.22) X t = Xto + it 1!(X,)ds + it b(X,) 0 dW,. 
to to 

Analogously with the Ito case just considered, we can apply (1.19) to the inte
grand functions f = 1! and f = bin (1.20). This gives 

(1.23) X t = Xto 

+ it (H(Xto ) + l' LOH(Xz) dz + l' L1H(Xz ) 0 dWz) ds 
to to to 

+ it (b(Xto) + l' LOb(Xz) dz 
to to 

+ 1: L1b(Xz) 0 dWz) 0 dW, 

X'o + H(Xto ) it ds + b(Xto ) it odW. + R 
to to 
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with remainder 

R = 1.t 1.' 1£°f!(Xz) dz ds + 1t l' 1£lf!(Xz) 0 dWz ds 
to to to to 

+ 1.t 1.' 1£°b(Xz) dz 0 dW, + 1t l' 1£1b(Xz) 0 dWz 0 dW,. 
to to to to 

This is the simplest nontrivial Stratonovich-Taylor expansion of I(Xt ). We can 
continue expanding, for instance, by applying (1.19) to the integrand f = 1£1b 
in (1.23) to obtain 

X t = X/a + f!(X,o) 1t ds + b(Xto ) It odW, 
to to 

+1£1b(Xto) It I' odWz 0 dW, + fl 
to to 

with remainder 

fl = It l' L,°f!(Xz ) dz ds + It I' I./f!(Xz ) 0 dWz ds 
to to to to 

+ l' 1'1z .Il1£lb(Xu) 0 dWu 0 dWz 0 dW •. 
to to to 

In Section 6 we shall formulate the Stratonovich-Taylor expansion for a gen
eral function I and arbitrarily high order. It will be similar to the Ito-Taylor 
expansion, but instead of multiple Ito stochastic integrals it will involve multi
ple Stratonovich stochastic integrals. While it appears formally similar to the 
Ito-Taylor expansion, the Stratonovich-Taylor expansion will be seen to have 
a simpler structure which makes it a more natural generalization of the de
terministic Taylor formula and more convenient to use in stochastic numerical 
analysis. 

Similar expansions hold for multi-dimensional Ito processes satisfying 
nonautonomous stochastic differential equations. In the following sections we 
shall refer to the nonautonomous d-dimensional Ito equation 

(1.24) 
t m It 

Xt=Xto + 1 a(s,x.) ds + E /J(s,x,)dwl to j=1 to 
for t E [to, T) and the equivalent Stratonovich equation 

(1.25) Xt = Xto + It f!(S, X,) ds + tIt /J (s, x.) 0 dwl 
~ j=l ~ 
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for t E [to, T], where 

1 m d {}bi,i 
f1i = ai - - LLbk,i_-k 

2 ;=1 k=1 {}z 
(1.26) 

for i = 1,2, ... , d. In both of these SDEs W = {Wt , t E [0, T]} is a standard m
dimensional Wiener process adapted to an increasing family of sub-u-algebras 
{At, t E [0, T]}. 

5.2 Multiple Stochastic Integrals 

In this section we shall introduce some notation to allow us to formulate Ito
Taylor and Stratonovich-Taylor expansions in a way that will considerable sim
plify the presentation and proofs. 

Multi-indices 
We shall call a row vector 

(2.1) a = (h,h,··· ,ill, 
where 

(2.2) ii E {O,I, ... ,m} 

for i E {I, 2, ... , I} and m = I, 2, 3, .. " a multi-index of length 

(2.3) 1:= I(a) E {1,2, ... }. 

Here m will denote the number of components of the Wiener process under 
consideration. For completeness we denote by v the multi-index of length zero, 
that is with 

(2.4) I(v) := O. 

Thus, for example, 

1«1,0)) = 2 and 1«1,0,1» = 3. 

In addition, we shall write n( a) for the number of components of a multi-index 
a which are equal to O. For example, 

n«I, 0,1)) = 1, n«O, 1,0)) = 2, n«O,O)) = 2. 

We denote the set of all multi-indices by M, so 

(2.5) M = {(it,h, ... ,il):iiE{O,I, ... ,m},iE{I, ... ,/}, 

for 1= 1,2,3, ... }U{v}. 
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Given a E M with lea) ~ 1, we write -a and a- for_the multi-index in M 
obtained by deleting the first and the last component, respectively, of a. Thus 

-(1,0) = (0), 

-(0,1,1) = (1,1), 

(1,0)- = (1), 

(0,1,1)- = (0,1). 

Finally, for any two multi-indices a = (it, h, ... , ill:) and a = 01, }2, ... , ),) 
we introduce an operation * on M by 

(2.6) 

the multi-index formed by adjoining the two given multi-indices. We shall call 
this the concatenation operation. For example, for a == (0,1,2) and a = (1,3) 
we have 

a*a=(0,1,2,1,3) and a*a=(1,3,0,1,2). 

Exercise 5.2.1 Determine lea), n(a), -a and a- fora = (0,0,0), (2,0,1) 
and (0,1,0,0,2). 

Multiple Ito Integrals 
To begin we shall define three sets of adapted right continuous stochastic pro
cesses 1= {J(t), t ~ O} with left hand limits. The first set, 1tv , is the totality 
of all such processes with 

(2.7) I/(t,w)1 < 00, 

w.p.1, for each t ~ 0; the second, 1t(O), contains all those with 

(2.8) 1t I/(s,w)lds < 00, 

w.p.1, for each t ~ OJ and the third, 1t(1), all those with 

(2.9) 1t I/(s,wWds < 00, 

w.p.1, for each t ~ 0. In addition we write 

(2.10) 

for each i E {2, ... , m} if m ~ 2. Below we shall define the sets 1t0/ for 
multi-indices a EM with length lea) > 1. 

Let p and r be two stopping times with 

(2.11) 0:5 pew) :5 r(w) :5 T, 

w.p.1. Then, for a multi-index a = (il, h, ... , i,) EM and a process I E 1t0/ 
we define the multiple Ito integral 10/ [/(, )]P,T recursively by 
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{ 
I(r) 

(2.12) Ia[/(·)]p,T := f; Ia-[/(·)]p" da 

f; Ia-[/(·)]p" dW!' 

1 = 0 

1 ~ 1 and j, = 0 

1 ~ 1 and j, ~ 1. 

For a = (it, h, ... , j,) with 1 ~ 2 we define recursively the set 1la to be 
the totality of adapted right continuous processes I = {/(t), t ~ O} with left 
hand limits such that the integral process {Ia-[/(·)]p,t. t ~ O} considered as a 
function of t satisfies 

(2.13) 

As an illustration of this terminolgy we consider the following examples: 

Iv [/O]o,t = I(t), 

l(o)[f(·)]T;,T;+l = 1~;+1 I(a) da, 

1(1) [/(·)]p,T iT I(s) dwi, 

l(o,I)[/O]o,t 1t 1'2 I(sd ds1dW,12 

1(0,2,1) [/O]o,t = it 1'31'2 I(ad ds1dW;2dW,13 

for an appropriate process I. For simpler notation in the case that I(t) == 1, or 
when the stopping times p and r are obvious from the context, we shall often 
abbreviate l a [/(·)]p,T to l a ,T or just 100 . 

Exercise 5.2.2 Write out in lull the multiple Ito stochastic integrals 
Ia[f(·)]p,T lor I(t) == 1, p = 0, r = T and a = (0,0,0), (2,0,1) and (1,2). 

Relations Between Multiple Ito Integrals 
There is a recursive relationship for multiple Ito integrals, which we shall now 
derive. For convenience we write 

(2.14) l a ,t = Ia [1]o,t 

and 

(2.15) WtO =t 

for a E M and t ~ 0, and recall that IA denotes the indicator function of the 
set A. 
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Proposition 5.2.3 Let h, ... , il E to, 1, ... , m} and (}" = (h, ... , il) E 
M where I == 1, 2, 3, .... Then 

(2.16) Wlla ., = 

for all t ~ O. 

I 

+ L:IU;=i¢O} 1(11 ....• 3;_1.0 .3;+1 •...• ;,).t 
i=l 

Proof We consider the multi-dimensional linear Ito process X = {X" t ~ 
O} defined by 

X(O) 
t 

X!m) 

X(i1.i2) 
t 

Xt = 

X(i1.h.ia) , 

X~il •.... ir) 

= 

l(m).t 

l(ilJ2).' 

where each component represents a multiple Ito integral. Here for the pth 
component with p = UL ... , i~) the drift coefficient 

i~ = 0 
otherwise 

and the diffusion coefficient 

{ 
xfJ-

lI·i = 0 
i=i:E{I, ... ,m} 

otherwise, 

where p- = (it, ... , ir-d and xfJ - is the corresponding component of x. 
Obviously Xo is the zero vector. Then, from (2.12) and the Ito formula (3.4.6) 
it can be shown that 

(2.17) Wlla •t = l(i).t l a.t 

l' la .• dl(j) .• + 1t 1(j) •• la- .• dw!r 

+l{jr=#O} 1t la-.s ds. 
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For I = 1 the relation (2.16) follows directly from (2.17). When I ~ 2 we obtain 

wllOl •t 

from (2.17) and (2.12). The assertion (2.16) then follows by induction with 
respect to I if we express l(n.8101- .• in terms of (2.16) for lower indices. 0 

Formula (2.16) describes a relation between different multiple Ito integrals. 
In the special case that the multiple integrals are all integrated with respect to 
the same component of the Wiener process it reduces to a simpler expression 
provided by the following corollary. 

Corollary 5.2.4 Suppose that (} = (it, ... , j,) with j1 = ... = j, =j E {O, 
... , m} where I ~ 2. Then for t ~ 0 

(2.18) I _ 7! { 
~t' 

OI.t - 1 i 
T (Wt IOI-.t -tI(OI-)-.t) 

j=O 

j~l 

Proof The case j = 0 follows from the usual deterministic integration rule. 
For j E {I, ... , m} the relation (2.16) gives 

1-2 

(2.19) tIc ) t="'I(· '0' .) a- -, ~ 11, .. ,,'i, ,'i+l,·.,,"-2 It and 
i=O 

1-1 

(2.20) Wi I t - II t + '" 1(· . o· .) t a-, - a, L.J Jl,· .. ,Ji-l, ,.1;+I, .. "JI-l ,t· 
i=1 

On renumbering and inserting (2.19) into (2.20) we get (2.18) for j E {I, ... , 
m} too. 0 

The recursion formula (2.18) for j E {I, ... , m} has the same form as that 
for the Hermite polynomials. Using this we can express the multiple integrals 
l(i.i ..... n.t as a Hermite polynomial in I(;).t for any j E {I, ... , m}. In particular 
we have 

(2.21) lu.n.t ;! (I[n. t - t) , 
lu.i.n.t ;! (IU).t - 3t Im. t ) , 

lu.i.i.n.t 1 ( 4 2 2) 4! I(;).t - 6t I(;).t + 3t , 

IU,;.i.i.n.t 1(5 3 2) 5! Im •t - lOt l(j).t + 15t l(j).t , 

IUJ.i.i.i.j).t ~! (/(n. t - 15t 10).t + 45t2 1U).t - 15t3 ) , 

IU.iJ.i.i.i.j).t ;! (i{;).t - 2lt Itn.t + 105t2 I(;).t - 105t3 l(j).t) . 
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For any j E {I, ... , m} we also have the following special cases of the relation 
(2.16): 

(2.22) t l(j),t = l(j,o),t + l(oJ)," 

t l(j,i),t = l(j,j,o),t + l(j,oJ),t + l(oJJ),t, 

lU),tl(O,j)" = 21(oJ,j),t + lU,o,j)" + 1(0,0),1, 

l(i),t I U,O),t = lU,oJ),' + 2IU,j,O)" + l(o,o),t. 

We remark that there are many other useful relations between multiple Ito 
integrals, which can be derived as required. These mainly involve multiple Ito 
integrals with multi-indices of the same or shorter length. 

Exercise 5.2.5 Show that the multiple Ito integmls la with multi-indices a 
= (0,1), (1,1) and (1, 1, 1) can be expressed in terms of those with multi-indices 
(0), (1) and (1,0). 

Exercise 5.2.6 Find expressions for the multiple Ito integrals la with multi
indices a = (0,1), (1,1), (1,1,1) and (1,1,1,1) in terms of those with multi
indices (0), (1) and (1,0). 

Exercise 5.2.7 Show that 1(1,0) is normally distributed with mean, variance 
and correlation 

Multiple Stratonovich Integrals 
We shall denote by 11.." and 11..(0) the sets offunctions 9 : ~+X~d -+!R for which 
g(.,X.) E 1l" and g(., x.) E 'fl(0), respectively, where X = {Xt , t ~ o} is a d
dimensional Ito process which satisfies the Stratonovich stochastic differential 
equation (1.25). In addition for j E {I, ... , m} we define~) to be the set of 
differentiable functions 9 : !R+ x ~d -+ ~ such that g(., x.) E 'fl(j) and 

(2.23) 1t Il/g(s,X.)1 ds < 00, 

w.p.l, for each t ~ 0, where 

(2.24) 

Below we shall define recursively sets 11..a for multi-indices a of length lea) ~ 
2. Let p and r be two stopping times with 

(2.25) 0$ pew) $ r(w) $ T, 
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w.p.I. Then for any j E {I, ... , m} and 9 E Jiv) the relationship between Ito 
and Stratonovich integrals can be written as 

(2.26) iT g(s,X.) 0 dW! 

lT . lT 1 . 
p g(s,X.)dW;+I{j;to} p '2 llg(s,X.)ds 

= I(j)[g(.,X]p,T + I{j;to}I(o) [~lig(.,X)] . 
p,T 

To formulate a recursive definition of multiple Stratonovich integrals we 
shall adjoin to the given d-dimensional Ito process X, which satisfies the Strat
onovich equation 

(2.27) 
f m t 

X t = Xp + 1 ,g(s,X.)ds + E l lJ (s,x.) 0 dW!, 
P j=1 p 

a (d + l)th and (d + 2)th component 

(2.28) 

for some it, h E {O, 1, ... , m}. Here odW~ = ds, t E [p, r] and the function 9 is 
chosen so that the integrals exist. Interpreting X now as a (d + 2 )-dimensional 
Ito process, it then follows from (2.26) that 

(2.29) xt+2 = it i·~ g(s, X.J 0 dW!1 0 dW!: 

it X:: 1 dwl: + ~I{j~;tO} it I{it=h}9(S, x.) ds 

it i·~ g(Sl, x.1) dW!: dW!: + % it i·2 I{jl;to}Lil g(Sl,X • .)dsl dwl: 

I1t +'2 p I{jl=h;tO}g(S1,X. 1 )ds1 

for each t E [p, r]. From this we have 

(2.30) J(jl ,h) [g( ., X )]p,t = I(jl,h)[g(·, x. )]p,f 
1 . 

+'2 I{j.;to}I(o,h) [Iii g(., X)] p,t 

1 
+'2 I{it=h;tO}I(o) [g(., X. )]p,t . 
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Then for two such stopping times, a multi-index a = (il, ... , i,) E M and 
a function 9 E 11.Ot we define the multiple Stratonovich integral JOt[g(·,X)]p,T 
recursively by 

1=0 

(2.31) JOt[g(·,X)]P,T = f; JOt_[g(·,X)]p" ds { 

g(r,XT) 

1 ~ 1, i, = 0 

f; JOt_[g(·,X)]p" 0 dWj' 

Here we also define recursively the set 11.Ot for a = (il, ... , i,) with 1 ;::: 2 as 
the set of all functions 9 : ~+ x!Rd -4 !R for which 

(2.32) 

and 

(2.33) 

Using (2.31), (2.26) and (2.29) we obtain a relationship between the multiple 
Ito and Stratonovich integrals lOt and JOt for a = vor a = (it, ... ,if) E M. 
We distinguish the three cases: 1= 0, I = 1 and I ;::: 2. 

(2.34) JlI [g(.,X)]p,T = 11I[g(.,X.)]p,T = g(r,XT), 

J(il)[g(·,X)]p,T = IUd[g(·,X)]p,T + l{jl~o}l(o) Hl/19("X)] , 
p,T 

and 

JOt[g(·, X)]P,T = IUd [JOt-[g("X')]P"]P,T 

+I{iI=iI_l~o}I(o) [4 J(Ot_)_[g(.,x.)]p,.] 
p,T 

for I ;::: 2. 

Remark 5.2.8 It follows from (2.34) that any multiple Stratonovich integral 
JOt can be written as a finite sum of multiple Ito integrals Ip with 

{ 
= 1(f3) + n(f3) : I( a) even 

l(a) + n(a) 
~ 1(f3) + n(f3) : l( a) odd. 

To simplify the notation when g( t, :J:) == 1, or when the stopping times p and r 
are obvious, we shall often write JOt [g(., X. )]p,T as JOt,T or just JOt. Then from 
(2.34) we have 

(2.35) 

for l(a) E {O, I}, 
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for lea) = 2, 

1 
J a = Ia + 2 (I{il=h~O}I(oJs) + I{j2=js~o}I(h,O» 

for lea) = 3, and 

1 
Ia + 4 I{;'=i2~o}I{j3=j#o}I(o,o)' 

1 +2 (I{;'=h~O}I(o,j3,j~) + I{h=j:s~o}I(jl,o,j~) + I{j3=j~~o}I(jl'h.o») 
for lea) = 4. 

Exercise 5.2.9 Verify {2.95}. 

Similarly, we have 

(2.36) 

for lea) E {O, I}, 

for l(a) = 2, 

1 
Ia = Ja - 2 (I{;'=h~O}J(O,ia) + I{j2=j3~O}J(jl'O») 

for lea) = 3, and 

1 
Ja + 4 I{jl=j2~o}I{j3=j~~O}J(O,O) 

for lea) = 4. 

Relations Between Multiple Stratonovich Integrals 

There is a recursive relationship for multiple Stratonovich integrals analogous 
to that for multiple Ito integrals (2.16) when the integrand is identically equal 
to 1. In order to state it succinctly we shall use the abbreviation 

(2.37) 

and, as before, write 

(2.38) 

Then, for a E M and t ~ 0 we have 

Propostion 5.2.10 Let jt, ... , j, E {O, 1, ... , m} and a = (it, ... , it) E 
M where I = 1, 2, 3, .... Then 
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, 
(2.39) W/J .-'"'J(j ... ')t t a)~ - L..i 1, ... ,Ji",Ji+l,··"J, t 

;=0 

for all t ~ O. 

We note that (2.38) has a simpler structure than the corresponding relation 
(2.16) for multiple Ito integrals. 

Proof Since transformations of solutions of Stratonovich equations satisfy 
the deterministic chain rule, we find that 

(2.40) 

for X, = (Xl, xl), where 

( Xl) I' ( blj (X ) ) . I' ( 0 ) . 
(2.41) Xl = Jo O' odWf + Jo b2j,(X.) OdW!' 

for bl ; == 1 and b2;,(X.) = Ja -,. with a = (il,'" ,j,) EM, I ~ 1. From this 
we obtain 

(2.42) wI JOI" = JOI*(j),t + l' Ja-" wj 0 dWj', 

where * is the concatenation operation on multi-indices (2.6). For I = 1 this 
reduces to 

(2.43) 

which is just (2.39). The proof for I ~ 2 then follows by induction from (2.42). 
o 

The next corollary, which is a direct consequence of (2.39), gives a clear 
indication of the simpler structure offered by multiple Stratonovich integrals 
when compared with its counterpart for multiple Ito integrals, Corollary 5.2.4. 

Corollary 5.2.11 Suppose that a = (it, ... , i,) with it = ... = i, = i E 
{O, ... , m} where I ~ O. Then for t ~ 0 

(2.44) Ja,t = TI (J(j),t)' . 

For later use we now state some special cases of (2.39): 

(2.45) t J(j),t = J(j,O),t + J(oJ),', 

t J(j,;),t = J(j,;,O),t + J(j,oJ),t + J(oJ,n", 

J(j)" J(oJ),t = 2J(0,;,n,t + J(j,o,n,', 

J(j),tJ(j,O),t = J(j,O,j)" + 2J(j,j,0),t, 
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where j E {O, 1, _ .. , m}. These are simpler than the relations (2.22) for the 
corresponding multiple Ito integrals. 

As with multiple Ito integrals it is also possible to express multiple Strat
onovich integrals in terms of others with multi-indices of the same or shorter 
length. 

Exercise 5.2.12 Show that the multiple Stratonovich integrals Ja with 
multi-indices a = (0,1), (1,1) and (1,1,1) can be expressed in terms 01 those 
with multi-indices (0), (1) and (1,0). 

5.3 Coefficient Functions 

In this section we shall introduce functions which will be needed later in defining 
the coefficients of stochastic Taylor expansions. We shall consider the Ito and 
Stratonovich cases separately. 

Ito Coefficient FUnctions 

We shall write the diffusion operator for the Ito equation (1.24) as 

(3.1) 

and for j E {I, ... , m} introduce the operator 

(3.2) 
_ d . () 

£3 = Lbk']--k' 
k=1 ax 

For each a = (it, ... , ir) and function I E Ch(3?+ X 3?d, 3?) with h = I( a) + 
n(a) we define recursively the Ito coefficient function 

(3.3) la = { ~'/_a 1=0 

I> 1. 

If the function I is not explicitly stated we shall always take it to be the identity 
function I(t,x) == x. For example, in the I-dimensional case d = m = 1 for 
I(t, x) == x we have 

1(0) = a, 1(1) = b, 1(1,1) = bb' 

and 
F - b' 1 b2b" J(O,l) - a +"2 . 

Here the prime I denotes the ordinary or partial derivative with respect to 
the x variable, depending on whether or not the function being differentiated 
depends only on x or on both t and x. 
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Exercise 5.3.1 For the I-dimensional case with I(x) == x determine the Ito 
coefficient functions 1(1,0) and 1(1,1,1) 

To facilitate the construction of Ito-Taylor expansions we shall now list the 
Ito coefficient functions in the autonomous case d = 1 with I(:r;) == :r; for all 
multi-indices a of length lea) ~ 3. To simplify our presentation we shall use 
the abbreviation 

(3.4) 

From (3.3) we can show for iI, h, ia e {I, ... , m} that 

(3.5) 

1(0,0,0) 

1(0) = a, l(jd = lit, 
# '+" J(O,O) = aa ua, 

a (aa" + (a')2 + u' a" + ua"') 

+u ( aa'" + 3a' a" + u" a" + 2u' alii + ua( 4») , 

# = a (a'lI t' + alit" + u'lIt" + ullt"') J(O,O,;I) 

+u (a"lI t ' + 2a'lIt" + aliI'" + u"lIt" + 2u'lIt'" + ulJt (4») , 

# • = IJt «a')2 + aa" + u' a" + ua"') J (jt ,0,0) , 

'('" "') Ii(j . 0) = bJl a bJ3 + a bJ2 1132, , 

Thus the coefficients a and b here must be at least 4 times continuously differ
entiable. 

Exercise 5.3.2 Verify the lormulae in (9.5) and determine l(jt,h,jsJ.) lor 
iI, ... , i4 e {I, ... , m}. 
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Stratonovich Coefficient Functions 

Here we shall need the operators 

(3.6) 
d 

o f) E 1: f) L. =-+ g-at f)z1: 
1:=1 

and 

(3.7) 

for j E {I, ... , m}, where 

(3.8) 
I Em .. a=a-- LJII - 2-

;=1 

For each a = (it, ... , ill and function I E Ch(!J?+ x~d,~) with h = lea) we 
define recursively the Stratonovich coefficient function 

(3.9) 
1=0 

I ~ 1. 

When the function I is not explicitly stated in the text we shall always take it 
to be the identity function I(t, z) == z. We remark that the Stratonovich coef
ficient functions generally do not contain as many higher order derivatives as 
the corresponding Ito coefficient functions. For example, in the I-dimensional 
case d = m = 1 for the identity function I(t, z) == z we have 

and 

40,1) = [!b' = (a - ~bb') b'. 

In contrast, we saw earlier that the Ito coefficient function 1(0,1) corresponding 
to the last of these is equal to ab' + !b2b". 

Exercise 5.3.3 For the I-dimensional case with f(t, z) == z determine the 
Stratonovich coefficient functions 41,0) and 41,1,1)" 

We shall now list the Stratonovich coefficient functions in the autonomous case 
d = 1 with I(z) == z for all multi- indices a of length lea) :$ 3. These follow 
from (3.9) and will be useful later when we construct Stratonovich -Taylor 
expansions: 

(3.10) 1(. ) = bil, - 'I f =!!!J:.', .:!..(o,O) 

4.; - UI1.i2' .. )-Irlr, 
I,J~ 
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f = n (a"lJil + a'1Ji11) f _ = IJil (a a" + (al)2) 
-(O,h,O) .... - - , L(h,O,O) - - , 

where iI, h, is E {I, ... , m}. We note that the functions .G and b here need 
only be three times continuously differentiable, compared with four times for 
their counterparts in the corresponding Ito coefficient functions. 

Exercise 5.3.4 Verify the formulae in (9.10) and determine f_ • ••• ) for 
L{jl.J2"h.J. 

iI, ... , i4 E {I, ... , m}. 

5.4 Hierarchical and Remainder Sets 

The multiple stochastic integrals appearing in a stochastic Taylor expansion 
with constant integrands cannot be chosen completely arbitrarily. Rather, the 
set of corresponding multi-indices must form an hierarchical set. 

We call a subset .A. C M an hierarchical set if A is nonempty: 

(4.1) A;f 0; 

if the multi-indices in A are uniformly bounded in length: 

(4.2) 

and if 

(4.3) 

sup I(Q) < 00; 
ae..4 

- Q E.A. for each Q E A \ {v}, 

where v is the multi-index of length zero (see (2.4». Thus, if a multi-index Q 

belongs to an hierarchical set, then so does the multi-index -Q obtained by 
deleting the first component of Q. 

For example, the sets 

{v}, {v, (0), (I)}, {v,(O),(I),(I,I)} 

are hierarchical sets. 
If we form a stochastic Taylor expansion for a given hierarchical set, then 

the remainder term involves only those multiple stochastic integrals with multi-
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indices which belong to the corresponding remainder set. For any given hier
archical set A we define the remainder set SeA) of A by 

(4.4) SeA) = {a E M \A: -a E A}. 

This means that the remainder set consists of all ·of the next following multi
indices with respect to the given hierarchical set. It is constructed by adding a 
further component taking all possible values at the beginning of the "maximal" 
multi-indices of the hierarchical set. For example, when m == 1 we have the 
remainder sets 

8 ({v}) = {(O), (In, 8 ({ v, (0), (I))) = {(O, 0), (0,1), (1,0), (1, I)} 

and 
8 ({ v, (0), (1), (1, I)}) = {(O, 0), (0, 1), (1, 0), (0,1,1), (1,1, I)}. 

Exercise 5.4.1 Which of the following sets are hierarchical sets: 

0, {(On, {v,(I)}, {v,(O),(O,I)}, {v,(O),(I),(O,I)}? 

Exercise 5.4.2 Determine the remainder sets corresponding to the hierar
chical sets in Exercise 5.4.1. 

Exercise 5.4.3 Are the sets 

(4.5) rr = {a EM: 1(0') ~ r}, 

where r = 1, 2, ... , hierarchical sets'! 

Exercise 5.4.4 Determine the remainder set 8(r r) for the r r in Exercise 
5.4.9 which are hierarchical sets. 

Exercise 5.4.5 Are the sets 

(4.6) Ar = {a EM: 1(0') + neal ~ r}, 

where r = 1, 2, ... , hierarchical sets? 

5.5 Ito-Taylor Expansions 

We shall now state and prove the Ito-Taylor expansion for a d-dimensional Ito 
process 

(5.1) X, = X'o + 1t a(s, X.) ds + t 1t 1Ji(s, X.) dW!, 
to j=l to 

where t E [to, T], using the notation introduced in the preceding sections. 

TheoreDl 5.5.1 Let p and T be two stopping times with 
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(5.2) to ~ peW) ~ T(W) ~ T, 

w.p.l; let A c M be an hierarchical set; and let f : lR+ x ~ -+ lR. Then the 
Ito-Taylor expansion 

(5.3) f(r,XT) = L 10 [jo(p,Xp)]P,T + L 10 [fo(-,X.)]p,T' 
oE..4 oEB(..4) 

holds, provided all of the derivatives of f, a and b and all of the multiple Ito 
integrals appearing in (5.9) exist. 

We shall prove Theorem 5.5.1 at the end of this section by an iterated appli
cation of the Ito formula. 

If we apply the Ito-Taylor expansion (5.3) in the case d = m = 1 for f(t,x) 
== x, p = to, T = t and the hierarchical set 

A={O'EM: 1(0')~3} 

to the autonomous Ito process X, with drift a(x) and diffusion coefficient b(x), 
then we obtain the following expansion: 

(5.4) X, = X'o + a 1(0) + b 1(1) + (aa' + ~ b2a") 1(0,0) 

+ (ab' + 4 b2b") 1(0,1) + ba'l(l,O) + bb'l(l,l) 

+ [a (aa" + (a')2 + bb' a" + 4 b2a"') + 4 b2 (aa'" + 3a' a" 

+ «b')2 + bb") a" + 2bb' a"') + .!. b4 a( 4)] 1 4 (0,0,0) 

+ [a (a'b' + ab" + bb'b" + ~ b2b"') + 4 b2( a"b' + 2a'b" 

+ab'" + «b')2 + bb") b" + 2bb'b'" + .!. b2b(4»)] 1 . 2 (0,0,1) 

+ [a (b' a' + ba") + .!. b2 (b" a' + 2b' a" + balll )] 1 2 (0,1,0) 

+ [a «b')2 + bb") + 4 b2 (b"b' + 2bb" + W")] 1(0,1,1) 

+b (aa" + (a')2 + bb'a" +.!. b2a"') 1 2 (1,0,0) 

+b (ab" + a'b' + bb'b" + .!. b2blll ) I 2 (1,0,1) 

+b (a'b' + a"b) 1(1,1,0) + b «b'? + bb") 1(1,1,1) + R. 
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Here we have used the abbreviations introduced in the previous sections. 
The following example shows how the Ito-Taylor expansion reduces to the 

Ito formula. We take the hierarchical set A = {v}, where v denotes the multi
index of length zero (see (2.4», which has the remainder set 

(5.5) B( {v}) = {CO), (1), ... , (m)}. 

Then (5.3) takes the form 

(5.6) I(r, X'T) = Iv [tv(p, Xp)]p,'T + E Ia [/aL X.)]p,'T 
aE8({v}) 

which is obviously the Ito formula. In this case the expansion part contains 
only the single term I(p, Xp) and the remainder only the multiple Ito integrals 
of multiplicity one. 

The Ito-Taylor expansion can, in a sense, be considered as a generalization 
of the deterministic Taylor formula. To illustrate this fact we shall consider 
the I-dimensional case with d = 1, I(t, x) = I(x), a = 1, b = 0, p = ° and r 
= t E [0, T]. This means that we are considering the situation where the Ito 
process reduces to the time variable, that is with 

(5.7) X t = t for all t E [O,T]. 

From (3.1)-(3.3), the Ito coefficient functions with multi- indices a = (iI, ... , 
j,) thus vanish if any ji ~ 1 and the others are given by 

(5.8) 

Here we assume that I E Coo and write 1(1) for its Ith derivative. For each I = 
0, 1, ... we take the hierarchical set 

(5.9) r , = {a EM: I(a) $ I} 

and the corresponding remainder set 

(5.10) B(r,) = {a EM: I(a) = I + I} 

(see Exercises 5.4.3 and 5.4.4). Then, from the definition of multiple Ito inte
grals (2.12), we have 

1t 1-2 Ia [/(X.)]to,t = ... l(sI) dS l .•. dSII: 
to to 

for 0 $ to $ t < 00 and multi-indices a = {it, ... , j,,} with it = ... = ill: = 
0, k = 1, 2, ... and I E lla . Using (5.7)-(5.10), for each k = 0, 1, ... the Ito-
Taylor expansion (5.3) here is then 
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(5.11) f(t) = f(Xto) + E fa [fa(Xto)]to,t + E fa [Ja(X·)]to,t 
aEr,,\{tI} aEB(r,,) 

= t 1t ... 1.'3 j<i)(Xto) dS 1 ••• dSi 
i=O to to 

+1t ···1'3 j<k+1)(X'1)dsl ... dS1c+l 
to to 

This is obviously a version of the usual deterministic Taylor expansion. 
The most important property of the Ito-Taylor expansion is the fact that it 

allows a sufficiently smooth function of an Ito process to be expanded as the sum 
of a finite number of terms represented by multiple Ito integrals with constant 
integrands and a remainder which consists of a finite number of other multiple 
Ito integrals with nonconstant integrands. This expansion is characterized by 
the particular choice of the hierarchical set. In practical situations there are 
usually sufficiently many degrees of freedom to choose the hierarchical set in 
an appropriate way. We shall use the Ito-Taylor expansion later to construct 
time discrete approximations of an Ito process. 

Exercise 5.5.2 Detennine the truncated 1to-Taylor expansion, that is with
out the remainder tenn, in the autonomous case with d = m = I, J(t, x) == x, 
p = 0 and T = t E [O,T] Jor the hierarchical set A = {v, (0), (I), (1, I)}. 

Exercise 5.5.3 Detennine the truncated 1to- Taylor expansion Jor the 
Ornstein- Uhlenbeck process (that is with d = m == I, aCt, x) = -x and bet, x) 
== I, see Exercise 1.7.2) Jor J(t, x) == x, p = 0 and T = t E [0, T] and the 
hierarchical set r, Jor each I == I, 2, ... defined in (5.9). 

We shall now prove the Ito-Taylor expansion by an iterated application of 
a slightly more general version of the Ito formula than we derived in Section 3 
of Chapter 3. To begin we shall formulate this generalized Ito formula in terms 
of the notation of the present chapter. 

Lemma 5.5.4 Let p and T be two stopping times with 

(5.12) to ~ pew) ~ T(W) ~ T, 

w.p.1, and let J : ~+ x ~d _" ~ belong to the class C1,2. Then the following 
version of the Ito Jonnula holds 

m 

(5.13) 



5.5. lTD-TAYLOR EXPANSIONS 185 

Proof For each stopping time p with to ::; P ::; T < 00, w.p.1, the process 
{XtAp , t ~ to} is a semi-martingale (see Ikeda and Watanabe (1989». Thus 
from the Ito formula for semi-martingales and from (2.12) and (3.1)-(3.2) it 
follows for all t ~ T that 

(5.14) l(p,Xp) = l(t/\P,X'Ap) 
m 

= l(to,Xto) + LIU) [Lj 1(·,X)]'o,'AP 
j;::;O 

m 

l(to,X,o) + "" I(j) [Lj I("X)], . L...J o,P 
j;::;O 

We subtract this from (5.13) to obtain 

m m 

l(r,Xr) - I (p,Xp) = LI(j) [Lj 1(·,X)]'o,r - LI(j) [Lj 1("X)],o,P' 
j;::;O j;::;o 

m 

LI(j) [Lj 1(·,X)]p,r' 
j;::;O 

which proves the lemma. 0 
We recall from (2.6) the concatenation operation * which adjoins two multi

indices. 

Lemma 5.5.5 Let p and T be two stopping times with 

(5.15) to ::; p(w) ::; r(w) ::; T, 

w.p.l; let I : ~+ X ~d -+ !R; and let a, {3 E M with 1({3) ~ 1. Then 

m 

(5.16) Ia [lp("X')]p,r = Ia [lp(p,XP)]p,r + LI(j)*a [J(j)*p(.,X)]p,r' 
j;::;O 

provided Ip E lla and all 01 the derivatives and multiple stochastic integrals 
appearing in (5.16) exist. 

Proof We shall prove this formula by induction on l(a). 
For lea) = 0 we have a = v. Hence it follows from (2.12), Lemma 5.5.4, 

(3.3) and (2.6) that 

(5.17) Ia[Jp(·,X')]p,r = Ip(r,Xr) 
m 

Ip (p,Xp) + LIm [Lj Ip(·,X)]p,r 
j;::;O 

m 

Ia[/.B(p,XP)]p,r + LI(j)*a [J(j)*p(.,X)]p,r· 
j;::;O 
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Now let lea) = k ~ 1, where a = (h, ... , j/c). Then, from (2.12) and the 
inductive assumption we have 

(5.18) la [Jp("X')]P,T = IU/o) [IOl- [(fp(-,X)]P,L.T 

= l(j,,) [IOl- [(fp(p,Xp)]P,L'T 

m 

+ EI(j,,) [1(j).Ol_ [f(j).p(·,X»)p,] 
j=O p,T 

m 

+ EI(j).Ol [Jej).p(·,X)]P,T' 0 
j=O 

Proof of Theorem 5.5.1 We shall prove this theorem by induction on 

(5.19) Il(A) = sup lea). 
OlEA 

For It (A) = 0 we have A = {v} with the remainder set 

B(A) = {(O), (1), .. " (m)}. 

It follows then from Lemma 5.5.4 with (2.12) and (3.3) that 

f(r,XT) = ElOl(fOl(p,Xp)]p,T+ E IOl[fOl(-,X)]p,T' 
OlEA OlE B(A) 

Now let It (A) = k ~ 1. If we set 

E = {a E A: lea) ~ k - 1}, 

which is an hierarchical set, then by the inductive assumption we obtain 

(5.20) f(r,XT)=LlOl(fOl(p,Xp)]p,T+ E IOl(fOl("X')]p,T' 
OlE£ OlEB(£) 

Since A is an hierarchical set with ll(a) = k, it follows from (4.3) and (4.4) 
that 

(5.21) A \E ~ B(E). 

For (J = a E A \ E the assumptions of Lemma 5.5.4 hold, so we can rewrite 
(5.20) as 

f(r,XT) = LlOl[fOl(p,Xp)]p,T+ E IOl[JOl(-,X)]p,T 
OlE£ OlEA\£ 

+ L la [fa(·,X)]P,T 
OlEB(£)\(A \£) 
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+ L [101 [/01 (p, Xp)]p,,. + t l(j)oI<OI [J(j),,0I(-, x.)] p,,.] 
OIEA\£ j=O 

+ L 101 [/OI(-,X.)]p,,. 
OIE13(£)\(A \£) 

Now because of (4.4) we have 

B, = [B(£) \(A \C)j U [jQHj).a EM, a EA \C}] 

[{ a E M \ £ : -a E £} \ {a E M \ £ : a E A}] 

U{aEM:-aEA\£} 

{a E M \ A: -a E £} U{a E M \ A: -a E A \ £} 

{aEM\A:-aEA} 

8(A). 

This completes the proof of Theorem 5.5.1. 0 

5.6 Stratonovich-Taylor Expansions 

187 

We shall now formulate the Stratonovich-Taylor expansion for the d- dimen
sional Ito process 

(6.1) X t = X'o + 1t a(s, X.) ds + t l' tJ (s, x.) dw1 
~ j=1 ~ 

l ' m t 
X'o + !!(s, x.) ds + L 1 tJ (s, x.) 0 dw1, 

~ j=1 ~ 

where t E [to, 71. For this we shall use the terminology that was introduced in 
the preceding sections. 

Theorem 5.6.1 Let p and T be two stopping times with 

(6.2) to ~ P ~ T ~ T < 00, 
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w.p.l; let I : lR+ x lRd --+ lR; and let A c M be an hierarchical set. Then the 
Stratonovich-Taylor expansion 

holds, provided all 01 the derivatives 01 I, a and b and all of the multiple 
Stratonovich integrals appearing in (6.9) exist. 

We shall give an indication of the proof of the theorem at the end of the section. 

Let us apply the Stratonovich-Taylor expansion in the case d = m = 1 for 
f(t,x) == x, p = to, T = t and the hierarchical set 

A = {a EM: l(a) ~ 3} 

to an autonomous Ito process. Then we obtain the expansion 

(6.4) X t = Xto + J!J(O) + b J(I) + !MI.' J(O,O) + g.b' J(O,I) + b!!' J(I,O) 

+bb' J(I,I) + g. (.!!G" + (!!')2) J(O,O,O) + iI (ilb" + iI'b') J(O,O,I) 

+,g (!A" b + !A' b') J(O,I,O) + b (aa" + (,g')2) J(I,O,O) 

+,g (bb" + (b')2) J(O,I,I) + b (,gb" + db') J(1,O,I) 

+b (g"b + db') J(1,I,O) + b (W' + (b')2) J(I,I,I) + R, 

where we have used previously introduced abbreviations. Compare this with 
the corresponding Ito-Taylor expansion (5.4). 

If we take the hierarchical set A = {v} and its remainder set 

8 ({v}) = HO),"" (m)}, 

then we obtain from (6.3) 

= f(p,Xp ) + iT L.°/(s,X.) ds 

+ f: 1t Ii f(s, x.) 0 dW!, 
j=1 to 

which is the Stratonovich counterpart to the Ito formula and is similar to the 
deterministic chain rule. It is easy to see that (5.3) reduces to the deterministic 
Taylor formula, as in (5.11), in the I-dimensional case where a == 1 and all of 
the ~ == O. Thus the Stratonovich-Taylor expansion can also be regarded as 
a generalization of the deterministic Taylor formula. It allows us to expand a 
sufficiently smooth function of an Ito process as the sum of a finite number of 
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terms involving multiple Stratonovich integrals with constant integrands and 
a remainder term consisting of a finite number of other multiple Stratonovich 
integrals with nonconstant integrands. Like the Ito-Taylor expansion, it is also 
characterized by the choice ofthe hierarchical set. However, for the same hier
archical set the Ito-Taylor expansion usually involves higher order derivatives 
of /, a and b than does the Stratonovich- Taylor expansion. Because of its 
analogous structure to the deterministic Taylor expansion, the Stratonovich
Taylor expansion seems to be a more natural generalization of it than is the 
Ito-Taylor expansion. Consequently, the Stratonovich-Taylor expansion may 
sometimes be more convenient for, amongst other things, the investigation of 
numerical schemes. 

Exercise 5.6.2 Determine the troncated Stmtonovich- Taylor expansion for 
the hierarchical set A = {v, (0), (1), (1,1)} in the case d = m = 1, /(t,x) == 
x, p = 0 and T = t E [0,11-

Exercise 5.6.3 Determine the truncated Stmtonovich- Taylor expansions for 
the hiemrchical sets r, as defined in (5.9), where I = 1, 2, ... for the function 
/(t,x) == x and the Ornstein-Uhlenbeck process (for which d = m = 1, a(t,x) 
= -x and bet, x) == 1). Compare the result with the corresponding 1to-Taylor 
expansions from Exercise 5.5.9. 

The Stratonovich-Taylor expansion is proved by an iterated application of the 
Stratonovich formula (6.5) using the following lemma. The concatenation op
eration * here simply adjoins the two multi-indices (see (2.5». 

Lemma 5.6.4 Let p and T be two stopping times with to :5 p :5 T :5 T < 
00, w.p.l; let / : ~+ x ~d -+ !R; and let a, f3 E M with 1(f3) ~ 1. Then 

holds, provided that tfJ E 1la and that all of the multiple Stratonovich integrals 
and all of the derivatives appearing in (6.6) exist. 

Proof The proof is analogous to the proof of Lemma 5.5.5 for Ito-Taylor 
expansions, except that here we need to use the definitions of multiple Strat
onovich integrals (2.31) and of Stratonovich coefficient functions (3.9). 0 

The proof of Theorem 5.6.1 is then an easy consequence of Lemma 5.6.4. It 
mimics that of Theorem 5.5.1 for the corresponding Ito-Taylor expansion, so is 
omitted. 

Exercise 5.6.5 Write out full proofs for Lemma 5.6.4 and Theorem 5.6.1. 
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5.7 Moments of Multiple Ito Integrals 

For applications of stochastic Taylor expansions it is often necessary to esti
mate the multiple stochastic integrals appearing in the remainder terms. In this 
section we shall derive several estimates of moments of multiple Ito stochastic 
integrals, which we shall use later in the construction of time discrete ap
proximations of Ito processes. These estimates may also be useful in other 
applications of stochastic Taylor expansions. 

Multiple Integrals with Zero First Moments 

To begin we shall show that the first moment of a multiple Ito integral vanishes 
if it has at least one integration with respect to a component of the Wiener 
process. This means that not all of the components of the multi-index 0' are 
equal to 0, which is equivalent to the condition 

1(0') "I n(O'). 

This property is thus a generalization of property (3.2.9) of the Ito integral. 

Lemma 5.7.1 Let 0' E M\ {v} with lea) "I n(O'), let I E 'HOI and let p and 
r be two stopping times with to ~ P ~ r ~ T < 00, w.p.l. Then 

(7.1) 

Proof In the proof we shall use properties of local martingales, details of 
which the reader can find in Ikeda and Watanabe (1989). In view of (2.12) we 
can write 

(7.2) E (101 [f(')]P,T ! Ap) = E (101 [f(·)l{'~T}] p,T ! Ap) . 

When 0' = (it, ... , i,,) with i" E {I, ... , m} the process 

{ 101 [f(-)If-~T}] p,t ' P ~ t ~ T} 
is a local martingale, so (7.1) holds. On the other hand when 0' = (h, ... , it) 
with ilc = 0 we apply (2.12) and obtain 

(7.3) E(la[f(-)]p'T!Ap) =E(i
T 

101- [f(·)lf-:ST}]p,. dslAp) 

= iT E (101- [f(·)lf-:ST}]p,.IAp) ds. 

Then, if ik-l E {I, ... , m}, the process 

{la_ [!(.)1{'~T}]p,6' p ~ S ~ r} 
is a local martingale and thus (7.1) holds. However, if jt-l = 0 we proceed as 
above until we reach a component of a which is not equal to 0, and then (7.1) 
follows. 0 
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A Second Moment Estimate 

We shall now derive an estimate for the second moment of a multiple Ito integral 
and the covariance of two such integrals. In order to present the result and 
proof in a clear and compact form we shall first introduce some additional 
terminology. 

Given a multi-index a EM, we define a+ to be the multi-index obtained 
from a by deleting all of the components equal to O. For example, if a = 
(1,0,2,1), then we have 

a+ = (1,0,2,1)+ = (1,2,1). 

We shall denote by ko(O') the number of components of a equal to 0 preceding 
the first nonzero component of a or until the end of a if all of its components are 
zeros. In addition, we shall denote by k;(a), for i = 1, ... , I(a+), the number of 
components of a between the ith nonzero component and the (i + 1 )th nonzero 
component or the end of a if i = 1(0'+). Thus, for a = (0,1,2,0) we have a+ 
= (1,2),/(0'+) = 2 and 

ko(a) = 1, kl(O') = 0, kz(O') = 1. 

We shall also use the combinatorial symbol 

(7.4) 
k i! 

C; = k!(i-k)!' 

for k = 0, 1, ... , i and i = 0, 1, ... with the convention that O! = 1. Finally, 
for any a, f3 E M we shall write 

I(a+) 

(7.5) w(a,f3) = l(a+) + L (kj(a) + ki(f3)). 
;=0 

The following lemma is valid for both scalar and vector functions. In the latter 
case (I, g) is the usual Euclidean scalar product. 

Lemma 5.7.2 Let a, f3 E M, let f E 1ia , g E 1if3 and let p and T be two 
stopping times with to $ p $ T $ T < 00, w.p.1, where T is Ap-measurable. 
Then 

{ =< 0 
f{ (T - p)w(a,f3) n'(a+) k;(a) 

J,g w(a, f3)! ;=0 Ck;(a)H.(p) 0'+ = f3+, 

with 

(7.7) where 
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Ck;(a) = (k.(a) + ki(,8))! 
k;(a)+k;(J') ki (a)!ki (,8)! 

Moreover, {7.6} holds with equality when f == g == 1. 

Proof For all a E M with a = a+ = (ii, ... , il), all g E 1ia and I, k. = 0, 
1, ... with i E {O, ... , I} we define recursively the multiple stochastic integrals 

(7.8) Ha+[ko, ... ,k/jg(·)]P,T 

={ 
geT) 
r HI) [ko -ljg(·)]pu du P , 

Now for any g(-,t) E 1i(O,I) and j E {I, ... , m} we have 

1= O,ko = ° 
1= O,ko ~ 1 

I ~ 1 

(7.9) (1 := iT iT g(s,t)dWl dt = iT iT g(s,t)dtdWl =: (2, 

w.p.l, since from the properties of the Ito integral (see Lemma 3.2.2) it can be 
shown that 

The multiple integrals defined in (7.8) satisfy the relation 

(7.10) iT Ha+ [ko, ... , k,- 1 , k,;gOlp,u du 

Ha+ [ko, ... ,k,_l,k, + l;g(')]p,T' 

This follows directly from the definition when I = O. For the case I ~ 1, using 
(7.5) and (7.8), we have 

iT iT (z - u)kr . 
(7.11) (3 = I{UE[P,Z]) k' Ha+- [0, ... , k ,- 1 jgOl p ,u dw~r dz 

p p I· 

In addition, we can show by induction for any a E M and f E 1ia that 

(7.12) 
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When I(a) = 0 we have a = a+ = v, so (7.10) follows from (2.12) and (7.5). 
When I(a) = I 2: 1 for a = (ii, ... , jl) with jl E {I, ... , m} we have (a-)+ 
= (a+)- and kl(O'+) = O. From (2.12), the inductive assumption and (7.5) we 
then obtain 

fO' (fOlp,T = iT f O'_ [/Olp,u dW~ 

r H(O'+)_ [ko(a), ... , kl (O'+)_l(a); /(-)] dW~1 Jp p,u 

= H O'+ [ko(a), .. . ,kl (O'+)_l(a),O;/O] p,T 

Finally, when I(a) = I 2: I for a = (h, ... , il) with il = 0 we have a+ = 
(a-)+ and kl(a+) 2: 1. Then from (2.12), the inductive assumption and (7.10) 
we have 

fO' (fO]P,T = iT Ia_ (fO]p,u du 

r Ha+ [ko(a), ... ,kl(a+)(a)-li/O] du Jp p,u 

Ha+ [ko(a), ... , kl(a+)(a);/OJp,T' 

This completes the proof of (7.lO) 
We shall now prove (7.6) by induction on l(a+) for the case that a+ = /3+. 

For this we shall require the identity 

rio:, k! i! lo:+i+1 
(7.13) Jp (r-u) (u-p) du= (k+i+1)! (r-p) , 

which can be easily shown by integrating by parts. When I(a+) = I(fi+) = 0 
we have a+ = /3+ = v. Hence when l(a+) 2: 1 and l(fi+) 2: 1 it follows from 
(7.5) and (7.8) that 

(7.14) E((Ia[/O]p,T,fp[gO]p,T) lAp) 
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The same result follows in an analogous manner when I(a) = 1(13) = O. Finally, 
when I(a+) = 1(13+) = I 2:: 1 with a+ = 13+ = (it, ... , j,) we obtain from (7.5), 
(7.8) and the inductive assumption 

(( r (r - u).I:/(a) . 
E Jp k,(a)! H(a+)_ [ko(a), ... ,k'-l(a);!(·)]p,u dW~/, 

iT (r~,(J;;(!3) H(p+)_ [ko(f3), ... ,k'-I(f3);9(·)]p,u dW~I) lAp) 

r (r - u).l:I(a)+.I:I(08) 
= Jp k,(a)!k,(f3)! E (( H(a+)_ [ko(a), ... , k'_I(a); !O]p,u , 

H(08+)_ [ko(f3, ... ,k,-1(f3);9(·)]p,u) lAp) du 

r (r - u).l:I(a)+.I:I(p)(u - p)tD(a,{J) '-I .l:i(a) 

< [(/,g Jp k,(a)!k,(f3)!w(a,f3)! du !! C.l: i(a)+.I:i(!3p 

where 
'-1 

w(a,f3) = 1- 1 + L: (ki(a) + ki(f3». 
i=O 

Then, using the identity (7.9), we have 

E ( (la [to]P,T ,108 [g( ')]P,T) lAp) 

(k,(a) + k,(f3» w(a, .8)!( r - p)w(a,p) '11-1 .l:i(a) 

< [(/,g k,(a)!k,(f3)!w(a,.8)!w(a,f3)! i=O C.l:i(a)+.I:i(P) 

(r_p)w(a,p) 1-1 .l:i(a) 

< [(/,g w(a,f3)! !] C.l:i(a)+.I:i({J)' 

where equality holds if ! == 9 == l. 
Finally, it remains to observe that when a+ ::f. .8+ and I (a+) = 1(13+) the 

result follows from (7.5), (7.8) and the properties of the Ito integral. 0 

A Uniform Mean-Square Estimate 

We shall now establish a uniform mean-square estimate for multiple Ito inte
grals, which we shall formulate in a way that is convenient for later purposes. 
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Lemma 5.7.3 Let a E M \ {v}, let 9 E 1i0l , let 6 > 0 and let p and T be 
two stopping times with TAp-measurable and to $ p $ T $ p + S $ T < 00, 

w.p.l. Then 

(7.15) 

where 

(7.16) 

for s E [p, T]. 

Proof We shall prove the assertion by induction on I(a). For lea) = 1 and 
a = (0) it follows from (2.14) that 

(7.17) HT = E C~~~T Ii' g(z) dZr lAp) 

$ E C~~~T (s - p) l' Ig(z)12 dz lAp) 

< E (csl',g(z), 2 dz lAp) 

$ 41(a)-n(a)s'(a)+n(a)-1 iT Rp,z dz. 

On the other hand, when a = (j) for j E {I, ... , m} it is easy, because of 
(2.12), to see that the process 

{ la [g( ')]p,t , t E [p, 1']} 
is a martingale. Hence with the help of the Doob inequality (2.3.7) we obtain 

(7.18) HT = E ( sup 11' g(z) dW1r lAp) 
p5'5T p 

$ 4 sup E (11' g(Z)dW1r lAp) p5-5T p 

< 4 p~~~T1T E (lg(z)12IAp) dz 

< 41(a)-n(a)61(a)+n(0l)-11T Rp,z dz. 
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Now let I(a) = k + 1 where a = (it, ... , jk+d and k 2: 1. If jk+l = 0, then 
(2.12) implies that 

(7.19) HT E (sup I r Ia_ [g(·)]p,z dzl2lAp) 
P~'~T Jp 

< E (6 iT IIa- [gO]p,z 12 dz lAp) 

< 62 E (sup IIa- [g(')]p,,1 2 lAp) . 
P<·<T 

Using the inductive assumption it then follows that 

626'(a- )+n(a-)-14'(a- )-n(a-) iT R dz p,z 
p 

Finally, let jk+l E {l, ... , m}. Then, because of (2.12), the process 

{ Ia fg( ')]p,t , t E [p, T] } 

is a martingale. Hence, using the Doob inequality (2.3.7), we obtain 

(7.20) 

< 4 P~~~T E (Ii' Ia- [gO]p,z dwlk+1 r lAp) 

< 4iT EC~~~T\Ia-[g(·)]p, .. r lAp) dz 

< 46 E (sup IIa- fg( ·)]p, .. 12IAp) . 
P<·<T 

With the inductive assumption we then have 

H T ~ 46 4 ' ( a- )-n( a-) h'( a- )+n( a- )-1 iT Rp,z dz 

41(a)-n(a)6' (a)+n(a)-1 iT Rp,z dz. 

This completes the proof of Lemma 5.7.3. 0 
With the same ideas and using the same notation as in the preceding proof 

it is easy to derive the following estimate which is a slight variation of (7.15). 
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Lemma 5.7.4 Let 0' EM \ {v}, let 9 E 1I.a. let 6 > 0 and let p and T be 
two stopping times with TAp-measurable and to :$ p :$ T :$ p + 6 :$ T < (X) , 

w.p.l. Then 

(721) E (sup II [g(.)] 121A) < 4'(a)-n(a)6,(a)+n(a)_I_ R . a p,6 p - 1{0')1 p,T' 
p~.~T . 

Estimates of Higher Moments 

The next lemma provides an estimate for the higher moments of a multiple Ito 
integral. 

Lemma 5.7.5 Let 0' EM, let 9 E 1I.a , let q = I, 2, ... , let 6 > 0 and let 
p and T be two stopping times with T Ap- measurable and to :$ p :$ T :$ p + 6 
:$ T < (X) , w.p.l. Then 

:$ (2(2q - l)eT )'(a)-n(a) (T _ p)'(a)+n(a) R, 

where 

(7.23) R = (E C~~t Ig(s)1 2q lAp)) 1/q . 

Proof Let 0' = (it, ... , j,), with 1(0') = I, and let W,o = t. Then from (2.12) 
and an assertion on page 78 of Krylov (1980) we have 

Ha,q(p,T) = (E(II£>[9(')]p,TI 2q IAp)r/q 

(E (I[ 1._ 100]" .. dW!:('f IA,) ) 1/. 

X iT (E (II£>- [g(')]P"l rq lAp) ) 1/q dS l 

< (2(2q_l)eT )1-n«ir(D»)(T_ptCCir (D» iT Ha-,q(p,st}ds1 

< (2(2q - l)eT )'(a)-n(a) (T _ p)'(a)+n(a) R, 

which is (7.22). 0 
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5.8 Strong Approximation 
of Multiple Stochastic Integrals 

Multiple stochastic integrals of higher multiplicity cannot always be expressed 
in terms of simpler stochastic integrals, especially when the Wiener process 
is multi-dimensional. Nevertheless it is still possible to represent them in an 
efficient way. Here we shall present one such method for multiple Stratonovich 
integrals based on a Karhunen-Loeve or Fourier series expansion of a Wiener 
process similar to that discussed in Section 4 of Chapter 2. 

Our starting point is the Brownian bridge process (1.8.7) 

{Wt - ~ W~, ° $ t $ A} 
formed from the given m-dimensional Wiener process Wt = (Wl, ... , wtm) on 
the time interval [0, A]. The componentwise Fourier expansion of this process 
is 

(8.1) . t . 1 Loo 
( (2r1rt) . (2T1rt)) W] - -W) = - a· 0 + a· cos -- + b· sm --t A ~ 2 1, 1,r A ],r A 

r=l 

with random coefficients 

(8.2) a' = - W1 - _W1 cos -- ds 21~ ( . s .) (2T1rS) 
),r A 0 8 A ~ A 

and 

(8.3) b 2 r~ (Wi S Wi) . (2T1rS) d 
j,r = A Jo 8 - A ~ sm ~ s 

for j = 1, ... , m and r = 0, 1, 2, .... The series in equation (8.1) is un
derstood to converge in the mean-square sense. As linear transformations of 
Gaussian random variables the coefficients here are Gaussian. Using Exercise 
3.2.7 and property 3.2.10 of Ito integrals it can be shown that ai,r and bi,r are 
N(O; A/21f2 r 2 ) distributed. Similarly, the coefficients are pairwise independent. 

We can then truncate the series in (8.1) to obtain an approximation of the 
Brownian bridge process. For each p = 1, 2, ... we write 

This process has differentiable sample paths on [O,A]. As we shall see in Sec
tion 1 of Chapter 6, Riemann-Stieltjes integrals with respect to such a process 
will converge to Stratonovich stochastic integrals rather than to Ito stochastic 
integrals. 
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Derivation of Multiple Stratonovich Integrals 

Using the relationship (2.39) and the Fourier expansion (8.1) for the Brownian 
bridge we can systematically derive formulae for multiple Stratonovich integrals 
Ja ,: on an interval t E (0,.6.] for multi-indices a of increasing length. In what 
follows we assume i, ill i2 E {I, ... , m} and t E [0, ..6.]. In addition, we shall 
write 

71' 
'Y -- .6.' 

From (2.31) we have 

(8.5) J(O),: = t, 1 2 
J(O,O),t = 2 t , 

1. 1 00 

Jm,' = ..6. Wi J(O)" + 2 aj,O + E (aj,r cos(2-yrt) + bj,r sin(2-yrt», 
r=l 

and hence 

(8.6) J(;,O)" 10' J(j),. ds 

1· 1 
.6. Wi J(O,O)" + 2 aj,oJ(O)" 

.6. 00 1 
+ 211' E ; (a;,r sin(2-yrt) - bj,r [cos(2'Yrt) - 1]) . 

r=l 

In addition, from (2.39) we have 

(8.7) 

Then we find that 

(8.8) 

tOO 

+ 1 E (ah,r cos(2'Yrs) + bh,r sin(2'Yrs» 0 dw1 2 

o r=l 

where 
00 

A(jl,;2) = ~ Er(a;l,rbh,r -bj.,r a;2,r) and 
r=l 
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1 00 00 

F(h,h),t = 4 E Fr(t) + E k Flo,r(t) 
r=l .,r=l 

~olr 

with 

Fr(t) (ah,rah,r - bh,rbh,r)(1 - cos(4'Yrt)] 

+ (ah,rbh,r + bjl,rah,r) sin(4'Yrt) 

2 . 
+;;: Wi~ (ah,r sin(2'Yrt) + bh,r [cos(2'Yrt) - 1]) 

and 

{ cos(2'Y(k + r)t) cos(2'Y(k - r)t) k} 
ah,rah,lo 2(k + r) + 2(k - r) - k2 - r2 

b {sin(2'Y(k + r)t) sin(2'Y(k - r)t)} 
+ah,r hlo 2(k + r) + 2(k - r) 

b. b. {COS(2'Y(k-r)t) _ cos(2'Y(k + r)t) _ r } 
+ Jl,r n,lo 2(k _ r) 2(k + r) k2 - r2 

8. b {sin(2'Y(k+r)t) sin(2'Y(k-r)t)} 
+ 211" h,raj~,lo 2(k + r) - 2(k - r) . 

Continuing in this way we can also obtain, in principle at least, further higher 
order multiple Stratonovich integrals. 

Exercise 5.S.1 Show that 

JO,O,O),t = 
1· 1 
8. Wi J(O,O,O),t + "2 aj,oJ(O,O),t 

-~ f: ~ (aj,r [cos(2'Yrt) - 1] + hj r [_1_ sin(2'Yrt) - t]) . 
21' r=l r 2'Yr ' 2'Yr 

Representation of Multiple Stratonovich Integrals 

Taking t = 8. in (8.5)-(8.8) and corresponding expressions for the multiple 
Stratonovich integrals Jo:,t over the interval [0,8.] we obtain the following for
mulae for the Jo:,~, which we shall write simply as Jo:, for multi-indices a with 
length /(a) ~ 3. Here j, jl, h, h E {I, ... , m}. 

(8.9) 8., 1 2 
J(O,o) ="28. , 

J(O,j) = ~8. (wi - aj,o) ; 
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with 

with 

and 

with 

J(O,O,O) 

Ju,O,O) 

J(O,O,j) 

00 

Ail ,h = ~ E r (ail ,rbh,r - bit ,rah,r) ; 
r=1 

00 1 
b· - ""'-b· . ) - L.J r ),n 

r=1 

1 00 

Bj.J-;, = 2~ E (aj.,raj"r + bj"rbj"r) 
r=1 

1 00 r 
Cil,h = - ~ E r2 -/2 (raj"rah,l + Ibj" .. bh,l); 

r,l=l 
r;tl 

1· 1 1· . 
~ Wi' J(O,h,ia) +"2 ail ,0 JU"h) + 21T bit Wi' Wi3 

-~ W!2 B)·, ;3 + ~ W!3 (! A· . - C· .) + ~3/2 D· .. 
- w y 2 )',)2 )2,), )1,)2,)3 



202 CHAPTER 5. STOCHASTIC TAYLOR EXPANSIONS 

00 00 [ 

+ 2;/2 L L I ah,1 (ai".r-Ibi..r - ait.rbi3.r- l) 
1=1 r=I+1 

+bh,1 (ai..rah.r-I + bit.rbh.r-I) ] 

Similar formulae can also be derived for the multiple Stratonovich integrals 
of higher multiplicity. 

Exercise 5.8.2 Verify formula (8.9) for the Stratonovich integrals of mul
tiplicity 1 and 2. 

Approximate Multiple Stratonovich Integrals 

For each j = 1, ... , m and r = 1, ... , p with p = 1, 2, ... we shall define 
independent standard Gaussian random variables f.i' (j.r, 7]j.r, I'j,p and tPi.p by 

(8.10) f.j = Jx wi, (j,r = If 1rrai,r, 7]j.r = If 1rrbj.r, 

1 00 1 
tPj,p = ...j"lW; L -bj r 

~a r ' p r=p+1 

where 

Using these random variables we can approximate each of the above multiple 
Stratonovich integrals J(h ... il) by expressions J(p. . ) for p = 1, 2, ... , which , , 31, ... J' 
are similar in form to J(h •...• jl). Here we also have j, iI, ja, j3 E {1, ... , m}. 

(8.11) 

J[;.O) = i~ (.;;sej + aj.o) , 
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with 

with 

with 

and 

JP 
(0,0,0) 

J(;,o,O) 

Jfo,oJ) 

J(p. 0 . ) 11, ,12 

J(Po' .) ,11,J2 

1 p 1 
aj,O = -;:v'2Li" L; (j,r - 2"; dpp Pj,p; 

r=l 

= 

= 

1 3 
3!d, 

P _ 1 5/2 1 2 
J(O,j,O) - 3!d {j -;:a bj , 

1 5/2 1 2 1 2 
3!d {j + 4d aj,O + 211'~ bj , 

1 5/2 1 2 1 2 -d e. --d a'O+-~ b· 
3! '" 4 " 211' J 

~ p 1 
bj = V2 L r2fJj,r + ";dOtptPj,p; 

r=l 

-.!. A3/2a · ot. +.-!.. A3/2e. b. 
4 ~ 12, "'1 211' .u. "'1 12' 

cr1J2 = - 2~2 t. r2 ~ 12 (7- (j1,r(h,1 - ~ fJh ,rl1h.) ; 
r,/U 

-Jup· 0 . ) - J(PO' .); 1, ,12 ,11,12 

203 
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111 
...(A eil J{O'hia) + "2 ail ,0 J&"',ia) + 211" J.lbil eh eis 

J.l3/2 C. BP + J.l3/2 c. (.! AP (JI!) + J.l3/2 IJI: 
- .. ,... hJs "'3 2 il,h - hoil hJ ... ois 

with 

+1Jj:r,1 «(h,r(is,r-l + 1Jit,r1Jia,r-l) ], 

where for r > p we set 1Ji,r = 0 and (i,r = 0 for all j = 1, ... , m. 

Exercise 5.8.3 Verify formula (8.11) for the approximate Stratonovich in
tegrals of multiplicity 1 and 2. 

Mean-Square Convergence 
of Approximate Multiple Stratonovich Integrals 

We shall now examine the mean-square error between Jf, and Ja . The most 
sensitive approximation is J&l,h) because the others are either identical to Ja 
or their mean-square error can be estimated by a constant times J.l"l for some 
'Y ~ 3. We have 

(8.12) 
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Now it follows from (8.1)-(8.2) that 

E(aj,rbj,r) = E(aj,rbj,lc) =0, 

E (aj,raj,lc) E (bj,rbj,lc) = 0, 

E(ah,rah,r) E(bj1,rbh,r) = 0 

and 

for j, il, ia = 1, ... , m with r =F k and il =F h. Hence 

(8.13) 

where 

From this and the remark at the beginning of the subsection we can conclude 
that 

(8.14) 

for multi-indices a with I(a) ~ 3 provided.6. is sufficiently small. We note that 

(8.15) 

which provides us with an easily calculated upper bound for the error. Some 
more precise values of Pp are given in Table 5.8.1. 

Table 5.S.1 Some values of the error bound pp. 

We note that there exists a finite constant C such that for sufficiently small 
.6. we have the estimate 

(8.16) 

for the approximate multiple Ito integrals I~ obtained from the corresponding 
approximate multiple Stratonovich integrals Jg as described in (2.35). 
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5.9 Strong Convergence 
of Truncated Ito-Taylor Expansions 

In this section we shall use the estimates derived in the last section to investigate 
the mean-square error of truncated Ito-Taylor expansions. We shall prove that 
they also converge with probability one. 

For k = 0, 1, ... we take the truncated Ito-Taylor expansion 

(9.1) Xt(t) = L 101 [/a(to,Xto)]to.t 
aEAIo 

for t E [to, T], the function I(t, x) == x and the hierarchical set 

(9.2) At = {o: EM: 1(0:) + nCo:) $ k} 

(see Exercise 5.4.5). We shall assume that the necessary derivatives and mul
tiple integrals exist for all 0: E At U B(At). Here we shall always use [a] to 
denote the largest integer not exceeding a. 

Propostion 5.9.1 Suppose that la(to, Xto) E lla lor all 0: E Ak and that 
la(·,X.) E lla with 

(9.3) sup E (1/a(t,Xt )1 2) $ C1C~(a)+n(a) [-21 (1(0:) + n(o:»]! 
to9:S;T 

lor all 0: E B(Ak)' Then 

(9.4) E (IX _ X (t)12) < C (C4 (t - to»t+1 
t k - 3 [!(k+1)]! 

lor all t E [to, T], so the truncated Ito-Taylor expansion (9.1) converges to the 
Ito process X t in the mean-square sense. 

Proof From the Ito-Taylor formula (5.3) and Lemma 5.7.1 we obtain 

(9.5) (E (IXt _ Xt(t)12)) 1/2 

( E ( L la [/01(" X.)]to.t 2)) 1/2 
aEB(Ak) 

L (E (110/ [fO/("X.)]to.tr)) 1/2 

O/EB(A,,) 

< 

< ( +) 1/2 (t _ t )/(O/)+n(a) 1(01 ) 
K 0 Ct;(O/) L J",.J", (1(0:) + n(o:»! n 2k;(a) 

O/EB(A,,) .=0 
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It follows from Lemma 5.7.2 and the definitions of Ak and B(Ak) that we have 
to sum only over those a E B(Ak) for which 

(9.6) ° :5 I(a+) :5 k + l. 
Further, it can be shown that 

(9.7) I(a) + n(a) = I(a+) + 2n(a) E {k + 1, k + 2} 

for all a E B(Ak ). Therefore we have 

n(a) E {4 (k+ 1-I(a+» ,4 (k+2-I(a+»}, 

and, since n(a) is an integer, we must have 

(9.8) 
1 

n(a) = 2 (k + 2 - I(a+» . 

Moreover, the number of elements in B(Ak) is obviously finite. In fact, it has 
the upper bound 

(9.9) 

For k., r. = 0, 1, ... where i E {O, 1, ... , I} and I = 0, 1, ... it follows by 
induction on ko + ro + kl + rl that 

Cko Ckl < Cko+kl 
ko+ro kl +rl - ko+ro+kl +rl 

and, hence, that 

(9.10) 

Thus from (9.5) with (7.7), (9.3), (9.7), (9.9) and (9.10) we obtain 

E (IXt - Xk(t)12) 

< C5 ( E (c~(or)+n(cr) [4 (l(a) + n(a»] !C~(l») 1/2) 2 
crEBCh,,) 

(t - to)"+1 
X (k+1)! 

( [1 [1 ]] 2[t(k+2-1)]!) 
:5 1=~~+2 C5 21 + "2(k + 2 -I) ! ([t(k + 2 _ 1)]!)2 

(C4 (t - t o»"+1 
x (k + 1)! 

:5 C5 (C4~~ ~t~~t+l a(k + 2)]! (2 [4(k + I)]! a(k + 2)]) 2 

(C4(t - to»k+1 
:5 C3 [t(k+1)]! .0 
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We note from the upper bound (9.4) that the mean-square error of the trun
cated Ito-Taylor expansion (9.1) vanishes as k -+ 00, so the expansion converges 
in the mean-square sense to the Ito process. Under additional assumptions this 
can be strengthened to convergence with probability one uniformly on the in
terval [to, 11. 

Propostion 5.9.2 Suppose in addition to the assumptions of Proposition 
5.9.1 that fa(to,Xto), faCX.) E 1la and 

(9.11) 

for all a E M. Then the truncated Ito-Taylor expansion XI:(t) converges with 
probability one as k -+ 00 to X, uniformly in t E [to,11 and 

(9.12) 

w.p.1, for all t E [to. 11. 

Proof We have already noted in (9.9) that the number of elements in B(AI:) 
does not exceed (m + 1 )1:+1. Using this in the truncated Ito-Taylor expansion 
(9.1) and starting from the Ito-Taylor expansion (5.3) we obtain 

V(I:) ._ E ( sup IX, - XI: (t)12) 
'o~9~T 

From Lemma 5.7.4 and the assumptions of the proposition it then follows that 

(9.13) V(I:) < (m + 1)1:+1 E Cl C;(Q)+n(Q)4'(Q)-n(Q) 

aE6(A.) 

(T - to)'(a)+n(a) 

x lea)! 

< 1:+1 "'" (4C2(T - to»'(Q)+n(Q) 
(m + 1) L.J C1 lea)! . 

aEB(A.) 

For each a E B(AI:) we can combine (9.7) with (9.8) to conclude that 

lea) = l(a+) + n(a) 
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1(0:+) + [4 (k + 2 - 1(0:+»] 

1 1 
~ 2/(0:+) + 2(k + 1) 

1 
> 2(k + 1). 

Inserting this in (9.13) we obtain 

(9.14) V(k) ::; C (4(m + I)C2 (T - to»k+ 1 

3 [~(k+l)]' 
d~(k+l)] 

::; C4 [!(k+l)]'· 

The Chebyshev inequality (1.4.14) thus gives 

< 2C ~ ~ (C5 )k 
4 2 L.J kl 

f k=l . 

1 
::; 2C4 2' exp(C5 ) < 00 

f 
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for any f > O. The desired result then follows by an application of the Borel
Cantelli Lemma 2.1.4. 0 

In conclusion we remark that the uniform mean-square error estimate 

(9.15) 

can be deduced from the the preceding proof. 



210 
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Strong Convergence of Truncated 
Stratonovich-Taylor Expansions 

We shall now estimate the mean-square error of truncated Stratonovich-Taylor 
expansions. For Ie = 0, 1, ... we introduce the truncated Stratonovich-Taylor 
expansion 

(10.1) Z:k(t) = E Ja [<L(to,Xto )] 
aEA. to,t 

for t E [to, 11, the function f(t,z) == z and the hierarchical set 

(10.2) Ak = {a EM: lea) + neal ~ Ie} 

for Ie = 0, 2, 4, .... Here the f are the corresponding Stratonovich coefficient 
~ 

functions (see (3.9» and we assume that the necessary derivatives and integrals 
exist for all a E Ak U B(Ak). 

Propostion 5.10.1 Let Ie = 0, 2,4, .... Suppose that L(to, Xio ) E 1ta for 
all a E Ak and that LC·,X.) E 1ta with 

(10.3) to~~~T E (lL(t,Xt)r) ~ Cl C~(a)+n(a) [~(l(a) + n(a»]! 

for all a E B(Ak). Then 

(10.4) E (IXi _ Z,,(t)12 ) ~ C3 (C4;t - to»k+l 

[2(1e + 1)]! 

for each t E [to,1'l 

The proof is completely analogous to that of the corresponding result for trun
cated Ito-Taylor expansions, Proposition 5.9.1, if we use the fact noted in Re
mark 5.2.8 that every multiple Stratonovich integral Ja can be represented as 
a finite sum of multiple Ito integrals IfJ with multi-indices fJ such that 

l(fJ) + n(fJ) ~ lea) + neal. 

The above result can be strengthened to almost sure convergence. 

Propostion 5.10.2 Suppose in addition to the assumptions of Proposition 
5.10.1 that f (to, Xio ), f (., X.) E 1ta and 

~ ~ 

(10.5) 

for all a EM. Then the truncated Stratonovich- Taylor expansion Z k(t) con
verges with probability one as Ie -+ 00 to X t uniformly in t E [to,11 and 

(10.6) X t = lim Z:k(t) = E Ja [f (to,Xto )] , 
k ..... oo --a to,t 

aEM 

w.p.l, fort E [to,11. 
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The proof is similar to that of Proposition 5.9.2, so it will be omitted. 

Exercise 5.10.3 Prove Propositions 5.10.1 and 5.10.2. 

5.11 Weak Convergence of Truncated 
Ito-Taylor Expansions 

211 

Here we shall determine an estimate for the weak error of truncated Ito-Taylor 
expansions. For this we consider the truncated weak Ito- Taylor expansion 

(11.1) 7]p(t) = L Ia (fa (to, X'o)]'o,t , 
aer~ 

for t E [to. 1'], where f I' is the hierarchical set 

(11.2) rp = {a EM: 1(0') ~.B} 

and the fa are the Ito coefficient functions (3.3) corresponding to f(t,z) == z. 
We assume here that the necessary derivatives and integrals exist for all a E 
fp U B (fp). 

We recall from Section 8 of Chapter 4 that C~ (lRd , lR) denotes the space of I 
times continuously differentiable functions 9 : lRd -. lR for which 9 and all of its 
partial derivatives of order up to and including I have polynomial growth. For 
notational simplicity we shall restrict attention to the autonomous case and 
denote by xfo, or simply X t if no misunderstanding is possible, the value at 
time t of the diffusion process X which starts at Xo'at time to = O. We note 
that the coefficient functions fa do not then depend on t, which we shall thus 
omit along with to. 

Propostion 5.11.1 Let.B E {I, 2, ... } and T E (0,00) be given and sup
pose that the drift and diffusion components ale = ale (:c) and blej = blej (:c) 
belong to the space c;JP+1) (!Rd , !R) and satisfy Lipschitz conditions and linear 
growth bounds for Ie = I, 2, ... , d and j = 1, 2, ... , m. Then for each 9 E 
C~(P+1)(!Rd,!R) there exist constants J( E (0,00) andr E {I, 2, ... } such that 

(11.3) 

We shall prove this Proposition at the end of the section after stating and 
proving a series of lemmata. First, we note in comparing Propostion 5.11.1 with 
Proposition 5.9.1 that we do not need to include the same terms in a truncated 
weak Ito-Taylor expansion as in a truncated strong Ito-Taylor expansion in 
order to obtain a given order of convergence. 

In what follows we shall fix .B at the value given in Proposition 5.11.1. We 
shall also denote by J( E (0,00) and r E {I, 2, ... } constants, but these will 
generally differ in value from one occurrence to the next. 
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For t E [0, T] we shall write 

(11.4) 1/t = TJP(t) = E fa [fa (XO)]t , 
ael'.., 

omitting the superfluous to = 0 from (11.1). Then, from the definition (5.2.12) 
of multiple Ito integrals we obtain 

(11.5) 

with dW~ = ds and 

(11.6) b{ = E f a- [fa (XO)]t 
oer..,\{w} 
;'(0)=; 

for j = 0, 1, ... , m, where a = (it, ... ,j'(a». 

Lemma 5.11.2 Under the assumptions of Proposition 5.11.1 for each p = 
1,2, ... there exist constants K E (0,00) and r E {1,2, ... } such that 

(11.7) t:= E C~~~T 1b{129 lAo) :5 K (1 + IXol2r) 

for each q = I, ... , p and j = 0, ... , m. 

Proof Let us fix p and j. From (11.6), the Doob inequality (2.3.7), (11.2) 
and Lemma 5.7.5 we obtain 

:5 J( E E (sup Ifa - [fa (XO)]i9IAo) 
aer..,\{tI} 09:ST 

~ J( E E (If a (XO)129 lAo ) . 
aer..,\{tI} 

From the polynomial growth bound on each fa we then have 

for some r E {I, 2, ... }. D. 
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Lemma 5.11.3 Under the assumptions of Proposition 5.11.1 for each P = 
1, 2, ... there exist constants K E (0,00) and r E {I, 2, ... } such that 

(11.8) E C~~~T l17tl 2q lAo) 5, K (1 + IXo12r) 

for each q = 1, ... , p. 

Proof Let us fix p. Using estimates on page 85 of Krylov (1977), which are 
similar to those in the proof of Theorem 4.5.6, we obtain from (11.5) 

H t := E ( sup l17fl 2q lAo) 
0$-9 

< K (IX,I" + 1.' E (f,lbil"IA,) <Is ) 

< K (IX, I" + 1.' f, E (Ibi I" IA,) d.) 

< K (IX,!" + 1.' f,E (,~~~T l>tl" IA,) d.) 
for each t E [0, T]. It then follows from Lemma 5.11.2 that 

H t < K (IXoI2Q + 1t (1 + IXo12r) dS) 
< K (1+IXoI2r).o 

For more compact notation we shall write 

(11.9) j)1 = {1,2, ... ,d}' 

and 
I 

(11.10) Fp(y) = II yPA 
h=l 

for all y = (yl, ... , yd) and P= (Pl, ... , PI) E P, where I = 1,2, .... Starting 
from (11.5) and (11.10), by a generalization ofthe Ito formul;!. (4.8.3) to semi
martingales (see Ikeda and Watanabe (1989)) we obtain 

(11.11) m 1t 
Fp(17t - Xo) = L &;'..(s)dW! 

j=O 0 

for all t E [0,71, I = 1, 2, ... and p E PI, where 
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(11.12) 
d 

" ",-k' 8 b}(t) = L....J bt ,1 -k Fp(f/t - XO) 
k=1 8y 

for j = I, ... , m and 

(11.13) ~;7cO 8 b~(t) = L....J bt ' -k Fp(f/t - Xo) 
k=1 8y 

LenlIna 5.11.4 Under the assumptions of Proposition 5.11.1 for each p = 
1, 2, ... there exist constants K E (0,00) and r E {I, 2, ... } such that 

for alit E [O,T), q = 0,1, ... , p.22CH1)-1 andpE 11 where I = 1, ... ,2(,8+1). 

Proof Let us fix p. We shall prove (11.14) by induction on I = 1, ... ,2(,8+ 1). 
1. Let I = 1. It follows from (11.10)-(11.13) and the Doob inequality (2.3.7) 
that 

Z(t) < K E (sup f: I r ~..(U)dW~12q lAo) 
0$'51 j=O Jo 

Then, using Lemma 5.7.4 and Lemma 5.11.2 we obtain 

2. Let 1= 2, ... ,2(,8+1). It follows analogously with the preceding step that 

( m d 11' 8 129 
) Z(t) < K E sup ~ ~ b!,j -k Fp(f/u - Xo) dW~ lAo 

0$851 j=O k=1 0 8y 

+K E sup ~ ~ b!,jb~,j k r Fp(T/u - Xo) du Ao ( d mil' 1j2 1
29 

I ) 
O$I$t k,r=1 j=1 0 8y 8y 
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~ I( ?=2: E 1 Ii!,j 8 /c Fp(T/8 - Xo) dw1 Ao m d (I t 8 1211 1 ) 
,=O/C=1 0 Y 

d m (I t 82 
1
2q 1 ) +K 2: 2: E 1 Ii!,j/j;,j Ie r Fp(T/8 - Xo) ds Ao . 

/c,r=1j=1 0 8y 8y 

Using Lemma 5.7.5 we then find that 

[ ( 2 4q ) ]1/2 
X E sup I ~ Fp(T/. - Xo) I lAo t 21J . 

0$'9 8y 8yr 

From Lemma 5.11.2 and the fact that each differentiation reduces the product 
defined by (11.10) by one factor we obtain 

Z(t) ~ K (1 + IXo12r) (_max [E (sup !Fp(T/8 _ XO)1411 lAo)] 1/2) til 
pEPr-l 0$.:9 

Concluding with the induction assumption we finally have 

Z(t) < K (1 + IXo12r) {t lJ(I-I)t lJ + t lJ(I-2)t 21J } 

< K (1 + IXo12r) tIJI. 0 
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The proof of the next lenuna follows inunediately from the estimates (4.5.16) 
and (4.5.11). 

Lemma 5.11.5 Under the assumptions of Proposition 5.11.1 for each p = 
1, 2, ... there exists a constant K E (0,00) such that 

(11.15) 

and 

(11.16) 

for all y E !Rd, t E [0,11 and q = 0, 1, ... , p. 

Lemma 5.11.6 Under the assumptions of Proposition 5.11.1 we have 

(11.11) xfo - 'It = L fa [fa (X~o)Jt 
aeB(r_) 

for all t E [0, T] and f3 = 1, 2, ... , with the remainder set 

(11.18) B (rp) = {o: EM: /(0:) = f3 + I}. 

Proof Using (11.4) we have 

xfo - f], = xfo - Xo - (f], - Xo) 

xfo - Xo - E fa (fa (Xo)], . 
aer_\{v} 

Hence by the Ito-Taylor formula (5.5.3) the increment xfo - Xo satisfies 

xfo - Xo = E Ia (fa (Xo)], + E Ia [fa (X~o)]t· 
aer_\{v} aeB(r_) 

Inserting this expression into our first equation gives (11.1). Finally, the 
assertion (11.18) follows from (5.4.4) and (11.2). 0 

Lemma 5.11.7 Under the assumptions of Proposition 5.11.1 there exist 
constants K E (0,00) andr E {1,2, ... } such that 

(11.19) F(t) .- IE (Fp(XfO - Xo) - Fp{f], - Xo)IAo) I 
< K (1 + IXor) tP+l 

for all t E [0, T], i E P, and I = 1, ... , 2f3 + 1. 
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Proof 
1. Let I = 1. Then i= (k) where k E {I, ... , d}, so by (11.10) and Lemma 
5.11.6 we have 

F(t)=IE(X:-7J:IAo)l= E E(Ia[J!(X~o)]tIAo). 
aEB(r,,) 

According to Lemma 5.7.1 the expectations here are zero for those a with I(a) 
i:- n(a). Examining the remainder set B (rp) given by (11.18) we see that 
only the term with a satisfying I(a) = n(a) = (3 + 1 remains, that is for the 
multi-index a" = (it, .. · ,ifJ+d where it = ... = iP+1 = o. Thus 

F(t) ~ lot ... 10.2 IE (I!. (X~o) lAo) I dS l ... ds fJ+l . 

From the polynomial growth bound on I!. we then have 

F(t) ~ 1t .. ·1&2 J( (1 + E C~~~T jx:ol2r 1040)) ds l ... dsfJ+!· 

Finally, using the moment estimate (4.5.16) we obtain 

(11.20) 

2. For I = 2, ... , 2(3 + 1 we take the deterministic Taylor expansion of the 
function Fp about fIt - Xo obtaining 

'Id d 

F(t) ~ E -; E ... E FIt •..... ltr(t) 
r=l r. Itt=l It r =1 

(11.21) 

where 

(11.22) Fltl ..... A:r (t) = IE ( (X:t - 7J~') ... (x:r - 7J~r) 

x ByA:! ~~ ByA:r Fp(T/t - Xo) lAo) I· 

3. We shall first estimate Fit for k = 1, ... , d. From the definition (11.10) of 
Fp there exists apE P'-l and a q E {I, ... , I} such that 

B 
ByA: Fp> (f/t - Xo) = q Fp'" (f/t - Xo). 

Hence in view of (11.11) 

B ~ltA'. 
-It Fp(f/t - Xo) = q L... Il..,(s) dWl-
By ;=0 0 p 
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We shall use this relation in (11.11), (11.22) and (5.2.12) to estimate 

Fk(t) = E ( z: lex [f! (X:Co)L q t 1t ~(s) dWIIAO) 
exEB(r,,) J=O 0 

~ z: tq IE (fa [I! (X~o)]t l(n [~,oL lAO) I 
aEB(r,,) J=O 

Applying Lemma 5.1.2 we have 

with l(a) = p + 1 (see (11.18», 

K1 = E (sup II! (X;o) 12 lAo) 
O~.~T 

and 

K~ = E (sup liJ,(s)12IAo). 
O~.~T p 

From (11.15) and the polynomial growth bound on la we have 

K1 ~ K (1 + IXoI2r). 

Then, using (11.11)-(11.14), (11.6) and (11.1) analogously as in the proof of 
Lemma 5.11.4 we obtain 

K~ ~K (1+IXoI2r). 

Combining these last estimates we thus have 

(11.23) 

4. We shall now estimate the Fklo .... kr(t) for r = 2, ... , I. For each (k1, . .. ,k,) 
E Pr there is a finite q E {I, 2, ... } and V E P' - r such that 

Ir 
a kl a kr Fpr ('7t - Xo) = q Fp; (l1t - Xo). 

y ... y 

From (11.22) we thus obtain 

(11.24) Fkl ..... kr(t) = IE ( (X;1 - 11:1 ) ••• (Xtkr - l1;r) 

x aykl ~d. aykr Fp' (l1t - Xo) \Ao) I 
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< q [E (IFp (7]1 - XO)12IAO) E ((X;1 - 7];' f··· (x;r -11:' f lAo) f/2 

< q [E (IFp (1]t - Xo)12IAo) f/2 [E (lX;1 -117' r lAo) f/4 
X •.• x [E (Ix;r _ 117r 12r+1 lAo) ] 1/2r+1 

From (11.17), Lemma 5.7.5, the polynomial growth bound on lOll (11.18) and 
Lemma 5.11.5 for each k = 1, ... , d and I = 2, 4, ... , 2r+1 we have 

[E (IX; - '1: 121 lAo) f/21 

[EG E 1a [I! (XXo)L rllAo) f/21 
aEB(rl') 

Using this with (11.14) in (11.24) we then obtain 

(11.25) Fklo ... ,k r (t):5 I< (1 + IXo12r) tl-rt(fJ+1)/2t(fJ+1)/2 

< I< (1+IXoI2r)tfJ+I. 

5. Finally, using (11.23) and (11.25) in (11.21), we have 

Fklo ... ,k,(t):5 J{ (1 + IXo12r) t fJ+1 

for I = 2, ... , 2{3 + 1 too. 0 

Proof of Proposition 5.11.1 The function 9 is 2(/3+ 1) times differentiable 
so we use the deterministic Taylor expansion to obtain 

(11.26) Ho(t) := I E (g (Xt)- 9 (71,) lAo) I 
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I (2P+1 1 
= E I: T! I: [a:g (Xo)] Fp(Xc - Xo) + Ro (Xc) 

1==1 pEPr 

for each t E [0, T]. Here the remainder terms are of the form 

1 
(11.27) Ro(Z) = (2(fJ + I»! I: [8[g (Xo + 9 p1Z) (Z - Xo»] 

pEP 3 (1I+ 1) 

xFp(Z - Xo) 

for Z = Xc and '1c. respectively, where 9P(Z) is a d x d diagonal matrix with 
diagonal components 

(11.28) 

for Ie = 1, ... , d. 
Now, from (11.26) with (11.19) and the polynomial growth bound for 9 and 

its derivatives we obtain 

(11.29) Ho(t) :5 
2P+1 1 • 
I: Ii I: I~g (Xo) I 
1=1 pEP, 

x IE (Fp(Xt - Xo) - Fp('1c - Xo) lAo) I 

+ IE (Ro (X,) lAo) I + IE (Ro ('1,) lAo) I 

:5 K (1 + IXoI2,.) t P+1 + E (lRo (Xt)IIAo) 

+E (lRo ('1t)IIAo) . 

Using (11.27), (11.28), (11.16) and the polynomial growth bound on the deriva
tives of 9 we obtain 

(11.30) 

Applying Lemma 5.11.4, by similar arguments we also have 

(11.31 ) 
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Summarizing (11.26), (11.29), (11.30) and (11.31), we finally have 

Ho(t) $ K (1 + IXo12r) TP+1 

uniformly in t E [0,1'). This completes the proof of Proposition 5.11.1. 0 

5.12 Weak Approximations 
of Multiple Ito Integrals 
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The main assertion of Proposition 5.11.1 still holds true if we replace the mul
tiple Ito integrals la by other random variables ia which satisfy corresponding 
moment conditions. We shall write 

(12.1) Up(t) = L fa (to, Xto) ia,to,t 
aEI'Jf 

for t E [to,1') and f3 E {I, 2, ... }. 

Corollary 5.12.1 Suppose under the assumptions of Proposition 5.11.1 that 
for t E [to,1') and f3 E {I, 2, ... } there exists a constant K E (0,00) such that 
the moment condition 

(12.2) 

holds for all choices of muUi-indices Qk E r p \ {v} with k = 1, ... , I and I = 
1, ... , 2f3 + 1. Then for each 9 E C~(P+l)(!Rd,!R) there exists constants Kg E 
(0,00) and r E {I, 2, ... } such that 

h X X 'o,x'o w ere t = t . 

We leave the proof as an exercise since it is a straightforward extension of the 
proof of Proposition 5.11.1. 

Exercise 5.12.2 Prove Corollary 5.12.1. 

To evaluate the conditional expectation of the first product in (12.2) we shall 
need the following lemma. 

Lemma 5.12.3 Let Q = (ii, ... , i,), f3 = UL ... , i;) E M with. I, p E {I, 
2, ... }. Then 

(12.4) 
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fort ~ o. 
We shall leave the proof as an exercise too as it is similar to that of Proposition 
5.2.3, but here we need to start with a multi-dimensional linear Ito process 
with components representing the multiple Ito integrals up to la and 113 . An 
application of the Ito formula (3.4.6) then gives the desired result. 

Exercise 5.12.4 Verify (12.-1). 

Using Lemma 5.12.3 and the moment estimates (7.1) and (7.6) for multiple Ito 
integrals we shall now state the values of the conditional expectations 

for a E [O,T - to] and al, 02, ... , Ok E rp \ {v} which are relevant in the 
moment conditions (12.2) for the cases /3 = 1,2,3. We have 

(12.5) 

when the number of nonzero components of the multi-indices involved, 

I 

A := 2)1 (Ok) - n (ak», 
k=l 

is odd. Furthermore, when A is even we find that 

(12.6) 

where 

We shall say that the expectation in (12.6) has order p in the time increment 
A. Excluding those already given in (12.5) and those of the constants 

1 3 
1(0,0,0) = 3! a , 

the expectations of products of order p = 1, 2 and 3 are as follows. Here it, 
... , j, = 1, ... , m and bi,; is the Kronecker delta symbol, that is 

biJ = . {
I' 

o : 
(12.7) 

i=j 

otherwise. 
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E (JUt) l(oJ:)) = E (JUt) lU:),o») = ~!l,.2 ci>J,; 

1 
E (lUt,h) 1(j3,j4») = '2 !l,. 2 Cjt,j3 Cj2,j4; 

it = h = i3 = i4 
h:f: i4 andil = h,h = i4 
or it = i4, h = h 

otherwise 

it = h =ia = i4 
{h,h,ja,j4} consists of 2 distinct 
pairs of identical numbers 

otherwise 
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o 

i1 = i2 = ja = i4 
{it,h,ja,i4} consists of 2 distinct 
pairs of identical numbers 

otherwise 

= 3T u : 11 = J2,}3 = J4 or 11 = J4,J2 = J3 {
I A3 . .. . • .• . 

o : otherwise 

it = ... = i6 
1 pair and 1 quadruple of identical ij 
3 different pairs of identical ij 
otherwise 

( ) 1 3[ E J(it,h,i3) JU.) J(i5) J(i6) = 3!d 6it ,i. (6j"i. 6h,i6 + 6j.",i. 6h,i5) 

+6id5 (6hJ.6h ,i6 + cj"i.cj"i.) 

+6id6 (ChJ5 Ch,i. + Cj"i.ch,iJ]; 



5.12. WEAK APPROXIMATIONS 225 

E (I(jloh) I(j~,j.) I(j&,;e» = :!~3[6hJ. (OhJ.Oj~,;e + 0j,JeO;3,;,,) 

+0ioJ& (0;',j3 6;.,;& + 0h,;.OhJ,,) 

+O;.J& (ohJ3 6h,;" + 6;2,;,,0;lJ,,)]; 

E (1(h';2) I(j"J.) I(j,,) I(ja» = :!~3[26hJ3 (OhJ"Oj.,je + 0hJ.Oj.J,,) 

+OhJ3 (Oh,i"Oj.Je + 0hJ.Oj.J,,) 

+OJ,J. (Oj3,j"0ioJs + Oj3JsOh,j,J 

+20ioJ• (6j.,j,,6j3,js + Oh,jr,OjlJa)]; 

We shall now use the above relations to propose some weak approximations 
fa of the multiple Ito integrals Ia which satisfy the condition (12.2) for each 
of the orders {j = I, 2 or 3. In all of these cases we set: 

A 1 3 
1(0,0,0) = 3! ~ . 

For {j = I, m = 1,2, ... and j E {I, ... , m} we can set: 

(12.8) 

where the ~ wj are independent N(O,~) Gaussian random variables or inde
pendent two-point distributed random variables with 

p (~wj = ±..,.,'X) = 4. 
For {j = 2, m = 1,2, ... and it,h E {I, ... , m} we can set: 

(12.9) 

where the ,6,Wj are independent N(O,~) Gaussian or three-point distributed 
random variables with 

p (~wj = ±-.I3X) = ~, (

A' ) 2 
P .6.W' = 0 = 3' 

and the VJl,j) are independent two-point distributed random variables with 
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1 
P(v.· . = ±a) =-,.,.12 2 

for i2 = 1, ... , it - 1, 

and 

for i2 = it + 1, ... , m and i1 = 1, ... , m. Obviously the V;,J, are not required 
when m = 1. 

For f3 = 3 and m = 1 we can set: 

(12.10) 1m = awi , 

1(1,0) = az, 1(0,1) = aaw - az, 

1(1,1) = 4 ((~wf - a) , 
• • • 1 2 • 

1(0,0,1) = 1(0,1,0) = 1(1,0,0) = (ia ~w, 

. • • 1 (( .)2 ) 
1(1,1,0) = 1(1,0,1) = 1(0,1,1) = (ia ~w - a , 

. 1. (( .)2 ) 1(1,1,1) = (jaw ~w - 3a 

where the a.w and az are correia Jed .Gau~ian random variables with ~ W ,..., 
N(O;~), az,..., N(0;!a3 ) and E ~aw az) = ta2 • 

For many stochastic differential equations not all of the multiple stochastic 
integrals in an Ito-Taylor expansion may actually appear because their coeffi
cient functions are zero due to some special structural feature of the equation. 
In such situations it is sometimes feasible, practically, to find weak approxima
tions of multiple stochastic integrals when m > 1 and f3 ~ 3 too. 



Chapter 6 

Modelling with Stochastic 
Differential Equations 

Important issues which arise when stochastic differential equations are used in 
applications are discussed in this chapter, in particular the appropriateness of 
the Ito or Stratonovich version of an equation. Stochastic stability, parametric 
estimation, stochastic control and filtering are also considered. 

6.1 Ito or Stratonovich? 

The differing Ito and Stratonovich interpretations of stochastic integrals and 
stochastic differential equations results from the peculiar property that the 
sample paths of a Wiener process are, almost surely, not differentiable or even 
of bounded variation. This is, perhaps, not so strange if we remember that such 
equations arise from an attempt to add to ordinary differential equations ran
dom fluctuations described by a Gaussian white noise, which can be considered 
formally to be the (nonexistent) derivative of a Wiener process. In reality white 
noise processes are often meant to be tractable idealizations of real coloured 
noise processes, for which the autocorrelation at different time instants is made 
arbitrarily small. The stochastic calculi of Ito and Stratonovich provide us with 
mathematically valid formulations of stochastic differential equations, but leave 
unanswered the question of which interpretation we should use. In fact, the 
answer depends on how exactly we intend the white noise processes to approx
imate the real noise processes and on how the stochastic differential equation 
itself approximates the real situation being modelled. 

Physically realizable processes are often smooth with at least a small degree 
of autocorrelation. If R~n) is such a process, close in some way to a Wiener 
process Wt , the differential equation 

(1.1) 

is a random differential equation, that is an ordinary differential equation in 
each of its sample paths involving Riemann-(or Lebesgue-) Stieltjes integrals 
in its integral equation form 

It can be solved, in principle at least, by the methods of classical calculus. Since 
these methods are also valid for the Stratonovich calculus, this suggests that 
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the Stratonovich interpretation may be the appropriate one for the limiting 
stochastic differential equation obtained by replacing the real process R~n) in 
(1.1) by a Wiener process Wt. This can be seen explicitly in the linear equation 

(1.3) dX(n) - aX(n) dt + "X(n) dl1(n) 
t - t v t A"t, 

where mn ) is the piecewise differentiable linear interpolation of a Wiener pro-
U7 •• 0 (n) (n) (n) T d fi d b cess rrt on a partition = t1 < t2 < ... < tn+1 = e ne y 

for tt) ~ t ~ t)~1 and j = 1, 2, ... , n. This process converges sample pathwise, 
almost surely, on to ~ t ~ T to Wt as n -+ 00 if the partition length 

6(n) = max It(n) - in)l--+ 0 as n -+ 00. 
1~j~n J+1 J 

By classical calculus the solution of (1.3) is 

X!n) = Xto exp (a(t - to) + b (~n) - R~:»)) , 

and this converges sample pathwise to 

X t = Xto exp (a(t - to) + b(Wt - Wto)) , 

which is the solution of the Stratonovich SDE 

A theorem of Wong and Zakai establishes the same result under quite broad 
assumptions on the smooth approximating noise processes R~n) and the co
efficients a(t,x) and b(t,x). From this we can assert that the Stratonovich 
interpretation of a stochastic differential equation is the appropriate one when 
the white noise is used as an idealization of a smooth real noise process. In 
such cases the Ito counterpart of the Stratonovich SDE is a useful artifice 
which, for example, allows access to the appropriate moment equations or the 
Fokker-Planck equation. 

In engineering and the physical sciences many stochastic differential equa
tions are obtained by including random fluctuations in ordinary differential 
equations, which have been deduced from phenomological or physical laws. 
The underlying systems being modelled here are usually continuous in both 
time and state. In contrast, many biological systems are intrinsically discrete 
in either time or state, or both. For example, in genetics and population dy
namics the population size is integer valued, successive generations may not 
overlap in time, breeding may occur in separated seasons and environmen
tal parameters may only change at discrete instants. In these cases diffusion 
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processes satisfying Ito stochastic differential equations are a convenient and 
mathematically tractable approximation to the actual process. For example, 
the exponential growth equation 

and its noisy counterpart 

. dz 
z=-=az 

dt 

dX, = aX, dt + bX, e, dt, 

resulting from a noisy growth coefficient a + het, are often only convenient 
continuous time approximations of the discrete time systems 

and 

(1.4) 

In turn these may be continuous state approximations of a discrete state system. 
In view of the Central Limit Theorem, as the result of a large number of small 
discrete events we can suppose that the et .. in (1.4) are independent standard 
Gaussian random variables. Thus we can take 

for a standard Wiener process W,; this makes the noise term in (1.4) equal to 
bXt .. AWt ... If the noise is due to external environmental effects, it can be ar
gued that the intensity bX, .. and the noise AW,,, in the transition from the nth 
to the (n + 1 )th time instant should be independent. In other words, the inten
sity should be nonanticipative. If we approximate (1.4) by a continuous time 
process, that is by a stochastic differential equation, then the Ito interpretation 

dXt = aX, dt + bX, dW, 

is the appropriate one as we shall seewhen we consider the Euler scheme in 
Section 2 of Chapter 10. 

From a purely mathematical viewpoint both the Ito and Stratonovich cal
culi are correct. Which one we should use in a particular context depends 
on extraneous circumstances. Nevertheless, once a choice has been made the 
other calculus can be applied when advantageous to the appropriately modified 
stochastic differential equation. In this way the strengths of both calculi can 
be used to maximum benefit. 

6.2 Diffusion Limits of Markov Chains 

Many problems in biology and other fields are intrinsically discrete and are 
often modelled by Markov chains. When small increments are involved these 
Markov chains are usually approximated by mathematically more tractable dif-
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fusion processes, the solutions of appropriate Ito stochastic differential equa
tions. Conversely, when a stochastic differential equation is solved numerically, 
Markov chains are constructed to approximate its diffusion process solutions. 
In both cases the validity and accuracy of such approximations are obviously 
matters of some importance. 

In PC-Exercise 1.8.2 we examined the convergence in distribution of a se
quence of random walks to a standard Wiener process on the time interval 
[0,1]. This is one of the simplest examples of a sequence of Markov chains 
approximating a diffusion process. For each N = 1, 2, 3, ... we partitioned 
the time interval [0,1] at the instants t~n) = kiN for k = 0, 1, ... , Nand 
generated a random walk starting at X~N) = ° with equally probable spatial 
steps of length N- 1/ 2 to the left or right of the current position X~N) at the 

time instant t~~~ to the next position X1Z~. That is, we evaluated 

(2.1) (N) (N) 1 
XA;+l = XIt; +.../N (It; 

for II: = 0, 1, ... , N, where the (It; are independent 2-point distributed random 
variables taking the values +1 and -1 with equal probabilities 1/2. We in
terpolated the random variables X~N) in a piecewise constant manner on the 
time intervals [t~N), 4~~) for k = 0, 1, ... , N - 1 to define a process X(N) 
on the entire time interval [0,1]' and then used the Central Limit Theorem to 
conclude that the X(N) converged in distribution to a standard Wiener pro
cess on the time interval [0,1] as N --+ 00. It is obvious here that the XiN) 
generated by (2.1) for k = I, 2, ... , N are the realizations of a Markov chain 
on the countably infinite state space 

R}y-ln = {Zi = i Jw : i = 0,±I,±2, .. .}, 

which is called the N-l/2_grid, with transition probabilities pi-I,i = pi,i+1 = 
1/2 and piJ = 0 otherwise, for all i, j = 0, ±1, ±2, .... 

In any of the above random walks the step size was the same at every point 
of the lattice R}y_l/2. A natural generalization is to allow it to depend on the 

current location XiN) with the next position being determined by 

(2.2) X(N) = X(N) + aN (X(N») 1- + bN (X(N») _1_ t" L 

11;+1 It; It; N It; .../N"" 

for given functions aN and bN defined on R1-1/2 such that 

for all Z E R}y_l/2. The functions aN and bN may be derived from certain 
functions a and b defined on all of !R or may converge to such functions. In 
either case we can form an Ito stochastic differential equation 
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(2.3) 

the solutions of which will be diffusion processes if the coefficient functions are 
sufficiently regular. In general the increments xi~~ - xiN ) of the Markov 
chains defined by (2.2) will not be i.i.d. random variables, so we cannot use the 
Central Limit Theorem simply to conclude that they converge in distribution 
to a diffusion process satisfying (2.3). Such convergence can nevertheless still 
be established, but only if additional properties are satisfied by the Markov 
chains. A necessary condition is that the Markov chains are consistent with 
the diffusion processes satisfying (2.3) in the sense that their conditioned first 
and second order moments and probable jump sizes satisfy, asymptotically in 
N --> 00 at least, similar properties to the three limit conditions (1.7.9)-(1.7.11) 
which define diffusion processes. That is, the Markov chains {XiN ), k = 0, 1, 
... , } should satisfy consistency conditions such as 

(2.4) 

(2.5) lim N E ((X(N) - X(N»)2 Ix (N) - x) N-oo k+1 k k- lim E (b~(x») N-+oo 

and 

(2.6) 

for all x E ~. 
These remarks also apply to more complicated types of driving noises than 

the 2-point process considered so far, and for other relationships between the 
spatial and temporal step sizes. In such cases it may, however, be difficult to 
write down explicitly the state spaces and the transition matrices of the Markov 
chains. 

Example 6.2.1 A population has 2N genes with two alleles a and A. In 
the current generation there are i genes of type a and 2N - i of type A. The 
new generation, also of size 2N, is selected by 2N trials with replacement, 
with each trial yielding an a allele with probability Pi = i/2N and an A allele 
with probability qi = 1 - Pi· The proportion of genes of type a in successive 
generations forms a Markov chain with transition probabilities 

Pi,; = (2N)! (p.); (q.)(2N-n 
j!(2N - j)! I • 

for i, j = 1, 2, ... , 2N. If X~N) denotes the proportion in the kth generation, 

that is XkN ) = i/2n, it can be shown that 



232 CHAPTER 6. MODELLING WITH SDES 

and 

In addition, if the chain is interpolated piecewise constant on time intervals of 
equal length d = N- 2 , then the interpolated process converges in distribution 
to a solution of the Ito stochastic differential equation 

Exercise 6.2.2 Construct Markov chains driven by the random telegraphic 
noise process (see Exercise 1.6.8) which are consistent with a diffusion process 
X t = at + bWt where a and b are nonzero constants. Then use the Central 
Limit Theorem to verify that the appropriate piecewise constant interpolations 
of these chains converge in distribution to the diffusion process on any finite 
time interval. 

6.3 Stochastic Stability 

Most differential equations, deterministic or stochastic, cannot be solved ex
plicitly. Nevertheless we can often deduce alot of useful information, usually 
qualitative, about the behaviour of their solutions from the functional form of 
their coefficients. Of particular interest in applications is the long term asymp
totic behaviour and sensitivity of the solutions to small changes, for example 
measurement errors, in the initial values. From existence and uniqueness the
ory we know that the solutions of a differential equation are continuous in their 
initial values, at least over a finite time interval. Extending this idea to an 
infinite time interval leads to the concept of stability. 

For an ordinary differential equation 

(3.1) . dx ( ) x= - = a t,x 
dt 

we usually talk about the stability of an equilibrium point or steady state x = 
c, where aCt, c) = 0 for all t, which we can assume without loss of generality 
to equal O. We say that x = 0 is stable for the differential equation (3.1) if for 
every f > 0 there exists a b = b(to, f) > 0 such that 

(3.2) Ix(t; to, xo)1 < f for all t ~ to and Ixol < b, 

where x(t;to,xo) is the solution of (3.1) with initial value x(to;to,xo) = Xo. If, 
in addition, there is abo = bo(to) > 0 such that 

(3.3) lim x(t;to,xo) = 0 for all Ixol < bo t_oo 
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we say that x = 0 is asymptotically stable for (3.1). We include the qualifier 
uniformly if 6 and 60 do not depend on to and global if (3.3) holds for any 60 • 

These definitions are due to Lyapunov who introduced a test for the stabil
ity of an equilibrium point in terms of a function V, now called a Lyapunov 
function, resembling the potential energy in a mechanical system. Essentially, 
the equilibrium lies at the bottom of a potential energy well and the potential 
energy decreases monotonically along the solutions of the differential equation, 
at least in a small neighbourhood of the equilibrium point. 

In particular, for a Lyapunov function V it is required that 

V(t,O) = 0, V(t,x»O 

for all x :j:. 0 and that 

(3.4) 
d 
dt V (t, x{t; to, xo» < 0 

for t ~ to and all Xo sufficiently small. By the chain rule 

d 
dt V(t,x(t;to,xo)) 

= 
oV oV dx 
Tt (t, x(t; to, xo) + ox (t, x(t;to, xo)) dt 

oV oV 
Tt(t,x(t;to,xo)) + ox (t,x(t;to,xo» a(t,x(t;to,xo»)' 

so (3.4) follows if 

oV oV 
Tt(t, x) + ox (t, x) aCt, x) < 0 

for all x in a neighbourhood of 0 and all t ~ to. We do not need to know the 
solutions of (3.1) explicitly to check the validity of this inequality. 

Example 6.3.1 The function Vex) = x 2 is a Lyapunov function for the 
ordinary differential equation 

(3.5) 
. dx 3 
x=- =-x-x, 

dt 

which has a unique equilibrium point x = O. Here 

dV 
dx (x) a(x) = _2x2 - 2x1 ~ -2V(x) 

for all x E 1R, so along the solutions of (9.5) we have 

d 
dt V (t, x(t; to, xo» ~ -2V (t, x(t; to, xo)) . 



234 CHAPTER 6. MODELLING WITH SDES 

Hence 
V (t,x(tjto, xo» ~ V(xo)e- 2(t-to ) 

for all t ~ to and xo, from which we can conclude that x = 0 is globally uni
formly asymptotically stable for (3.5). 

This simple example gives the gist of Lyapunov's method for investigating the 
stability of an equilibrium point. It is a powerful method when an appropriate 
Lyapunov function can be found, but that is not always easily done. An ex
tensive theory has been developed, listing necessary or sufficient conditions on 
the Lyapunov function for the stability, asymptotic stability and instability of 
an equilibrium point. We shall indicate some of these for stochastic differential 
equations. 

In view of the variety of convergences for stochastic processes there are many 
different ways of defining stability concepts for stochastic differential equations-; 
We shall discuss some of these in relation to a scalar Ito equation 

(3.6) dX, = a(t, X,) dt + b(t, X,) dW, 

with a steady solution X, == 0, so a(t, 0) = 0 and b(t,O) = O. Let us assume 
that a unique solution X, = X:o.%O exists for all t ~ to and each nonrandom 
initial value X'o = Xo under consideration. A widely accepted definition of 
stochastic stability is a probabilistic one due to Hasminski. We call the steady 
solution X, == 0 stochastically stable if for any e > 0 and to ~ 0 

and stochastically asymptotically stable if, in addition, 

lim P (lim IX:o,%OI- 0) = 1 
%0-0 '-00 

or stochastically asymptotically stable in the large when 

p C~~ IX:o,zO I- 0) = 1 for all Xo E !R. 

Another definition involving pth-moments is also widely used. In this case 
X, == 0 is called stable in pth-mean if for every € > 0 and to ~ 0 there exists a 
6 = 6(to. e) > 0 such that 

E (IX:o.zon < e for all t ~ to and Ixol < 6 

and asymptotically stable in pth-mean if, in addition, there exists a 60 = 60 (to) 
> 0 such that 

The qualifiers uniform and global are used in the same way here as for their de
terministic stability counterparts. Of particular interest in applications are the 
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p = 1 and p = 2 cases, stability in mean and mean-square stability, respectively. 
Lyapunov functions can also be used to test for the stochastic stability or 

pth-mean stability of the steady solution X t == 0 of an Ito SDE (3.6). Let V(t, x) 
be sufficiently smooth so that the Ito formula can be used. Then V(t, Xt) has 
the Ito stochastic differential 

oV 
dV(t, Xt) = LV(t, Xc) dt + b(t, Xt) o:r: (t, Xt) dWt 

or the equivalent integral representation 

(3.7) V(t, Xt) - V(to, Xto) 

1f 1t oV = LV(s, X.) ds + b(s, X.) a(s, X.) dW., 
~ ~ Z 

where the operator L is defined by 

(3.8) 

If we can find a function V such that 

(3.9) LV(t,:r:) ~ 0 

for all x and t ~ to, which is easily checked and does not require explicit 
knowledge of the solutions X t of (3.6), then the equality (3.7) can be replaced 
by the inequality 

(3.10) 1t oV 
V(t, X t ) - V(to,Xto) ~ b(s, X.) ""'!i'"""(s, X.) dW •. 

to VZ 

Taking conditional expectations and using property (3.2.9) of Ito integrals we 
obtain 

w.p.l, where At is the u-algebra generated by X. for to ~ s ~ t. This inequality 
says that the Lyapunov function V(t, Xt) evaluated along the solutions of (3.6) 
is a supermartingale. Hence we can use the maximal martingale inequality 
(2.3.6) to obtain 

p ( sup V(t, Xt) ~ e) ~ ! V(to, :r:o) 
to:StST e 

for all e > 0 and all T > to, and thus 

(3.11) P (sup V(t,Xt ) ~ e) ~ ! V(to,xo). 
t~to e 
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If, in addition, there are monotonically increasing continuous functions a = 
a(r) and fJ = fJ(r) of r > 0 with a(O) = /1(0) = 0 such that 

(3.12) a (Ixl) :::; V(t, x) :::; /1 (lxl) 

for all x and t ~ 0, we can conclude from (3.11) that the steady solution X, 
== 0 of (3.6) is uniformly stochastically stable. Similarly, if instead of (3.9) we 
have for all x and t ~ 0 

(3.13) LV(t, x) :::; -c(lxl) 

for some continuous positive function c = c(r) of r > 0 with c(O) = 0, then we 
can prove that the steady solution X, == 0 is uniformly stochastically stable in 
the large. We remark that in many problems it is convenient not to require 
all of the necessary partial derivates of V to be continuous at x = O. The Ito 
formula will then not be valid in a neighbourhood of 0, but refinements of the 
proofs yield the same results as above. 

Example 6.3.2 Consider the linear Ito SDE 

and the Lyapunov function V(x) = x 2 • Then 

so (9.19) holds with c(r) = -(a+ ib2)r2 provided .J+ib2 < O. For this param
eter range the zero solution of (9.1-4) is uniformly stochastically asymptotically 
stable in the large. On the other hand the exact solution of (9.1-4) is 

X, = Xo exp ( (a - 4b2) (t - to) + b (W, - W,o») 
and converges to 0 with probability one as t -+ 00 if and only if a - tb2 < 0 
holds, since 

I· W, - W'o 0 
1m = , '-00 t - to 

w.p.l. 

Exercise 6.3.3 Use an appropriate Lyapunov function to show that the 
steady solution X, == 0 of the Ito SDE 

dX, = aX,(l + X(2) dt + bX, dW, 

is stochastically asymptotically stable if a+ !b2 < O. 

Similar results can be obtained for the pth-mean stabilities, and for d
dimensional vector stochastic differential equations 

dX, = a(t, X,) dt + b(t, X,) dW,. 
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In the latter case the operator L takes the form 

LV = 8V + tai oV +.! t (bbT)iJ 02V . 
&t i=1 OZi 2 iJ=1 8Zi8zj 

Another method for determining the stability of a steady solution is to 
linearize the differential equation about this solution and to analyse the stability 
of the zero solution of the resulting linear differential equation. In many cases 
its stability or asymptotic stability will imply the corresponding property of the 
steady solution of the nonlinear equation. For the scalar differential equation 
(3.1) the linear differential equation obtained by linearizing about a steady 
solution Z = c is 

(3.15) 
dz 
- = a(t)z, 
dt 

where z = Z - e and aCt) = :: (t, e), and has the solution 

z(t;to,zo) = zoexp (1: a(S)dS). 

Thus the zero solution z == 0 of (3.15) is asymptotically stable if and only if 

(3.16) 1 l' A = lim sup -- a(s) ds < O. 
t-+to t - to to 

The limit superior has been used because the usual limit may not exist, as is 
the case of aCt) = -2 + tsint. When the original differential equation (3.1) 
is autonomous, the coefficient aCt) in (3.15) is a constant, say a and A = a is 
just the eigenvalue of the 1 x 1 matrix [a]. For a vector differential equation the 
linearized equation has the form 

(3.17) 
dz 
- = A(t)z 
dt ' 

where A(t) is a dxd matrix. In the autonomous case, with A(t) == A a constant 
matrix, the solutions of (3.17) are 

z(t; to, zo) = zo exp «t - to)A) . 

and the zero solution of (3.17) is asymptotically stable if and only if the eigen
values of the matrix A all have negative real parts. For the nonautonomous 
case matters are much more complicated. The counterparts of the real parts 
of the eigenvalues are the Lyapunov exponents defined by 

(3.18) A(to, zo) = lim sup -t 1 In Iz(t; to, zo)1, 
t-oo - to 

of which (3.16) is a simple example. Asymptotic stability of the zero solution 
thus follows if and only if the Lyapunov exponents are negative for all to and Zo 
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:I O. However, in practice, it is generally not easy to determine the Lyapunov 
exponents explicitly. 

We can also use Lyapunov exponents for stochastic differential equations. 
For this it is more convenient to use Stratonovich SDEs. We shall suppose that 
Xt is a stochastically stationary solution, not necessarily a point like 0, of a 
d-dimensional Stratonovich SDE 

m 

(3.19) dXt = i!(t,Xt)dt + Lbk(t,Xt ) 0 dWtk , 
k=1 

where W = (W1, ... , wm) is an m-dimensional standard Wiener process. With 
Zt = X t - Xt we obtain the linearized system 

m 

(3.20) dZt = A(t, w)Z, dt + L Bk (t, w)Z, 0 dW,A: 
1:=1 

where A, B1, B2, ... , Bm are d x d matrices defined componentwise by 

and 

. . {Ji!i (- ) 
A(t, W)I,] = (Jz. t, X,(w) 

J 

{Jb1:,i 
B1:(t,w)i,j = -{J- (t,X,(w» 

Zj 

for i, j = 1, 2, ... , d and k = 1, 2, ... , m. 

Exercise 6.3.4 Linearize the 2-dimensional Ito SDE 

d ( ~~) = (-bXl- sin~~ _ csin2Xl ) dt 

( 0) + 2 dWt , 
-a (Xl) + sin xl 

where a, band c are constants and W is a scalar Wiener process, about the 
steady solution (Xl, Xl) == (0,0). Determine the corresponding Stratonovich 
SDE and linearize it about (0,0) too. What is the relationship between the two 
linearized SDEs'l 

In the scalar case d = 1 we can solve (3.20) explicitly (see (4.4.11». Writing 
its solution as 

In IZtl = In IZol + l' A(s,w) ds + it B(s,w) dW" 
'0 '0 

and using the fact that 

1 it lim -- B(s,w)dW, = 0, '_00 t - to '0 w.p.l, 
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we obtain a unique Lyapunov exponent 

A = limsup_l- ln IZtl = limsup - 1-1t A(s,w)ds, w.p.1. 
t--+oo t - to t_oo t - to to 

The zero solution ofthe linearized equation is thus stochastically asymptotically 
stable if and only if this number A is negative. If in the autonomous case the 
stationary solution Xt has a stationary probabilitity density p(x), found by 
solving the stationary Fokker-Planck equation (1.7.16) with the appropriately 
modified drift coefficient a(x), then we can use ergodicity (4.4.18) and Theorem 
4.8.8 to conclude that 

(3.21) 1 l' lfJ lim sup -- A(s,w) ds = ,g'(x)p(x) dx. 
t_oo t - to '0 a 

Here the interval 0: < X < /3, which may be infinite, is the support ofthe density 
function p. In the degenerate case that X, == 0 the density p(x) = 6(x), the 
Dirac delta function, and the integral on the right reduces to the eigenvalue 
,{l'(O) of the scalar equation. We thus have an effective means of evaluating 
Lyapunov exponents in the scalar autonomous case. 

Exercise 6.3.5 Evaluate the Lyapunov exponent of the zero solution of the 
linear Stratonovich SDE 

dX, = aX, dt + bX, 0 dW,. 

For which values of the parameters a and b is the Lyapunov exponent negative? 

For the general d-dimensional case (3.20), we can use the Multiplicative 
Ergodic Theorem of Oseledec to assert the existence, w.p.l, of d nonrandom 
Lyapunov exponents 

Ad ~ Ad-l ~ ... ~ Al 

and a partitioning of~d into random subsets Ed(w), Ed-l(W), "', El(W). For 
solutions of (3.20) starting in these sets the limits (3.18) take values Ad, Ad-I, 
"', At. respectively. The stochastic asymptotic stability of the zero solution 
of (3.20) thus follows if and only if Al < O. For X, == 0 and an autonomous 
system there is a formula like (3.21) for this top Lyapunov exponent AI. To 
determine it we change to spherical coordinates r = Izl and 8 =z/Izl for z E 
lRd \ {O}, in which case the linear Stratonovich system (3.20) transforms into 
the system 

m 

(3.22) dRt = R t qO (St) dt+ E R, q"'(St) 0 dWt'" 

"'=1 
m 

(3.23) dS, h(St, A) dt + E h(S" Bt) 0 dW,'" 
"'=1 

on ~+ X Sd-l, where Sd-l is the unit sphere in !Rd and 
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qO (s) = S T As, q" (s) = s T B"s, h (s, A) = (A - (s T As) I) s. 

Equation (3.23) does not involve the radial variable Rt and is an example of 
a stochastic differential equation on a compact manifold. The advantage of 
using the Stratonovich interpretation here is that the transformation laws of 
classical calculus apply, and are in fact used to derive (3.22) and (3.23) from 
(3.20). From (3.22) we have 

and hence 

(3.24) lim sup .!.In IZ,I = lim sup -t 1 1t q(Su) duo 
t_oo t t-oo - to to 

Under appropriate conditions on the matrices A, Bl, B2, ... , B m there exists 
an ergodic solution Sf of (3.23) with invariant probability distribution p( s) on 
Sd-l such that the Ergodic Theorem 4.8.8 applies to the limit on the right hand 
side of (3.24) to give the following expression for the top Lyapunov exponent 

Al = ( q(s) dp(s). JSd-l 
While of considerable theoretical benefit, this formula is difficult to use in 
practice and usually must be evaluated either numerically as in Section 3 of 
Chapter 17 or in terms of asymptotic expansions of the noise parameters. There 
is also a formula, which is more complicated, for Al in the case of a general 
ergodic solution Xt t:. 0 of the original nonlinear SDE (3.19). 

Exercise 6.3.6 Determine the equations (9.22) and (9.29) for the linearized 
Stratonovich SDE derived in Exercise 6.9.4. 

To conclude this section on stochastic stability we return briefly to the pth
moment stabilities, in particular mean-square stability. For ad-dimensional 
linear Ito system 

m 

(3.25) dXt = A(t)Xt dt + L B"(t)X, dWf" 

"=1 

we saw in Section 8 of Chapter 4 that that the dxd matrix valued second moment 
pet) = E(X,Xi) satisfies the deterministic matrix differential equation 

dP m 
dt = A(t)P + PA(t)T + LB"(t)PB"(t)T, 

1:=1 
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which is linear in P. On account of the symmetry of the matrix P, we can 
write this equation as a linear system of the from 

(3.26) dp A()--= tp 
dt 

where p is an !d( d + 1 )-dimensional vector consisting of the free components of 
P and A(t) is a square matrix. The mean-square stability of the zero solution 
of (3.25) can be determined from that of (3.26). Moreover, since 

the mean-square stability will imply the stability of the first moment and, 
hence, that of the mean. 

Exercise 6.3.7 Derive the linear system (9.26) for the second moment of 
the solution of the linearized Ito SDE in Exercise 6.9.4. Hence determine the 
parameter values for which the steady solution of the original Ito SDE is mean
square asymptotically stable. 

6.4 Parametric Estimation 

Often a modeller can use phenomological or theoretical arguments to justify 
the use of a differential equation with a particular structure, but needs to esti
mate the appropriate parameter values from observations of the actual system 
being modelled. Such parameter estimates are, strictly speaking, random vari
ables, so something needs to be known about the probability distribution of 
their deviations from the true values of the parameters. For example, if we 
have a stochastic differential equation with an asymptotically stable ergodic 
stationary solution, we might expect that the parameter values obtained from 
the observation of a single trajectory over a finite time interval would con
verge to the true parameter values as the length of the observation interval 
increases without bound. Then we could use various limit theorems to obtain 
an indication of the reliability of such estimates. 

To illustrate the basic ideas of parametric estimation we shall consider a 
scalar stochastic differential equation with additive noise 

(4.1) 

where Q is the parameter to be estimated and the function a = a(z) is possibly 
nonlinear. The maximum likelihood estimate aCT) determined from observa
tions of a trajectory of a solution process (4.1) over the time interval 0 ::; t ::; 
T is the value of Q which maximizes the likelihood ratio 



242 CHAPTER 6. MODELLING WITH SDES 

of the process X = {X" 0 :5 t :5 T} with respect to the Wiener process W 
= {W" 0 :5 t :5 T}. This is derived using the Girsanov Theorem, already 
mentioned in Section 8 of Chapter 4, which says that the right side of (4.2) is 
equal to the Radon-Nikodym derivative dPx /dPw of the probability measures 
Px and Pw, corresponding to the processes X and W, on the function space 
C([O, T), !R). It can be justified heuristically by approximating (4.1) with the 
Euler difference scheme 

(4.3) 

for i = 0, 1, ... , N - 1 where A = T/N. The increments AWo, AWl, ... , 
AWN-l of the Wiener process are independent N(OjA) distributed random 
variables, so their joint probability density is given by 

(4.4) 

Writing Ll}li = }Ii+! - }Ii for i = 0, 1, ... , N - 1 we can determine the joint 
probability density p~f) for LlYo, LlYl , ... , LlYN-l independent N(O; ..1) dis-
tributed as 

(4.5) PC:) = 

The Radon-Nikodym derivative of the discrete process Y = {}Ii, i = 0, 1, ... , 
N - I} with respect to the Wiener process W is simply the ratio 

(4.6) 
(N) Py 
p~) 

( 
N-l N-l ) 

= exp ~a2 ~ 0'2 (Y;) ..1- a ~ a (Y;) LlY; . 

Taking limits as N - 00, we see that the term in the exponent converges to 
the difference of the integrals in the formula (4.2). 

We differentiate the likelihood ratio (4.2) with respect to a and solve the 
equation 

(4.7) oL 
oa(a,T) = 0 
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to obtain the maximum likelihood estimator 

(4.8) 

This is a random variable depending on the particular sample path of the 
process X that is observed over the time interval [0,11- From (4.1) and (4.8) 
we have 

(4.9) 

where a is the true value of the parameter. If 

(4.10) 

for all T and if the stochastic differential equation (4.1) has a stationary solution 
with density p found by solving the stationary Fokker-Planck equation (1.7.16), 
then it follows from the Ergodicity Theorem 4.8.8 that 

(4.11) 
1 IT 
T io a(X,) dWt -- 0 

and 

(4.12) ~ iT a2(Xt) dt --L a2(z)p(x) dx 

with probability one as T -+ 00. We can thus conclude from (4.9) that 

(4.13) aCT) -+a 

with probability one as T -+ 00. Moreover, a version of the Central Limit 
Theorem tells us that Tl/2 (a(T) - a) converges in distribution as T -+ 00 to 
an N(O; (7"2)-distributed random variable with variance 

(4.14) (7"2 = (L a2 (z)p(z) dX) -1 

We can use this information to determine confidence intervals for a and to 
estimate an appropriate value of T for a desired confidence level. 

Exercise 6.4.1 Consider the Langevin equation 

(4.15) dXt = a X t dt + dW, 

and suppose that the true value of a is -1. Determine the mazimum likelihood 
estimate aCT) and the variance (7"2. 
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The preceding discussion pertains to the simplest situations of parametric 
estimation. In the literature many generalizations have been considered, such 
as to multiplicative noise, partial observations of the solution process, includ
ing time-discrete observations, and coloured noise. In those cases where the 
original equation should be interpreted as a Stratonovich stochastic differen
tial equation, the maximum likelihood estimate should be determined for the 
equivalent Ito equation in order to obtain a correct estimate of the true param
eter value. We note that matters are much more complicated when the drift 
is nonlinear in the parameter. In Section 2 of Chapter 13 we shall test some 
parametric estimators using numerical methods. 

6.5 Optimal Stochastic Control 

In many applications the state of the system is described by a stochastic differ
ential equation involving parameters which can be adjusted so that some task 
can be achieved in an optimal manner. Typical situations are the regulation of 
a chemical reactor or of a satellite orbit with minimum energy expenditure, or 
the selection of an investment portfolio with maximum income. Often we can 
describe these mathematically in terms of a state equation 

(5.1) dXt = aCt, X"~ u) dt + bet, X"~ u) dWt 

with a control parameter u E lRk which is to be chosen so as to minimize a cost 
criterion 

(5.2) J(8,X; u) = E (K(r, X,.) + iT F(t,X" u) dt Ix. = x) , 
where K and F are given functions and r is a specified Markov time, which is 
often a constant. 

In choosing the control parameters we can usually take into account what
ever information we have about the state of the system, that is we implement 
controls which are functionals of {Xz(w), 8 ::; Z ::; t} at each instant t. We can 
use Markovian feedback controls of the form u(t, X,), where u is a nonrandom 
Lebesgue measurable function, when we have perfect information about the 
state. If we have or make use of no information, then we are restricted to the 
openloop controls of the form u(t,w) which are nonanticipative with respect to 
the Wiener process in (5.1). On inserting a control from either of these classes 
into (5.1), under appropriate assumptions, we obtain an Ito stochastic differ
ential equation. We then minimize the cost functional (5.2) with respect to 
one of these classes of controls. For Markovian feedback controls the minimum 
value of the cost functional 

(5.3) H(s, x) = minJ (s,x; u(·» 
u(·) 

satisfies the Hamilton-Jacobi-Bellman (HJB) equation 
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(5.4) min {F(s, z, u) + LuH(s,z)} = 0 
uE.~ 

with the final time condition 

(5.5) H(T,z) = K(T,z), 

where the Markov time T = T and Lu is the operator 

a d. ald .. a2 

Lu = a + La'(s,z'u)a: + 2 L D'.J(s,z,u) a .a . 
s i=l z, iJ=l z, ZJ 

(5.6) 
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with D = bb T. (Compare this with the operator of the Kolmogorov backward 
equation (2.4.7)). This is only a necessary condition which the minimum must 
satisfy if it exists. However, various mild regularity assumptions imply both 
the existence of the minimum and the sufficiency of the condition. The prob
lem of finding the optimal stochastic control thus reduces to a deterministic 
minimization problem, that of solving the HJB equation (5.4). We remark 
that an optimal Markovian feedback control found by this means gives a cost 
functional value that is at least as good, if not better, than that for an optimal 
openloop control. Rather than present a mathematical justification of these 
statements here, we shall show how the method works by using it to solve the 
linear-quadratic regulator problem. 

We consider the dxd matrices A(t), G(t) and R, the dxm matrix O"(t), 
the k x k matrix G(t) and the d x k matrix M(t), where all of the matrices 
are continuous in t and R is a constant matrix. In addition, we assume that 
the G(t) and R are symmetric and positive semi-definite and that the G(t) are 
symmetric and positive definite. The linear-quadratic regulator problem is to 
minimize the quadratic cost criterion 

(5.7) J(s, z; u) = E ( X+ RXT + iT (xi C(t)Xt + u T G(t)u) dt Ix. = z) , 
where X t satisfies the linear stochastic differential equation 

(5.8) dX, = (A(t)X, + M(t)u) dt + O"(t) dW" 

over the class of Markovian feedback controls. (The state equation (5.8) is 
linear in X, for constant u, but will become nonlinear if a nonlinear feedback 
control u(t, X,) is used). The HJB equation (5.4) here is 

aH d. aH 1 d .. a2 H 
-+zTG(s)z+ L(A(s)z)'-+- L D',J-:--~ as i=l aZi 2 i.;=l aZiaZ; 

(5.9) 

where D = 0"0" T, with the final time condition 
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(5.10) H(T,x) = xT Rx. 

To solve this we guess a solution of the form 

(5.11) H(s, x) = X T S(s)x + a(s), 

where the Set) are symmetric positive definite d x d matrices and aCt) E ~d, 
with both continuously differentiable in t. Obviously (5.10) holds if we have 

(5.12) SeT) = Rand aCT) = O. 

We substitute (5.11) into the left side of (5.9) without the minimization, then 
differentiate the expression obtained with respect to x and find that the deriva
tive vanishes for 

(5.13) 

For these values of u the term being minimized in the HJB equation (5.9) 
also vanishes and the resulting partial differential equation reduces to a matrix 
ordinary differential Riccati equation 

(5.14) 
dS 
ds = -A(s)T S - SACs) + SM(s)G(S)-l M(s)S - C(s) 

for S = S(s), provided a(s) is chosen so that 

(5.15) 
da T 
ds = -tr {oo(s)oo(s) S(s)} 

where tr denotes the trace of the matrix. Thus we need to solve (5.14) and then 
evaluate a(s) from (5.15) subject to the final time conditions (5.12). Using this 
expression for S(s), the optimal control u*(t,Xt) is given by (5.13) and the 
minimum cost by 

(5.16) 

Since equation (5.14) does not involve the noise coefficient oo(s), the integral 
term in (5.16) is thus the total additional cost due to the presence of noise 
in the control system. The optimal control u*(t, X t ) is linear in X t , so the 
corresponding state equation (5.8) is a linear SDE; in the scalar case the op
timal control corresponds a scaled response in the opposite direction to the 
displacement. In general, the Riccati equation (5.14) must be solved numer
ically, but this can be done off-line and stored for later use since (5.14) only 
involves known coefficients. 

Exercise 6.5.1 Derive (5.13}-(5.16) for the scalar case d = k = m = 1. 

Exercise 6.5.2 State explicitly the optimal control, the optimal cost and the 
optimal trajectory of the linear-quadratic regulator problem with state equation 
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dXt = 2udt + 4dW, 

and cost functional 

J(s,x;u) = E (Xl + 11 (4X; + u2 ) dt Ix. = x) . 

Usually for nonlinear state equations (5.1) explicit solutions cannot be found 
for the HJB equation. In the case of openloop controls alternative necessary 
conditions for optimality can be derived using martingale theory. Let u(·) be 
an openloop control and let X:( 0) be the corresponding solution of the state 
equation (5.1) with initial value X~(o) = x. Then the stochastic process M:(o) 

defined by 

(5.17) 

is a submartingale with respect to the probability measure puO determined 
from the original probabilty measure P by the Girsanov transformation (see 
Section 8 of Chapter 4). The crucial point here is that M:(o) is a martingale 
if and only if the control is optimal. Martingale methods can then be used to 
prove a stochastic version of the Pontryagin Maximum Principle. 

Situations of partial information often occur because we can only make 
noise contaminated observations of some of the state components of the control 
system. For instance, we may only be able to observe a process Yi, usually of 
lower dimension than X" which satisfies 

(5.18) dYi = H(t)X, dt + f(t) dW,*, 

where Wt is a Wiener process independent of that in the state equation. For 
an estimate X, of the state X, we could use the conditional expectation 

X, = E(X, IY,), 

where Yt is the u-algebra generated by Y. for s ~ t. As indicated by (2.2.19) 
such an estimate is the best mean-square approximation of the state X t over 
all Yt- measurable Zt, that is 

It seems natural to use this estimate X, in a feedback control. In fact, for a 
linear-quadratic regulator problem (5.7)-(5.8) with the observation equation 
5.18, the optimal control u*(t, X,) takes the same form (5.13) as for perfect 
information when X, is determined by the Kalman-Bucy filter, which will be 
considered in the next section. This is an example of the Separation Principle 
of linear stochastic control theory, which says that a stochastic control problem 
with linear state and observation equations reduces to a deterministic control 
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problem and a linear filtering problem. The Kalman-Bucy filter requires a 
deterministic matrix Riccati equation to be solved. In general, partial informa
tion in stochastic control results in an infinite dimensional problem for which 
a numerical method must be used. 

To conclude this brief sketch of optimal stochastic control we remark that 
the optimal controls u·(t, z) may only be piecewise continuous or measurable 
in their variables. Consequently basic existence and uniqueness theorems such 
as Theorem 4.5.3 do not apply, but the relevant generalizations have been 
developed. The derivation of efficient numerical methods for solving stochastic 
control problems is of important practical consequence. 

6.6 Filtering 

The procedure of determining an estimate of the state of a system from noise 
contaminated observations is known as filtering. As indicated in the previous 
section, filtering is often a crucial step in solving optimal stochastic control 
problems. It is also important in many other situations, such as tracking an 
aircraft or reconstructing a radio signal. To be of practical use a filter should be 
robust and, usually, implementable on-line. In general, this leads to demanding 
computational problems and requires some deep underlying mathematical the
ory. There are nevertheless some exceptions, notably the Kalman-Bucy filter 
for linear Gaussian systems. 

For simplicity we shall give a description of the Kalman-Bucy filter for state 
and observation equations with constant coefficients. Suppose that the state 
process X t is a d-dimensional Gaussian process satisfying the (narrow-sense) 
linear stochastic differential equation 

(6.1) dXt = AXt dt + BdWt 

where A is a dx d matrix, B a dx m matrix and W ::; {W"~ t ~ O} an m
dimensional standard Wiener process. To ensure that the solution X t of (6.1) 
is Gaussian, the initial value Xto should be a Gaussian random variable. Then 
the mean and covariance matrices of X t satisfy ordinary differential equations; 
see (4.6.9) and (4.6.10). Suppose also that the observed process yt is an e
dimensional process, where 1 $ e $ d, and is related to X t by the equation 

(6.2) dyt = HXt dt + rdwt 

with Yo ::; 0, where H is a d X e matrix, r an exn matrix and W" ::; {W,*, t ~ O} 
an n-dimensional standard Wiener process which is independent of the Wiener 
process W. Finally, for each t ~ 0, let At be the u-algebra generated by X to , 
Y. and W. for 0 :5 s :5 t and Yt the u-algebra generated by the observations 
Y. for 0 :5 s $ t, so Yt C At. The Kalman-Bucy filter uses the conditional 
expectation 

(6.3) Xt = E(Xt IYt) 



6.6. FILTERING 249 

as its estimate of the state X" this being the best mean-square estimate of X, 
with 

(6.4) 

for all e-dimensional y,-measurable processes Z,. This estimate Xt is a y,
measurable, and hence A,-measurable, Gaussian process with the same mean 
as the state process X" but with a different covariance matrix. In fact, the 
error covariance matrix 

(6.5) Set) = E ( (X, - X,) (Xt _ X,) T) 
satisfies the matrix lliccati equation 

(6.6) 

with the initial value S(O) = E(XoXJ'); this differs from the linear equation 
(4.8.10) for the second moment pet) = E(X,Xl} by the quadratic correction 
term. In addition, the estimate Xt satisfies the stochastic differential equation 

where the observation process Y, appears instead of a Wiener process. The 
stochastic integral with respect to Y, here is defined in a similar way to the Ito 
integral. The derivation of equations (6.6) and (6.7) is based on the fact that 
the best mean-square estimate of an element of a Hilbert space 1{ with respect 
to a subspace S of 1{ is its orthogonal projection onto S. In this case the 
appropriate Hilbert space 1{ consists of the mean-square integrable processes I 
= {f., 0 ~ s ~ t} adapted to the family of u-algebras {A., 0 ~ S $ t} and the 
subspace S consists of those processes adapted to the observation u-algebras 
{Y., 0 ~ s ~ t }. The inner product here is 

(f,g) = E (1' I,T g. dS) , 
with I and 9 orthogonal if (f, g) = O. The estimate Xt and the error X, - X, 
are orthogonal in this sense, and also in the stronger pointwise sense that 

for each t ~ O. We note that the lliccati equation (6.6) must be solved numer
ically, but it only involves the known coefficients of the state and observation 
equations (6.1) and (6.2), so this can be done off-line. The coefficients of the 
estimate equation (6.7) are then known, so this equation can be solved on-line 
as the observations become available; generally this must be done numerically 
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too. Finally, it has been shown that the Kalman-Bucy filter is robust in the 
sense that the estimate changes only slightly with slight changes in the coef
ficients and the nature of the noise processes. This is particularly important 
in practice since the actual noises will often be broad-band approximations of 
Gaussian white noise. 

Exercise 6.6.1 Solve the Riccati equation (6.6) for the scalar case d = e = 
m=n=1. 

Exercise 6.6.2 Show that the Kalman-Bucy filter in the scalar case with X t 

== Xo where E(Xo) = 0 and E(X~) = u 2 , that is with 

dXt == 0, dyt = Xtdt + dW: 

and Yo = 0, gives the estimate 

In using the Kalman-Bucy filter we are essentially determining the condi
tional probability distribution of the state X t in the estimate X,. This obser
vation has been used as a starting point for investigating nonlinear filtering 
problems. To begin, we suppose that the state process X = {X"~ t ~ O} is a 
continuous time Markov chain on the finite state space {I, 2, ... , N} with its 
N-dimensional probability vectors P(t), with components pi(t) = P(Xt = i) 
for i = 1,2, ... , N, satisfying a vector ordinary differential equation 

(6.8) 
dp 
- = A(t)p 
dt 

where the A(t) are the time-dependent intensity matrices of the Markov chain 
at time t; see Example 1.6.8. Further, we suppose that the observations yt 
represent an e-dimensional process satisfying 

(6.9) 

with Yo = 0, where W· = {W,*, t ~ O} is an e-dimensional Wiener process 
which is independent of X. As before we denote the u-algebra generated by 
the observations Y. for 0 ~ s ~ t by Yt and in addition denote the N x N 
diagonal matrix with iith component hie (i) by Hie for k = 1, 2, ... , N. Then 
the conditional probabilities of X t given Yt are 

(6.10) 

for i = 1,2, ... , N, which follows from the Fujisaki-Kallianpur-Kunita formula. 
Here the N-dimensional process Qt = (Ql, Q~, ... , Qf) satisfies the linear 
stochastic differential equation, called the Zakai equation, 
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N 

(6.11) dQt = A(t)QI dt + L HI.: Qt dY/' 
1.:=1 

with respect to the observation process yt. The appropriate initial condition 
here is Qo = p(O). 

Exercise 6.6.3 Write down the SDE {6.11} for I-dimensional observations 
YI of random telegraphic noise with h(±1) = ±1 in equation {6.9}. 

An analogous result holds when the state process X, is a non degenerate 
diffusion process satisfying an Ito stochastic differential equation. For simplicity 
we suppose that the drift and diffusion matrix are independent of time and are 
sufficiently smooth. Then the probability densities p( t, x) satisfy the Fokker
Planck equation (2.4.5), which we write in operator form as 

(6.12) op _ C.p at - . 
In addition suppose that the e-dimensional observation process satisfies an 
equation of similar form to (6.9), except now the domain of h is iRd for an 
d-dimensional diffusion process XI. Then the conditional probability densities 
of X t given Yt are 

(6.13) 

where the unnormalized densities Qt(x) satisfy the stochastic partial differential 
equation, called the Wong-Zakai equation, 

(6.14) 

with respect to the observation process Y, where Qo(x) = p(O, x). 
For both the Markov chain and diffusion state processes the conditional 

probabilities provide information about an estimate of the state in terms of the 
observations, but unlike the Kalman-Bucy filter do not give a simple sample 
path representation of the estimate. In the Markov chain case the unnormal
ized conditional probabilities satisfy an Ito type stochastic differential equation 
(6.11) for which the numerical methods discussed in this book can be applied. 
See in particular Section 3 of Chapter 13. Appropriate numerical methods for 
stochastic partial differential equations like (6.14) are yet to be developed. One 
possible method would be to approximate the diffusion process by a Markov 
chain and then to solve the corresponding ordinary stochastic differential equa
tion (6.11). 

Another approach is based on the Kallianpur-Striebel formula. This refers 
to the general nonlinear filtering problem with both the state process X = {XI' 
t E [0,11} and the observation process Y = {yt, t E [0, 11} satisfying nonlinear 
stochastic differential equations, which we write in integral form as 
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(6.15) 
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Xo + 1t a (X.) ds + 10t b (X.) dW.1 , 

Yi = it heX,) ds+ Wt2 

for t E [0, T]. Here the given probability space is (0, A, P), W = (WI, W2) 
= {(Wl, Wl), t E [0,11} is a 2-dimensional standard Wiener process with 
respect to a family of nondecreasing sub-u-algebras {At, t E [0,11} and the 
initial state Xo is Ao-measurable. As before we denote the u-algebra generated 
by the observations Y, for 0 $ s $ t by Yt. Using the Girsanov transformation 
(4.8.17) we introduce a new probability measure F = D;.1 P with the Radon
Nikodym derivative 

(6.16) Lt = exp ( -~ it h2 (x.) ds + 1t h (x.) dY.) 

for t E [0, T]}. The observation process Y is then a Wiener process with respect 
to F and is independent of X under F. Furthermore, for each sufficiently 
smooth function f the K allianpur-Striebel formula for the nonlinear filter 

(6.17) E(f(X) IY) = E(f.(Xt ) LtlYt) 
t t E (L t I Yt) , 

holds for all t E [O,T]}, where E denotes the expectation with respect to the 
probability measure P. 



Chapter 7 

Applications of Stochastic 
Differential Equations 

This chapter consists of a selection of examples from the literature of appliclIr
tions of stochastic differential equations. These are taken from a wide variety of 
disciplines with the aim of stimulating the readers' interest to apply stochastic 
differential equations in their own particular fields of interest and of providing 
an indication of how others have used models described by stochastic differen
tial equations. Here we simply describe the equations and refer readers to the 
original papers for the justification and analysis of the models. 

7.1 Population Dynamics, 
Protein Kinetics and Genetics 

Population Dynamics The simplest deterministic model of population 
growth is the exponential equation :i: = ax where a is the Malthusian growth 
coefficient, which is usually a positive constant, but may vary in sign and 
magnitude with time t to cater for seasonal variations. The vagaries of the 
environment can be modelled by allowing a to vary randomly as a + tT6 for 
a zero mean process et. We saw in Section 1 of Chapter 6 that when et is a 
Gaussian white noise process we obtain a linear stochastic differential equation, 
either an Ito equation or a Stratonovich equation depending on which inter
pretation we choose. Both the deterministic and stochastic models here admit 
unbounded exponential growth, which is untenable in an environment of finite 
resources. Under such circumstances a finite supportable carrying capacity K 
is appropriate, with the population decreasing whenever it exceeds this value. 
We can incorporate this feature easily into the deterministic model by replac
ing the growth constant a by the linear factor a(K - x). Then we obtain the 
linear-quadratic Verhulst equation 

(1.1) :i: = a(K - x)x, 

which is often written as 

(1.2) 

with aK replaced by A and ax by x. 
On randomizing the parameter A in (1.2) to A + ue" we obtain a stochastic 

differential equation 
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(1.3) dXt = (AX, - xl) dt + (TXt dW, 

using the Ito interpretation, which can be solved explicitly by the reduction 
method in Section 3 of Chapter 4; for the explicit solution see equation (4.4.51). 

Some caution is needed in randomizing the parameter A, or more precisely 
the original parameters a and K in (1.1), in this fashion. Since negative as 
well as positive values make sense for a growth rate, there are no conceptual 
difficulties in randomizing the growth parameter a as above. In contrast, by 
its very definition the carrying capacity K must be positive, so randomizing it 
as K + ere, for white noise et will lead to unrealistic stochastic models. One 
way around this is to begin with Schoener's deterministic equation 

(1.4) x = R x (E(T - Ax) - C - rx) 

instead of the simpler looking Verhulst equation (1.1), to which it reduces with 
parameters a and K defined by 

a=R(EA+r), 
ET-C 

K= EA+r. 

We shall not elaborate here on the meaning of the parameters in (1.4) other 
than to remark that some may naturally take both positive and negative values 
and thus be meaningfully randomized as above with white noise fluctuations. 

Apart from contrived situations such as laboratory experiments, single 
species population dynamics models are usually unrealistic since in nature most 
species coexist with others and are affected by their presence in one way or an
other. Such interactions may be benevolent, neutral or malevolent, as in sym
biotic, predator-prey or competitive relationships, respectively. These can all 
be incorporated in population dynamics models with terms coupling together 
separate single species models. A frequently studied deterministic model of 
multi-species interaction is the Volte7Ta-Lotka system 

(1.5) 

for i = 1, 2, ... , d in the case of d different species. Randomizing the growth 
parameters a i as ai + (Tie: leads to a system of stochastic differential equations, 
which we shall interpret as Ito equations with independent Wiener processes, 

(1.6) 

for i = 1, 2, ... , d. More generally, we might obtain noise terms of the form 
Et=l eri,i (Xl, xl, ... , xt) dwl for i = 1,2, ... , d if, for example, the coupling 
parameters are also randomized. Explicit solutions are not known for equations 
(1.6), so they must be solved numerically or a qualitative investigation made 
of the boundedness and stability of their solutions. 
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Protein Kinetics Stochastic counterparts of many ordinary differential 
equations modelling chemical kinetics, such as the Brusselator equations, can 
be derived by randomizing coefficients. For example, the kinetics of the pro
portion x of one of two possible forms of certain proteins can be modelled by 
an ordinary differential equation of the form 

(1.7) :i: = a - x + Ax(l- x), 

where 0 ~ x ~ 1 and the other form has proportion y = 1 - x. For random 
fluctuations of the interaction coefficient A of the form A + eret with white 
noise et, the appropriate stochastic version of (1.7) is given by the Stratonovich 
stochastic differential equation 

The solutions of (1.8) are not known explicitly, but remain in the interval [0, 1], 
w.p.l, since at both endpoints the diffusion coefficient vanishes and the drift is 
directed into the interval for positive values of the a, which are necessary for 
(1. 7) to be meaningful. 

Genetics The Ito equation equivalent to (1.8), 

(1.9) dXt = a(Xt ) dt + erXt (1 - X t ) dWt 

where 

also has a genetical application, with X t representing the proportion at time t 
of one of two possible alleles of a certain gene. A discrete-time Markov process 
can be constructed to model the changes from generation to generation in the 
allele proportions due to natural selection, which favours the allele most suited 
to the current state of a randomly fluctuating environment, and to mutations 
which, in this case, transform one allele form into the other. Essentially, this 
discrete-time Markov process converges to a diffusion process X t satisfying the 
equation (1.9) as the total number of alleles becomes arbitrarily large. Similar 
arguments have been used to derive a system of Ito equations from Kimura's 
discrete- time Markov model of the distributional dynamics of such an allele 
amongst d different geographical sites. For example, Shiga obtained the system 
of equations 

(1.10) . . (1 II) J1. ( .) . dX; =a' Xt,··.,Xt dt+ 2X; I-X; dW:, 

where 

ai (xl, ... ,xd) = (vi _ (ui+vi)xi+s'Xi(I-Xi)+.t mj,i (xi _Xi)) 
',;=1 

for i = 1,2, ... , d. Here Wl, W,l, ... , wl are independent Wiener processes, 
Si the relative fitness of the specified gene in the ith region, ui and vi the 
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mutation rates between the two alleles in the ith region, and mi,i the relative 
migration rate from the jth to the ith region. 

7.2 Experimental Psychology 
and Neuronal Activity 

Experimental Psychology The coordination of human movement, partic
ularly of periodically repeated movement, has been extensively investigated by 
experimental psychologists with the objective of gaining a deeper understand
ing of neurological control mechanisms. The neurological system is without 
doubt extremely complicated, yet in some situations a single characteristic ap
pears to dominate and a satisfactory phenomological model can be constructed 
to describe its dynamics. One such example is the following experiment car
ried out by Kelso. A subject sits at a table with his wrists fixed vertically 
on the table and moves the index finger on each hand periodically to the left 
and right. Depending on the frequency of this movement and on whether it 
is chosen freely by the subject or synchronized with a metronome, just one 
of two stable steady states is observed: a symmetric steady state, in which 
the two index fingers move inwards and outwards together, and an asymmetric 
steady state in which one moves inwards while the other moves outwards. The 
dominant characteristic here is the phase difference tP of the two fingers, with 
the symmetric state corresponding to tP = 0 and the asymmetric one tPo = 1r ( 
or -r, since tP takes values modulo 2r). It was always found that the asym
metric state suddenly gives way to the symmetric state when the frequency of 
oscillations exceeds a certain critical value. Moreover, the ratio of this critical 
frequency to the frequency freely chosen by the subject was the same for all 
subjects. 

Haken and his coworkers proposed the ordinary differential equation 

(2.1) ~ = -a sin tP - 2b sin 2tP 

as a deterministic model of the phase dynamics, this being the simplest pe
riodic one with steady states and stability characteristics consistent with the 
experimental observations. Here a and b are positive parameters that must 
be determined from experimental data. In order to describe fluctuations in 
this data, Schoner included an additive noise term O'et in (2.1), obtaining a 
stochastic differential equation 

(2.2) dXt = - (a sin X t + 2bsin 2X,) dt + 0' dWt , 

with X t interpreted modulo 21r. This form of noise is meant to model noisy 
fluctuations in a very large number of weakly coupled neuronal cells. 

While it does not make the equation any easier to solve, we can express 
the required 21r-periodicity of X t directly by writing (2.2) as a Stratonovich 
stochastic differential equation on the unit circle, namely 



7.3. INVESTMENT FINANCE AND OPTION PRICING 257 

= - (a + 4bxl) xIxl dt + uxl 0 dWt , 

where xl = cosXt and xl = sinXt . 

Neuronal Activity Many stochastic models have been proposed to de
scribe the spontaneous firing activity of a single neuron. These are usually 
based on jump processes and allow arbitrarily large hyperpolarization values 
for the membrane potential. Attempts have been made to avoid the latter 
difficulty by requiring the depolarization to be state dependent. In addition, 
diffusion approximations are often sought in order to simplify the subsequent 
mathematical analysis. A model incorporating these features has been derived 
by Kallianpur. It involves the Ito stochastic differential equation for the mem
brane potential 

(2.3) dXt = (-,;Xt + 0' (VE - X,) +,8 (X, - VI») dt 

+';",(u1 (VE - Xt )2 + fU~ (X, - VI)2 dWt 

with VI ::; X t ::; VE, for inhibitory and excitatory membrane potentials VI < 
VE. Here W = {W" t ~ O} is a standard Wiener process and the constants 
0', ,8, "'( and T are positive. A related model due to Lansky and Lanska, which 
can be obtained from (2.3) essentially by setting "'( = 0, has been analysed in 
detail in a paper by Giorno, Lansky, Nobile and Ricciardi. 

7.3 Investment Finance and Option Pricing 

Investment Finance Given the apparent random fluctuations of share 
prices on the stock exchange, it seems natural to use stochastic differential 
equations in models of share price dynamics or, more generally, in models of 
investment finance. One of the first to do this was Merton, whose simple model 
contains the basic ideas that have been used in recent, more sophisticated mod
els. Merton considered an investor who chooses between two different types of 
investment, one risky and the other safe. The investor must implement an 
investment strategy which will maximize some utility function, such as his net 
wealth or cash flow, while avoiding bankruptcy. Merton supposed that the 
price P. of the safe investment increased steadily according to the exponential 
growth ordinary diffferential equation 

(3.1) p. = ap. 

for some constant rate a > O. In addition, he supposed that the price Pr of the 
risky investment satisfied a similar equation, but including noisy fluctuations 
with intensity proportional to the price. Thus 
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(3.2) 

where e, is a Gaussian white noise process, which he interpreted as an Ito 
stochastic differential equation 

(3.3) dP[ = bP[ dt + fjP[ dW, 

where {W" t ~ O} is a standard Wiener process. Here band fj are positive 
constants and a < b since the risky investment is, potentially at least, more 
profitable than the safe one. At each instant of time the investor must select 
the fraction f of his wealth that he will put into the risky investment, with the 
remaining fraction 1 - f going into the safe one. If his current consumption 
rate is e ~ 0, then it follows from (3.1) and (3.3) that his wealth X, satisfies 
the stochastic differential equation 

dX, = f (bX, dt + fjX, dW,) + (1- f)aX, dt - edt, 

which can be rewritten as the Ito stochastic differential equation 

(3.4) dX, = ({{I - f)a + fb} X, - c) dt + ffjX, dW,. 

When the investor has perfect information about his current wealth, Markovian 
feedback controls of the form u(t,X,) = (J(t,X,), e(t,X,» provide a natural 
way for choosing his current investment mixture and consumption rate. If X~(·) 
is the corresponding solution of (3.4) he may want to choose u(·) to maximize 
the expected value of some utility function U at time T. This gives rise to an 
optimal stochastic control problem with profit functional 

J (s, x; u(.» = E (U (X;(o») I X:(o) = x) 

which is to be maximized. The problem is complicated by the presence of a 
nonnegative consumption rate in (3.4), which may result in bankruptcy at a 
random first exit time 

Option Pricing Suppose that the price of a risky asset, for example a stock 
or an exchange rate, evolves according to the Ito stochastic differential equation 

(3.5) X, = Xo + l' b(s,X.) dW. 

for t E [0,7'], where W is a Wiener process with respect to an underlying 
probability measure P which can be interpeted as the probability measure of 
the risk-neutral world. 

For simplicity we shall consider only options on this single risky asset, as
suming that there are no dividends and that the interest rate is zero. A Euro
pean call option with striking price e, for example, gives the right to buy the 
stock at time T at the fixed price c. The resulting payoff is then given by 
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(3.6) 

Suppose that we apply a dynamical portfolio strategy or hedging strategy 

«(" 7Jt)tE[O,T] , 

where at time t E [0, T] we hold the amount 7Jt in a riskless asset of constant 
value, say 1, and the amount (t in the risky asset. Then the value Vi of the 
portfolio at time t is 

(3.7) Vi = (t X t + 7Jt· 

An important problem is to determine the fair price of the option. It follows 
from the well known formula of Black and Scholes that 

(3.8) 

The corresponding self-financing hedging strategy, in quite general situations, 
leads to a perfect replication of the claim, that is 

(3.9) 

On the other hand, if there is some intrinsic risk, then the situation is more 
complicated. This case has been considered by Follmer, Sondermann and 
Schweizer. 

7.4 Turbulent Diffusion and Radio-Astronomy 

Turbulent Diffusion Stochastic differential equations have long been used 
to model turbulent diffusion and related phenomena, dating back to Langevin's 
equations for Brownian motion. Let X, E ~ represent the position of a fluid 
particle at time t and Vi its velocity. As a simple model for the Lagrangian 
dynamics of such a particle, Obukhov proposed the following 6-dimensional 
system of stochastic differential equations: 

(4.1) dXt = Vi dt, dVi = O'dW" 

where (T is a scalar diffusion coefficient and Wt is a 3-dimensional standard 
Wiener process. To account for weak frictional forces acting on the particle, he 
replaced the equations by 

(4.2) dX, = Vi dt, 

where T is a rather large relaxation time for the process Vi, the components 
of which are now Ornstein-Uhlenbeck processes. Variations of equations (4.1) 
and (4.2) have since been considered, for example with coloured noise instead 
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of white noise. In some instances Poisson processes have also been used as the 
driving process. 

The spectral density of atmospheric turbulent fluctuations contains a wide 
gap in the vicinity of the frequency 1 per hour, that is of period 1 hour. The 
large-scale synoptic fluctuations ",(1) have a period much larger than 1 hour, 
whereas the micro-scale fluctuations ~(2) have a much smaller period and are 
superimposed on the synoptic fluctuations, but are independent of them. At
mospheric scientists have thus used two different relaxation times T1 and T2 ~ 
T1 for these two types of fluctuations. Consequently, two coupled systems of 
stochastic differential equations are needed for a statistical model of turbulent 
diffusion with two such time-scales. A typical example, due to Bywater and 
Chung in a slightly different context, has the form 

dVP) = ( - ~1 v,(1) - fJ (v,(1) - v,(2») ) dt + 0"1 dWP) 

d~(2) = ( - ~2 v,(2) + fJ (~(1) - ~(2») ) dt + 0"2 dWP) 

where W,P) and W,(2) are two independent 3-dimensional standard Wiener 
processes. 

Radio-Astronomy In radio-astronomy signals from a star are analysed to 
obtain estimates of certain characteristic parameters of the star. According 
to Le Gland such a signal can be represented as a complex-valued stochastic 
process 

(4.3) IJ, = a exp (1 (b + Xt)) + ret 
where 1 = R, a is the signal amplitude and b the mean phase, with Xt a real
valued zero-mean process representing the effects of atmospheric turbulence on 
the signal. In addition, et is a complex-valued Gaussian white noise process 
modelling measurement errors and r is a nonzero number or an invertible matrix 
for vector valued signals. For a given process X = {X"~ t ~ O}, equation (4.3) 
can be written as a complex-valued stochastic differential equation 

( 4.4) dYi = a exp (1 (b + Xt)) dt + rdWt 

where {W"~ t ~ O} is a complex-valued Wiener process, that is Wt = wl + 
1 w,2 for independent Wiener processes {Wl, t ~ O} and {w,2, t ~ O}. With 
Yi = Y/ + IY?, equation (4.4) can be written as two real-valued equations 

(4.5) dY/ = a cos(b+ X,) dt + rdWl 

and 

(4.6) dY? = a sin(b+ X,) dt + rdW,2. 

Le Gland used an Ornstein-Uhlenbeck process X t satisfying the stochastic dif
ferential equation 
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(4.7) 

for certain parameters P and u, to model the atmospheric turbulence. Here 
{W,a, t ~ O} is another Wiener process which is independent of those in (4.5) 
and (4.6). 

Given the model consisting of equations (4.5)-(4.7) and the observed signal 
{Yr, t ~ OJ, the problem confronting the astronomer is to determine estimates 
of the characteristic parameters a and b of the star. In addition, appropriate 
values of the parameters p, u and r are required and must either be provided 
from other sources or also estimated. Assuming that these latter parameters 
are known, one possible method of estimating a and b is to consider them 
as time-independent processes satisfying the degenerate stochastic differential 
equations 

dat = 0, dbt = ° 
and then to use a nonlinear filter to determine estimates at and bt for them, 
subject to the nonlinear observation equations (4.5) and (4.6) .. 

7.5 Helicopter Rotor 
and Satellite Orbit Stability 

Helicopter Rotor Stability The possible destabilization of a helicopter 
by turbulence in the vicinity of a rotating rotor blade is a matter of obvious 
concern. To investigate this problem Pardoux, Pignol and Talay proposed a 
model for the dynamics of a rotor blade with two degrees of freedom, in which 
the velocity of the helicopter, the geometric characteristics of the rotor blade 
and the statistical characteristics of the turbulence around the blade appeared 
as parameters. This resulted in a 4-dimensional system of differential equations. 
As a first approximation they considered a linear deterministic system of the 
form 

z = A(t)z + I(t) 

where the matrices A(t) and the vectors I(t) are periodic functions with the 
period of rotation of the rotor blade. To this they added noise terms, either 
coloured or white. In the latter case they obtained the linear Stratonovich 
stochastic differential equation 

(5.1) dXt = (A(t)Xt + I(t)) dt + (B(t)Xt + g(t)) u(t) 0 dWt. 

Here W, is a I-dimensional Wiener process and u(t) is the intensity of the 
noise, which, like the matrices B(t) and the vectors g(t), is also periodic with 
the same period as that of the rotor blades. 

The appropriate type of stability here is that of a unique periodic in law 
solution Xt such that 

lim IXt - X,I = 0, w.p.I, 
t-oo 
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for any other solution X t starting at an arbitrary deterministic initial value. 
This stability is also characterized by the negativeness of all of the correspond
ing Lyapunov exponents of the solution X,. These have been evaluated by 
Talay using a stochastic numerical procedure (see Section 3 of Chapter 17). 

Pardoux and Pignol also considered the more realistic case of coloured noise, 
in particular noise of the form e(t) = £-1/2 Z(tl£) for £ > 0 sufficiently small, 
where Z(t) is a stationary Ornstein-Uhlenbeck process. For f --+ 0, Pardoux 
showed that the top Lyapunov exponent of the counterpart of system (5.1) with 
this coloured noise converges to that of the Stratonovich stochastic differential 
equation (5.1), which suggests that the behaviour of the model is robust to 
changes in the type of noise. 

Satellite Orbital Stability The rapid fluctuations on the earth's atmo
spheric density and other disturbances in the upper atmosphere must be taken 
into account when modelling the dynamics of satellites. Usually these are incor
porated into deterministic models based on Newtonian mechanics in the form 
of random forcing or randomized coefficients. One such model that arose from 
the problem of stabilizing a satellite in a circular orbit is the following due to 
Sagirow: 

(5.2) 

where z is the radial perturbation about the given orbit, et is a Gaussian white 
noise and a, b and c are constants, with b and c positive. With X t = (Xl, xn = (z,:i:), this can be written as a 2-dimensional Ito stochastic differential 
equation 

(5.3) ( Xl) ( X2 ) d ~ = 2.'1 . 1 dt X, -bXt - smX, - c sm2X, 

( 0) + 2· 1 dWt -abX, - b smXt 

where {W" t ~ O} is a standard Wiener process. Alternatively, it may be 
argued that the Gaussian white noise is only an approximation of a real noise, 
so (5.3) should be written as a Stratonovich stochastic differential equation. 
The choice of interpretation will, for instance, have an effect on the outcome 
of a stability analysis. 

Satellite Attitude Dynamics Another model, which has been investigated 
by Balakrishnan, is for the attitude dynamics of a satellite. The basic equations 
are the kinematic (Euler) attitude motion equations for a rigid body subject 
to random torques. These are the 3-dimensional first order system 

(5.4) 

where z is the 3-dimensional state (attitude) vector, M, K and D 3 x 3 real 
symmetric positive definite matrices, e, a 3-dimensional vector Gaussian white 
noise process and ® the vector cross product. Here M is the moment of inertia 
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matrix, [( a friction matrix and D the noise intensity correlation matrix. This 
can be written as a 3-dimensional vector Ito stochastic differential equation 

(5.5) dX, = J(X,) dt + M- l D dW, 

where {Wt, t ~ O} is a 3-dimensional standard Wiener process and 

J(z) = -M-l[(z - M-lzfl)Mz. 

The cross product term here is quadratic in the state variables, so this drift 
vector does not satisfy a global Lipschitz condition or a global growth bound 
and the conventional existence and uniqueness theorems such as Theorem 4.5.3 
do not apply. However the dot product 

zT ·zfl)Mz = 0 

holds for all z E ~, so 

Z T·M J(z) = -z T [(z :5 -A Izl2 

for some A > 0 and this ensures the global existence of strong solutions of (5.5). 
This example shows that models which do not satisfy the commonly assumed 
regularity properties may still have well behaved solutions on account of special 
structural features of the model. 

7.6 Biological Waste Treatment, 
Hydrology and Indoor Air Quality 

Biological Waste Treatment The continuous flow cultivation of micro
organisms for the biological treatment of urban waste water has attracted 
widespread attention. Most of the mathematical models of microbial growth 
in current usage trace back to a model of Monod for single strain bacterial 
growth in a single substrate. Harris proposed a model of an anaerobic digester 
of sewage sludge based on a perfect mixing model of a continuously stirred tank 
reactor with noisy fluctuations in the concentrations and feedrates, and with 
flow equalization prior to the reaction being used to stabilize the process. He 
considered five state variables (Xl, X 2 , X 3 , X 4 , X 5 ) with Xl the equalization 
tank volume, X2 the incoming sludge flow rate, X 3 the incoming substrate 
(pollutant) concentration, X 4 the substrate concentration leaving the equal
ization tank for the reactor tank, and X 5 the substrate concentration leaving 
the reactor tank. 

To account for random fluctuations in the influent flow rate and pollutant 
concentration due to rainfall and industrial and domestic waste discharge, Har
ris used the pair of Ito stochastic differential equations 

(6.1) ( al + 1 - PI ~~) dt + 
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(6.2) dxf = 
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xl 2 
2'Y2 -1 dW, Xt 

to model the turbulent flow and concentration pattern. Here the ai, /3i and 'Yi 
are positive parameters characterizing the noisy fluctuations. Then, using mass 
balance for the equalization tank, he obtained a pair of ordinary differential 
equations for the equalization tank volume and the substrate concentration 
leaving the equalization tank: 

(6.3) dxi ( al/3~ 1 _ x;) dt 

(6.4) dXt = ( 3 4) X; X t -X, -1 dt. 
X t 

Finally, the mass balance for the reactor tank gave an ordinary differential 
equation for the substrate concentration leaving the reactor tank: 

(6.5) 

where a and b are factors depending on the growth rate of the micro-organisms, 
the yield constant and the noise parameters. 

The five equations (6.1)-(6.5) form a nonlinear 5-dimensional vector 
stochastic differential equation with no noise terms appearing explicitly in three 
of the five component equations, so the corresponding rows in the diffusion ma
trix have zero entries. Harris presented a numerical method for this system, 
and used it to plot the time evolution of the expected gain in concentration of 
the biological oxygen demanding states, that is E(X: / xf) against time t for 
various values of inputs and parameters. 

Hydrology The outflow z from a lake or reservoir depends on the precipi
tation P over its catchment area, the evaporation from the water surface, the 
seepage flow and other factors which can be combined and represented ab
stractly by a parameter CIi. Hydrologists have modelled the outflow from a 
single reservoir by a first order ordinary differential equation 

(6.6) x = F(z) 

where the function on the right is given by 

(6.7) F(z) = APz"'-APCIi(l-tP(z»z'" 

-AE.,p(z)z'" - Az.B - Bz". 

The last term in (6.7) is the seepage flow and .,p(z) = C + D z 6 is determined 
by the ratio of the surface areas of the catchment region and the reservoir. The 
constants A, B, C and D are nonnegative, whereas the indices a, /3, 'Y and 6 
may also be negative. 

Since the precipitation P, evaporation E and catchment abstractions () 
are subject to fluctuations from many sources, it is reasonable to consider 
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them to be random variables. Unny and Karmeshu argued that they could be 
approximated by independent Gaussian white noise fluctuations about positive 
mean values, namely 

P + 001 e: , E + 002 el and c) + 003 e: . 
They substituted these into (4.2), using pc) + Poo3e: + c)oo1 el for the product 
of P + 001 a and c) +003 e: in the second term, and obtained the Stratonovich 
stochastic differential equation 

(6.8) dXt = F(Xt) dt + 001 (1 - c) + Ac)t/!(Xt)(Xt)Q) 0 dwl 

-oo2At/!(Xt) 0 dW,2 

-oo3AP (1 - t/!(Xt )) (Xt ),> 0 dWt3 

as a stochastic counterpart of (6.6). Here wl, W? and Wt3 are independent 
standard Wiener processes. Unny and Karmeshu simulated numerically some 
sample paths of various solutions of (6.8). They also considered a cascade of 
lakes or reservoirs, such as the Great Lakes of North America, with the output 
of one being an additional input into the next. This resulted in a system of 
Stratonovich equations of the form (6.8) with additional coupling terms. 

Air Quality Air conditioning units are used not only to regulate the tem
perature within a room, but also to filter the air to remove pollutants. Tra
ditionally determinsitic models, based on mass and heat balances, have been 
used to help calibrate such units. Restricting attention here to the air quality 
in a single room, an established deterministic model for the concentration of a 
pollutant such as CO2 is 

(6.9) vCi = _k(qo+f1q1+q2)Ci +S_R 

+k (q0(1- fO) + q2)CO 

where Ci is the indoor concentration and CO the outdoor concentration; q is the 
volumetric flow rate for the make-up air qO, the recirculation q1, the infiltration 
q2, the exfiltration q3, and the exhaust q4; f is the filter efficiency for the make
up f O and the recirculation P air; v is the volume of the room; S is the indoor 
source emission rate; R is the indoor sink removal rate; and k is a factor which 
accounts for the inefficiency of the mixing. 

In reality, many of the above parameters cannot be predicted with certainty 
due to random fluctuations, which can be quite large. To obtain a more real
istic model, Haghighat, Fazio and Unny replaced S, CO, qO and q2 by random 
fluctuations about deterministic values S, (;0, ijo and ij2 (which may vary in 
time), that is by 

- (1) 
St = S +et , 

q~ = qo + e~3) , 

C~ = (;0 + e~2) , 

q; = iP +e~4), 
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where {P), d2), {}3) and {}4) are noise terms. They substituted these into (6.9), 
neglecting the product {~2) {~3), to obtain 

(6.10) 

where {. = ({P), {~2), {~3), {~4», 9 is the scalar function 

g(Ci,t) = -k (qO + flql + ip) Ci + S - R 

+k(qO (1- fO) + q2)CO, 

and H is the (row) vector function with 

Using independent Wiener processes for the noise terms, they interpreted (6.10) 
as an Ito stochastic differential equation. They also considered coupled systems 
of such equations to model the pollutant concentrations in several different 
rooms. 

Haghighat, Chandrashekar and Unny proposed a model, with a similar 
mathematical structure, of the thermal variations within a building subject 
to external temperature fluctuations. 

7.7 Seismology and Structural Mechanics 

Seismology The vertical motion of the ground level during an earthquake, 
particularly during the period of strong movement, has been extensively mod
elled by Ito or Ito-like stochastic differential equations. For example, Bolotin 
assumed that the acceleration z(t) of the ground level z(t) at time t has the 
form 

(7.1) z(t) = I(t) {. 

for some random process {t with a deterministic intensity function I. In par
ticular, for Gaussian white noise he suggested that let) = hte-at or 

(7.2) let) = e-af _ e-1Jt , 

where 0 < a < f3 and h > 0 are known constants, are appropriate representa
tions of the noise intensity. In this case (7.1) can be written as a 2-dimensional 
vector Ito stochastic differential equation 

(7.3) d ( ~~ ) = ( ~2 ) dt + ( ~ ) let) dW, 
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where zl = z(t) is the vertical displacement, zl = i(t) the velocity in the 
vertical direction and {Wi, t ~ O} a standard Wiener process. 

A variation of (7.1) was proposed by Shinozuka and Sato, with the Gaussian 
white noise passing through a linear filter with impulse response h(t) after the 
application of an intensity function I(t). This resulted in an integro-differential 
relationship 

(7.4) z(t) = l' h(t - s)l(s)e. ds 

instead of (7.1). A typical choice here for the intensity function I(t) is (7.2) 
and for the impulse response 

sin(w~t) 
h(t) = e-6w' , 

w~ 

where 0 and ware known constants. Equation (7.4) can then be written as a 2-
dimensional vector stochastic differential equation like (7.3), but with I(t) dWt 
replaced by dYt for 

yt = l' h(t - s)l(s) dW,. 

In another variation of (7.1) Kozin replaced the acceleration by a time depen
dent linear combination of the acceleration and its derivatives. For example, 
with aCt) = z(t) he considered equations of the form 

(7.5) aCt) + CI (t)a(t) + co(t)a(t) = I(t) e, 
where CI(t) = CIa and co(t) = Coo + COlt + Co2t2 + C03t3 for known coefficients 
ClO, Coo, Cal! C02 and C03. For Gaussian white noise (7.5) can be written as a 2-
dimensional vector Ito equation in A} = aCt) and A1 = aCt) or a 4-dimensional 
equation in zl = z(t), Zl = i(t), zt = z(t) = aCt) and Zj. = z(3)(t) = aCt), 
the latter being 

(7.6) 

where {W" t ~ O} is once again a standard Wiener process. 
An important use of these models of earthquake dynamics is as excitation 

input into a system modelling the dynamics of a structure such as a building 
during an earthquake. Typically, a forced nonlinear oscillator of the form 

(7.7) 

is used to describe the dynamics of the structure, where .Ht) is the vertical 
acceleration of the ground level obtained from (7.1), (7.4) or (7.5). Equation 
(7.7) can be written as a 2-dimensional Ito-like stochastic differential equation 
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where zl is the speed component of the earthquake model, for example (7.1) 
or (7.6). 

Structural Mechanics An Euler-Bernoulli beam under axial loading sat
isfies a fourth order nonlinear partial integro-differential equation under the 
Kirchhoff assumption that the axial extension depends only on time t and not 
on the distance x along the beam. An axial forcing P(t) produces an end 
displacement u(t). If all but the first spatial mode are disregarded, it follows 
that the corresponding time-dependent coefficient satisfies the second order 
nonlinear ordinary differential equation 

(7.9) T + 2DwIT +wl (1 + w{t))T+ ,T3 = 0 

where WI is the first natural frequency of the beam. Random fluctuations in the 
external forcing P(t), due for example to wind gusts or earth vibrations, result 
in a randomly fluctuating end displacement term u(t). Writing this process 
as Ut = Uo + Uet for a white noise {t, Wedig derived a vector Stratonovich 
stochastic differential equation 

d ( Tl ) 
Tl 

where (TI, T2) = (T, T) and Wt is a scalar standard Wiener process. He 
investigated the effect of changes in the parameters on the stability of the null 
solution of (7.9). 

Similar types of models have been constructed for other kinds of mechanical 
problems when randomly fluctuating parameters or input forces are included 
in an originally deterministic model for greater realism. This may be done 
directly in terms of ordinary differential equations or may, as above, involve 
the approximation of more complicated equations by ordinary differential equa
tions. Wedig also considered a similar system of the latter type to model the 
effects of a rough surface on the flow of a fluid through a canal. As an ex
ample of the former, Hennig, Grunwald and Platen have developed a model of 
the flow-induced oscillations in a pressurized water reactor control mechanism 
consisting of two coupled rods. 
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Fatigue Cracking It has been recognized that fatigue failures in solid ma
terials such as aluminum or steel result from the nucleation and propagation 
of cracks. During their course of propagation the cracks encounter various 
types of metallurgical structures and imperfections, so in general their rate of 
propagation varies with time. Crack growth experiments usually show marked 
statistical variation, suggesting that randomness is a characteristic feature of 
crack growth. Both laboratory experiments on the fatigue life of test samples 
and observations of damage to real structures indicate that fatigue damage, 
which is usually measured by the length L of the dominant crack, is affected 
by such factors as imposed stress, the properties of the material and environ
mental conditions. Various parameters have been used to describe the effects 
of random loading on crack growth, in particular the stress intensity range S, 
the stress ratio Q and frequency 1'. Let m be the average of external influences 
such as temperature, D the intensity of the noise, and c and p material pa
rameters. Sobczyk proposed the following Stratonovich stochastic differential 
equation for the time evolution of the length L t of the dominant crack in the 
material: 

(8.1) 

where p > 0, ! = mcg(Q)S2p for some function 9 of the stress ratio Q, and 
{Wf , t ~ O} is a standard Wiener process. The exponent p is determined 
from experimental data. When p = 1 equation (8.1) is linear and its solutions 
exist for all time t ~ O. Often materials are found to have values of p > 
1, in which case (8.1) is a nonlinear stochastic differential equation and its 
solutions may explode in finite time. This explosion time T is generally a 
random time depending on the particular sample path and corresponds to the 
time of ultimate damage or fatigue failure in the material. 

Optical Bistability A single state variable, the total cavity field amplitude 
z, has been found adequate to model the absorption of a single-mode laser beam 
injected into a Fabry-Perot cavity filled with, say, sodium vapour. Assuming 
that the gas atoms with two levels are driven incoherently by optical pumping 
and coherently by the injected laser beam, the frequency of which coincides 
exactly with the resonance frequency of the atoms, Gragg derived the ordinary 
differential equation 

(8.2) . 2 z z=a-z- c---
1 +z2 

for the field amplitude, after adiabatically eliminating its phase. Here a is 
the amplitude of the injected laser beam and c is the cooperativity parameter, 
which is proportional to the negative of the population inversion of the atoms, 
so c > 0 corresponds to absorption and c < 0 to stimulated emission. Both a 
and c can fluctuate randomly, with the latter being more interesting because 
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it appears multiplicatively in equation (8.2). In particular, Gragg considered 
Gaussian white noise fluctuations Ct = C + a'{t in the cooperativity parameter, 
about a positive mean c, and obtained the Stratonovich stochastic differential 
equation 

(8.3) ( X, ) X t dXt = a - X, - 2c 2 dt - 217 2 0 dWt . 
1 +Xt 1 + X t 

He converted this into the equivalent Ito stochastic differential equation and 
solved the corresponding Fokker-Planck equation for the stationary probabil
ity density. This has extrema close to the steady states of the deterministic 
equation (8.2) for sufficiently small noise intensity. For 0 < C < 4 and large 
noise intensity there are two additional maxima not present in the original 
deterministic model, thus corresponding to a noise induced optical bistability. 

N emantic Liquid Crystal A nemantic liquid crystal is a liquid consisting 
of elongated molecules which, on average, align themselves in a preferred direc
tion. For example, when the liquid is enclosed between two parallel glass plates 
this direction is prescribed by the plates. In contrast, with a solid crystal the 
position of the molecules is not fixed, but can fluctuate in response to, say, an 
imposed magnetic field. If (J denotes the angle of maximum deformation of the 
first mode from the preferred direction, it can be shown that 

(8.4) 

for certain positive constants a and b, where H is the amplitude of the magnetic 
field. 

Horsthemke and Lefever have considered the effect of random fluctuations in 
the magnetic field. Since H appears quadratically in (8.4) rather than linearly, 
they argued that it is inappropriate to simply replace H2 by H2 + l7et with 
Gaussian white noise in (8.4). Instead they proposed that H should be replaced 
by H + l7et for a stationary Ornstein-Uhlenbeck process et and they then used 
a method based on the expansion of solutions of a Fokker-Planck like equation 
to derive the Stratonovich stochastic differential equation 

(8.5) 

where W = {Wt, t ~ O} is a scalar standard Wiener process. The parameters 
Hand 17 appear here quite differently than they would have if H2 had been 
randomized in a linear manner. In particular, the parameter values in (8.5) are 
increased by the nonlinear randomization. 

Other models arising from the randomization of parameters which occur 
nonlinearly in a preliminary deterministic model can also be found in the book 
by Horshemke and Lefever. 



7.9. BLOOD CLOTTING DYNAMICS 

7.9 Blood Clotting Dynamics 
and Cellular Energetics 

271 

Blood Clotting Dynamics The repair of small blood vessels and the patho
logical growth of internal blood clots involve the formation of platelet ag
gregates adhering to portions of the vessel wall. Fogelson has proposed a 
microsopic model in which blood is represented by a suspension of discrete 
massless platelets in a viscous incompressible fluid. The platelets are initially 
noncohesivej however, if stimulated by an above-threshhold concentration of 
the chemical adenosine di phosphate (ADP) or by contact with the adhesive 
injured proportion of the vessel wall, they become cohesive and secrete more 
ADP into the fluid. Cohesion between the platelets and adhesion of a platelet 
to the injured wall are modelled by creating elastic links, whereas repulsive 
forces are used to prevent a platelet from coming too close to another platelet 
or to the wall. These forces effect the fluid only in the neighbourhood of an 
aggregate. The platelets and the secreted ADP both move by fluid advection 
and diffusion. 

In particular, Fogelson considered a steady 2-dimensional flow with negligi
ble inertial effects, so the velocity u satisfies the Stokes' equations 

(9.1) au - 'Vp + f = 0, 

where p is the pressure and f the force density due to the interactions between 
the platelets. He denoted by XtCi:) the 2-dimensional position ofthe kth platelet 
at time t and assumed that its velocity was the superposition of advection of 
the blood flow and a random effect resulting from the local stirring in the blood 
induced by the tumbling and colliding of the platelets amongst and with the 
much larger red blood cells. He thus obtained the 2-dimensional stochastic 
differential equation 

(9.2) 

where Wt is a standard 2-dimensional Wiener process and (T is the diffusion co
efficient of the platelets. The number of platelets, and hence of such stochastic 
differential equations is extremely large and could vary in time in a neighbour
hood of an injury. The reader is referred to Fogelson's paper for the remaining 
details of the model. He had to solve the Stokes' equations (9.1) numerically 
to determine the velocity u and then used the numerical values in each of the 
stochastic differential equations (9.2). 

Cellular Energetics Cellular energetics is a complex combination of 
catabolism and anabolism, the breaking down of certain molecules and the 
synthesis of others. The chemical adenosine tri phosphate (ATP) plays a cen
tral role in the transfer of the energy released by catabolism to the anabolic 
sites within a cell. A typical catabolic reaction is the aerobic breakdown of 
carbohydrates via glycolysis, the Krebs cycle and, ultimately, oxidative phos
phorylation. The irreversible ATP-utilizing anabolic reactions are subject to 
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natural random fluctuations in the living cell. Their efficiency, and that of ox
idative phosphorylation, is known to be maintained by the buffering ability of 
the adenylate kinase reaction, a reversible reaction between the three adenine 
nucleotides ATP, ADP and AMP (adenosine mono phosphate). However, with 
current experimental techniques it is not possible to determine the instanta
neous intracellular variations in these efficiencies. To gain some insight into 
what may be happening, Veuthey and Stucki proposed a system of stochastic 
differential equations modelling these reactions, which they then investigated 
by means of numerical simulations. 

Veuthey and Stucki used rate laws to obtain the system of differential equa
tions 

(9.3) T = Jp + J1 + Ja 

iJ = -Jp - J1 - 2Ja 

M = Ja 

for the concentrations T, D and M of ATP, ADP and AMP, respectively. Here 
the phenomenological linear relation 

(9.4) 

is the rate of ATP production and 

is the rate of oxygen consumption, with Lp, Lpo and Lo the phenomenological 
Onsager coefficients summarizing the overall kinetic properties of the process. 
Xo is the redox potential of the oxidizable substrate and Xp is the phosphate 
potential which has the form 

(9.5) Xp = -a-fJ In (~) 
for positive parameters a and fJ. In addition, Jl = LIXp is the load flow of 
the energy conversion, with the load conductance Ll summarizing all of the 
irreversible ATP-utilizing reactions in the cell. Finally, the adenylate kinase 
reaction is represented by the relationship Ja = LaXa, with La a constant 
proportional to the activity ofthe adenylate kinase and Xa the adenylate kinase 
potential which has the form 

(9.6) Xa = -r-61n (TD~) 
for positive parameters rand 6. 

For oxidative phosphorylation to occur it is necessary that Ll be matched 
to Lp according to Ld Lp = ~, where q is the degree of coupling of 
oxidative phosphorylation and is a dimensionless, normalized measure of the 
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cross-coupling ratio Lpo/../LpLo. The model is com~leted by assuming that 
L1 is subject to real noise fluctuations about a mean L1, that is 

(9.7) 

where Pt is an Ornstein-Uhlenbeck process satisfying the stochastic differential 
equation 

(9.8) dpt = '"( Pt + udWt · 

Equations (9.2)-(9.8) can be rewritten as a 4-dimensional vector stochastic 
differential equation in T, D, M and p. 

7.10 Josephson Junctions, Communications 
and Stochastic Annealing 

Josephson Tunneling Junctions A Josephson tunneling junction consists 
of two superconductors separated by a thin oxide layer. When the ratio of 
the amplitudes of the wave functions of the Cooper pairs of electrons in the 
two superconductors remains constant, their phase difference <p satisfies the 
Josephson equation 

(10.1) 

where e is the unit electron charge, 2111" is Planck's constant and V is the 
potential difference across the oxide layer. If the external resistance is very 
large, the total current I is constant and consists of a noisy current due to 
the resistance R across the oxide layer, a current due to the capacitance C of 
the junction and a current due to the tunneling of Cooper pairs through the 
junction with maximum amplitude Imax , the maximum Josephson current. 
Thus, I is given by 

(10.2) 
v . . 

1= R-(t+CV+lmaxslD<P, 

where (t is Gaussian white noise with intensity 2kT/R, with k being Boltz
mann's constant and T the absolute temperature. We can combine (10.1) and 
(10.2) to obtain a second order differential equation with additive noise for the 
phase difference <p 

(10.3) 

which we interpret as a 2-dimensional vector stochastic differential equation 
with additive noise. Of primary interest here is the relationship between current 
I and the mean voltage E(V) = nE(¢)/2e. 
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Communications Noise also plays a central role in modern communication 
theory. An example is in the stable tuning of radio and television sets, which 
is achieved with a device called a phase-locked loop or PLL. A PLL ties the 
phase of an oscillator signal to that of a reference signal. Ideally the phases are 
locked together, but noisy fluctuations in, say, the input voltage often cause 
the phases to slip. 

For a basic PLL device containing a linear filter it can be assumed that the 
phase difference tP of the input and reference signals satisfies a second order 
differential equation with additive white noise (, of the form 

(10.4) 

which, in turn, can be written as a 2-dimensional vector Ito stochastic differ
ential equation. Here a = RC, the series effect of a resistor and capacitor in 
the linear filter of the PLL, b is related to the product of the amplitudes of the 
two signals and Q' is the intensity of the white noise. An important task, then, 
is to use (lOA) to predict the relationship between the mean rate of change of 
the phase difference E(~) and the detuning w - woo The cycle slip rate per 
second, that is the average number of times per second that the phases differ 
by 211', provides a measure of quality of a PLL. 

Stochastic Annealing The global minimum of a function V : ~d --+ ~ can 
often be located from the asymptotic behaviour of the solutions of the gradient 
ordinary differential equation 

(10.5) z = -V'V(z) 

for which it is a steady state. This method is known as the simulated annealing 
procedure. It has, however, the serious shortcoming that a computed solution 
of (10.5) may become trapped at a local minimum of V rather than converge 
to the desired, global minimum X. One way to circumvent this difficulty is 
to consider the solutions of the related stochastic differential equation with 
additive noise 
(10.6) dX, = -V'V(X,) dt + <T(t) dW" 

where {W"~ t ~ O} is an d-dimensional standard Wiener process, for an appro
priate choice of scalar diffusion coefficient <T(t). Suppose that V'V is uniformly 
Lipschitz and satisfies the growth bound 

for some constant K > 0 and all z E ~d. Then, for <T(t) = clJlog(t + 2) with 
c > 0, it can be shown that the distribution of X, converges to the limit of the 
Gibbs densities proportional to exp( - V( z )IT» as the "absolute temperature" 
T = <T(t)2 --+ 0 for t --+ 00, which is concentrated at the global minimum X of 
V. Other choices of <T(t) may lead to convergence to a nongloballocal minimum 
with higher probability than to X. In fact, the stronger result 

(10.7) 
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can be established for some 'Y > 0 and all t sufficiently large. This provides a 
lower bound for the rate of mean-square convergence of X t to X. An upper 
bound in (10.7) also holds when V has no local minima other than X. This 
procedure of using the solutions X, of (10.6) to locate X is called stochastic an
nealing. Generally, a numerical method is needed to solve stochastic differential 
equation (10.6). 



Chapter 8 

Time Discrete Approximation of 
Deterministic Differential Equations 

In this chapter we summarize the basic concepts and assertions of the nu
merical analysis of initial value problems for deterministic ordinary differential 
equations. The material is presented so as to facilitate generalizations to the 
stochastic setting and to highlight the differences between the deterministic 
and stochastic cases. 

8.1 Introduction 

In general it is not possible to find explicitly the solution x = x(t; to, xo) of an 
initial value problem (IVP) 

(1.1) . dx ( ) x = dt = a t,x , x(to) = Xo 

for the deterministic differential equations that occur in many scientific and 
technological models. Even when such a solution can be found, it may be 
only in implicit form or too complicated to visualize and evaluate numerically. 
Necessity has thus lead to the development of methods for calculating numerical 
approximations to the solutions of such initial value problems. The most widely 
applicable and commonly used of these are the time discrete approximation 
or difference methods, in which the continuous time differential equation is 
replaced by a discrete- time difference equation generating values Y1, Y2, ... , 
Yn, ... to approximate X(t1; to, xo), X(t2; to, xo), ... , x(tn ; to, xo), ... at given 
discretization times to < t1 < t2 < ... < tn < .... These approximations 
should be quite accurate, one hopes, if the time increments Lln = tn+1 - tn for 
n = 0, 1, 2, ... are sufficiently small. As a background for the development of 
discretization methods for stochastic differential equations, in this chapter we 
shall review the basic difference methods used for ordinary differential equations 
and consider some related issues such as their convergence and stability. 

The simplest difference method for the IVP (1.1) is the Euler method 

(1.2) 

for a given time discretization to < t1 < t2 < ... < tn < ... with increments Lln 
= tn+1 -tn where n = 0, 1,2, .... Once the initial value Yo has been specified, 
usually Yo = Xo, the approximations Yb Y2, ... , Yn, ... can be calculated by 
recursively applying formula (1.2). We can derive (1.2) by freezing the right 



278 CHAPTER 8. DETERMINISTIC DIFFERENTIAL EQUATIONS 

hand side of the differential equation over the time interval tn :::; t < tn+! at 
the value a(tn, Yn) and then integrating to obtain the tangent to the solution 
z(tjtn,Yn) of the differential equation with the initial value z(tn) = Yn. The 
difference 

(1.3) 

which is generally not zero, is called the local discretization error for the nth 
time step. This is usually not the same as the global discretization error 

(1.4) 

for the same time step, which is the error with respect to the sought solution of 
the original IVP (1.1). Nevertheless, we can use the local discretization error 
to estimate the global discretization error. It must be emphasized that (1.3) 
and (1.4) assume that we can perform all arithmetic calculations exactly. In 
practice, both we and digital computers are restricted to a finite number of 
decimal places when doing calculations and roundoff all excess decimal places, 
thus introducing roundoff error. We shall denote it by rn+! for the nth time 
step. 

The key to estimating the size of discretization errors is the Taylor formula 
with remainder, which for a twice continuously differentiable function x = z(t) 
IS 

(1.5) 

for some On satisfying tn < On < tn+l. For x(t) == z(tj tn, Yn), the solution of 
the differential equation with x(tn) = Yn, we thus have 

(1.6) 

Since z(tn) = Yn here, on subtracting (1.5) from (1.6) we find that the local 
discretization error (1.3) has the form 

In+l = ;! x( On) Ll~. 

If we knew that Ix(t)1 < M for all t in some interval [to, T] of interest, then we 
would have the estimate 

(1.7) 

for any discretization time subinterval [tn, tn+l] with to :::; tn < tn+! :::; T. We 
can obtain such a bound on x using the fact that 
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If a, ~~ and ~: are continuous and if we knew that all solutions x(t) under 
consideration remained in some closed and bounded set C for all to < t < T, 
we could use 

where the maxima are taken over (t, x) E [to, 1'] x C, in the inequality (1.7). 
This particular value of M will usually give a gross overestimate, but from (1.7) 
we can see that the local discretization error for the Euler method (1.2) is of 
order Ll~. 

To estimate the global discretization error we shall assume, for simplicity, 
that a = a( t, x) satisfies a uniform Lipschitz condition 

la{t, x) - aCt, y)1 $ K Ix - yl 

and that the time discretization involves equidistant time instants tn = to + n.6. 
for n = 0, 1, 2, .... Applying the Taylor formula (1.5) to the solution x(t) 
== x(t; to, 1£0) we have (1.6) with Lln == Ll, but now x(tn ) i Yn in general. 
Subtracting (1.2) then gives 

(1.8) en+l = en + {a(tn, x(tn» - a(tn, Yn)} Ll + ~ i(On).6.2 

and, using the Lipschitz condition on a and a bound on i, thus 

We can then show by induction that the difference inequality 

(1.9) 

with eo = 1£0 - Yo = 0 implies that 

since (1 + K Ll)n $ enK Ll.. Hence the global discretization error for the Euler 
method (1.2) satisfies 

(1.10) 
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for discretization times tn = to + n.6. ::; T. It is obviously one power of.6. less 
than the local discretization error. 

PC-Exercise 8.1.1 Apply the Euler method (1.2) to the IVP 

dx 
- =-5x 
dt ' 

x(O) = 1, 

with time steps of equal length .6. = 2-3 and 2- 5 over the time interval 0 ::; t 
::; 1. Plot the results and the exact solution x(t) = e- 5t against t. 

In Figure 8.1.1 the upper curve corresponds to the exact solution and the 
lower and middle ones to the Euler method with step sizes .6. = 2- 3 and 2-5 , 

respectively. We see that the global discretization error is smaller for the smaller 
step size. 

In the next PC-Exercise we shall look more closely at the dependence of 
the global truncation error on the step size. For this we recall that a function 
1(.6.) = A.6. 'Y becomes linear in logarithmic coordinates, that is 

for logarithms to the base a :f. 1. In comparative studies we shall take time 
steps of the form .6. = a-n for n = 1, 2, ... and a > 1. We shall usually halve 
the time step successively, in which case logarithms to the base a = 2 will be 



B.1. INTRODUCTION 281 

LdC fCo-lt." 

o 

-1 

-a 

-3 

-4 

-5 

-6 

-1 

-8 

-, 
-10 

-11 

-13 
++------+-----~------~----~------~------~) 
-6 -5 -4 -3 -a -1 o 

Figure 8.1.2 log2 f(fl.) versus log2 fl.. 

appropriate. In Figure 8.1.2 we plot the values of log2 f(a) against log2 a for 
the two functions I(a) = a and I(a) = a 2 with a = 2-n for n = 0, 1, ... , 6. 

PC-Exercise 8.1.2 For the IVP in PC-Exercise 8.1.1 calculate the global 
discretization error at time t = 1 for the Euler method with time steps of equal 
length a = 1, 2-1 , 2-2 , ... , 2-13, rounding off to 5 significant digits. Plot the 
logarithm to the base 2 of these errors against log2 ~ and determine the slope 
of the resulting curve. 

From Figure 8.1.3 we see that the calculated global discretization error en+! 

for the Euler method is proportional to the step size a for a ~ 2-3 , provided 
a is not too small. For a ~ 2- 11 the error en+! begins to increase here as a 
is further decreased. This does not contradict (1.10), but occurs because en+! 
also includes the roundoff error. To estimate en+1 we must add the roundoff 
error rn to the right hand side of (1.9). For Irnl ~ R for each n we then obtain 
the estimate 

instead of (1.10). For very small a the reciprocal term dominates the bound. 
While it represents the worst case scenario, this bound is still indicative of the 
cummulative effect of roundoff error, since for smaller a more calculations are 
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required to reach the given end time. We shall look more closely at randomly 
distributed roundoff errors in Section 4. 

The presence of roundoff error means there is a minimum step size dmin for 
each initial value problem, below which we cannot improve the accuracy of the 
approximations calculated by means of the Euler method. To obtain a more 
accurate approximation we need to use another method with a higher order 
discretization error. The Taylor expansion provides a systematic framework 
for developing and investigating such schemes. For the rest of this section we 
shall, however, continue with a more heuristic approach. 

For the Euler method we simply froze the right hand side of the differential 
equation at the value a(tn, Yn) at the beginning of each discretization subin
terval tn < t < tn+!. We should obtain a more accurate approximation if we 
included more information from elsewhere in the subinterval. For instance, we 
could use the average of the values at both end points, in which case we have 
the trapezoidal method 

(1.11) 

This is called an implicit scheme because the unknown quantity Yn+! appears 
in both sides of (1.11) and, in general, cannot be isolated algebraically. To 
circumvent this difficulty we could use the Euler method (1.2) to approximate 
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the Yn+1 term on the right hand side of (1.11). Then we obtain the modified 
trapezoidal method 

Yn+1 = Yn + a(tn , Yn) ~n 

Yn+1 Yn + 4 {a(tn,Yn) + a(tn+b Yn+l)} ~n' 
or 

(1.12) 

which is also known as the improved Euler or Heun method. It is a simple 
example of a predictor-corrector method with the predictor Yn+l inserted into 
the corrector equation to give the next iterate Yn+l. 

Both the trapezoidal and the modified trapezoidal methods have local dis
cretization errors of third order in ~n. This can be verified by comparing the 
Taylor formula with third order remainder of the solution %(t; to, %0) of the 
differential equation and (1.11) or (1.12) with a(tn+1' Yn+d or a(tn+1' Yn+d 
expanded about (tn, Yn). The global discretization error for both methods is 
of second order in ~ = m8.Xn ~n' which is again one order less than the local 
discretization error. 

PC-Exercise 8.1.3 Repeat PC-Exercise 8.1.2 with the usual arithmetic of 
the PC for the modified trapezoidal method (1.12). Compare the results with 
those for the Euler method. 
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Figure 8.1.4 indicates that the global truncation error for the modified 
trapezoidal method is proportional to A 2 for A ~ 2-3 , whereas that of the 
Euler method is proportional to A. 

Exercise 8.1.4 Show that the local discretization errors of the tmpezoidal 
and modified trapezoidal methods are of third order in Lln . 

Even higher order difference methods can be derived by using more accurate 
approximations of the right hand side of the differential equation over each 
discretization subinterval tn < t < t n+1 . These are called one-step methods if 
they involve only the values Yn and Yn+l in addition, of course, to tn and Lln . 
Explicit one-step methods are usually written in the general form 

(1.13) 

for some function W = wet, z, A), which is called the increment function. We 
say that it is a pth order method if its global discretization error is bounded 
by the pth power of Ll = maxn Lln . If the functions a and Ware sufficiently 
smooth it can be shown that a (p+ l)th order local discretization error implies a 
pth order global discretization error; see Theorem 8.3.2 in the next section. For 
example, the Euler method (1.2) is a 1st order one-step scheme with wet, z, Ll) 
= aCt, z) and the Heun method (1.12) is a 2nd order one-step scheme with 

1 
1i"(t, z, A) = '2 {aCt, z) + a (t + Ll, z + aCt, z) Ll)}. 

The function W cannot be chosen completely arbitrarily. For instance, it should 
be consistent with the differential equation, that is satisfy 

limw(t,z,Ll) = a(t,z), 
AlO 

if the values calculated from (1.13) are to converge to the desired solution of 
the differential equation. The Euler method is obviously consistent and the 
Heun method is consistent when a( t, z) is continuous in both variables. 

Some difference methods achieve higher accuracy by using information from 
previous discretization subintervals when calculating Yn+l on tn < t < tn+l' In 
these multi-step methods Yn+l depends on the previous k values Yn, Yn-l, ... , 
Yn-k for some k > 1. An example involving equal time steps A is the 9-step 
Adams-Bashford method 

which turns out to have third order global discretization error. It is derived 
by replacing the right hand side of the differential equation on the time in
terval tn < t < tn+! by the unique cubic polynomial passing through the 
points (tn,a(tn,Yn», (tn-J,a(tn-l,Yn-t}) and (tn- 2 ,a(tn-2,Yn-2». Notice 
that these are the only points where the function a has to be evaluated. Since 
the evaluations from the previous steps can be saved for use in the current step, 
this method essentially requires only the value of a( tn, Yn) to be calculated in 
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the nth step, once the procedure has been started. In order to start it we must 
specify the first 3 values Yo, Y1 and Y2, which is usually done be calculating Y1 
and Y2 with a one-step method starting at Yo. 

PC-Exercise 8.1.5 Repeat PC-Exercise 8.1.9 using the 3-step Adams
Bashford method (1.14) with the Heun method (1.12) as its starting routine. 

Exercise 8.1.6 Show that the 3-step Adams-Bashford method (1.14) has 
fourth order local discretization error. 

Finally, we note that we can sometimes obtain higher order accuracy from 
a one-step scheme by the method of extrapolation. For example, suppose we 
use the Euler scheme (1.2) with N equal time steps a = TIN on the interval 
o :5 t :5 T. If z(T) is the true value at time T and YN(a) the corresponding 
value from the Euler scheme, then we have 

(1.15) 

where we have written the global truncation error as e(T) ~ + O(a2 ). If, 
instead, we use the Euler scheme with 2N time steps of equal length ~/2, then 
we have 

(1.16) 

We can eliminate e(T) from (1.15) and (1.16) to obtain 

z(T) = 2Y2N (~ a) -YN(a) + o(a2). 

Thus we have a second order approximation 

(1.17) 

for x(t) from the first order Euler scheme. Of course, this requires our re
peating the Euler scheme calculations for half the original time step, but for 
complicated differential equations it may involve fewer and simpler calculations 
than a second order one-step scheme. This method is known as Richardson or 
Romberg extrapolation. It can also be applied to more general one-step schemes 
and to multi-step schemes. 

PC-Exercise 8.1.7 Compare the error of the Euler and Richardson extrap
olation approximations of x(l) for the solution of the initial value problem 

dx ---x dt - , x(O) = 1 

for equal time steps a = 2-3 , 2-4 , ... , 2- 10 . Plot loga of the errors against 
logaa. 
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8.2 Taylor Approximations 
and Higher Order Methods 

A one-step difference method with global discretization error of order p is read
ily suggested locally by the Taylor formula with (p + l)th order remainder 

dx 1 dPx 
x(tn) + -d (tn) D.n + ... + -, -d (tn) Un t p. tP (2.1) 

where tn < On < tn+1 and D.n = tn+1 - tn, for any p = 1,2,3, .... We can 
apply this formula to a solution x(t) of the differential equation 

(2.2) 
dx - = aCt x) 
dt ' 

if the function a = a(t,x) and its partial derivatives of orders up to and in
cluding p are continuous as this assures that x(t) is p + 1 times continuously 
differentiable. Indeed, from (2.2) and the chain rule, by repeatedly differenti
ating aCt, x(t)) we have 
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dx 
-=a 
dt ' 

d3 x 2 2 
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dt 
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and so on, where we have used subscripts to indicate partial derivatives. Eval
uating these expressions at (tn, Yn) for the solution xCi) = xCi; tn, Yn) of (2.2) 
and omitting the remainder term in (2.1) we obtain a one-step method for 
Yn+l, which we shall call the pth order truncated Taylor method. This method 
obviously has local discretization error of order p+ 1 and can be shown to have 
global discretization error of order p. The 1st order truncated Taylor method 
is just the Euler method (1.2), the 2nd order truncated Taylor method is 

and the 3rd order truncated Taylor method 

(2.4) Yn+l 
1 2 

Yn + a ~n + 2! {at + ax a} ~n 

1 { 2 2 } 3 +, all + 2atx a + axx a + at ax + ax a ..1:n , 
3. 

where a and its partial derivatives are evaluated at (tn, Yn). 

PC-Exercise 8.2.1 Use the 2nd order truncated Taylor method (2.3) with 
equal length time steps ~ = 2-3 , ... , 2- 10 to calculate approximations to the 
solution x(t) = 2/(1 + e- t2 ) of the initial value problem 

dx - = tx(2 - x) 
dt ' 

x(O) = 1 

over the interval 0 :::; t :::; 0.5. Repeat the calculations using the 3rd order 
truncated Taylor method (2.4). Plot log2 of the global discretization errors at 
time t = 0.5 against log2 ~. 

In Figure 8.2.1 the upper curve with slope 2 corresponds to the 2nd order 
truncated Taylor method and the lower one with slope 3 to the 3rd order 
truncated Taylor method. 

The coefficients in higher order truncated Taylor methods soon become un
wieldy and error prone to determine for all but the simplest differential equa
tions. Moreover, considerable computational effort is needed for the evaluation 
of these coefficients, so these methods are not particularly efficient. They are 
almost never used in practice, except to provide a reference point for the devel
opment and analysis of other, more efficient higher order difference schemes. 
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One way of simplifying the coefficients in a truncated Taylor method is to 
replace the partial derivatives by their forward difference quotients, for example 
replacing at(tn,Yn) and a",(tn,Yn) by 

a(tn+b Yn) - a(tn, Yn) 
L\n 

and 
a(tn ,Yn+l) - a(tn,Yn) 

Yn+l - Yn 

respectively. This will lead to an implicit scheme because Yn+l appears on both 
sides of the recursion formula and, generally, cannot be solved for algebraically. 
As in the trapezoidal method (1.11) we could use the Euler method (1.2), say, 
to predict a value of Yn+l to use in the terms on the right hand side of the 
formula, thus obtaining an explicit method. For the 2nd order truncated Taylor 
method this results first in the trapezoidal method (1.11) and then in the Heun 
method (1.12). The higher order coefficients will usually be considerably more 
complicated, but are at least derivative free. 

The standard procedure with most one-step methods 

(2.5) 

is first to derive the function W = wet, x, L\) by an heuristic argument and 
then to compare the method with a truncated Taylor method or expansion to 
determine the order of its discretization error. The Runge-Kutta methods are 
typical of this approach. For what will turn out to be the 2nd order methods 
of this type, W is chosen with the form 
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(2.6) q,(t, z, d) = a a(t,z) + P a (t + "Y d, z + "Y aCt, z) d), 

for certain constants a, P and "Y, which represents an weighted averaging of the 
right hand side of the differential equation (2.2) over two points. Expanding 
the second term about (t,z), we obtain 

q, = (a + P) a + "YP (at + az a) d 

1 2 ( 2) 2 +'2 "Y P au + 2atz a + an a a 
+ higher order terms, 

where a and its partial derivatives are all evaluated at (t, z). Hence, subtracting 
(2.5) with this expansion for q, evaluated at (tn' Yn, .:in) from the 3rd order 
truncated Taylor method (2.4) we get 

(1 - a - P) a.:in + (~! - "Y p) (at + az a) d~ 

+ 4 (~- "Y2p) (au + 2atz a + an a2 ) d~ 

+ ~ (at az + a; a) d~ + higher order terms, 

where everything is now evaluated at (tn,Yn). The first two terms here drop 
out if we choose the weighting parameters a,{3 and "Y so that 

(2.7) a+p= 1, 
1 

"YP=-. 2 

In general it will not be possible to eliminate both ofthe.:i3 terms by a judicious 
choice of parameters P and "Y because the second of these terms need not vanish 
identically. The parameter constraints (2.7) assure that a difference method 
with q, given by (2.6) will have local discretization error of order 3 and hence 
global discretization error of order 2. Since one of the parameters in (2.7) 
can be chosen arbitrarily, this gives an infinite number of 2nd order difference 
schemes. Note that the first constraint in (2.7) assures that all ofthese methods 
are consistent, as defined in Section 1. The choice a = P = 1/2, "Y = 1 gives the 
Heun method (1.12), which is also called the 2nd order Runge-Kutta method. 

We can use an analogous derivation for the 4th order Runge-Kutta method, 
starting with a weighted average over four points to approximate the right hand 
side of the differential equation. Now the comparison is made with the 5th order 
truncated Taylor method. The classical 4th order Runge-Kutta method is an 
explicit method given by 

(2.8) 

where 
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k(l) (t) nan, Yn , 

k~2) a (tn + 4 ~n, Yn + 4k~1) ~n) , 

k~3) a (tn + 4 ~n' Yn + 4k~2) ~n) , 
k~4) = a(tn+l'Yn+k~3)~n). 

When a = aCt), a function of t only, the increment Yn+l - Yn in (2.8) is just a 
Simpson rule approximation of the definite integral 

1',,+1 
aCt) dt. 

' .. 
PC-Exercise 8.2.2 Repeat PC-Exercise 8.2.1 'Using the 4th order Runge
K'Utta method (2.8) with eq'Uaiiength time steps ~ = 2- 2, .•• ,2-7 

Even higher order Runge-Kutta schemes have been derived. It turns out that 
the number of evaluations ofthe function a needed for a pth order Runge-Kutta 
method is p for 2 :5 p :5 4, p + 1 for 5 :5 p ::; 7 and p + 2 for p ~ 8. The 4th 
order Runge-Kutta methods are the most commonly used, representing a good 
compromise between accuracy and computational effort. 

Often multi-step methods do not require as many evaluations of the function 
a per time step as one-step methods of the same order. An example is the 3-
step Adams-Bashford method (1.14), which, essentially, requires the function 
a to be evaluated only at a single point, namely (tn, Yn), for each iteration 
once the recursion procedure has been got going. This contrasts with the two 
evaluations per iteration needed by the Heun method (1.12), which is also a 
second order method. These considerations were of some importance before 
digital computers came into widespread usage and the calculations had to be 
done manually. They must still be borne in mind today, particularly for lengthy 
calculations, both for efficiency and to reduce roundoff error. Most explicit 
multi-step methods express Yn+l as a linear combination of the values Yi and 
a(ti, Yi) at the previous k discretization times, where k is fixed and denotes the 
number of steps of the method. In implicit methods the term a(tn+l' Yn+l) also 
appears. For time steps of equal length ~ we write such multi-step methods in 
the general form 

Ie Ie 

(2.9) Yn+l = L G:j Yn+l-j + L f3j a (tn+l-j, Yn+l-j) ~, 
j=l j=O 

where the G:j and {3j are given constants, with f30 = 0 for an explicit scheme 
and f30 =1= 0 for an implicit scheme. Most of these methods are derived by re
placing the right hand side of the differential equation over tn :5 t :5 tn+l by a 
polynomial passing through the points (tj, a(tj, Yj» under consideration. Their 
local discretization error can be determined by comparison with truncated Tay-
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lor methods. The global discretization error also depends on the order of the 
starting routine, which should be, preferably, at least the same as that of the 
multi-step method itself. 

Examples of multi-step methods are the midpoint method 

(2.10) 

the Milne method 

(2.11) 

and the Adams-Moulton method 

(2.12) 

The first two of these are explicit methods and the third is implicit. They have 
local discretization errors of orders 3, 5 and 4, respectively. 

Note that an arbitrary choice of coefficients aj and {3j in (2.9) may result 
in an inconsistent method. Also, even if the coefficients are determined by 
an interpolating polynomial, a multi-step method may have some undesirable 
properties, such as being susceptible to numerical instabilities. 

PC-Exercise 8.2.3 Calculate the discretization errors in using the Euler 
method (1.2) and the midpoint method (2.10) started with the Euler method to 
approximate the solution x(t) = ie-3t + i of the initial value problem 

dx 
dt = -3x + 1, x(O) = 1 

over the interval 0 ~ t ~ 1. Use time steps of equal length ~ = 0.1 and plot 
on x versus taxes. 

The trapezoidal method (1.11) and the Adams-Moulton method (2.12) are 
examples of implicit difference methods. These are often more stable than their 
explicit counterparts. A root finding method such as the Newton method could 
be used at each step to calculate an approximation of the unknown value Yn+l' 

Another approach is to use an explicit method to predict an approximation 
Y~+I to Yn+l, which is then inserted into the right hand side of the implicit 
method to calculate another approximation Y~+l' This correction procedure 
can then be repeated I ~ 0 times to produce a final approximation Y~:'\. The 
resulting method is called a predictor-corrector method. A very simple example 
with I = 0 is the Heun or modified trapezoidal method (1.12), which uses the 
Euler method as its predictor. Besides providing the desired approximate value 
at each time step, a predictor- corrector method also gives an easy indication of 
the local dicretization error. This could be useful in choosing an appropriate, 
possibly varying, step size. 
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Figure 8.2.2 Results of PC-Exercise 8.2.3. 

8.3 Consistency, Convergence and Stability 

We usually not know the exact solution of an initial value problem that we are 
trying to approximate by a finite difference method. Then, to assure that an 
approximation will be reasonably accurate, we have to be able to keep the un
known discretization and roundoff errors under control and sufficiently small. 
We can use certain a priori information about the difference method, that is 
information obtainable without explicit knowledge of the exact solution, to tell 
us whether this is possible. In particular, we can check if the method is consis
tent with the differential equation, if the estimates of the global discretization 
error converge to zero with the maximum time step, and if the method is stable, 
that is if propagated errors remain bounded. 

We shall assume for any differential equation 

(3.1) 
dx 
- = aCt x) 
dt ' 

under consideration that the function a = aCt, x) and its partial derivatives of 
sufficiently high order are continuous everywhere. For most of the common 
one-step methods 

(3.2) 
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the increment function W- = w-(t, x, a) will then be continuous in all three vari
ables and satisfy a local Lipschitz condition in x. Such methods are generally 
also consistent with the differential equation (3.1), that is they satisfy 

(3.3) w(t, x, 0) = a(t, x) 

everywhere. Comparing (3.2) with a truncated Taylor method, we can then 
establish that the local discretization error (1.3) has order p + 1 for some p ~ 
1; when (3.3) is violated we can only get a local discretization error of order 1. 

By convergence of a one-step method (3.2) we mean that the global dis
cretization error (1.4) converges to zero with the maximum time step a = 
maxn an, that is 

(3.4) 

where Yo = xo, on any finite time interval [to, 1']. Of more practical significance 
than convergence itself is the rate of convergence, which is provided by the order 
of the global discretization error. Since the local discretization error effects the 
global discretization error, we cannot expect to have convergence if (3.2) is 
not consistent. The following two theorems indicate the precise link between 
consistency and convergence, and between the orders of the local and global 
discretization errors. To simplify the proofs we shall assume that the increment 
function W- of (3.2) satisfies a global Lipschitz condition 

(3.5) Iw-(t', x', a') - w(t, x, a)1 $ K (It' - tl + lx' - xl + lA' - AI) 

in (t, x,A) and a global bound of the form 

(3.6) Iw(t,x,O)1 $ L 

for all (t, x), although it is possible to weaken these assumptions. 

Theorelll 8.3.1 A one-step method (9.2) with increment function W satis
fying conditions (9.5) and (3.6) is convergent if and only if it is consistent. 

Proof It follows from the Lipschitz condition (3.5) that the differential equa
tion 

(3.7) 
dz 
dt = W-(t,z,O) 

has a unique continuously differentiable solution z(t) = z(t; to. xo) with the 
initial value z(to) = Xo. Hence by the Mean Value Theorem there exists a On 
with 0 < On < 1 such that 
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Writing en = Yn - z(tn), where Yn satisfies (3.2) with Yo = Xo, we have 

en+l en + {w(tn, Yn, .6.n) - w(tn + BnAn, z(tn + Bn.6.n) , On .6.n 

en + {w(tn,Yn,.6.n) -w(tn,z(tn),On An 

+ {w(tn' z(tn), 0) - w(tn + Bn.6.n, z(tn + Bn.6.n) , On An, 

from which we obtain 

(3.9) len+ll::; lenl + J( (Ienl + .6.n) An 

+/{ (OnAn + Iz(tn) - z(tn + On.6.n)1) .6.n 

by means of the Lipschitz condition (3.5). Using the Mean Value Theorem 
again and the bound (3.6) we have 

Iz(tn) - z(tn + Bn.6.n) I = Iw(tn + OnOnAn, z(tn + OnOnAn), 0)1 On.6.n ::; L On.6.n 

for some ° < On < 1. Inserting this into (3.9), we then get 

(3.10) 

where A = maxn.6.n. We can use induction to show that 

on d.n interval [to, TJ, from which we conclude that the approximations Yn gen
erated by the one-step method (3.2) converge to the solution z(t) = z(t; to, xo) 
of (3.7) on [to, TJ. 

Assuming consistency, the differential equations (3.1) and (3.7) are the 
same, so by the uniqueness of solutions of initial value problems z(t) == x(t) for 
to ::; t ::; T. From the above considerations we have thus established conver
gence of the one-step method (3.2). 

Assuming convergence, we have z(t) == x(t) for to ::; t ::; T. If there were a 
point (to,xo) where a(to,xo) #; w«to,xo,O), we would have 

dx dz 
dt (to) = a(to,xo) #; w«to,xo,O) = dt (to), 

which contradicts the fact that z(t) == x(t). Hence the consistency condition 
(3.3) must hold. 

This completes the proof of Theorem B.3.1. 0 

Theorem 8.3.2 A one-step method (3.2) with increment function W satis
fying the global Lipschitz condition (3.5) and with local discretization error of 
order p + 1 has global discretization error of order p. 

Proof Let x(t) = x(t;to,xo) be the solution of the initial value problem (3.1) 
and let Yn be generated by (3.2) with Yo = xo. Then the global discretization 
error (1.4) satisfies 
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en +l Yn+l - x(tn+d 

en + 'ii(tn, Yn, .6.n ).6.n + x(tn) - x(tn+tl 

= en + {'ii(tn ,Yn,.6.n) - 'ii(tn,x(tn),..6.nH .6.n 

+ {'ii(tn, x(tn), .6.n ).6.n + x(tn ) - x(tn+1H , 

where the very last term is the local discretization error. From the global 
Lipschitz condition (3.5) and the assumption that the local discretization error 
is of order p + 1 we obtain 

len+ll < lenl+K len l.6.n +DN,.+l 

~ (I+K.6.) len l+DN+1, 

where .6. = maxn .6.n and D is some positive constant, from which it follows 
that 

on the interval [to, T). The global discretization error is thus of order p. 0 

Exercise 8.3.3 Show that the increment function 'ii(t, x,.6.) of the Heun 
method (1.12) satisfies a global Lipschitz condition (3.5) in (t, x,.6.) when a(t, x) 
satisfies a global Lipschitz condition in (t,x). Also, show that the Heun method 
is consistent and hence convergent with global discretization error of order 2. 

We may still encounter difficulties when trying to implement a difference 
method which is known to be convergent. For example, the differential equation 

(3.11 ) 
dx 
- = -16x 
dt 

has exact solutions x(t) = zoe- 16t , which all converge very rapidly to zero. For 
this differential equation the Euler method with constant time step .6., 

Yn+1 = (1 - 16.6.)Yn, 

has exact iterates Yn = (1 - 16.6.)n Yo. If we choose ..6. > 2-3 these iterates 
oscillate with increasing amplitude instead of converging to zero like the exact 
solutions of (3.11). This is a simple example of a numerical instability, which, 
in this particular case, we can overcome simply by taking the time step .6. < 
2-3 . For some other methods, such as the midpoint method (2.10) investigated 
in PC-Exercise 8.2.3, the numerical instabilities persist no matter how small we 
take ..6.. The structure of these methods can make them intrinsically unstable, 
causing small errors such as roundoff errors to grow rapidly and ultimately 
rendering the calculations useless. 

The idea of numerical stability of a one-step method is that errors will 
remain bounded with respect to an initial error for any differential equation 
(3.1) with right hand side a(t, z) satisfying a Lipschitz condition. To be specific, 
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we say that a one-step method (3.2) is numerically stable if for each interval 
[to, 11 and differential equation (3.1) with aCt, x) satisfying a Lipschitz condition 
there exist positive constants ~o and M such that 

(3.12) IYn - Ynl ~ M Iyo - yol 

for n = 0, 1, ... , nT and any two solutions Yn, Yn of (3.2) corresponding to 
any time discretizations with maxn ~n < ~o. The constants ~o and M here 
may also depend on the particular time interval to ~ t ~ T in addition to the 
differential equation under consideration. (3.12) is analogous to the continuity 
in initial conditions, uniformly on finite time intervals, of the solutions of the 
differential equation (3.1). The following result thus comes as no surprise. 

Theorem 8.3.4 A one-step method (3.2) is numerically stable if the incre
ment function 'It satisfies a global Lipschitz condition (3.5). 

The commonly used one-step methods are numerically stable. However, the 
constant M in (3.12) may be quite large. For example, if we replace the minus 
sign by a plus sign in the differential equation (3.11), we obtain 

Yn - Yn = (1 + 16~t (Yo - Yo) 

for the Euler method. The numerical stability condition (3.12) requires a bound 
like el6(T- to) for M, in contrast with M ~ 1, provided ~o < 2-3 , for the original 
differential equation. The difference is due to the fact that the solutions of the 
modified differential equation are diverging exponentially fast, whereas those of 
the original are converging exponentially fast. In both cases the Euler method 
keeps the error under control, but in the former case the initial error must be 
considerably smaller if it is to remain small. 

Exercise 8.3.5 Prove Theorem 8.3.4. 

To ensure that the errors in the Euler method for (3.11) do not grow, that 
is the bound M ~ 1 in (3.12), we need to take step sizes less than 2-3 . This 
may seem inordinately small given that the differential equation itself is very 
stable. The situation does not improve if we use the higher order Heun method 
(1.12). However, the implicit trapezoidal method (1.11) offers a substantial 
improvement. In this case it is 

(3.13) 
1 

Yn+l = Yn + 2 {-16Yn - 16Yn+l} ~, 

which we can solve explicitly to get 

( 1-8~) Yn+l = 1 + 8~ Yn' 

Here 

(3.14) 1 1-8~1 1 + 8~ < 1 
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for any ~ > O. For a nonlinear differential equation we usually cannot solve an 
implicit method algebraically for Yn+l as in (3.13). Nevertheless this example 
highlights a significant advantage of implicit methods, which sometimes makes 
the additional work needed to solve numerically for Yn+1 worthwhile. 

In the preceding discussion we tried to ensure that the error would not grow 
over an infinite time horizon. This leads to the idea of asymptotic numerical 
stability. We shall say that a one-step method (3.1) is asymptotically numeri
cally stable for a given differential equation if there exist positive constants ~a 
and M such that 

(3.15) lim IYn - Ynl ~ M Iyo - yol 
n-oo 

for any two solutions Y and Y of (3.2) corresponding to any time discretization 
with max,. ~n < ~a. 

It is easy to see that the Euler method is asymptotically numerically stable 
for the differential equation (3.11) with ~a ~ 2-3 , whereas the implicit trape
zoidal method (3.13) is asymptotically numerically stable for this differential 
equation without any restriction on ~a. On the other hand the Euler method 
is not asymptotically numerically stable for the differential equation z = 16x 
for any ~a > o. 

Knowing just that a one-step method is numerically stable does not tell us 
how to pick an appropriate step size ~. In fact, the answer will depend very 
much on the particular differential equation under consideration. To obtain an 
indication of suitable values of ~ we consider a class of test equations. These 
are the complex-valued linear differential equations 

(3.16) 
dx 
dt = Ax, 

with A = Ar + ~Ai, which have oscillating solutions when Ai f. O. We can 
obviously write (3.16) equivalently as a 2-dimensional differential equation 

where x = xl + zx2. The suitable values of the step size ~ > 0 are expressed 
in terms of the region of absolute stability for the method, consisting of the 
complex numbers A~ for which an error in Yo at to will not grow in subsequent 
iterations of the method applied to the differential equation (3.16). Essentially, 
these are the values of A and ~ producing a bound M ~ 1 in (3.12). For the 
Euler method we thus require 

so its region of absolute stability is the unit disc in the complex plane centered 
on z = -1 +Oz. 

Exercise 8.3.6 Determine and sketch the region of absolute stability for the 
trapezoidal method (1.11). 
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o 

Figure 8.3.1 Stability region for the Euler method. 

We shall now consider a 2-dimensional linear differential equation 

(3.17) 

with initial value (x~, x~) = (1,1), where the two eigenvalues of the coefficient 
matrix are negative and very different, that is with 

The components of (3.17) are uncoupled, so they can be solved separately to 
give 

(3.18) 

Since (tl is much larger than (t2 the first component shows a very fast expo
nential decay in comparison with the second, that is the relaxation time of the 
first component is very much smaller than that of the second. In other words 
the two components have widely differing time scales. In the literature such a 
system of equations is often called a stiff system. In the general d-dimensional 
case we shall say that a linear system is stiff if the real parts of the eigenvalues 
AI, ... , Ad of the coefficient matrix satisfy 
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Now, if we apply the Euler method (1.2) to (3.17), for the first component to 
remain within the region of absolute stability we need a step size 

We saw in Figure 8.1.3 of Section 1 that there is a lower bound on the step 
size for which the influence of the roundoff error to remain acceptable. But 
the upper bound 2/ al might already be too small to allow for the control over 
roundoff errors in the second component. Thus, the Euler scheme may not be 
applicable for a stiff system. 

A much more stable result is shown when we apply the implicit Euler 
scheme 

(3.19) 

to the test equation (3.16). Using similar notation as above we obtain 

Yn = (1- AA)-n Yo 

and, hence, for A with Re(A) = Ar < 0 and all A > 0 we have 

IYn - Ynl ~ IYo - yol 

for all n = 0, 1, ... and any two solutions Yn, Yn of (3.19). Thus, the implicit 
Euler method (3.19) applied to the stiff system (3.17) would still behave stably 
in its first component when A > 2/al' 

We shall say that a numerical method is A-stable if its region of absolute 
stability contains all of the left half of the complex plane, that is all AA with 
Re(A) < 0 and .6. > O. Hence the implicit Euler method (3.19) is A-stable, 
whereas the Euler method (1.2) is not. 

Exercise 8.3.7 Check whether or not the tmpezoidal method (1.11) is A-
stable. 

We shall conclude this section with a few remarks on consistency, conver
gence and stability of multi-step methods, for which matters are somewhat 
more complicated than for one-step methods. The definition of convergence for 
a multi-step method assumes that the starting values are exact, although in 
practice these will be calculated approximately by means of a one-step method. 
The idea of stability is similar to that for one-step methods, but now some new 
phenomena can occur. Suppose we have a k-step method 

(3.20) 
I: 

L (an+l-jYn+1-j + f3n+l-j a(tn +1-j, Yn+l-j)A) = O. 
j=O 
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For the linear differential equation (3.15) this is a linear recursion 

k 

(3.21) L (an+l-j + Pn+l-j >.~) Yn+l-j = 0, 
j=O 

which is also satisfied by iterated errors en = Yn - Yn. To solve (3.21) we try 
solutions of the form Yn = ~n and find that ~ must be a root, possibly complex 
valued, of the polynomial equation 

k 

(3.22) L (ai + Pi >.~) ~i = o. 
i=O 

Any errors introduced will thus die out if all of the roots lie within the unit 
circle in the complex plane, that is have modulus I~I < 1. One of the roots 
will be approximately equal to eA~ and the corresponding iterates Yn = Xo ~n 
correspond to the differential equation solution values x(tn ) = xoeAtB • The 
problem now is that (3.22) may have other roots lying outside of the unit circle 
and these may lead to iterates of the multi-step method increasing in magnitude 
when the differential equation has no such solutions. We say that the multi
step method (3.20) is stable when all of the roots of (3.22) lie within the unit 
complex circle for ~ sufficiently smalL A necessary and sufficient condition for 
this is that the roots of the polynomial 

k 

Lai~i = 0 
i=O 

lie within the unit complex circle, or possibly also on the unit circle if a root is 
simple. The term strong stability is used if all roots except ~ = 1 lie inside the 
unit circle and weak stability if other roots also lie on the circle. For example, 
the Adams-Bashford method (1.14) is strongly stable, whereas the midpoint 
(2.10) and the Milne (2.11) methods are weakly stable. The presence of the 
extra roots on the unit circle means that (3.22) may have roots lying outside 
the unit circle no matter how small ~ is taken, which can lead to numerical 
instabilities. For example, the midpoint method (2.10) has roots 

~=~>.~±J1+ (~>.~)2, 
one of which has modulus greater than 1. Finally, as a partial analogue of 
Theorem 8.3.1, we remark that it can be shown that a multi-step method is 
convergent if it is consistent and stable. 

Exercise 8.3.8 Determine the polynomials (3.22) for the Adams-Bashford 
method (1.14) and the Adams-Moulton method (2.12). 
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8.4 Roundoff Error 

Roundoff errors occur because, in practice, arithmetic operations can only be 
carried out to a finite number of significant decimal places. In principle we could 
determine the roundoff error of each calculation, and hence the accumulated 
roundoff error, exactly, though this is infeasible in all but the simplest situations 
and we have to use estimates instead. Assuming constant roundoff error r at 
each step, in Section 1 we derived a theoretical upper bound proportional 
to r/ll., where ll. is the maximum time step, for the Euler method. This 
assumption is certainly not true, but the implication from it that there is a 
minimum time step ll.min below which the total error will begin to increase is 
consistent with what actually happens in numerical calculations, as we saw in 
PC-Exercise 8.1.2. 

More realistic estimates of the accumulated roundoff error can be deter
mined from a statistical analysis, assuming that the local roundoff errors are 
independent, identically distributed random variables. It is commonly assumed 
that they are uniformly distributed over the interval 

(4.1) [-5 x 10-(6+1), 5 x 10-(6+1)] , 

where s is the number of significant decimal places used. To check the ap
propriateness of this distribution we could repeat the calculations using double 
precision arithmetic and use the difference of single and double precision results 
to represent the roundoff error. If double precision arithmetic is not available 
we can simulate the same effect by using arithmetic to s decimal places, say s 
= 4, instead of single precision and the computer's prescribed precision instead 
of double precision. 

PC-Exercise 8.4.1 Calculate 300 iterates of 

11' 
YnH = 3'Yn 

with initial value Yo = 0.1 using the prescribed arithmetic of the PC, at each 
step rounding the value of Yn+1 obtained to four significant figures. Plot the 
relative frequencies of the roundoff errors in a histogram on the interval 

using 40 equal subintervals. 

If the local roundoff errors rn take values in the interval (4.1), then after N 
calculations the accumulated roundoff error 

N 

RN = Ern 
n=1 

would lie in the interval 

[-5N x 10-(6+1), 5N x 10-(6+1)] . 
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Figure 8.4.1 Histogram of the roundoff error in PC-Exercise 8.4.1. 

K 

After N = 103 calculations this is [-0.5, +0.5], so all decimal places of accuracy 
may be lost. However, this worst case scenario is highly unlikely to occur. If 
the rn are uniformly distributed over the interval (4.1) they have mean and 
varIance 

I' = E(rn) = 0, 

Thus, if they are also independent, the accumulated roundoff error has mean 
and variance 

By the Central Limit Theorem (see (1.5.9» the normalized random variables 
ZN = RN/u...[ii are approximately standard Gaussian for large N. From this, 
as in Section 9 of Chapter 1, we can conclude that the values of RN lie with 
probability 0.95 in the interval 

when N is large. The ratio of 1.96 x W-·VN/12 to 5N x 10-(3+1) is approx
imately 1/...[ii, so for large N the accuracy is in fact considerably better than 
predicted by the worst case scenario above. Of course, it may be much worse 
in some instances, but these occur with small probabilities. 
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PC-Exercise 8.4.2 Use the Euler method with equal time steps Ll = 2- 2 

for the differential equation 
dx 
-=x 
dt 

over the interval 0 :::; t :::; 1 with N = 103 different initial values x(O) between 
0.4 and 0.6. Use both four significant figure arithmetic and the prescribed arith
metic of the PC and determine the final accumulative roundoff error R1/tl. in 
each case, plotting them in a histogram on the interval [-5 x 10-4 , 5 x 10-4] 

with 40 equal subintervals. In addition, calculate the sample mean and sample 
variance of the R 1/ tl. values. 

As a final comment we remark that the roundoff error may be considered as 
being independent of the discretization error. 

PC-Exercise 8.4.3 Repeat PC-Exercise 8 . .{.2 with N = 200 and with time 
steps ~ = 2- 2 , 2-3 , 2-4 and 2- 5 , determining R1/tl. in each case. Plot the 
90% confidence intervals for the mean value of the error against ~. 



Chapter 9 

Introduction to Stochastic Time 
Discrete Approximation 

To introduce the reader to the main issues concerning the time discrete approx
imation of Ito processes, we shall examine the stochastic Euler scheme in some 
detail in this chapter. We shall consider some examples of typical problems 
that can be handled by the simulation of approximating time discrete trajecto
ries. In addition, general definitions for time discretizations and time discrete 
approximations will be given, and the strong and weak convergence criteria for 
time discrete approximations introduced. These concepts will all be developed 
more extensively in the subsequent chapters. 

9.1 The Euler Approximation 

One of the simplest time discrete approximations of an Ito process is the Eu
ler approximation, or the Euler-Maruyama approximation as it is sometimes 
called. We shall consider an Ito process X = {X" to :S t :S T } satisfying the 
scalar stochastic differential equation 

(1.1) dXf = a(t,X,) dt + b(t,X,) dWt 

on to :S t :S T with the initial value 

(1.2) 

For a given discretization to = TO < T} < ... < Tn < ... < TN = T of the time 
interval [to, T], an Euler approximation is a continuous time stochastic process 
Y = {Yet), to :S t :S T} satisfying the iterative scheme 

for n = 0, 1, 2, ... , N - 1 with initial value 

(1.4) Yo = X o, 

where we have written 

(1.5) 
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for the value of the approximation at the discretization time Tn. We shall also 
write 

(1.6) 

for the nth time increment and call 

(1.7) o = max~n 
n 

the maximum time step. For much of this chapter we shall consider equidistant 
discretization times 

(1.8) Tn = to + nO 

with 0 = an == ~ = (T - to)/N for some integer N large enough so that 6 E 
(0,1). 

When the diffusion coefficient is identically zero, that is when b == 0, the 
stochastic iterative scheme (1.3) reduces to the deterministic Euler scheme 
(8.1.2) for the ordinary differential equation 

dx 
dt = a(t, x). 

The sequence {Yn , n = 0, 1, .. . ,N} of values of the Euler approximation (1.3) 
at the instants of the time discretization (T).s = {Tn, n = 0, 1, ... , N} can 
be computed in a similar way to those of the deterministic case. The main 
difference is that we now need to generate the random increments 

(1.9) 

for n = 0, 1, ... , N - 1, of the Wiener process W = {Wt, t ~ OJ. From 
Chapters 1 and 2 we know that these increments are independent Gaussian 
random variables with mean 

(1.10) E(~Wn) = ° 
and variance 

(1.11) 

We can use a sequence of independent Gaussian pseud<rrandom numbers gen
erated by one of the random number generators introduced in Section 3 of 
Chapter 1 for the increments (1.9) of the Wiener process. 

For simpler notation we shall often write 

(1.12) 

for each function f defined on ~+ x ~d and n = 0, 1, ... , N - 1 when no 
misunderstanding is possible. We can then rewrite the Euler scheme (1.3) in 
the abbreviated form 

(1.13) 
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for n = 0, 1, ... , N - 1. Usually, we shall leave unstated the initial condition 
(1.4). 

The recursive structure of the Euler scheme, which evaluates approximate 
values to the Ito process at the discretization instants only, is the key to its 
successful implementation on a digital computer. In this book we shall focus 
on time discrete approximations with such a recursive structure. We shall use 
the term scheme to denote a recursive algorithm which provides the values of a 
time discrete approximation at the given discretization instants. We emphasize 
that we shall always consider a time discrete approximation to be a continuous 
time stochastic process defined on the whole interval [to, T], although we shall 
mainly be interested in its values at the discretization times. 

For a given time discretization the Euler scheme (1.3) determines values 
of the approximating process at the discretization times only. If required, 
values can then be determined at the intermediate instants by an appropriate 
interpolation method. The simplest is the piecewise constant interpolation with 

(1.14) Y(t) = Yn , 

for t E !R+, where nf is the integer defined by 

(1.15) nt = max{n = 0,1, ... , N : Tn ~ t}, 

that is the largest integer n for which Tn does not exceed t. However, the linear 
interpolation 

(1.16) 

is often used because it is continuous and simple. 
In general, the sample paths of an Ito process inherit the irregularity of 

the sample paths of its driving Wiener process, in particular their non differ
entiability. It will not be possible to reproduce the finer structure of such 
paths on a computer, so we shall concentrate on the values of a time discrete 
approximation at the given discretization instants. 

Exercise 9.1.1 Derive the distribution of the random variable Yn , at any 
time t ;::: 0 for ihe Euler approximaiion with equidistant discretization times of 
a scalar Ito process with constant drift and diffusion coefficients. 

9.2 Example of a Time Discrete Simulation 

To illustrate various aspects of the simulation of a time discrete approxima
tion of an Ito process we shall examine a simple example in some detail. We 
shall consider the Ito process X = {Xf, t ;::: O} satisfying the linear stochastic 
differential equation 
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(2.1) 

for t E [0, T] with the initial value Xo E ~1. 
This is an Ito process with drift 

(2.2) a(t,x) = ax 

and diffusion coefficient 

(2.3) b(t,x) = bx. 

We know from (4.4.6) that (2.1) has the explicit solution 

(2.4) Xl = Xo exp ( (a - ~ b2 ) t + b Wt) 

for t E [0, T] and the given Wiener process W = {Wt , t ~ O}. Knowing 
the solution (2.4) explicitly gives us the possibility of comparing the Euler 
approximation with the exact solution and to calculate the error. 

To simulate a trajectory of the Euler approximation for a given time dis
cretization we simply start from the initial value Yo = Xo, and proceed recur
sively to generate the next value 

(2.5) 

for n = 0, 1, 2, ... according to the Euler scheme (1.13) with drift and diffusion 
coefficients (2.2) and (2.3), respectively. Here ~ Wn is the N(O; ~n) distributed 
Gaussian increment of the Wiener process W over the subinterval Tn ~ t ~ 
Tn +l· 

For comparison, we can use (2.4) to determine the corresponding values of 
the exact solution for the same sample path of the Wiener process, obtaining 

(2.6) 

PC-Exercise 9.2.1 Generate equidistant Euler approximations on the time 
interval [0,1] with equal step size ~ = 2-2 for the Ito process X satisfying 
(2.1) with Xo = 1.0, a = 1.5 and b = 1.0. Plot both the linearly interpolated 
approximation and the exact solution for the same sample path of the Wiener 
process. See PC-Exercise 4.4.1. 

We need to be careful when writing down a time discrete scheme such as 
(2.5) to make sure that the resulting expressions are meaningful. For instance, 
difficulties may arise because the increments in the noise can take extremely 
large values of either sign, even though this can occur only with very small 
probability. This will be more serious for nonlinear equations such as (4.4.37) 
and (4.4.38) than for the linear equation (2.1). 
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Figure 9.2.1 Euler approximation and exact solution from PC-Exercise 9.2.1. 
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Figure 9.2.2 The Euler approximation for the smaller step size!::' = 2-~. 
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Figure 9.2.1 illustrates a typical output for PC-Exercise 9.2.1. 
It is of no surprise that the Euler approximation differs from the Ito process. 

However, we may expect a closer resemblence if we use a smaller step size. 

PC-Exercise 9.2.2 Repeat PC-Exercise 9.2.1 with step size a = 2-4 • 

From Figure 9.2.2 we note that the Euler approximation is closer to the Ito 
process at the endpoint T = 1 when the step size is smaller. We would hope 
that the Euler approximation for a finer time discretization would be closer to 
the Ito process in some useful sense. 

So far we have not specified a criterion to judge the quality, that is the 
accuracy, of a time discrete approximation. Obviously, such a criterion should 
reflect the main goal of a practical simulation. It turns out that there are two 
basic types of tasks connected with the simulation of solutions of stochastic 
differential equations. The first occurs in situations where a good path wise ap
proximation is required, for instance in direct simulations, filtering problems 
or testing statistical estimators. In the second type interest focuses on approx
imating expectations of functionals of the Ito process, such as its probability 
distribution and its moments. This is relevant in many practical problems 
because, usually, such functionals cannot be determined analytically. In the 
following sections we shall look at both of these types of objectives in the 
context of the above example. 

However, we emphasize that one should always be careful in interpreting 
the results of individual numerical simulations as they may differ significantly 
from the true solution. A statistical analysis of many different simulations is 
required for a meaningful comparison. 

9.3 Pathwise Approximations 

Usually we do not know the solutions of a stochastic differential equation ex
plicitly, so we use simulations to try to discover something about them. If we 
do happen to know a solution explicitly, then, as in the PC-Exercises 9.2.1 and 
9.2.2, we can calculate the error of an approximation using the absolute error 
criterion. This is simply the expectation ofthe absolute value of the difference 
between the approximation and the Ito process at the time T, that is 

(3.1) f = E(IXT - Y(T)I) , 

which gives a measure of the pathwise closeness at the end of the time interval 
[0, T]. When the diffusion coefficient b == 0 and the initial value is deterministic, 
randomness has no effect and the expectation in (3.1) is superfluous. The 
criterion (3.1) then reduces to the deterministic absolute error criterion, that 
is the global truncation error (8.1.4). 

We shall use the example of the preceding section to examine the absolute 
error criterion more closely. Rather than derive a theoretical estimate for the 
absolute error here, we shall try to estimate it statistically using computer 
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experiments. To this end we shall repeat N different simulations of sample 
paths of the Ito process and their Euler approximation corresponding to the 
same sample paths of the Wiener process. We shall denote the values at time T 
of the kth simulated trajectories by XT,k and YT,k, respectively, and estimate 
the absolute error by the statistic 

(3.2) 
1 N 

(= N L IXT,k - YT,k I· 
10=1 

PC-Exercise 9.3.1 Simulate N = 25 trajectories of the Ito process X sat
isfying (2.1) with Xo = 1.0, a = 1.5, b = 1.0 and their Euler approximations 
with equidistant time steps of step size d = 2-4 corresponding to the same 
sample paths of the Wiener process on the time interval [0, T] for T = 1. Eval
uate the statistic ( defined by (3.2). Repeat this for step sizes d = 2- 5 I 2- 6 

and 2- 7 , and form a table of the corresponding d and f. values. 

Table 9.3.1 Absolute errors f. for different step lengths A. 

We list our results for PC-Exercise 9.3.1 in Table 9.3.1 and note the im
provement in the estimate ( of the absolute error with decreasing step size 
d. 

PC-Exercise 9.3.2 Repeat PC-Exercise 9.3.1 using a different seed, that is 
initial value, for the random number generator. (This may be done automati
cally by the PC, but can be easily programed if not). 

We combine our results from PC-Exercises 9.3.1 and 9.3.2 in Table 9.3.2, writing 
£1 and (2, respectively, for the corresponding absolute error statistic (3.2). 

I A II 2 4 2 5 2 6 2 I 

I f.l 0.5093 0.4446 0.3265 0.2292 

I {2 0.4692 0.3788 0.2234 0.1477 

Table 9.3.2 Absolute errors {l and (2 for different step lengths A. 

Comparing the results in Table 9.3.2 we see in both cases that the esti
mate of the absolute error decreases with decreasing step size. However, these 
estimates are random variables and take different values in the two batches. 
For large N we know from the Central Limit Theorem, mentioned in Section 
5 of Chapter 1, that the error ( becomes asymptotically a Gaussian random 
variable and converges in distribution to the nonrandom expectation c of the 
absolute value of the error as N -+ 00. 

In practice it is impossible to generate an infinite number of trajectories. 
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However, we can estimate the variance 0'; of € and then use it to construct a 
confidence interval for the absolute error e. To do this we arrange the simula
tions into M batches of N simulations each and estimate the variance of € in 
the following way. We denote by YT,I:J the value of the kth generated Euler 
trajectory in the jth batch at time T and by XT,I:,i the corresponding value of 
the Ito process. The average errors 

(3.3) 
1 N 

€. = - ""' IXT I: . - YT I: ·1 J NL..J "J ,,) 
1:=1 

of the M batches j = 1, 2, ... , M are then independent and approximately 
Gaussian for large N. We have arranged the errors into batches because, as 
explained in Section 9 of Chapter 1, we can then use the Student t-distribution 
to construct confidence intervals for a sum of independent Gaussian, or in this 
case approximately Gaussian, random variables with unknown variance. In 
particular, we estimate the mean of the batch averages 

(3.4) 

and then use the formula 

(3.5) 
M 

-2 1 ""'(_ _)2 
O'l = M _ 1 L..J ej - e 

i=1 

to estimate the variance O'~ of the batch averages. Experience has shown that 
the batch averages can be interpreted as being Gaussian for batch sizes N ~ 
15; we shall usually take N = 100. For the Student t-distribution with M - 1 
degrees of freedom an 100(1 - a)% confidence interval for ( has the form 

(3.6) (€ - .6.i, i + .6.i) 

with 

(3.7) .6.i = tl-a,M-l j'fJ, 
where t1-a,M -1 is determined from the Student t-distribution with M - 1 
degrees of freedom. For M = 20 and a = 0.1 we have tl- a ,M-1 ~ 1.73 from 
Table 1.9.1. In this case the absolute error e will lie in the corresponding 
confidence interval (3.6) with probability 1 - a = 0.9. 

PC-Exercise 9.3.3 Simulate M = 10 batches each with N = 100 trajec
tories of the Ito process X satisfying (2.1) with Xo = 1.0, a = 1.5, b = 0.1 
and their Euler approximations with equidistant time steps of step size .6. = 
2-4 corresponding to the same sample paths of the Wiener process on the time 
interval [0, 1'] for T = 1. Evaluate the 90% confidence interval for the absolute 
error (. Repeat this for M = 20, 40 and 100 batches, in each case using the 
batches already simulated, and plot the confidence intervals on ( versus M axes. 
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Our results for PC-Exercise 9.3.3, plotted in Figure 9.3.1, indicate that the 
length of the confidence interval for the absolute error decreases as the number 
of batches increases. In fact, this is predicted by formula (3.7), which says that 
we need to increase the number of batches fourfold in order to halve the length 
of the confidence interval. As is evident from the PC-Exercise, it can be very 
time consuming computationally to achieve this additional accuracy. 

The preceding computations provide us with a method for determining the 
number of simulations needed to obtain a confidence interval of specified length 
for the absolute error L Since the length 2~( of the confidence interval is 
inversely proportional to the square root of the number of batches M only, 
the required number of batches for a chosen confidence interval of sufficiently 
small length may be very large. Consequently, some thought should be given 
to decide how much accuracy is really needed in the answer of a given problem. 

We shall now look more closely at the relationship between the absolute 
error of Euler approximations and the step size. 

PC-Exercise 9.3.4 Simulate M = 20 batches each with N = 100 trajec
tories of the Ito process X satisfying (2.1) with Xo = 1.0, a = 1.5, b = 0.1 
and their Euler approximations with equidistant time steps of step size .6. = 
2- 2 corresponding to the same sample paths of the Wiener process on the time 
interval [0, T] for T = 1. Evaluate the 90% confidence interval for the abso
lute error L Repeat this for step sizes ~ = 2-3 , 2-4 and 2-5 , and plot the 
confidence intervals on f versus ~ axes. 
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Figure 9.3.2 Confidence intervals for increasing step size. 

Figure 9.3.2 shows that the step size ~ has a definite effect on the magnitude 
of the absolute error f and on the length of the confidence interval. We could 
include in Figure 9.3.2 the graph of a function 

(3.8) 

for an appropriate constant ]( which would suggest that the absolute error is 
proportional to the square root of the step size. We can see this more clearly 
if we plot the results using log2 versus log2 coordinates for which the graph of 
(3.8) becomes a straight line with slope 1/2. 

PC-Exercise 9.3.5 
log2~ axes. 

Replot the results of PC-Exercise 9.9.4 on log2 f versus 

The confidence intervals in Figure 9.3.3 follow closely a straight line with 
slope 1/2. In fact, we shall prove in Theorem 10.2.2 of Chapter 10 that this 
is true for an Euler approximation of a general Ito process and shall call the 
exponent 1/2 of ~ in (3.8) the corresponding order of strong convergence. 

We can decompose the random variable €, the mean of the batch averages, 
into two parts, that is as 

(3.9) where 
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denotes the systematic error and f3tat the statistical error. From (3.1) and 
(3.4) we have 

(3.11) E(i) 

(
1M N ) 

E N M j; ~ IXT,k,j - YT,k,jl 

E (IXT - Y(T)I) 

that is, the systematic error coincides with the absolute error. In Chapters 
10, 11 and 12 we shall introduce time discrete approximations with smaller 
systematic errors as d - 0, that is with higher orders of strong convergence 
than the Euler approximations. 

From (3.9) and (3.10) the statistical error obviously satisfies 

(3.12) f.tat = i - f. 

For a large number N M of independent simulations the Central Limit Theorem 
says that the statistical error is asymptotically Gaussian with mean zero and 
and variance 
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(3.13) 

1 M N 2 

(NM)2 t;~E (IXT.kJ - YT,k,jl- E) ) 

= N~E (OXT - Y(T)I- E)2) 

1 
NM Var(IXT - Y(T) I) . = 

Thus the statistical error depends on the total number N M of simulations and 
not separately on either the number N of simulations in each batch or on the 
number M of batches used. 

Finally, we mention that roundoff errors must also be taken into account 
in practical simulations. They are certainly present in the errors calculated 
in the above PC-Exercises. Usually, however, we consider idealized estimates 
of discretization errors assuming that no roundoff error occurs, just as we did 
in Chapter 8 for deterministic numerical schemes, and then investigate the 
roundoff error separately. 

9.4 Approximation of Moments 

In many practical situations we do not need so strong a convergence as the 
pathwise approximation considered in the previous section. For instance, we 
may only be interested in the computation of moments, probabilities or other 
functionals of the Ito process. Since the requirements for their simulation are 
not as demanding as for pathwise approximations, it is natural and convenient 
to classify them as a separate class of problems. 

To help the reader understand this weaker type of convergence, we shall 
carry out some computer experiments to investigate the mean error 

(4.1) JJ = E(Y(T» - E(XT) 

for the same linear stochastic differential equation as in Section 2 

(4.2) dX, = aX, dt + bX, dW, 

for t E [0, T] and its Euler approximation 

Yn+1 = Yn +aYn~n + bYn ~Wn 

for n = 0, 1, 2, ... , N -1. Here, as before, ~n = Tn+l - Tn denotes the step size 
and ~ Wn = Wrn+1 - Wr" the increment of the Wiener process. In Section 7 
we shall generalize (4.1) to the approximation of polynomial, and more general, 
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functionals of the process, including its higher moments. We note that I-' can 
take negative as well as positive values. 

An important feature of this type of approximation is that we do not need 
to use the same sample path of the Wiener process when generating X and 
Y in order to obtain a small mean error. Rather, we require only that the 
probability distributions of XT and yeT) are sufficiently close to each other, 
but not necessarily the actual realizations of the random variables. This is 
implied by a much weaker form of convergence than that needed for pathwise 
approximations. 

For the example (4.2) it is easy to show (see (4.2.10» that the mean of the 
Ito process is 

(4.3) E(XT) = E(Xo) exp(aT). 

As in the last section, we shall arrange the simulated trajectories of the Euler 
approximation into M batches with N trajectories in each. Then, we shall 
estimate the mean error of the jth batch by the statistic 

(4.4) 

for j = 1, 2, ... J M, and their average by the statistic 

1 M 1 M N 

il = M Eilj = MN EEYT,I:,j - E(XT). 
j=1 j=II:=1 

(4.5) 

Similarly, we shall estimate the variance of the batch averages {.lj by 

M 
.2 1 ""' ( • .)2 
Up = M _ 1 L.J I-'j - I-' . 

j=1 

(4.6) 

The 100(1 - 0')% confidence interval of the Student t-distribution with M - 1 
degrees of freedom for the mean error I-' is 

(4.7) 

where 

(4.8) 

The mean error I-' will thus lie in this confidence interval with at least proba
bility 1 - 0'. 

PC-Exercise 9.4.1 Generate M = 10 batches of N = 100 trajectories of 
the Euler approximation for the Ito process (4.2) with Xo = 1.0, a = 1.5, b 
= 0.1 for step length ~ = 2-4 and terminal time T = 1. Determine the 90% 
confidence interval for the mean error 1-'. Then repeat this for M = 20, 40 
and 100 batches using the batches already simulated and plot the intervals on I-' 
versus M axes. 
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" Figure 9.4.1 Confidence intervals for increasing number of batches. 

Figure 9.4.1 shows that a fourfold increase in the number of batches halves 
the length of the confidence interval, just as was needed in the previous section 
for pathwise approximations. More interesting is the dependence of the mean 
error on the step size. 

PC-Exercise 9.4.2 Generate M = 20 batches of N = 100 trajectories of the 
Euler approximation as in PC-Exercise 9.4.1. Determine the 90% confidence 
interval for the mean error J-l. Then repeat this for step sizes Ll = 2-3 , 2-4 

and 2-5 , and plot the intervals on J-l versus Ll axes. 

We can see from Figure 9.4.2, which contains our results for PC-Exercise 
9.4.2, that the choice of step size Ll has a clear effect on the mean error. It 
appears that jJ is proportional to Ll. To highlight this impression we could 
include the graph of a linear function 

(4.9) 

with an appropriate constant K in the figure. As in the last section it is useful 
here to plot the results in log2-log2 coordinates. For convenience we shall also 
call 1J-l1 the mean error. 

PC-Exercise 9.4.3 Replot the results of PC-Exercise 9.4.2 on log21J-l1 ver-
sus log2 Ll axes. 
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From Figure 9.4.3 we see that the log2 of the mean error closely follows 
a straight line of slope 1 in log2 Ll. This contrasts with the slope 1/2 for the 
strong pathwise approximations in the previous section. In Chapter 14 we shall 
examine this functional dependence theoretically for the Euler approximation 
and also for other approximations. 

We can also decompose the random estimate jJ for the mean error /J into a 
systematic error /J,", and a statistical error /J,tat, with 

(4.10) 

(4.11) 

Then 

(4.12) 

where 

E(j.&) 

(
1M N ) = E MN {;(;YT,A:J - E(XT) 

= E(Y(T» - E(XT) 

= /J, 
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Figure 9.4.3 log2 of the absolute mean error versus log2 LI.. 

so the systematic error is the same as the mean error. In Chapters 14 and 
15 we shall introduce more complicated time discrete approximations with the 
objective of decreasing the mean error for a given step size. 

For a large number M N of independent simulations we can conclude from 
the Central Limit Theorem that the statistical error ji.6tat becomes asymptoti
cally Gaussian with mean zero and variance 

(4.13) Var (/l6tat) = Var (ji.) = ~ N Var(Y(T». 

This depends on the total number M N of simulations and not separately on the 
number M of batches or number N of simulations in each batch. The comment 
in the previous section that the proposed degree of accuracy should be chosen 
with care applies here too, since a fourfold increase in the number of simulations 
is also required here to halve the length of a confidence intervaL The successful 
implementation of weak approximations is often in direct conflict with the size 
of this variance of the estimated functionaL 

In contrast with pathwise approximations, we can use variance reduction 
techniques to construct approximations which give the same first moment of 
a general functional of the Ito process with a much smaller variance. In this 
way we can achieve the same accuracy as the Euler approximation with a sub-
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stantial reduction in computational effort. We shall discuss variance reduction 
techniques in Chapter 16. 

In conclusion, we remark that roundoff errors also affect weak approxima
tions. We shall take them into account later in the context of the numerical 
stability of the corresponding numerical schemes. 

Exercise 9.4.4 Show (4.13). 

9.S General Time Discretizations 
and Approximations 

A general class of time discretizations and approximations is introduced in this 
section, which can be omitted on the first reading. 

For simplicity we have so far concentrated on the equidistant time dis
cretization 

(5.1) (T).s = {T,. : n = 0, I, ... } 

of a bounded interval [to, T] with discretization times 

(5.2) T,. = to + na 

for n = 0, 1, ... and constant step size D == a E(O, Do) for some finite Do > 0. 
In some applications it is desirable to have a more flexible time discretiza

tion, for instance, to allow step size control where the next step size depends 
on the current value of the time discrete approximation. In such cases the step 
size will be random. There are many other situations in which a variable step 
size, random or deterministic, may be useful. In addition, while we do not 
consider the approximation of Ito processes with a Poisson jump component 
in this book, it is obvious that the discretization times of such approximations 
could include the random jump times. 

We recall (1.15) where we defined the integer n, as the largest integer n for 
which T,. does not exceed t, that is 

n, = max{n = 0,1, ... : T,. ::5 t}. 

Then, for a given maximum step size D E (0, Do) we define a time discretization 

(5.3) (T).s = {T,. : n = 0, I, ... } 

as a sequence of time instants {Tn: n = 0, 1, ... }, which may be random, 
satisfying 

(5.4) 

(5.5) 

° ::5 TO < Tl < ... < T,. < ... < 00, 

SUp(T,.+! - T,.) ::5 5 and ,. 
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(5.6) nt < 00, 

w.p.l, for all t E ~+, where Tn+l is AT" -measurable for each n = 0, 1, .... 
Here {At, t ;;:: O} is a preassigned increasing family of u-algebras, generally 
associated with the Ito or Wiener process under consideration. Also, when we 
have a time discretization (T)6 on a bounded interval [to, 11 we shall usually 
choose TO = to and TnT = T. 

While the discretization points may be random, they cannot be completely 
arbitrary. The restriction that Tn+! be AT" -measurable for each n = 0, 1, ... 
means that the step size .6.n = Tn+! - Tn can depend only on the information 
available at the discretization point Tn for each n = 0, 1, .... In addition, 
(5.5) says that each step size.6.n can be no larger than the specified maximum 
allowable step size 6, whereas condition (5.6) ensures that there can be only a 
finite number of discretization instants in any bounded interval. 

In the sequel we shall introduce more complicated stochastic schemes than 
the Euler scheme. Like the Euler scheme they will only generate discrete time 
processes, but we can then construct continuous time processes from them by 
interpolation, for example. 

We shall call a process Y = {Yet), t ;;:: O}, which is right continuous with left 
hand limits, a time discrete approximation with maximum step size 6 E (0,60 ) 

if it is based on a time discretization (T)6 such that Y( Tn) is AT" -measurable 
and Y(Tn+l) can be expressed as a function of Y(TO), ... , Y(Tn ), TO, ... , Tn, 
Tn+! and a finite number I of AT,,+l-measurable random variables Zn+!,j for j 
= 1, ... , I and each n = 0, 1, .... 

This definition allows the recursive computation of the values of the ap
proximation at the given discretization times. Since the computation of Y( Tn) 
should not involve more information than is available at time Tn we restrict 
Y( Tn) to be AT .. -measurable. The value of Y( Tn+t> may then depend on the 
values of Y at earlier discretization times, on the step size and on a finite num
ber of random variables which generate the noise mainly within the current 
time step. We note that the Ito process itself is a time discrete approxima
tion. A Markov chain on a discrete state space is another example, since we 
simply take Y(Tn+l) = Y(Tn) + Zn+l,l where Zn+l,l is a random variable 
characterized by the transition probabilities of the chain. 

Various kinds of interpolation methods are covered by this definition. Since 
it asks only for right continuous approximations with left hand limits, it in
cludes the right continuous piecewise constant interpolations (1.14) as well as 
the linear interpolations (1.16) of the values of the approximation at the dis
cretization times. A time discrete approximation thus defined is a continuous 
time stochastic process on ~+. It corresponds to a scheme, which describes a 
recursive algorithm for the generation of the values at the discretization points, 
and a prescribed interpolation method. 
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9.6 Strong Convergence and Consistency 

In Section 3 we considered the pathwise approximation of an Ito process X by 
an Euler approximation Y and introduced the absolute error criterion 

(6.1) ~ = E(IXT - Y(T)!) , 

the expectation of the absolute value of the difference between the Ito process 
and the approximation at a finite terminal time T. 

We shall say that a general time discrete approximation y6 with maximum 
step size Ii converges strongly to X at time T if 

(6.2) limE (IXT - y 6(T)1) = O. 
6lO 

While the Euler approximation is the simplest useful time discrete approx
imation, it is, generally, not particularly efficient numerically. We shall thus 
derive and investigate other time discrete approximations in the following chap
ters. In order to assess and compare different time discrete approximations, we 
need to know their rates of strong convergence. 

We shall say that a time discrete approximation y6 converges strongly with 
order 'Y > 0 at time T if there exists a positive constant C, which does not 
depend on Ii, and a lio > 0 such that 

(6.3) 

for each Ii E (0, lio). 
We note that (6.3) is a straightforward generalization of the usual determin

istic convergence criterion (8.3.4) and reduces to it when the diffusion coefficient 
vanishes and the initial value is deterministic. Various other criteria have also 
been suggested in the literature, but (6.3) is a natural generalization of the 
deterministic one and allows mathematically sharp orders of convergence to 
be derived. In fact, we can also establish stronger versions of (6.3) involving 
uniform convergence on the interval [to, T] (see Theorem 10.6.3). In Chapters 
10 and 11 we shall investigate the strong convergence of a number of differ
ent time discrete approximations. We shall see, in particular, that the Euler 
approximation has strong order of convergence 'Y = 0.5, as suggested by the 
computer experiments in Section 3. 

Exercise 9.6.1 Does the Euler approximation of an Ito process with con
stant drift and diffusion coefficients converge with some strong order 'Y > 0.5 'I 

As with deterministic numerical schemes, the concept of consistency of a 
stochastic time discrete approximation is closely entwined with that of conver
gence and is often easier to verify. We shall say that a discrete time approxi
mation y6 corresponding to a time discretization (T).s = { Tn: n = 0, 1, ... } 
with maximum step size Ii is strongly consistent if there exists a nonnegative 
function c = c( Ii) with 
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(6.4) 

such that 

(6.5) 

and 
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limc(6) = 0 
6J.O 

for all fixed values Y; = yand n = 0, 1, .... 
Condition (6.5) requires the mean of the increment of the approximation to 

converge to that of the Ito process. In the absence of noise it is equivalent to 
the definition of consistency (8.3.3) of a deterministic one-step scheme. From 
condition (6.6) it follows that the variance of the difference between the random 
parts of the approximation and the Ito process also converges to zero. Thus 
strong consistency gives an indication of the pathwise closeness. In fact, it 
implies the strong convergence of the time discrete approximation to the Ito 
process, which we shall now prove in a simple context. 

We shall consider the I-dimensional case d = m = 1 with the Ito process 
X satisfying the autonomous stochastic differential equation 

(6.7) dX, = a(X,) dt + b(X,) dW" 

together with a time discrete approximation y6 corresponding to an equidis
tant time discretization (T)6 with time step ~n == 6. Let us suppose that the 
assumptions of the strong existence and uniqueness theorem, Theorem 4.5.3, 
are satisfied, in particular that the coefficients a and b satisfy a uniform Lip
schitz condition and a growth bound. We remark that the following theorem 
holds in much more general cases too. 

Theorem 9.6.2 Under the assumptions 0/ Theorem -1.5.3 a strongly consis· 
tent equidistant time discrete approximation y6 of a I-dimensional autonomous 
Ito process X with Y6(O) = Xo converges strongly to X. 

Proof For 0 ~ t ~ T we set 

and obtain 
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< c, "$~~' { E (If.' (E (Y~+, - yo: I A • .l - a(Y':) A,,) I') 

+ E (If.' M+, - Y: - E (Y:+l - Y: I A •• ) - b(y:) /l. Wn ) I') 
+E (llT 

... (a(Y:,> - a(Xr)) drl2) 

+E (llT 
... (b(Y:,> - b(Xr)) dWrr~) 

Using the conditional independence of the summands in the first sum, the Lip
schitz condition and growth bound for the coefficients a and b and an estimate 
for the second moment of X t we derive 

Z(t) :5 

In view of strong consistency it follows from (6.5) and (6.6) that 

Z(t) :5 c3lt Z(r) dr + C4 (15 + e(c5» 

and, thus, by the Gronwall inequality (Lemma 4.5.1) that 

Z(t) :5 Cdc5 + e(c5». 
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Using the Lyapunov inequality (2.2.14) we can then conclude that 

from which the assertion of the proposition follows. 0 

Exercise 9.6.3 Show that the Euler scheme (l.3) is strongly consistent with 
c(o) = 0 and hence from (6.8) deduce that it has strong order of convergence 
at least "/ = 0.5 under the assumptions of Theorem 9.6.2. 

Exercise 9.6.4 A formal generalization of the Heun scheme (8.1.12) for 
ordinary differential equations to the stochastic differential equation (6.7) is 

Yn+l Yn + ~{a(Yn) + a (Yn + a(Yn).6.n + b(Yn) .6.Wn ) }.6.n 

+~{ b(Yn) + b (Yn + a(Yn).6.n + b(Yn) .6.Wn ) } .6.Wn . 

Show that it is generally not strongly consistent. For what types of coefficients 
is it strongly consistent? 

Exercise 9.6.5 Does an Euler approximation of the Ito process in Exercise 
9.6.1 based on another Wiener process which is independent of that driving the 
Ito process also converge strongly to the Ito process? 

9.7 Weak Convergence and Consistency 

In Section 4 we examined the approximation of the first moment of a particular 
Ito process X by the Euler approximation with respect to the mean error 

(7.1) Jl = E(Y(T)) - E(XT ). 

In particular, we saw that this criterion differs in its properties from the strong 
convergence criterion. To some extent (7.1) is special and not appropriate for 
applications where the approximation of some higher moment 

E (IXTl q ) 

with q = 2, 3, ... or of some functional 

(7.2) E(g(XT» 

is of interest. Like (7.1) these do not require the pathwise approximation of the 
Ito process, but only an approximation of the probability distribution of XT . 

We shall say that a general time discrete approximation y6 corresponding 
to a time discretization (r)6 converges weakly to X at time T as 0 ! 0 with 
respect to a class C of test functions g: ~d -+ ~ if we have 
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(7.3) 

for all gEe. If C contains all polynomials this definition implies the conver
gence of all moments, so theoretical investigations involving it will require the 
existence of all moments. In the deterministic case with a zero diffusion coeffi
cient and a nonrandom initial value, (7.3) with g(z) == z reduces to the usual 
deterministic convergence criterion, just as the strong convergence criterion 
(6.2) does. 

To compare different time discrete approximations we need to consider the 
rate of weak convergence. We recall from Section 8 of Chapter 4 that C~(!Rd , !R) 
denotes the space of I times continuously differentiable functions g: lRd -+ lR 
which, together with their partial derivatives of orders up to and including 
order I, have polynomial growth. We shall use such a space as the class of 
test functions. Since it contains all of the polynomials it will suffice for most 
practical purposes. 

We shall say that a time discrete approximation y6 converges weakly with 
order {J > 0 to X at time T as 6 ! 0 if for each 9 E C;.cp+l\!Rd ,lR) there exists 
a positive constant C, which does not depend on 6, and a finite 60 > 0 such 
that 

(7.4) 

for each 6 E (0,60 ), 

In Chapters 14 and 15 we shall investigate the order of weak convergence 
of various time discrete approximations theoretically. In particular, we shall 
prove that the Euler approximation usually converges with weak order (3 = 1, 
in contrast with the strong order r = 0.5. We shall see that the strong and 
weak convergence criteria lead to the development of different time discrete 
approximations which are only efficient with respect to one of the two criteria. 
This fact makes it important to clarify the aim of a simulation before choosing 
an approximation scheme: 

Is a good pathwise approximation of the Ito process required or is the approx
imation of some functional of the Ito process the real objective? 

Exercise 9.7.1 Consider an Ito process with constant drift and diffusion 
coefficients. Does the Euler approximation (1.3) based on another Wiener pro
cess which is independent of that driving the Ito process also converge with some 
weak order (3 > O? 

The utility of a property that is more easily verified than weak convergence 
leads us to weak consistency. We shall say that a time discrete approximation 
y6 with maximum step size 6 is weakly consistent if there exists a nonnegative 
function c = c( 6) with 

(7.5) 

such that 

limc(6) = 0 
610 
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(7.6) E (IE (Y:±~~ y: IA •• ) - a(Tn. y.:)i') :5 c(6) 

and 

(7.7) E ( E (;n (Y:+1 - Y:) (Y;+1 - Y:) T I AT") 

-b(Tn. Y':)b(Tn. y:)Tj') < c(6) 

for all fixed values Y: = y and n = 0, 1, .... 
We note that condition (7.6) involving the mean of the increment of the 

approximation is the same as condition (6.5) in the definition of strong consis
tency. However, (7.7) differs considerably from the second condition (6.6) for 
strong consistency. It is much weaker because only the variance of the incre
ment of the approximation has to be close to that of the Ito process, whereas 
for strong consistency the variance of the difference between the increments of 
the approximation and the Ito process must vanish. 

Exercise 9.7.2 Show that the Euler approximation (1.9) is weakly consis
tent. 

It is not difficult to see that an Euler approximation based on a Wiener 
process different from that driving the Ito process is still weakly consistent, 
although it is not strongly consistent; see Exercises 9.6.5 and 9.7.1. The fol
lowing exercise illustrates the flexibility that we have in generating the noise 
increments in weakly consistent schemes. 

Exercise 9.7.3 Show in the I-dimensional case d = m = 1 that the Euler 
scheme 

Yn+1 = Yn + a( Tn, yn).o.n + b(Tn, Yn) en .o.!/2, 
where the en are independent two-point random variables with peen = ±1) = 
t I is weakly consistent. 

Under quite natural assumptions a weakly consistent scheme is weakly con
vergent. As with Theorem 9.6.2 for strong consistency and convergence, we 
prove it here for the special case of an Ito process satisfying the I-dimensional 
autonomous stochastic differential equation (6.7). The result also holds in much 
more general situations. The proof contains the basic ideas and methods as
sociated with the weak convergence of time discrete approximations, which we 
shall later apply repeatedly. 

Theorem 9.7.4 Suppose that the drift coefficient a = a(:c) and the diffusion 
coefficient b = b(:c) of an Ito process satisfying (6.7) are four times continuously 
differentiable with polynomial growth and uniformly bounded derivatives. Let 
y6 be a weakly consistent time discrete approximation with equidistant time 
steps ~n == {) and initial value y6(0) = Xo which satisfies the moment bounds 



9.7. WEAK CONVERGENCE AND CONSISTENCY 329 

(7.8) 

for q = 1, 2, ... , and 

(7.9) 

for n = 0, I, 2, ... , wh.ere c(6) is as in (7.5). Th.en y6 converges weakly to the 
given Ito process. 

Proof We know from Theorem 4.8.6 that the functional 

(7.10) u(s,x) = E (9(XT) IX. = x) 

is a solution of the final value problem 

au au au 1 2 a2u -+Cu= -+a-+-b - = 0 
as as ax 2 a1:2 

(7.11) 

(7.12) u(T, x) = g(z), 

with r.(s,z) continuous and u(s,x) four times continuously differentiable in 
z, where all of these partial derivatives have polynomial growth. 

We shall denote by X·'#: the Ito process starting at x at time s, so 

From (7.11) and the Ito formula (3.3.6) we obtain 

(7.14) 

We shall define 

(7.15) 

which by means of (7.10) and (7.12) we can rewrite as 

H6 = IE (u (T, y6(T» - u (0, y~)) I 

= IE (~' (U(Tn+l' y,:+,) - U (Tn, Y':)}) I 
For notational simplicity we shall henceforth omit the 6 superscript on the y:. 
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From (7.14) we thus have 

H6 = IE(}~l [{U(Tn+1, Yn+d - U(Tn, Yn)} 

- {u (Tn+l,X;:+;") - U (Tn' X;:,y,,)} ]) I 
= IE(n~l [{U(Tn+l,Yn+l)-U(Tn+1,Yn)} 

- {U (Tn+1,X;:+;") - U(Tn+lo Yn )} ]) 

In view of its differentiability we can expand U in x, thus obtaining 

where 

for some On,Z E (0,1). We can bound this expression using (7.5)-(7.9), the 
polynomial growth of u, a, b and their derivatives and the moment estimates 
of an Ito process given in Theorem 4.5.4. With all of the partial derivatives in 
what follows evaluated at (Tn+lo Yn ) we have 

(7.16) 

+41 ~:~ liE (Yn+1 - Yn)2 - (X;:+;" - Yn) 2 I AT .. ) I + K A?f2 ) 

< Yffl n~l An E( I:: liE (Yn+~~ Yn IAT") - a(Tn, Yn)1 
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~ ~N n~' an [{ E (1::1') E (HYn+~~ YnIA,.) - a(rn, Yn)!') r 
+H E (I ::~ I') E (IE ( (Yn+~~ Yn)'IA,.) - b( rn, Yn)'i') r 1 

Thus the time discrete approximation ytS converges weakly to the given Ito 
process. 0 

Exercise 9.7.5 Show that weak consistency reduces, roughly speaking, to the 
consistency of a deterministic one-step scheme defined by (8.9.3) in the absence 
of noise. 

Exercise 9.7.6 Use conditional expectations and Theorem 4.8.6 to verify 
that the correlation functions 

can also be approximated by weak approximations of X under appropriate as
sumptions. 

9.8 Numerical Stability 

We saw in Section 3 of Chapter 8 that the consistency and convergence of a 
deterministic numerical scheme alone are no guarantee that the scheme can be 
used effectively for a given stiff differential equation. In addition, the propa
gation of initial errors and roundoff errors must be kept under control. This 
problem also arises for stiff stochastic differential equations, which are charac
terized in the d-dimensionallinear case (6.3.20) 

by the relationship 

m 

dZt = AZt dt + L: Ble Zt 0 dWt" 
1:=1 
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where >'d ::; >'d-l ::; •.. ::; >'1 are the Lyapunov exponents for this equation 
defined in Section 3 of Chapter 6. This generalizes the deterministic notion 
of stiffness in Section 3 of Chapter 8 to the stochastic context because the 
real parts of the eigenvalues of the coefficient matrix of a deterministic linear 
differential equation are its Lyapunov exponents. Thus, stochastic stiffness 
also refers to the presence of two or more widely differing time scales in the 
solutions. We note that a stiff linear ordinary differential equation is also stiff 
in the stochastic sense. 

More generally, we shall say that a stochastic differential equation such as 
(6.3.19) 

m 

dXt =,g (t, X,) dt + L bk (t, X,) 0 dwl 
k=l 

is stiff if its linearized system (6.3.20) is stiff in the above sense. To handle stiff 
stochastic differential equations, in particular, and error propagation, in gen
eral, we need a counterpart to the deterministic concept of numerical stability 
for stochastic numerical schemes. 

Let y5 denote a time discrete approximation with maximum step size fJ > 
o starting at time to at YJ, with y6 denoting the corresponding approximation 
starting at y06. We shall say that a time discrete approximation y5 is stochas
tically numerically stable for a given stochastic differential equation if for any 
finite interval [to, 1'] there exists a positive constant do such that for each f > 
o and each fJ E (0, ~o) 

(8.1) li!U sup P (lY':. - Y':.I ~ f) = o. 
ly:-y:l-o to$t~T 

In addition, we shall say that a time discrete approximation is stochastically 
numerically stable if it is stochastically numerically stable for the class of 
stochastic differential equations for which the approximation converges to the 
corresponding solution of the equation. For brevity we shall usually refer to 
stochastic numerical stability as just numerical stability in the sequel. 

It will turn out that nearly all the one step stochastic schemes proposed 
in this book are numerically stable under sufficient smoothness and regularity 
conditions on the drift and diffusion coefficients. By adapting the proof of 
Theorem 4.5.3, the existence and uniqueness theorem, or of Theorem 9.6.2 it 
is straight forward to show that the Euler method (1.3) is numerically stable 
under the assumptions of Theorem 4.5.3. 

Exercise 9.8.1 Show under the assumptions of Theorem 4.5.3 that the Eu
ler method (l.3) is numerically stable. 

PC-Exercise 9.8.2 Simulate the exact solution and the Euler approxima
tion with step size fJ = d = 2- 4 corresponding to the same realization of the 
Wiener process for the I-dimensional stochastic differential equation 

dXt = 5X, dt + dWt 
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Figure 9.8.1 The exact solution and Euler trajectory from PC-Exercise 9.8.2. 

with Xo = 1 on the interval [0, Tj, where T = 1. Plot both paths on the same 
X versus t axes. Note that the exact solution here can be simulated using the 
correlated Gaussian mndom variables 

The propagation of an initial error will thus remain bounded on any 
bounded interval for a numerically stable scheme. We emphasize that the 
numerical stability criterion applies only to step sizes fJ > 0 that are less than 
some critical value ~o, which will usually depend on the time interval [to,T], 
and the differential equation under consideration. This critical value may be 
extremely small in some cases. From the above PC-Exercise we can see that 
as the time interval [to, Tj becomes relatively large, the propagated error of 
a numerically stable scheme, which is theoretically still under control, may, in 
fact, become so unrealistically large as to make the approximation useless for 
some practical purposes. For instance, when simulating first exit times we do 
not know the appropriate time interval in advance and so must allow for an ar
bitrarily large interval. In effect, we then need to control the error propagation 
over the infinite time interval [to, 00), which will only be possible for particular 
stochastic differential equations. 
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To cover such situations we shall say that a time discrete approximation y6 
is asymptotically numerically stable for a given stochastic differential equation 
if it is numerically stable and there exists a positive constant ~a such that for 
each c > 0 and 0 E (O,~a) 

li!O lim P ( sup IY~I - Y~II ~ c) = 0, 
ly6-y.61_0 T_oo to<t<T 

o 0 - -

(B.2) 

where we have used the same notation as in (B.1). 

PC-Exercise 9.8.3 Repeat PC-Exercise 9.8.2 for the I-dimensional 
stochastic differential equation 

dXt = -5Xt dt + dWt 

with Xo = 1 on the interval [0, 11, where T = 1. 

Exercise 9.8.4 Show that the Euler method is numerically asymptotically 
stable for the stochastic differential equation in PC-Exercise 9.8.9. 

As with the A-stability of deterministic differential equations, we can also 
consider asymptotical numerical stability of a stochastic scheme with respect to 
an appropriately restricted class of stochastic differential equations. We shall 
choose the class of complex-valued linear test equations 

(B.3) 

where the parameter..\ is a complex number with real part Re(..\) < 0 and W is a 
real-valued standard Wiener process. This represents a simple stochastic gener
alization by including additive noise in the deterministic test equations (B.3.16) 
used to test for the A-stability of deterministic schemes. In the stochastic case 
the critical value ~a will also depend on the parameter ..\. Obviously, we can 
write (B.3) as a 2-dimensional Ito stochastic differential equation with linear 
drift and constant diffusion coefficients in terms of the components (X1 ,X2) 
where X = Xl + ,X2. From Theorem 4.B.B we know that (8.3) has an ergodic 
solution when Re(..\) < 0, which makes these equations a good choice of test 
equations for situations involving additive noise. 

Exercise 9.8.5 Write the complex valued equation (8.3) as a 2-dimensional 
Ito stochastic differential equation in terms of the real and imaginary parts of 
X and..\. 

Let us suppose that we can write a given scheme with equidistant step size 
~ == 0 applied to the test equations (8.3) with Re(..\) < 0 in the recursive form 

(8.4) 
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Figure 9.8.2 The exact solution and Euler trajectory from PC-Exercise 9.8.3. 
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for n = 0, 1, ... , where G is a mapping of the complex plane C into itself and 
the zt, zt, ... are random variables which do not depend on A or on the Yot:.., 
y/!I., .... Then, we shall call the set of complex numbers >'Ll with 

(8.5) Re(A) < 0 and IG(ALl)1 < 1 

the region of absolute stability of the scheme. From this region we can determine 
the appropriate equidistant step size Ll such that an error in the approximation 
by this scheme of a particular test equation from the class (8.3) will not grow 
in subsequent iterations. Obviously, the scheme is asymptotically numerically 
stable for such a test equation if ALl belongs to the region of absolute stability. 

The Euler scheme (1.3) with equidistant step size Ll > 0 for the stochastic 
differential equation (8.3) is 

yn~l = ynt:.. (1 + ALl) + LlWn. 

Thus 

where ynt:.. is the solution starting at Yot:... The additive noise terms cancel out 
here, so we obtain the same region of absolute stability as in the deterministic 
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case. See (8.3.16) and Figure 8.3.1. The implicit Euler scheme 

(8.6) Yn~l = Yn~ + a (Tn+l> Yn'\l) A + b (Tn' Yn~) AWn 

takes the form 

for the test equation (8.3), from which we obtain 

and the same region of absolute stability as for the deterministic implicit Euler 
scheme (8.3.18). Thus, for any A with Re(A) < 0 the step size A > 0 can be 
chosen arbitrarily large. 

Generalizing the deterministic definition, we shall say that a stochastic sch
eme is A-stable if its region of absolute stability is the whole of the left half 
of the complex plane, that is if it consists of all AA with Re(A) < 0 and A > 
o. Hence the implicit Euler scheme (8.6) is A-stable, but not the Euler scheme 
(1.3). It is apparent that an A-stable stochastic scheme is also A-stable in the 
deterministic sense. 

The test equation (8.3) can be interpreted as a linearization of a damped 
oscillator with noise added. In this sense A-stability is related to additive noise. 
Various problems arise in the case of multiplicative noise. For instance, if we 
apply the fully implicit Euler scheme 

(8.7) Yn~l = Yn~ + a (Tn+l, Yn~l) ~ + b (Tn+l, Yn~l) ~Wn 

with Gaussian distributed ~Wn = W T .. +1 - W T .. to the I-dimensional homo
geneous linear Ito stochastic differential equation 

then we obtain 

However, this expression is not suitable as an approximation because one of its 
factors may become infinite. In fact, the first absolute moment E(IYn~1) does 
not exist, as can be easily seen from Exercise 1.4.7. It seems then that fully 
implicit methods involving unbounded random variables, such as (8.7), are not 
practicable, except perhaps in special cases such as for a linear equation with a 
strongly attracting drift and a very weak noise intensity. As we shall see later, 
we need to use random variables such as A Wn in strong approximations so 
in this book we shall concentrate on implicit strong approximations that have 
implicit coefficients only in the nonrandom terms. In contrast, for weak approx
imations we need only use bounded random variables to obtain convergence, so 
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fully implicit weak approximations are generally possible. An example is the 
scheme 

(8.8) Yn-;'l =yn4 +a(rn+l,Yn'\1) ~+b(rn+l'Yn-;'l) ~Wn 

where a a - bb' and the aWn, n = 0, 1, •.. are independent two-point 
distributed random variables with 

(8.9) 

Obviously, the I~Wnl are bounded by ¥'X, whereas the Gaussian distributed 
increments aWn are unbounded. We note that the drift ii in the scheme (8.8) 
has been adjusted so that the resulting scheme is consistent. 



Chapter 10 

Strong Taylor Approximations 

In this chapter we shall use stochastic Taylor expansions to derive time dis
crete approximations with respect to the strong convergence criterion, which 
we shall call strong Taylor approximations. We shall mainly consider the corre
sponding strong Taylor schemes, and shall see that the desired order of strong 
convergence determines the truncation to be used. To establish the appropri
ate orders of various schemes we shall make frequent use of a technical lemma 
estimating multiple Ito integrals. This is Lemma 10.8.1, which is stated and 
proved in Section 8 at the end of the chapter, although it will be used earlier. 

10.1 Introduction 

To simplify our notation in this and in the following chapters, we shall use the 
following operators, which were introduced in Chapter 5: 

(1.1) 

(1.2) 

and 

(1.3) 

for j = 1,2, ... , m, where 

(1.4) 

d 
o a "I: a 

L. = at + ~g J:l I: 
1:=1 vZ 

d 
• ." 1:. a IJ = L.J = ~b J_I: 

1:=1 az 

[!I: = all: - ~ Elibl:,j 
j=l 

for k = 1, 2, ... , d. In addition, as in Chapter 5, we shall abbreviate multiple 
Ito integrals by 

(1.5) 

and multiple Stratonovich integrals by 

(1.6) 
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for it, ... , i, E {O, 1, ... , m}, I = 1,2, ... and n = 0, 1, ... with the convention 
that 

(1.7) 

for all t E lR+. We shall also use the abbreviation 

for n = 0, 1, ... , in the schemes for any given function f defined on lR+ x !Rd , 

and usually not explicitly mention the initial value Yo or the step numbers n 
= 0,1, .... 

If we refer to the order of convergence of a scheme in this chapter, we shall 
mean the order of strong convergence (9.6.3) of a corresponding time discrete 
approximation. Finally, we shall always suppose that the Ito process X under 
consideration satisfies the, in general, nonautonomous stochastic differential 
equation 

t ~lt . . (1.8) Xt =xo+ in a(s,X,,) ds + L..J b1(s,X.)dWf 
n i;1 0 

in Ito form or 

i t m it 
(1.9) Xt=Xo+ g(s,X.)ds+E lJi(s,X,,)odW1 

o i=1 0 

in its equivalent Stratonovich form, for t E [0,7']. 

10.2 The Euler Scheme 

We shall begin with the Euler scheme, also called the Euler-Maruyama scheme, 
which we have already looked at in Chapter 9. It represents the simplest strong 
Taylor approximation and, generally, as we shall see, attains the order of strong 
convergence 'Y = 0.5. 

In the I-dimensional case d = m = 1 the Euler scheme has the form 

(2.1) Yn +1 = Yn + all + bLlW, 

where 

(2.2) 

is the length of the time discretization subinterval [ Tn, T n+1] and 

(2.3) 

is the N(O; Ll) increment of the Wiener process Won [Tn, Tn+1J. 
In the multi-dimensional case with scalar noise, d = 1, 2, ... and m = 1, 

the kth component of the Euler scheme is given by 
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(2.4) 

for k = 1, 2, ... , d, where the drift and diffusion coefficients are d-dimensional 
vectors a = (a1 , .•• , ad) and b = (b1 , .•• , bd). We note that the different 
components of the time discrete approximation Y are coupled through the 
drift and diffusion coefficients, as in the corresponding stochastic differential 
equation (1.8). 

For the general multi-dimensional case with d, m = 1, 2, ... the kth com
ponent of the Euler scheme has the form 

(2.5) 

Here 

(2.6) 

m 

Ynk+l = Y: + ak ~ + LbkJ ~wj. 
j=1 

is the N(O;~) distributed increment of the jth component of the m-dimensional 
standard Wiener process Won [Tn,Tn+d, and ~Wit and ~Wj2 are indepen
dent for it i- j2' The diffusion coefficient b = [bkJ ] is a dxm-matrix. 

The Euler scheme (2.5) obviously corresponds to the truncated Ito-Taylor 
expansion containing only the time and Wiener integrals of multiplicity one, 
so an Euler approximation can be interpreted as an order 0.5 strong Ito-Taylor 
approximation. See (5.5.3). 

PC-Exercise 10.2.1 
satisfying 

Determine explicitly the I-dimensional Ito process X 

on the time interval [0, T] with T = 1 for the initial value Xo = 1, where WI 
and W 2 are two independent standard Wiener processes (see (4.4.59)). Then 
simulate M = 20 batches each of N = 100 trajectories of X and their Euler 
approximations corresponding to the same sample paths of the Wiener processes 
with equidistant time steps of step size ~ = 2-3 . Determine the 90%-confidence 
interval for the absolute error! at time Tj see PC-Exercise 9.3.5. Repeat the 
calculations for step sizes 2-4 , 2-5 and 2-6 , and plot log2! against log2 ~. 

In Theorem 10.2.2 below, we shall show, assuming Lipschitz and linear 
growth conditions on the coefficients a and b, that the Euler approximation 
has the order of strong convergence 'Y = 0.5, as is suggested by the slope 0.5 
of the curve in Figure 10.2.1. In special cases the Euler scheme may actually 
achieve a higher order of strong convergence. For example, when the noise is 
additive, that is when the diffusion coefficient has the form 

(2.7) b(t,x) == b(t) 
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for all (t, x) E !R+ X ~ and under appropriate smoothness assumptions on a 
and b it turns out that the Euler scheme has order of strong convergence "y = 
1.0. See Theorem 10.3.4. 

Usually the Euler scheme gives good numerical results when the drift and 
diffusion coefficjents are nearly constant. In general, however, it is not partic
ularly satisfactory and the use of higher order schemes is recommended. 

Theorem 10.2.2 Suppose that 

(2.8) E (IXoI2) < 00, 

(2.9) E (IXo - Yo612f/2 ~ K 1 1)1/2, 

(2.10) la(t, x) - aCt, y)1 + Ib(t, x) - bet, y)1 ~ K21x - YI, 

(2.11) la(t, x)1 + Ib(t, x)1 ~ K3 (1 + Ixl) 
and 

(2.12) la(s,x) - a(t,x)l + Ib(s,x) - b(t,x)1 ~ K4 (1 + Ixl) Is - t1 1/ 2 

for all s, t E [0,1'] and x, y E !Rd , where the constants K 1 , ••• , K4 do not 
depend on o. Then, for the Euler approximation y6 the estimate 
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(2.13) 

holds, where the constant 1<5 does not depend on O. 

Proof In view of the Lipschitz condition (2.10) and the linear growth condi
tion (2.11), it follows from estimate (4.5.16) for the Ito process X that 

(2.14) 

By arguments analogous to those in the proofof(4.5.16) and Lemma 10.8.1 we 
can also show 

(2.15) 

where the constant C2 does not depend on 6, for the Euler approximation y6 

interpolated continuously by 

for t E [Tn, Tn+d, n = 0, 1, .... 
Then, from (1.8) and (2.16) we obtain 

(2.17) Z(t) = E (sup lX, - y6(S)12IAo) 
o~'9 

where the terms being summed will be defined below and upper bounds deter
mined for them. From (2.10), (5.2.6), (5.3.3) and Lemma 10.8.1 we have 
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for each j = 0, ... , m and t E [O,T]. Further, from Theorem 4.5.4 and Lemma 
10.8.1 we obtain 

(2.19) 

+1(j) [f(j) (Tn., X T .. .) - I(j) (Tn., x.)] T ... ,. r lAo) 

< C51' E (sup IXT ... - X.12 lAo) du 
o O~.~u 

for each j = 0, ... , m and t E [0, T]. Finally, it follows analogously that 

(2.20) r..(j) '
f .- E( sup Int11(j) [f(j) (Tn,X.) - I(n (.,x.)] 

O~.~f n=O T .. ,Tn +l 

+1(j) [/(j) (Tn., x.) - I(i) (., x.)] T,.. ,. r lAo) 
< C7 (1 + IXoI2) 6 

for each j = 0, ... , m and t E [0, T]. 

Combining (2.18) to (2.20) we have 

(2.21) Z(t) ~ Ca IXo - Y~ 12 + Cs (1 + IXoI2) .5 + C91o' Z(u) du, 

to which we apply the Gronwall inequality (Lemma 4.5.1) to obtain 

(2.22) 

for each t E [0, Tj. The conclusion of the theorem then follows immediately 
from the definition (2.17) of Z(t). 0 

Remark 10.2.3 In the above proof we have, in fact, proven a stronger result 
than that asserted in the theorem, namely we have established a uniform error 
bound over the whole time interval [0, T] rather than an error bound at just 
the final instant T. 
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10.3 The Milstein Scheme 

We shall now examine a scheme proposed by Milstein, which turns out to be 
an order 1.D strong Taylor scheme. 

If, in the I-dimensional case with d = m = 1, we add to the Euler scheme 
(2.1) the term 

bb'I(l,l) = ~ bb' {(~W)2 -~} 

from the Ito-Taylor expansion (5.5.3), then we obtain the Milstein scheme 

(3.1) 

We note that we obtain the same scheme from the truncated Stratonovich
Taylor expansion (5.6.3) with the hierarchical set A = {v, (0), (1), (1, I)}, that 
is 

where 

Exercise 10.3.1 Show that the Milstein scheme (9.1) is strongly consistent 
for bounded bb'. 

In Theorem 10.6.3 we shall prove that the Milstein scheme has the order of 
strong convergence 'Y = 1.0 under the assumption that a E Cl,l(~+ X ~d) and 
b E Cl,2(~+ X ~d). Thus, with the addition of just one more term to the Euler 
scheme to form the Milstein scheme we increase the strong convergence order 
from 'Y = 0.5 to 'Y = 1.0. The strong order 'Y = 1.0 of the Milstein scheme 
corresponds to that of the Euler scheme in the deterministic case without any 
noise, that is with b == O. See Section 1 of Chapter 8. The additional term 
in the Milstein scheme marks the point of divergence of stochastic numerical 
analysis from the deterministic. In this sense we can regard the Milstein scheme 
as the proper generalization of the deterministic Euler scheme for the strong 
convergence criterion because it gives the same order of strong convergence as 
for the deterministic case. 

PC-Exercise 10.3.2 Consider the Ito process X satisfying the linear 
stochastic differential equation 

dXf = aXf dt + bXt dWf 

on the time interval [0,11 with T = 1 with Xo = 1.0, a = 1.5, b = D.l, which 
was investigated in Section 2 of Chapter 9. Generate M = 2D batches each of 
N = 100 simulations of XT and of the values y6(T) of the Milstein approxi
mation (9.1) corresponding to the same sample path of the Wiener process for 
equidistant time steps with 6 = ~ = 2-3 • Then evaluate the 90%-confidence 
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interval for the absolute error (. Repeat for step sizes 2-4 , 2-5 and 2-6 , and 
plot log2 f against log2 .6.. 

Figure 10.3.1 suggests a linear dependence of the absolute error f on the 
step size .6.. 

In the multi-dimensional case with m = 1 and d = 1, 2, ... the kth compo
nent of the Milstein scheme is given by 

In the general multi-dimensional case with d, m = 1, 2, ... the kth compo
nent of the Milstein scheme has the form 

m m 

(3.3) yk = yk + ak Ll +" bkJ .6.Wi + " Lj.bkJ~ l( . . ) n+1 n ~ ~ 11J~ 
j=1 j1J2=1 

in terms of multiple Ito integrals I(j.,h), or 

m m 

(3.4) Y;+1 = Y; + ~J:.6. + LbJ:,i .6.wj + L Ji1bJ: J2 J(j.,h) 
j=1 j1,j2=1 
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if multiple Stratonovich integrals J(;l';~) are used. The Milstein approximation 
thus represents both the order 1.0 strong Ito-Taylor approximation and the 
order 1.0 strong Stratonovich-Taylor approximation. 

We remark that for it =f h with it, h = 1, ... , m the multiple stochastic 
integrals 

(3.5) 

appearing in the scheme (3.4) cannot be so easily expressed in terms of the 
increments A Wh and A W;2 of the components of the Wiener process as in 
the case it = h for which, from (5.2.21) and (5.2.44), we have 

(3.6) 

The application of the Milstein scheme in the multi-dimensional case be
comes practicable with the approximation ofthe multiple Stratonovich integrals 
proposed in Section 8 of Chapter 5. For it =f h with h, h = 1, ... , m we can 
use (5.8.11) to approximate the integral J(it,h) by 

(3.7) J(;lJ2) = A (~{i1{h +ffp (J.l.h,p{h -JJh,p{it») 

+! ~; ((it,r (.f2{h + T/h,r) - (h,r (v'2{h + TJh,r)) 

where 

(3.8) 

and {j, J.l.j,p, T/j,r and (j,r are independent N(O; 1) Gaussian random variables 
with 

(3.9) 

for j = 1, ... , m, r = 1, ... p and p = 1, 2, .... The size of p obviously 
influences the accuracy of J(;1.i2) as an approximation of J(jt.i2). We can see 
from (5.8.16) that we must choose 

J( 
(3.10) p = peA) ~ A 

for some positive constant J( to obtain the order of strong convergence 'Y = 1.0 
for the Milstein scheme with these approximations of the multiple Stratonovich 
integrals. 

In many important practical problems the diffusion coefficients have special 
properties which allow the Milstein scheme to be simplified in a way that avoids 
the use of double stochastic integrals involving different components of the 
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Wiener process. For instance, with additive noise (2.7) the diffusion coefficients 
depend at most on time t and not on the x variable and the Milstein scheme 
reduces to the Euler scheme, which involves no double stochastic integrals. 

Another important special case is that of diagonal noise, where d = m and 
each component Xk of the Ito process X is disturbed only by the corresponding 
component Wk of the Wiener process Wand the diagonal diffusion coefficient 
bk,1: depends only on xl:, that is 

(3.11) 
ol)J 

bkJ(t, ... ) =_ 0 d (t) - 0 .., an -I: ,x = ax 
for each (t, x) E lR+xlRd and i, k = 1, ... , m with i I- k. Thus for diagonal noise 
the components of the Ito process are coupled only through the drift term. It 
is easy to see that the Milstein scheme for diagonal noise reduces to 

(3.12) 

A more general, but important special case is that of commutative noise in 
which the diffusion matrix satisfies the commutativity condition 

(3.13) 

for all it, h = 1, .. " m, k = 1, ... , d and (t,x) E lR+ x lRd • For instance, 
additive noise, diagonal noise and linear noise, the last being 

(3.14) 

for all :c = (:c 1, . .. , :cd) E lRd, t E lR+ and i = 1, ... , d, k = 1, ... , m, all satisfy 
the commutativity condition (3.13). 

A closer inspection of the applications in Chapter 7 reveals that many of 
them involve commutative noise in one form or another. In formulating a model 
in terms of stochastic differential equations it is well worth checking whether 
noncommutative noise is essential, and avoiding it if possible. 

In view of (3.6) and Proposition 5.2.3 we have 

(3.15) 

for h, h = 1, ... , m with i1 I- h. Inserting this into (3.4), we see that the 
Milstein scheme for commutative noise can be written as 

(3.16) 

PC-Exercise 10.3.3 Consider the scalar Ito process X in PC-E:cercise 
10.2.1 with d = 1 and m = 2 on the time interval [0, T] with T = 1. Compute 
M == 20 batches each of N = 100 simulations of XT and of the values y6(T) 
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of the Milstein scheme corresponding to the same sample paths of the Wiener 
processes for equidistant time steps with step size 6 = ~ = 2-3 • Evaluate the 
90% confidence interval for the absolute error f. Repeat for step sizes 2-4 , 2-5 

and 2-6 , and plot log2 f against log2~. Approximate the muliple integral J(1,2) 

by J[1,2) with p = 2. Repeat with p = 10. 

Our results for PC-Exercise 10.3.3, plotted in Figure 10.3.2, indicate a 
smaller error for the smaller step sizes when p = 10. 

The following example due to Clark and Cameron shows that in the non
commutative case we need the multiple stochastic integrals l(jlJ2) = J(h,h) 
for i1 -:f; h to obtain the order of strong convergence 1 = 1.0. 

Example 10.3.4 We consider in the two-dimensional case d = m = 2 an 
Ito process X = (X1,X2) with components given by 

xl = 1t dW.l and xl = 1t X; dW; . 

Since 
li1 b2,2 = 1 -:f; 0 = L.h b2,l 

here, the commutativity condition (3.13) is not satisfied. Nevertheless, we can 
apply the numerical scheme (3.16) with equidistant time steps ~, obtaining 

o 

-1 

-2 
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Figure 10.3.2 Results of PC-Exercise 10.3.3 for p = 2 and p = 10. 
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(3.17) = Y~ +~Wl 

= y2 + yl ~W2 +.!. AWl~W2 
n n 2 

for n = 0, 1, ... with the initial value YOl = Yo2 = O. Clark and Cameron 
showed that the mean-square error of the second component has the form 

(3.18) 

Hence, for this particular example the scheme (3.16) attains only the strong 
order 'Y = 0.5, which is the same as for the Euler scheme. However, if we replace 
the term! AW1AW2 in (3.17) by the double Ito integral 1(1,2), then we have 
the general Milstein scheme (3.3) for our example and this has strong order 'Y 
= 1.0. 

We shall now state conditions assuring that the Milstein scheme (3.3) has 
the strong order of convergence 'Y = 1.0. 

Theorem 10.3.5 Suppose that 

(3.19) E (\Xo\2) < 00, 

(3.21) IQ(t,x)-Q(t,y)\ < K2lx-yl 

(3.22) 

and 

(3.23) 

Ibi1(t,x) - bi1(t,y)1 < K21x - yl 

1J)lbi~(t,x) -i/lbi~(t,Y)1 < K21x - yl 

IQ(t, x)1 + 11/Q(t,x)1 < K3 (1 + Ixl) 

Ibi1(t,x)1 + IL/bi~(t,x)1 < K3 (1 + Ixl) 

li/l/1b12(t,x)1 < K3 (1 + Ixl) 

1.G.(s,x)-Q(t,x)l < K4 (1+lxl)ls-tl l / 2 

Ibi1(s,x)-bi1(t,x)1 < K4 (1+lxl)ls-tl l / 2 

li/lbi~(s,x)-L/lbi~(t,x)1 < K4 {1+lxl)ls-tl l / 2 

for all s, t E [0, T], x, y E ~d, j = 0, ... , m and il, h = 1, ... , m, where the 
constants K 1 , •.. , K4 do not depend on o. 
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Then for the Milstein approximation y6 the estimate 

(3.24) 

holds, where the constant Ks does not depend on 6. 

The proof of Theorem 10.3.5 follows directly from the much stronger and more 
general assertion of Theorem 10.6.3, which we shall state and prove in Section 
6. 

Exercise 10.3.6 Derive {3.18} using the stochastic Ito-Taylor expansion 
{5.5.3}. 

10.4 The Order 1.5 Strong Taylor Scheme 

Generally said, we can obtain more accurate strong Taylor schemes by includ
ing further multiple stochastic integrals from the stochastic Taylor expansion in 
the scheme. These multiple stochastic integrals contain additional information 
about the sample path of the Wiener process. The necessity of their inclu
sion is a fundamental difference between the numerical analysis of stochastic 
differential equations and that of deterministic differential equations. 

We shall now examine a Taylor scheme which has strong order "y = 1.5. 
By adding more terms from the Ito-Taylor expansion (5.5.3) to the Milstein 
scheme (3.1), in the autonomous 1-dimensional case d = m = 1 Platen and 
Wagner obtained the order 1.5 strong Ito- Taylor scheme 

(4.1) Yn +od+bdW + ~bb' {(dW)2 - d} 

+a'bdZ + ~ (aa' + ~ b2all
) d 2 

+ (Ob' + ~ b2bll ) {dW ~ - ~Z} 

+4 b (w' + (b,)2) {~(~W)2 - d} dW. 

Here the additional random variable dZ is required to represent the double 
integral 

(4.2) dZ = 1(1,0) = r"+l t2 dW'l ds2 • 
Jra iTA 

We know from Exercise 5.2.7 that dZ is normally distributed with mean 
E(dZ) = 0, variance E«dZ)2) = id3 and covariance E(dZdW) = !d2 • In 
addition, as in PC-Exercise 1.4.12, the pair of correlated normally distributed 
random variables (dW, dZ) can be determined from two independent N(O; 1) 
distributed random variables UI and U2 by means of the transformation 
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(4.3) 

All of the other multiple stochastic integrals appearing in the truncated Ito
Taylor expansion used to derive (4.1) can be expressed in terms of.6., .6.W and 
.6.Z. In particular, the last term in (4.1) contains the triple Ito integral 

(4.4) 1{1( 0)2 } 0 l(o . . )=- - .6.W) -.6. .6.W) ),),) 2 3 ' 

where, in this case, j = 1. 

Exercise 10.4.1 Derive the terms of the scheme (4.1) from the stochastic 
Taylor expansion (5.5.3) with the hierarchical set 

{v,(O),(I),(I,I),(O,I),(I,O),(O,O),(I,I, I)} 

and show that it is strongly consistent if a, b and their derivatives of first and 
second order are bounded. 

In the deterministic case where b == 0, the order 1.5 strong Ito-Taylor scheme 
(4.1) reduces to the deterministic 2nd order truncated Taylor method (8.2.3). 
There is obviously no counterpart to the order 1.5 Ito-Taylor scheme in the 
deterministic setting. In the next section we shall see that the 2.0 order strong 
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Ito-Taylor scheme, which turns out to be equivalent to the 2.0 order strong 
Stratonovich-Taylor scheme, is a better stochastic generalization of the deter
ministic 2nd order truncated Taylor method. 

PC-Exercise 10.4.2 Repeat PC-Exercise 10.3.2 with the order 1.5 strong 
Taylor approximation. 

In the multi-dimensional case with d = 1, 2, ... and m = 1, that is with 
scalar noise, the kth component of the order 1.5 strong Taylor scheme is given 
by 

(4.5) Y:+ I = Y: + a" A + b" AW 

+.!. Lib" {(AW)2 - A} + L 1a" AZ 
2 

+Lobk {AW A - AZ} +.!. LOak A2 
2 

+4 Ll L1bk {i(AW)2 - A} AW. 
In the general multi-dimensional case with d, m = 1,2, ... the kth component 
of the order 1.5 strong Taylor scheme takes the form 

(4.6) 

m 

""('" . 0'" . k ) + L.J b ,J AWJ + L b oJ l(o,j) + Va 1U,o) 
j=l 

m 

+L: 
m 

+ L: 
As already happened in the general multi-dimensional version of the Milstein 
scheme (3.3), here we also have multiple Ito integrals with respect to different 
components of the Wiener process. To implement such a scheme we can rep
resent these multiple Ito integrals in terms of multiple Stratonovich integrals 
by means of the relations (5.2.36) and then use the approximations (5.8.11) for 
these multiple Stratonovich integrals: 

Let !;j' (j,1I ... , (j,p, '1j,l, ... , '1j,p, I'j,p and tPj,p be independent standard 
Gaussian random variables. Then for i, ii, h, ia = I, ... , m and p = 1,2, ... 
we have 

(4.7) 1U,o) = 4A (...;x !;j + aj,o) with 
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v'2A p 1 
a·o=--~-"'· -2 ~P II' J, 'II" L..J r ~J,r V UPp r1,p 

r=l 

1 1 p 1 
Pp = 12 - 2'11"2 E r2 ; 

r=l 

1 { . 2 } I(jJ) = '2 (aW1) - a , 

1 { 1 ( ')2 } . lU,iJ) = '2 3" aw' - a aw'; 

1 1 /7' 
1(;1,12) = '2a {h{i2 - '2va ({h ai2,o - {hah,o) + A~ .. h a 

for il f h where 

and 

p p 1 ( ) 
lChJ2,i3) = JChJ2J3) - '2 l{h=h}lcoJ3) + 1{j2=ia}ICh,O) 

with J[;lJ2,i3) as defined in (5.8.11). From the estimate (5.8.16) we thus have 

(4.8) E (I~ _ 1a12) ~ C ~2 

for the above approximations of the multiple Ito integrals. We shall see from 
(10.6.16) that we need to choose p so that 

(4.9) 
K 

p = p(a) ~ a 2 

for an appropriate positive constant [( to ensure that the Taylor scheme (4.6) 
with these approximations of the multiple Ito integrals really does have order 
1.5 of strong convergence. 

In several important practical situations the Taylor scheme (4.6) reduces 
to a form in which the multiple stochastic integrals with respect to different 
components of the Wiener process do not appear. In the case of additive noise 
(2.7), where b is a constant or depends only on time t, the order 1.5 strong 
Taylor scheme reduces to the form 

(4.10) Y:+l = Y: +ak a + 'tbk,i awi + !LOak a 2 

i=1 2 
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(4.11) 

for j = 1, ... , m, as in (4.2). 
Another special case is that of diagonal noise (3.11) for which (4.6) reduces 

to 

(4.12) Y:+l = Y: + a" Ll + b"·" LlW" 

+4 LOa" Ll2 + 4 L"b"·" {(LlW,,)2 - Ll} 

+LOb"'" {LlW" Ll - LlZ"} + L"a" LlZ" 

+4 L" L"b"·" {~ (LlW,,)2 - a} LlW". 

More general than diagonal noise is what we shall call commutative noise of 
the second kind, that is for which the diffusion matrix b satisfies the second 
commutativity condition 

(4.13) 

for k = 1, ... , d and it, i2, is = 1, ... , m for all (t,z) E !R X !Rd , as well as the 
commutativity condition (3.13). Now, in addition to (3.6), (3.15) and (4.4) we 
can derive from (5.2.16) the relations 

(4.14) IUl.hj3) + IU~.jlJ3) + IU~J3.i1) + IU3.hJd + IU3JIJ~) + IUIJ3.h) 

{ 

Ll Wh Ll Wh Ll Wj3 : i1::F h. i1 ::F is, h ::F is 

= LlWh {(.6.Wj~)2 -.6.} : it::F i2, it ::F ia, h = is 

{(LlWh)2 - 3Ll} LlWiI : it = h = is 

for it, h, is = 1, ... , m. Using this we obtain the following version of the 
order 1.5 strong Taylor scheme for commutative noise of the second kind: 

m 

(4.15) Y,."+l = Y: + a" Ll + Lb"J aWj 
j=1 

m iI-1 
+ L L LiIb"J~ .6.WiI.6.wh 

iI=1h=1 
m 

+ L (LOb"·i {LlWi .6.- LlZj} + Li a" .6.Zi ) 
j=1 
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m jl-lh-l 

+ L L L Li1Lhbk,h~Wi1~Wh~Wj3 
i1=lh=lj3=1 

We note that it is not necessary here to generate the ~zj when the drift and 
diffusion coefficients satisfy 

(4.16) 

for all j = 1, ... , m with k = 1, ... , d and all (t,z) E !Rx!Rd . 

Conditions under which the order 1.5 strong Taylor approximation actually 
achieves the order 1.5 of strong convergence will be given in Theorem 10.6.3, 
which we shall state and prove in Section 6. Finally, we remark that we could 
similarly derive an order 1.5 strong Stratonovich-Taylor scheme from the cor
responding truncated Stratonovich-Taylor expansion. We shall not do so here 
because such a scheme would already contain most of the terms needed for an 
order 2.0 strong Taylor scheme and, in general, is not as efficient numerically 
as the order 1.5 strong Ito-Taylor scheme considered above. 

Exercise 10.4.3 Derive (.I.14). 

10.5 The Order 2.0 Strong Taylor Scheme 

In contrast with the last section, we shall now use the Stratonovich-Taylor 
expansion and retain those terms which are needed to obtain an order 2.0 
strong scheme. 

In the autonomous I-dimensional case d = m = 1 the order 2.0 strong 
Taylor scheme, due to the authors, has the form 

(5.1) 
1 

Yn +!!~ + b~W + 2! bb'(~W)2 + btl ~z 

1 +"2 JJJ!' ~2 + !!b' {~W ~ - ~z} 

+:! b(bb')' (~W)3 + ~! b (b(bb')')' (~W)4 

+!! (bb')' J(O,l,l) + b (!!b')' J(l,O,l) 

+ b (b!!')' J(l,l,O)' 
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Here the Gaussian random variables ~W and ~Z are the same as in the 
preceding section. In particular, see (4.2) for the definition of ~Z. The next 
exercise shows how they can be generated approximately together with the 
multiple Stratonovich integrals of multiplicity 3 appearing in the above scheme 

Exercise 10.5.1 Derive the following approximate multiple Stratonovich in
tegrals: 

p _ 1 2 2 1 2 1 3/2 2 P 
J(l,O,I) - 31 ~ (1 - 4" ~al,O +;: ~ (1 hI - ~ B1,1' 

J p - 1 1\2,.2 1 1\3/2,. b A2BP 11\3/2 ,. 1\2CP 
(0,1,1) - 31 u '>1 - 211" U ,>1 1 + u 1,1 - 4" u al,O.,,1 + Ll> 1,1' 

P 1 2 2 1 2 1 3/2 1 3/2 2 P 
J(I,l,O) = 31 ~ (1 + '4 ~ a1,0 - 211" ~ (1 b1 + 4" ~ a1,0 (1 - ~ C1,1 

with 

1 p 1 
a1,0 = -; v'2Ll L;:- el,r - 2J ~Pp J1.1,p, 

r=l 

ra p 1 
bl = V ""2 L r2 T/1,r + J ~ap tP1,p, 

r=1 

11"2 1 P 1 
a p = 180 - 211"2 L r 4 

r=l 
p 

P 1~1(2 2) 
B 1 ,1 = 411"2 L...J r2 el,r + T/l,r , 

r=l 

pIP r (1 I ) 
Cl ,l = - 211"2 L r2 _ 12 i 6 ,r6,1 - -;: T/l,rT/l,1 

r.I:1 
r~1 

where (1, 6,r T/l,r, J1.1,p and tPl,p for r = 1, "'1 P and p = 1, 2, ... denote 
independent standard Gaussian random variables; see Chapter 5. 

PC-Exercise 10.5.2 Repeat PC-Exercise 10.3.2 with the order 2.0 strong 
Taylor approximation (5.1). Recall from (5.2.39) that 

J(1,l,O) + J(1,O,l) + J(O,I,l) = J(l,l) ~, 

and use Exercise 10.5.1 with p = 5 to approximate the required integrnls. 

For the multi-dimensional case d = 1, 2, ... with scalar noise, that is with 
m = 1, the kth component of the order 2.0 strong Taylor scheme is given by 

(5.2) 
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-6 -5 -4 

Figure 10.5.1 Results of PC-Exercise 10.5.2. 

+~ L°,g1:.6.2 + ,LObI: {.6.W ~ - ~Z} 

+1:.. L1 L1bl: (.6.W)3 + 1:.. L1 L1 L1bl: (.6.W)4 
3!- - 4!- --

+LoL1bl: J(O,l,l) + L.1.L,°bl: J(1,O,l) 

+L.1L.1,g1: J(l,l,O), 

where the operators Ii for j = 0, 1, ... , m were defined in (1.2) and (1.3). 
In the general multi-dimensional case with d, m = 1, 2, ... the kth compo

nent of the order 2.0 strong Taylor scheme satisfies 

(5.3) 

m 
"(I:' . 01:' "I:) + L..J b ,J .6. WJ +.It b .J J(O,;) + Ii,g J(j ,0) 

j=l 
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+ 

m 

+ L 

Conditions under which the order 2.0 strong Taylor approximation converges 
strongly with order -y = 2.0 will be given in Theorem 10.6.3. These are smooth
ness and growth conditions on the drift and diffusion coefficients of the stochas
tic differential equations. 

Exercise 10.5.3 Derive the order 2.0 strong Taylor scheme (5.3) from a 
trnncated Stratonovich- Taylor expansion and show that it is strongly consistent 
if!!, b and their derivatives of orders up to and including order 4 are bounded. 

The multiple Stratonovich integrals appearing in (5.3) can be represented 
or approximated similarly as in (5.8.11) and Exercise 10.5.1. In several special 
cases the scheme (5.3) reduces to simpler ones which avoid the use of some 
of the multiple Stratonovich integrals. In the autonomous case with additive 
noise (2.7) the order 2.0 strong Taylor scheme takes the form 

(5.4) Y:+1 = y: + {!k a + ~.L0Q.k a 2 + tbkJ aw; 
;=1 

Exercise 10.5.4 Derive the order 2.0 strong Taylor scheme with additive 
noise (5.4) from (5.3). 

As with the Milstein scheme, we would also obtain the above order 2.0 strong 
Taylor scheme if we started with an Ito-Taylor expansion instead of a Stratono
vich -Taylor expansion. However, the Stratonovich approach is more convenient 
because of the simpler form of the coefficient functions and the simpler way in 
which the multiple Stratonovich integrals can be aproximated. Moreover, in 
the proof that the scheme converges strongly with order -y = 2.0, the remainder 
term in the Ito-Taylor expansion involves higher order derivatives of the coef
ficients of the stochastic differential equation than in the Stratonovich-Taylor 
expansion. 

Finally, we emphasize that it is well worth checking whether or not a sub
stantial simplification of the strong Taylor scheme is possible when the stochas
tic differential equation has some special structure. We shall see an example of 
this in Section 4 of Chapter 11 for second order stochastic differential equations 
with additive noise, which commonly occur in noisy electrical and mechanical 
systems. 
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10.6 General Strong 
Ito-Taylor Approximations 

In the preceding sections we considered strong Taylor schemes of up to order 
two. Continuing in the same way by adding more terms from the stochastic 
Taylor expansions, we can obtain higher order schemes. In this section we shall 
describe, using more compact notation, the terms of the Ito-Taylor expansion 
which are required for the corresponding strong Taylor scheme to achieve a 
desired order of strong convergence. For this we shall use the notation of 
Chapter 5 where we derived the stochastic Taylor expansions. We remind the 
reader that v denotes the multi-index of zero length I( v) = 0 and Iv == 1. In 
addition, writing bO = a, we have the coefficient functions 

(6.1) 

for all (t,z) E lRxlRd and all multi-indices 0' = (iI, ... , if) EM. We shall find 
that the strong Ito-Taylor scheme of order "'/ = 0.5, 1.0, 1.5, ... is associated 
with the set of multi-indices 

(6.2) A-y = {a EM: 1(0') + n(a) $ 2",/ or 1(0') = nCO') = "'/ + ~} , 

where 1(0') denotes the length ofthe multi-index 0' and nCO') the number of its 
zero components. 

Exercise 10.6.1 Show that A-y for"'/ = 0.5, 1.0, 1.5, ... is an hierarchical 
set. 

Exercise 10.6.2 Determine A-y explicitly for "'/ = 0, 0.5, 1.0, 1.5 and 2.0 
when m = 1. 

Suppose we have a time discretization (r)6 as defined in (9.5.3). For "'/ = 
0.5, 1.0, 1.5, 2.0, ... in the general multi-dimensional case d, m = I, 2, ... we 
define the order "'/ strong 1to-Taylor scheme by the vector equation 

(6.3) Yn +1 = L fti(rn, Yn)Iti , 
ti€Ay 

where Iti is the multiple Ito integral for the index 0' over the time interval [rn, 
rn+l]. In view of Exercise 10.6.2, the strong Taylor schemes (6.3) of order "'/ = 
0.5, 1.0, 1.5 and 2.0 coincide with those discussed earlier in this chapter. 

The strong Ito-Taylor schemes (6.3) generate recursively approximate values 
of the given Ito process at the discretization times. We can interpolate these 
schemes in various ways to obtain general time discrete approximations as 
defined in Section 5 of Chapter 9. We shall introduce a specific interpolation 
to define the corresponding strong Ito-Taylor approximations in a way that 
will allow us to prove a strong convergence result which holds uniformly on a 
finite time interval. To do this we shall use the definition (5.2.12) of a multiple 



10.6. STRONG ITO-TAYLOR APPROXIMATIONS 361 

Ito integral on a varying time interval and the definition of a general time 
discretization from Section 5 of Chapter 9. Let "1 = 0.5, 1.0, 1.5, 2.0, ... and d, 
m = 1,2, .... Then, for a given time discretization (T)6 we define the general 
multi-dimensional order'Y strong Ito-Taylor approximation Y = {Y(t), t ~ O} 
by the vector equation 

(6.4) Y(t) = Yn• + L: la [fa (Tn .. Yn')]T ... ,t 
aEA.,.\{v} 

= L: la [fa (Tn .. Yn.)]T .... P 

aEA.,. 

where n, was defined in (9.1.15), starting from a given Ao-measurable random 
variable Y(O). 

It is obvious that the values of a strong Ito-Taylor approximation defined 
in this way coincide at the discretization times with those of the corresponding 
strong Ito-Taylor scheme. Such strong Ito-Taylor approximations are contin
uous processes and their sample paths display an irregular behaviour similar 
to that of the driving Wiener process. This would not be so if we had, for 
instance, used a piecewise constant or piecewise linear interpolation. 

We shall now state a theorem for the convergence of strong Ito-Taylor ap
proximations, which we shall prove at the end of the section. 

Theorem 10.6.3 Let y6 = {y6(t), t E [0, T]} be the order "1 strong Ito
Taylor approximation, for a given "1 = 0.5, 1.0, 1.5, 2.0, ... , corresponding to a 
time discretization (T)6, where 6 E (0,1). Suppose that the coefficient functions 
fa satisfy 

(6.5) 

for all (l' E A.,., t E [0, T] and x, y E lRd ; 

(6.6) f-a E C 1•2 and fa E 'H.a 

for all (l' E A.,. U 8 (A.,.); and 

(6.7) Ifa(t, x)1 :S ](2 (1 + Ixl) 

for all (l' E A.,. U 8 (,,4.,.), t E [0, T] and x E lRd • Then 

(6.8) E (sup lX, - y6(t)12IAo) 
O~'~T 

The constants ](1. ](2, ](3. and ](4 here do not depend on 6. 

As an immediate consequence of Theorem 10.6.3 and the Lyapunov inequality 
(1.4.12) we have 
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Corollary 10.6.4 in addition to the assumptions of Theorem 10.6.3 that 

(6.9) 

and 

(6.10) 

Then 

(6.11) 

Thus, for the strong Ito-Taylor approximations defined by means of the 
above interpolation we have strong convergence of order "'( not only at the 
endpoint T, but also uniformly within the whole time interval [0,71-

In fact, we could generalize Theorem 10.6.3 and Corollary 10.6.4 from the 
second moment to any pth moment for p ~ 2 if, instead of (6.9) and (6.10), we 
have 

Then, using Jensen's inequality (1.4.10) and the Doob inequality (2.3.7) it can 
eventually be shown that 

In Section 4 we suggested a way of approximating the multiple Ito integrals 
appearing in the schemes there. This leads to the problem of determining the 
order of strong convergence of a strong Ito-Taylor scheme with the multiple 
Ito integrals Ia replaced by the approximate multiple Ito integrals Ig,. To be 
specific, for "'( = 1.0, 1.5, 2.0, ... we shall consider the scheme 

(6.12) YnH = L fa(Tn, Yn)I!, 
ae.A .. 

with Ie == 1, where the parameter p may depend on the maximum step size o. 

Corollary 10.6.5 Suppose in addition to the assumptions of Corollary 
10.6.4 that 

(6.13) E (ila _I!12) ~ [(702-(+1 

on each time interval [Tn, Tn+l] for each n = 0, 1, ... and all a E A"Y. Then 

(6.14) 

where y6 is defined by (6.12). 
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That is, the approximate scheme (6.12) also converges with strong order 'Y. 
Corollary 10.6.5 can be proved by an easy application of the arguments which 
will be used in the proof of Theorem 10.6.3, so we leave the proof to the reader. 

In (5.8.16) we obtained the estimate 

(6.15) E (IIa - I~12) ~ 0 ~ 
for sufficiently small maximum step size 6 and all multi-indices a E M with 
length /(0) ~ 3. Thus, to obtain a strong scheme of order 'Y = 1.0, 1.5 or 2.0 
we need to choose p so that 

(6.16) 

This result can be easily generalized to higher orders too. 

Proof of Theorem 10.6.3 The proof will use the assertion of Lemma 10.8.1 
which is stated and proved at the end of the chapter. 

From the estimate (4.5.16) we have 

(6.17) E C~~~T IX.12IAo) ~ 0 1 (1 + IXoI2) . 
By similar arguments to those in the proof of Lemma 10.8.1 we can show that 

(6.18) 

where the constant C2 does not depend on the maximum step size 6. In addition, 
from the Ito-Taylor expansion (5.5.3) we can represent the Ito process X as 

(6.19) X T = L Ia [fa (p, Xp)lp,T + L Ia [fa (-, X)lp,T 
aE.A.. aEB(.A .. ) 

for any two stopping times p and T with 0 ~ p ~ T ~ T, w.p.1. Thus, we can 
write 

+ L {ntl Ia[/a("X)k,Tn +, +Ia[fa("X)k.,t}. 
aEB(.A .. ) n=O 

From (6.20) and (6.4) we obtain 

(6.21) Z(t) = E C~~~t IX. - y6(s)1 2 IAo ) 

< 0 3 (IXo - y6(0)1 2 + L ~a + L Uta) 
aEA.r\{v} aEB(.A .. ) 
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for all t E [0, T], where R,a and Uf will be defined below when they are esti
mated. In particular, from Lemma 10.8.1 and the Lipschitz condition (6.5) we 
have 

(6.22) Rf 

+la [fa (Tn" X T .. ,) - fa (Tn., y;Jl T .... 6 nAo) 

< c41t E (sup If a (Tn" XT .. ,) - fa (Tn., Y;,) 12 lAo) du 
o 0~6~U 

< C4 K; 1t Z(u) du 

for all a E A,.. 
In addition, for all a E 8(A,.) from Lemma 10.8.1, (6.7) and (6.18) we have 

(6.23) 

where 

(6.24) 

+10 [/a (-, X·)]T ..... r lAo) 
< Cs (1 + IXoI2) 64>(0), 

<p(a) = { 
2(I(a) - 1) : lea) = neal 

lea) + neal - 1 : l(a):F neal 

For all such a we have lea) ~ 'Y+1 when lea) = neal and lea) + neal ~ 2'Y+1 
when lea) :F neal. Thus, for all a E 8(A,.), (6.23) gives 

(6.25) ut $; Cs (1 + IXoI2) 62,.. 

Combining (6.21), (6.22) and (6.25) we obtain 

Z(t) $; C71Xo - y 6(0)12 +Cs (1 + IXoI2) 62,. + c91t Z(u)du 

for all t E [O,T]. By the assumed bounds (6.17) and (6.18) Z(t) is bounded, so 
by the Gronwall inequality (Lemma 4.5.1) we obtain 

which is the assertion of Theorem 10.6.3. 0 
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10.7 General Strong 
Stratonovich-Taylor Approximations 

We have seen in Sections 3 and 5 that the order 1.0 and 2.0 strong Taylor 
schemes have a simple structure when derived from Stratonovich-Taylor ex
pansions. We shall now describe the terms that must be retained in such an 
expansion in order to obtain a scheme with an arbitrary desired order of strong 
convergence. In doing so we shall only consider schemes with integer order "'( 
= 1.0, 2.0, ... , since those of fractional order already contain almost all of the 
terms of the following integer order strong Taylor scheme. 

For",( = 1.0, 2.0, 3.0, ... we shall use the hierarchical set 

(7.1) A-y = {a EM: I(a) + n(a)::; 2",(}, 

which, for such integer values of"'( is equivalent to the set defined by (6.2). We 
remind the reader that the multiple Stratonovich integrals J 01 and the Straton
ovich coefficient functions L were defined in (5.2.31) and (5.3.9), respectively, 
of Chapter 5. 

In the general multi-dimensional case d, m = 1, 2, ... we define the order 
"'( strong Stratonovich-Taylor scheme for "'( = 1.0, 2.0, 3.0, ... by the vector 
equation 

(7.2) Yn+1 = E L(rn , Yn)JOI • 

OIEA-y 

Obviously, the schemes (7.2) for "'( = 1.0 and 2.0 coincide with those proposed 
in Sections 3 and 5. 

Then, analogously with the general Ito-Taylor approximations considered in 
the previous section, for a given time discretization (r)6 we define the general 
multi-dimensional strong Stratonovich-Taylor approximation Y = {yet), t ~ 
O} of order "'( = 1.0, 2.0, 3.0, ... by the vector equation 

(7.3) 

for t E (Tn, Tn+l]. Here d, m = 1,2, ... and n = 0, 1, .... In addition, we have 
written, as usual, Yn = Y(Tn) and start from a given Ao-measurable random 
variable Yo. By interpolating the strong Stratonovich-Taylor scheme (7.2) in 
this way we also obtain a continuous approximation with sample paths which 
mimic the irregular behaviour of the underlying Wiener process. 

We shall now state a theorem, the proof of which we shall sketch at the end 
of the section, for the convergence of the strong Stratonovich-Taylor approxi
mations (7.3). 

Theorelll 10.7.1 Let y6 = {y6(t), t E [0, T]} be the order",( strong Straton
ovich - Taylor approximation, for a given "'( = 1.0, 2.0, 3.0, ... , corresponding 
to a time discretization (r)6, where 8 E (0,1). Suppose that the coefficient 
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functions La satisfy 

(7.4) 

for alia E A1" t E [0, T] and :c, y E lRd ; 

(7.5) i.-a E Cl,l and La E 1£a 

for alia E A-y U 8(.A-y); and 

(7.6) /L(t,:c)/ $ K2 (1 + Ixl) 

for alia E A1' U 8 (.A-y) , all t E [0, T] and all :c E lRd • Then 

(7.7) E C~~~T IXt - y 6 (t)1 2 IAo) 

$ K3 (1 + IXoI2) 621' + K4 IXo - y 6(0)1 2 . 

The constants Kt, K2, K 3, and K4 here do not depend on 6. 

Comparing the strong Ito- and Stratonovich-Taylor approximations for I = 
1.0, 2.0, ... and the assumptions of Theorems 10.6.3 and 10.7.1 we can see 
that the Stratonovich-Taylor approximation has a simpler structure and re
quires less smoothness of the drift and diffusion coefficients than the Ito-Taylor 
approximation. 

As an immediate consequence of Theorem 10.7.1 we have the following 
corollary on strong convergence of order I uniformly on the time interval [0, T] 
for the order I strong Stratonovich-Taylor approximation (7.3). 

Corollary 10.7.2 Suppose in addition to the assumptions of Theorem 
10.7.1 that 

(7.8) 

and 

(7.9) 

Then 

(7.10) 

For computational purposes we can also replace the multiple Stratonovich 
integrals Ja appearing in (7.3 ) by the approximate multiple Stratonovich in
tegrals J[; introduced in Section 8 of Chapter 5. That is, for I = 1.0, 2.0, 3.0, 
... we can use the scheme 

(7.11) Yn +1 = L L (Tn' Yn ) J!. 
aeAoy 



10.7. STRONG STRATONOVICH-TAYLOR APPROXIMATIONS 367 

Here we write JC == 1 and, if necessary, can choose the parameter p to depend 
on the maximum step size 6. 

Corollary 10.7.3 Suppose in addition to the assumptions of Corollary 
10.7.2 that 

(7.12) E (IJa - J~12) :5 K762..,+1 

on each time interval [Tn, Tn+1] for each n = 0, 1, ... and all a E A..,. Then 

(7.13) 

where yeS is defined by {7.11}. 

Thus, the approximate scheme (7.11) will also converge with strong order 'Y if 
the multiple Stratonovich integrals are approximated appropriately. 

Now, from (5.8.14) and (5.8.15) we have the estimate 

(7.14) E (IJa - J~12) :5 C ~ 
for sufficiently small maximum step size 6 and all multi-indices a E M with 
length I(a) :5 3. We can thus obtain a strong scheme (7.11) of order 'Y = 1.0 if 
we choose p such that 

(7.15) 

A similar result holds for higher orders too. 

Proof of Theorem 10.7.1 The proof is similar to that of Theorem 10.6.3 
for the Ito-Taylor approximation, so we shall just indicate its salient features. 

From the Stratonovich-Taylor expansion (5.6.3) and equation (7.3) we ob
tain the following expression for the difference between the Ito process X and 
the strong Stratonovich-Taylor approximation y 6 : 

(7.16) 

+J a [L. (Tn., X T .. ,) - L. (Tn., Y: • ..) L ... It } 

+ I: {1: Ja [La <-,x.)] + Ja [La (.,x.)] } 
aEB(A'Y) n=l T",T,,+l T",,' 

for all t E [0, T]. 
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To determine the uniform mean-square error between X, and y6(t) we need 
to estimate 

for all a E A-y U 8(A-y). We can do this as in the proof of Lemma 10.8.1, 
except here we now have multiple Stratonovich integrals. Using the relation 
(5.2.34) between multiple Ito and Stratonovich integrals, together with Lemma 
10.8.1 and Remark 5.2.8, we have 

where ¢J was defined in (6.24) and K does not depend on 5. The rest of the 
proof is then similar to that of Theorem 10.6.3. 0 

10.8 A Lemma on Multiple Ito Integrals 

We now state and prove a uniform mean-square estimate for multiple Ito inte
grals with respect to a given time discretization, which we have already referred 
to earlier in this chapter and shall use frequently in the sequel. The terminology 
used here is from Chapter 5. 

Lemma 10.S.1 Suppose for a multi-index a E M \ {v}, time discretization 
(1")6 with 5 E (0,1) and right continuous adapted process 9 E Ha that 

Rto,u := E ( sup Ig(sW IAto) < 00, 
to~'~U 

(8.1) 

and let 

Then 

(8.2) { 
(T - to)52(I(a)-1) rt R, du J,o o,u 

Fa < 
t - 4'(a)-n(a)+2c5' (a)+n(a)-1 r' D du 

Jto .I~OJtc 

w.p.I, for each t E [to, T). 

Proof When lea) = n(a) (5.2.12) implies that 

Ft = E ( sup /lz Ia_ [g(')]T ... ,U du /2 IAto) 
to~z~t to 

lea) = n(a) 

lea) :F n(a), 
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< E ( sup (z - to) jZ IIa- [g(·)],. .... u 12 du lAta) 
to~z~t to 

Using Lemma 5.7.3 we then obtain 

x 1: E (1:. R" .... 8 ds lAta) du 

< (T - to)ol(U-Hn(a-)-ljt E (R,. .... u lAta) du 
to 

< (T - t o )o2(I(a)-1) 1.t Rto •u du, 
to 

which is the desired result in this case. 
Now suppose that 1(0:) =I n(o:) where 0: = (jl, ... , jl) and jl = O. Then 

(8.4) Fa < t _ 2E ( sup Inf=-l Ia (g(.)],.,. 121 A t o) 
t <z<t L...J A ... +1 
0_ _ n=O 

+2E ( SUp IIa (gO],. z 121Ato) . 
to~z~t .... 

By Lemma 5.7.1 the discrete time process 

{t Ia (g(·)]"A'''A+1 ,r = 0,1, ... } 
n=O 

is a discrete square-integrable martingale, so with the aid of the Doob inequality 
(2.3.7), Lemma 5.7.1 and Lemma 5.7.3 we obtain 
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n z -2 

+2 L Ia [g(')k,Tn+l E (Ia [gOk._loT ... IAT ... _l) 
n=O 

+E (IIa [g(·)]T ... _I.Tn. r IAT ... -I) IAto)) 

< sup 4E ( Iflt2 Ier [gOk,Tn+1 12 
to$z$t n=O 

+41(a)-n(a)c ' (a)+n(a)-1 1~~~1 R.n._l,u du lAta) 

< sup 4E (I nt 3 
Ia [g(·)k.Tn+1 12 

to$z$t n=O 

+41(a)-n(er)c' (a)+n(a)-1 l TR
.-

1 R. ... _~,u du 
T".c- 2 

+41(er)-n(a)C'(er)+n(er)-1 l z R du IA ) T". _2,U to 
T" .. -l 

< SUp 4E (41(a)-n(a)c l (a)+fI(a)-11
Z 

Rto,u du IAto ) 

to$z9 to 
< 41(a)-n(er)+Ic51(a)+fI(a)-1 r Rto,u dUo 

Jto 

To bound the second term on the right of(8.4) we apply (5.2.12) and Lemma 
5.7.3 to obtain 

(8.6) E Co~~t IIa [gOk •. z 12
1Ato) 

E ( sup liz Ia- [gOk. ,u dul2 IAto) 
tO$z$t Tn. 

< E Co~~t(Z - Tn.) 1:.IIa- W(·)]T ... ,u 12 du lAta) 

< c5 i~ E (E C"~~~$U IIer- wOk." 12 IAT .... ) lAta) du 

< c541( a- )-n( a-) t E (1U R T " ... ' ds c5 ' ( er- )+n( a- )-1 IAto) du 
jto Tn.. 

< 41(er)-n(a)c51(a)+n(a)-1 f' Rto,u duo 
Jto 
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Combining (8.4), (8.6) and (8.7) gives the desired result in this case. 
Finally, in the case that 1(0') i: n(O') where 0' = (il, ... , i,) and i, = 1, ... , 

m, we also have a martingale and can use the Doob inequality. With the help 
of Lemma 5.7.3 we get 

(8.7) Ft' = E (sup liZ 1a- [g(·)],. .... u dW~112 IAto ) 
to:Sz:St to 

~ 4 sup E (liZ 1a- [g(·)],. .... u dW~112 IAto ) 
to:Sz:St to 

~ \oS;z~tloZ E (E (l1a- [g(·»k •. ur IAT".) IAto ) du 

< 41: E ( E (,. .. ~~~:sJ1a- [gO],. .... I' riA,. ... ) IAto) du 

< 44'(a-)-n(a-) it E (lU R,. ...... ds 6'(a-)+n(a-)-1 IAto ) du 
to Tn._ 

< 4,(a)-n(a)61(a)+n(a)-llt Rto •u duo 
to 

This is the desired result in the final case, and thus completes the proof of the 
lemma. 0 



Chapter 11 

Explicit Strong Approximations 

In this chapter we shall propose and examine strong schemes which avoid the 
use of derivatives in much the same way that Runge-Kutta schemes do in 
the deterministic setting. We shall also call these Runge-Kutta schemes, but 
it must be emphasized that they are not simply heuristic generalizations of 
deterministic Rimge-Kutta schemes to stochastic differential equations. The 
notation and abbreviations of the last chapter will continue to be used, often 
without direct reference. 

11.1 Explicit Order 1.0 Strong Schemes 

A disadvantage of the strong Taylor approximations is that the derivatives of 
various orders of the drift and diffusion coefficients must be evaluated at each 
step, in addition to the coefficients themselves. This can make the implementa
tion of such schemes a complicated undertaking. There are stochastic schemes 
which avoid the use of derivatives of the drift and diffusion coefficients. How
ever, in view of the differences between deterministic and stochastic calculi, 
heuristic generalizations to stochastic differential equations of the widely used 
deterministic numerical schemes such as the Runge-Kutta schemes have limited 
value. Exercise 9.6.4 and the following PC-Exercise illustrate this problem. 

PC-Exercise 11.1.1 
differential equation 

(1.1) 

Consider the Ito process X satisfying the stochastic 

dX, = aX, dt + 6X, dW" 

with Xo = 1.0, a = 1.5 and 6 = 0.1 on the time interval [0, T), where T = 1, 
and the following heuristic generalization of the Hean method (8.1.12) 

with supporting value 

and initial value Yo = 1.0; here a(z) = az and 6(z) = 6z. Generate M = 20 
batches each of N = 100 simulations of XT and of the values y 6(T) of (l.2) 
corresponding to the same sample paths of the Wiener process for equidistant 
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-5 

Figure 11.1.1 Results of PC-Exercise 11.1.1. 

-4 -3 

LdCOelta) 

time discretizations with step size fJ = ~ = 2-3 , 2-4 , 2-5 and 2-6 • Plot log2 
of the absolute error against log2 .6.. 

While the formally generalized Heun method (1.2) may at first seem accept
able, the results of PC-Exercise 11.1.1 plotted in Figure 11.1.1 indicate that 
it does not converge. This should not be surprising, since we saw in Exercise 
9.6.4 that such a scheme is generally not strongly consistent. 

Exercise 11.1.2 Show that the scheme 

Yn+l = Y,. + ~ {a (1',.) + a} ~,. + b(Y,.) .6.W,. 

with 1',. as in (1.2) is strongly consistent. 

Several strongly consistent first order derivative free schemes can be derived 
from the Milstein scheme (10.3.3) simply by replacing the derivatives there by 
the corresponding difference ratios. However, these differences require the use 
of supporting values of the coefficients at additional points. An example is the 
following scheme, which we shall call the explicit order 1.0 strong scheme. We 
shall first consider some special cases. 

In the I-dimensional case with d = m = 1 an explicit order 1.0 strong scheme 
proposed by Platen is given by 

(1.3) 



11.1. EXPLICIT ORDER 1.0 STRONG SCHEMES 

LdCEp.) 

-1 

-I 

-3 

-6 -s -4 

Figure 11.1.2 Results of PC-Exercise 11.1.3. 
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(1.4) Tn =Yn +a~+b~. 
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is a forward difference approximation for b! at (Tn' Yn) if we neglect higher 
terms. 

PC-Exercise 11.1.3 Repeat PC-Exercise 11.1.1 using the explicit order 1.0 
strong scheme (1.9)-{1..1). Compare the results with those for the Milstein 
scheme (10.9.1) in PC-Exercise 10.9.e. 

In the multi-dimensional case d = 1, 2, '" with scalar noise, that is with 
m = 1, the kth component of the explicit order 1.0 strong scheme has the form 

(1.5) J: J: lc lc 1 {k( -) J:} { 2 } Yn +1 =Yn +a ~+b ~W+ r.:- b Tn,ln -b (~W)-A. 
2v~ 



a76 CHAPTER 11. EXPLICIT STRONG APPROXIMATIONS 

with the vector supporting value 

(1.6) Tn = Yn +a~+bVX. 

In the general multi-dimensional case d, m = 1, 2, ... the kth component 
of the explicit order 1.0 strong scheme is 

with the vector supporting values 

(1.8) 

for j = 1, 2, .... We note that b has to be evaluated m + 1 times here for 
each time step. There is also a Stratonovich version of (1.7) with!.l and JU"h) 
substituted for a and IU,J3). 

In Section 5 we shall show that the explicit order 1.0 strong scheme con
verges with strong order 'Y = 1.0 under conditions similar to those for the 
Milstein scheme (10.3.3). In actual computations the double Ito integrals with 
respect to different components of the Wiener process in (1.7) can be approxi
mated by the method proposed in Section 3 of Chapter 10. 

In the most general case of the scheme (1.7)-(1.8) each component ble ,; of 
the diffusion matrix must be evaluated at the m + 1 vector valued points Yn , 

T~, ... , T~ for each discretization time. The number of such evalutions may 
be less in special cases. For example, in the autonomous case with additive 
noise (10.2.7) the scheme (1.7)-(1.8) is just the Euler scheme, in which the 
bleJ need to be evaluated at Yn only. For diagonal noise (10.3.11) the scheme 
(1.1)-(1.8) reduces to 

(1.9) Ynle+l = Y: + ale ~ + ble,le dWA: 

+ 21 {bA:,A: (Tn, T!) - ble,A:} {(~WA:)2 - d} 

with the vector supporting value 

(1.10) 

Here we require only two evaluations for each ble,le. When the noise is commu
tative, as in (10.3.13), the scheme (1.7)-(1.8) has the Stratonovich analogue 

(1.11) Y':+t = Y': + !.lie ~ + ~ t {ble,i (Tn, Tn) + bA:,i} ~Wi 
j=1 
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with the vector supporting values 

m 

(1.12) Tn = Yn +g~+ Ebi ~wj, 
j=1 

where 1! denotes the corrected Stratonovich drift (10.1.4). Here we need to 
evaluate each bkJ at two different points for each time step. This scheme turns 
out to be rather convenient. 

Exercise 11.1.4 Write out the explicit order 1.0 strong scheme (1.11) for 
the scalar stochastic differential equation 

(1.13) 1 1 2 dXt = -2'Xt dt+Xt dWt +XtdW" 

where WI and W 2 are independent scalar Wiener processes. Does {l.19} have 
commutative noise f 

PC-Exercise 11.1.5 Repeat PC-Exercise 10.2.1 for equation (1.19) with 
the scheme {l.ll}. 

In fact, we could omit the.!!~ term in (1.12) and (1.14) without losing the 
strong order of convergence "y = 1.0. 

Ld(Eps) 

-1 

-I 

-3 
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Figure 11.1.3 Results of PC-Exercise 11.1.6. 
-3 

Ld(Oelt.) 
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PC-Exercise 11.1.6 Repeat PC-Exercise 11.1.1 for the explicit orner 1.0 
strong scheme (1.9) using the supporting value 

(1.14) Tn = Yn + b-iX. 

instead of (l.4). Compare the results with those of PC-Exercise 10.9.2 and 
PC-Exercise 11.1.9. 

The modified scheme in the preceding PC-Exercise shows a slightly worse 
result than for the other schemes. This is because some higher order terms 
in the stochastic Taylor expansion are better approximated by the supporting 
value (1.4) than by (1.14). 

In Theorem 11.5.1 we shall see that many other derivative free schemes can 
also be constructed. For certain types of stochastic differential equations spe
cially constructed explicit order 1.0 schemes may sometimes be more efficient. 

11.2 Explicit Order 1.5 Strong Schemes 

As in the preceding section, we can also derive derivative free schemes of order 
1.5 by replacing the derivatives in the order 1.5 strong Taylor scheme (10.4.1) 
by corresponding finite differences. For notational simplicity we shall mainly 
state the schemes for the autonomous case. 

In the autonomous I-dimensional case d = m = 1 such an explicit orner 1.5 
strong scheme due to Platen has the form 

(2.1) 

with 

(2.2) 

and 

(2.3) 

Yn + b Ll W + ~ {a(T +) - aCT _}} LlZ 
2vLl 

+~ {a(i\) + 2a + a(T _}} Ll 

+ ~ {b(T+) - b(T_}} {(LlW)2 - Ll} 
4vLl 

+ 2~ {bet +) - 2b + bet -}} {LlW Ll- LlZ} 

+ 4~ [b(~+) - b(~_) - bet +) + bet -)] 

x {~(LlW)2 - Ll} LlW 
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Here ilZ is the multiple Ito integral /(1,0) defined in (10.4.2). We see that a 
must be evaluated at three points and b at five supporting values for each time 
step. 

PC-Exercise 11.2.1 Repeat PC-Exercise 11.1.1 using the explicit order 1.5 
strong scheme (2.1)-(2.3) and compare the results with those of PC-Exercise 
10·4·2. 

In the general multi-dimensional autonomous case with d, m = 1,2, ... the 
kth component of the explicit order 1.5 strong scheme satisfies 

m 

(2.4) Y:+ 1 = Y:+akil+I:bkJilWi 
i=l 

+2~ t t {bk'h (t~) -2bk,j, + bk,j, (t~)}/(O'h) 
h=°it=l 

+2~. t [bkJ3 (~+'h) - bk,j, (~~'h) 
Jl,J~,J3=1 

with 

(2.5) 

and 

(2.6) 

where we have written bk,o for ak in the summation terms. 
We shall see in Theorem 11.5.1 that this scheme converges with strong order 

I = 1.5 under analogous conditions on the drift and diffusion coefficients as for 
the order 1.5 strong Ito-Taylor scheme (10.4.6). For actual calculations here 
we can also approximate the multiple Ito integrals in (2.4) as in (10.4.7). In 
general, each step of the scheme (2.4) requires 2m + 1 evaluations of the drift 
coefficient ak and 2m( m + 1) + 1 evaluations of the diffusion coefficient bk ,j for 
k = 1, ... , d and j = 1, ... , m. These numbers may be reduced in special 
cases. For instance, with additive noise (10.2.7) the scheme (2.4)-(2.6) takes 
the form 

m 

(2.7) Y: + I:bkJ ilWi 
j==l 
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+ 21 'f {ak (T~) - ak (T~) } LlZi 

+~ Ll ~ { ak (T~) _ 2(mm- 2) ak + ak (T~) } 

with 

(2.8) T~ = Yn + ..!.. all ± iJ .fa 
m 

and 

(2.9) 

Here we still need m+ 1 evaluations of the drift coefficient ak at each time step. 
For diagonal noise (10.3.11) the autonomous explicit order 1.5 strong sch

eme has kth component 

(2.10) 
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with 

(2.11) 

and 

(2.12) 

+ 41 {bk,k (t~) - bk,k (t~)} {(~Wk? - ill 

+ 2~ {bk,k (t~) - 2bk,k + bk,k (t~)}{ LlWk Ll- ilZk} 

+ 4~ [bk'k (4)~) - bk,k (4)~) - bk,k (t~) + bk,k (t~) ] 

x {~(LlWk)2 - Ll} LlWk 
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This scheme requires 2m + 1 evaluations of ak and 4m + 1 evaluations of bk,k 
at each time step. 

For the autonomous case of the explicit order 1.5 strong scheme for com

mutative noise of the second kind (10.4.13) in vector form we have 

m 

(2.13) Yn+I = Yn + Ell LlWj 
j=1 

+!~ f {a (t~) - 2(m - 2) a + a (t~)} 
4 j=1 m 

+ ~ f {hi (t~) - hi (t~) } {( ~ Wi? - il} 
4v Ll j=1 

+ 4~ t [Il (4)i+) - hi (4)i_) - hi (t~) + Il (t~) ] 
J=1 

+ 2~ t t {hi~ (t~ ) - 21l~ + Il~ (t~)} { il Wi:. il - ilZi:. } 
J~=1Jl=1 
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t [II~ (~+J~) -II~ (~~'h) -II~ (ti) + II~ (~~'h) ] 
'I.J2=1 
jl,!!j~ 

x {(.6.Wh)2 -.6.} .6.Wi! 

+2~ fifif (b13 (~+J~) -b13 (~~'h) _";3 (ti) +113 (t~)] 
i!=lh=li3=1 

with 

(2.14) 

and 

(2.15) 

The above schemes can often be simplified even more by making use of any 
other special structure of a particular stochastic differential equation under 
consideration. Nevertheless, the order 1.5 schemes remain quite complicated. 

For completeness we state the nonautonomOU8 general multi-dimensional 
version of the explicit order 1.5 strong scheme in vector form 

m 

(2.16) Yn+1 = Yn + a.6. + I:b1 .6.Wi 
i=l 

with 

(2.17) 

and 
(2.18) 
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where we have written bO for a in the summation terms. We can again use 
(10.4.7) to approximate the multiple Ito integrals appearing here. 

Finally, we state the explicit order 1.5 strong scheme, in vector form, for 
the nonautonomous case with additive noise 

(2.19) Yn+l 

with 

for j = 1, ... , m. 

m 

Yn +aa+ L:1Ji awi 
j=1 

+ lfA t { a (Tn+l' i'~) - a (Tn+l' i'~ ) } azi 
2va j=1 

+! E fbi (Tn+d - bi} {~wj~ - azj } 

j=1 

_. 1 . fA 
l'~ = Yn + - a a ± II v ~ 

m 

11.3 Explicit Order 2.0 Strong Schemes 

In the previous two sections we obtained explicit schemes from Taylor schemes 
basically by replacing derivatives by their corresponding finite differences. This 
procedure works well for low order explicit schemes, but leads to evermore 
complicated formulae as the order is increased. However, we can often take 
advantage of some special structure of the equations under consideration to 
derive relatively simple higher order explicit schemes which do not involve 
derivatives of the drift and diffusion cofficients. 

To avoid technical difficulties and complicated expressions we shall restrict 
our attention here at first to the case of additive noise, that is with diffusion 
coefficient satisfying 

(3.1) b(t, z) == b(t) 

for all t and z. We recall from the examples in Chapter 7 that additive noise 
arises naturally and is appropriate in a wide variety of situations. Moreover, 
the Ito and Stratonovich representations coincide for additive noise. However, 
we shall use the Stratonovich notation in presenting an explicit order 2.0 strong 
scheme here for the additive noise case to facilitate comparison with its coun
terparts for more complicated types of noise. 

For the autonomous I-dimensional case d = m = 1 an explicit order 2.0 
strong scheme for additive noise due to Chang has the form 
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(3.2) 

with 

where the random variables ~W, ~Z and J(1,1,0) can be approximated as 
described in Exercise 10.5.1. We note that £! must be evaluated at three different 
points for each iteration of the scheme (3.2) and that 

In the nonautonomous multi-dimensional case d = 1, 2, ... with m = 1 we 
propose a similar explicit order 2.0 strong scheme for additive noise with kth 
component 

with 

for k = 1, ... , d. 
It can be shown with the help of Theorem 11.5.2, which will be stated and 

proved in Section 5, that the scheme (3.3) has order of strong convergence 'Y = 
2.0 under suitable assumptions on the drift and diffusion coefficients. 

Exercise 11.3.1 Verify that the non autonomous linear stochastic differen-
tial equation with additive noise (4.4.4) 

dXt = (1: tXt + (1 + t)2) dt + (1 + t)2 dWt 

with initial value Xo = 1 has, for t ~ to = 0, the exact solution 

Xt = (1 + t)2 (1 + Wt + t) . 

PC-Exercise 11.3.2 Generate M = 20 batches each of N = 100 simula
tions of X T for the Ito process in Exercise 11.3.1, with T = 0.5, and of the 
value y6(T) of the explicit order 2.0 strong scheme (3.3) corresponding to the 
same sample paths of the Wiener process for equal step sizes fJ = ~ = 2- 1 , 2- 2 , 

2-3 and 2-4 • See Exercise 10.5.1 for approximating J(1,1,0) by J[1,1,0) with p 
= 15. Plot \og2 of the absolute error against log2.6.. 
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Figure 11.3.1 shows an increase in the error for step sizes .6. ::; 2-3 . This 
effect is delayed to even smaller .6. if we use an approximation J(l,l,O) with a 
larger p. 

Explicit order 2.0 strong schemes for stochastic differential equations with 
other kinds of special structure, such as with linearly occuring noise (10.3.14), 
can also be derived from the order 2.0 Stratonovich-Taylor expansion in a 
similar fashion. These schemes still require those multiple stochastic integrals 
which survive in the corresponding Taylor expansion. 

11.4 Multistep Schemes 

We saw in Chapter 8 that deterministic multi-step methods are often more ef
ficient computationally than one-step methods of the same order because they 
require, essentially, only one new evalution of the right hand side of the dif
ferential equation for each iteration. In addition, such multi-step schemes are 
sometimes more stable for larger time steps, although there are also unstable 
multi-step schemes as we saw in Figure 8.2.2 for the midpoint method (8.2.10). 
Stochastic simulations typically require the calculation of many different re
alizations of the approximating process, so efficiency and stability are crucial 
factors to be taken into account. In this section we shall briefly introduce 
some stochastic multi-step schemes, concentrating for simplicity on two-step 
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schemes. As with deterministic multi-step schemes a one-step scheme will be 
used to generate the initial steps needed to start the multi-step scheme. For a 
two-step scheme just one iteration of the starting routine is needed. 

We can obtain stochastic multi-step schemes by heuristically generalizing 
known deterministic multi-step schemes to stochastic differential equations as 
we did with the deterministic Runge-Kutta schemes in Section 2, but these 
turn out to be of limited value for much the same reasons. 

A Two-Step Order 1.0 Strong Scheme 
It is not an easy task to write out and investigate higher order multi-step 
schemes in the most general case. However, we can take advantage of the 
structure of certain types of stochastic differential equations to obtain relatively 
simple multi-step schemes. IIustrative of this is the 2-dimensional Ito system 

(4.1) 

m 

dxl {-a(t)X,2+b(t,xl}l dt+ ~d (t,xl) dW/, 
j=l 

which is typical of the noisy electrical and mechanical systems considered in 
Chapter 7. The Milstein scheme (10.3.3) for system (4.1) takes the form 

(4.2) = 

m 

+ ~d (Tn' Y,:) ilW~ 
j=l 

and has strong order 1.0. A useful simplifying feature of (4.2) is the absence of 
the double Ito integrals I(h,h)' Moreover, we can solve the first equation for 

and insert it into the second to obtain a two-step scheme for the first component 
yl, provided we use an equidistant discretization. This resulting two-step 
scheme, 

m 

+b (Tn. y~) il2 + ~d (Tn' y,:) ilW~ il, 
j=l 

is due to Lepingle and Ribemont. 
Thus we have a two-step scheme for the first component of the approxi

mation, which is equivalent to the 2-dimensional Milstein scheme (4.2) for the 
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system (4.1). We can use the first equation of (4.2) both as a starting routine 
for (4.3) and to calculate approximations of the second component if they are 
required. 

PC-Exercise 11.4.1 Use the two-point scheme (4.9) with time step ~ = a 
= 2-4 to simulate and plot a linearly interpolated approximate trajectory of the 
first component of system {4.6} with 

a(t) == 1.0, b(t, x) = xl (1- (X1)2) , c(t, x) == 0.01 

and XJ = -2.0, X6 = 0 on the interval [0,8]. Use the first equation of the 
2-dimensional Milstein scheme (4.1) as the starting routine. 

Two-Step Order 1.5 Strong Schemes 
For the I-dimensional case d = m = 1 we propose the two-step order 1.5 strong 
scheme 

(4.4) 

with 

Yn - 1 + 2a d - a' (Yn-d b(Yn-d dWn_1d 

+Vn + Vn- 1 

Vn = baWn+(ab'+4b2bll){dWna-aZn} 

+a'bdZn+~bb' {(dWn)2-a} 

+~ b(bb')' {~(dWn)2 - a} aWn, 

where the random variables dWn and dZn are taken as usual; see (10.4.3). 
We note that (4.4) can be interpreted as a higher strong order stochastic gen
eralization of the deterministic midpoint method (8.2.10). In particular, the 
scheme (4.4) does not require the second derivative a" to be determined or 
evaluated. 

In the general multi-dimensional case d, m = 1, 2, ... we have in vector 
form the two-step order 1.5 scheme 

m 

(4.5) Yn+1 = Yn - 1 +2ad- LLia(Tn-l,Yn-d awL1a 
i=l 

with 
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Figure 11.4.1 xl versus t for PC-Exercise 11.4.1. 
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m 

+ "'" Lit 1/:' l( . .) L-.i 31,.12 ,1".,1",,+1 

h,j,=1 

m 

+ "'" VI Li2113 l· . . L.J ()I,)2,)3),T .. ,Ta +l· 
itJ2,;3=1 

We can approximate the Ito integrals here by the previously described methods. 
We also have a derivative free counterpart of the above scheme 

(4.6) Yn +1 = Yn - I + 2a.6. 

..fA ~{( -H) ( -j- )} j -2 L.J a Tn-I, T n _ 1 - a Tn-II Tn _ 1 .6.Wn _ 1 

;=1 

+Vn + Vn- 1 

with 

Vn = t [IJ .6.W~ + ! {II (Tn+1' Yn ) -II} I(O,j),T .. ,T"+I] 
)=1 
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+2~ t {lJi~ (Tn, tt:+) - 2tJ2 + lJi2 (Tn, t~l-)} I(O,h),T",T"+l 
it,h=l 

with 

and 
;i,.jl,h,± - -v-it+ ± lJi2 (r. tit+)..;x 
~n - J. n n, n , 

where we have written bO for the drift a in the second summation term. This 
scheme becomes much simpler for additive noise, reducing to 

(4.7) 

with 

m 

Yn_l+ 2aLl - LA~-l~wLl~ 
j=l 

+Vn + Vn-l 

Vn ! t [lJi LlW~Ll + {lJi (Tn+l' Yn) - tJ} {LlW~Ll- LlZ~} 
j+1 

where 

and 

. 1 {( - . +) ( _.) } A~=2 a Tn,l'~ -a Tn,l'~-

_.± 1 . I. 
l~ = Yn + -aLl ± llv~. 

m 

PC-Exercise 11.4.2 Repeat PC-Exercise 10.3.2 for the scheme (4-5) with 
the explicit order 1.5 strong scheme as the starting routine. 

We shall discuss the proof of convergence of the above two-step schemes 
at the end of Section 6 of Chapter 12 in connection with implicit two-step 
schemes. 
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11.5 General Strong Schemes 

We shall now introduce and examine two classes of strong schemes which gener
alize all of the explicit strong schemes considered so far and, in addition, contain 
other strong schemes of all orders / = 0.5, 1.0, 1.5, 2.0, .... These two classes 
will be defined in relation to the Ito-Taylor and Stratonovich-Taylor approxi
mations, respectively. In doing so we shall use the hierarchical set introduced 
in (10.6.2), that is 

A..,. = {O:' EM: 1(0:') + nCO:') ~ 2/ or 1(0:') = n(a) = / + ~} 

for / = 0.5, 1.0, 1.5, 2.0, .... 

Strong Ito Approximations 
We shall call a recursive relation of the form 

(5.1) Yn+1 = Yn + L go,n 1o + R,. 
crEA.,.\{tI} 

a strong Ito scheme of order / for some / = 0.5, 1.0, 1.5, 2.0, ... if the 
coefficient functions ga.n are AT .. -measurable for n = 0, 1, ... , nT - 1 and 
satisfy the estimates 

(5.2) 

for all 0' E A..,. \ {v}, where 

(5.3) { 
21(0')-2 

<p(a) = 
1(0:') + nCO:') - 1 

with the R,. satisfying the estimate 

(5.4) 

/(0') = n(a) 

1(0') t= n(O:'), 

The class of strong Ito schemes is quite broad because the coefficient func
tions go,n and the remainders Rn of quite diverse structures can often easily 
satisfy the required measurability condition and the estimates (5.2) and (5.4). 
For instance, it includes many multistep schemes in addition to the explicit 
strong schemes so far considered. However, a strong Ito scheme of order / 
must contain the multiple Ito integral 101 for every multi-index 0:' E A-y \ {v}, 
as it may not attain the order / if some of these are missing. 
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Theorem 11.5.1 Let y.s be a time discrete approximation generated by a 
strong Ito scheme of order 1 E { 0.5, 1.0, 1.5, 2.0, .,. } satisfying the assump
tions of Corollary 10.6.4 for the strong Ito-Taylor approximation of order 1. 
Then 

(5.5) 

and, hence, y6 converges strongly with order 1. 

Proof We shall compare y6 with the strong Ito-Taylor approximation of 
order 1 defined in (10.6.3). which we denote here by y.s. 

It follows from (5.1) and (10.6.3) that 

(5.6) H t := E (max IY~ _ y~12) 
O~n~n. 

E( max I~ " fo(7l,Yt)10 O<n<n, L...J L...J 
- - k=O oEA.,. \{ II} 

-E ( L go,k 10 + Rio) 12) 
k=O aEA.,.\{II} 

< Kl L {E( 0~~.1 E [fa (7l, yt) - fa (Tk. Y~)] Iar) 
oEA.,.\{II} - - /;=0 

+E (o~.I%!t. ('l, ¥t) - g.,.] 1.1') } 

for all t E [0, 7']. Then, from Lemma 10.S.1, (5.2)-(5.4), (10.6.5) and (5.6) we 
obtain 

(5.7) Ht 

+K2 c52-y 

< K31f Hu du + K4 c52-r • 
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We apply the Gronwall inequality (Lemma 4.5.1) to (5.7) to obtain the desired 
estimate (5.5), and then apply the Lyapunov inequality (1.4.12) 

E (IY~T - XTI) ~ (E (IY;T - XTI2)) 1/2 ~ Ks 6"', 

from which we conclude that y6 converges strongly with order -y. 0 

As in Corollary 10.6.5, we can replace the multiple Ito integrals 10/ in the 
scheme (5.1) by the approximate multiple Ito integrals If:,. The resulting scheme 
will also have strong order -y if the assumptions of Theorem 11.5.1 and the 
assumed bound (10.6.13) in Corollary 10.6.5 are satisfied. 

As an illustration of the above theorem we shall apply it to show that the 
explicit strong scheme 

(5.8) 

with 
Tn = Yn + ad + b...('6. 

proposed in (11.1.3) converges strongly with order -y = 1.0 under suitable as
sumptions on the drift and diffusion coefficients. We shall first rewrite (5.8) 
with the help of the usual Taylor expansion and the relation (5.2.12) in the 
form 

(5.9) Yn+1 = Yn + g(O),n 1(0) + g(l),n 1(1) + g(l,l),n 1(1,1) + Rn 
with 

(5.10) D(O),n = a, g(l),n = b, D(l,1),n = bb' 
and 

(5.11) Rn = {ab l A + b" (Yn + 0 (a d + b...('6.) ) (a d + b...('6.f} 

x ~ {(dWn )2 - d} 
2vA 

for some 0 E (0,1). Obviously, from (5.10) and (5.3.5), we have 

1(0) = D(O),n 1(1) = D(l),n 1(1,1) = D(l,l),n 

so condition (5.2) of a strong Ito scheme is automatically satisfied. For sim
plicity we shall use an equidistant time discretization and assume that a, b, b' 
and 6" are uniformly bounded. Then, in view of (5.11), the sum E~:~ R" has 
zero mean and bounded finite variance. Moreover, it satisfies the martingale 
property (2.3.5), so we can use a discrete version of the Doob inequality (2.3.7) 
to obtain the estimate 
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~ K AE (of.!~T I't. {(AWIY -A} r) 
< 4K A O~~~T E (I E {(AWk)2 - A} r) 

nT-l 

< 4K ALE (I(AWk)2 - An 
k=O 

< 8KT A2. 
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The scheme (5.8) thus also satisfies condition (5.4) with equal step sizes 6 = 
A, so is a strong Ito scheme. Under the assumptions of Theorem 11.5.1 we can 
then conclude that (5.8) is of strong order r = 1.0. 

Strong Stratonovich Approximations 
Our second class of strong schemes is defined in relation to Stratonovich-Taylor 
approximations. We shall call a recursive relation of the form 

(5.12) Yn +1 = Yn + L flo .n J o + En 
<>EA.,.\{v} 

a strong Stratonovich scheme of order r for some r = 1.0, 2.0, ... if the 
coefficient functions n are AT -measurable for n = 0, 1, ... , nT - 1 and 

Lan " 
satisfy the estimates . 

(5.13) E ( max Ig - f (Tn, Yn)1 2
) ~ K 62..,-<1>(<», 

O~n~nT -<>,n ~ 

for alia E A.., \ {v}, where cp(o:) was defined in (5.3), with the Rn satisfying 
the estimate 

(5.14) 

The class of strong Stratonovich schemes encompasses a wide range of one
step and multistep schemes, like their Ito counterparts. The following theorem 
provides conditions under which a strong Stratonovich scheme of order r actu
ally converges strongly with order r. 

Theorem 11.5.2 y6 be a time discrete approximation generated by a strong 
Stratonovich scheme of order r E {1.0, 2.0, ... } satisfying the assumptions of 
Corollary 10.7.2 for the strong Stratonovich- Taylor approximation of order r. 
Then 

(5.15) 

and, hence, y6 converges strongly with order r. 
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The proof of Theorem 11.5.2 is very similar to that of Theorem 11.5.1, so 
will be omitted. It is just necessary to recall that the multiple Stratonovich 
integrals appearing in it can be expressed in terms of multiple Ito integrals of 
the corresponding mean-square order. 

We can also replace the multiple Stratonovich integrals JOlin the scheme 
(5.12) by the approximate multiple Stratonovich integrals J~. The resulting 
scheme will retain the strong order 'Y if the assumptions of Theorem 11.5.2 and 
the assumed bound (10.7.12) in Corollary 10.7.3 are satisfied. 

To conclude this section we emphasize yet again the diversity of one-step 
and multistep strong schemes which fall under the classification of the general 
strong schemes introduced here. It will be a worthwhile challenge to derive 
efficient strong schemes for different special classes of problems. Here we have 
tried to provide some guiding principles and a few illustrative examples. 

Exercise 11.5.3 Under suitable assumptions show that the scheme (2.1) is 
an order 1.5 strong scheme. 

Exercise 11.5.4 Show that the scheme (3.2) is an order 2.0 strong scheme 
under appropriate assumptions. 



Chapter 12 

Implicit Strong Approximations 

In this chapter we shall consider implicit strong schemes which are necessary 
for the simulation of the solutions of stiff stochastic differential equations. The 
regions of absolute stability of several of these implicit strong schemes and 
other explicit strong schemes will also be investigated. 

12.1 Introduction 

In our discussion of numerical stability in Section 3 of Chapter 8 and in Section 
8 of Chapter 9 we mentioned that it is often necessary to use implicit schemes 
to simulate the solutions of stiff differential equations. These schemes usually 
have a wide range of step sizes suitable for the approximation of dynamical 
behaviour, in particular with vastly different time scales, without the excessive 
accumulation of unavoidable initial and roundoff errors. 

We also saw in Section 8 of Chapter 9 that difficulties can arise in applying 
fully implicit schemes to obtain strong approximations of solutions of stochas
tic differential equations, because they usually involve reciprocals of Gaussian 
random variables which do not have finite absolute moments. Consequently, 
finite absolute moments generally will not exist for fully implicit strong approx
imations and a strong convergence analysis would not make sense. For mainly 
this reason we shall restrict our attention here to "semi-implicit" strong ap
proximations, which we shall call implicit, with implicit terms obtained from 
the corresponding Taylor approximation by suitably modifying the coefficient 
functions a and aa' of the nonrandom multiple stochastic integrals 1(0) = ~ 
and 1(0,0) = 1~2, respectively. For this we use the stochastic Taylor formula 
in the form 

I (Xt ) = I (XHa) - { a (Xt ) I' (Xt ) + ~ 62 (Xt ) I" (Xt)} ~ 

-6(Xt ) I' (Xt ) ~W-"" 

for I = a and aa/, respectively. 
In implementing an implicit scheme we need to solve an additional algebraic 

equation at each time step, which can usually be done with standard numeri
cal methods such as the Newton-Raphson method. We shall see that we can 
improve the stability of simulations considerably without too much additional 
computational effort by using implicit schemes. 
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The orders of strong convergence of the implicit schemes that we shall pro
pose in this chapter follow under corresponding assumptions from Theorems 
11.5.1 and 11.5.2, respectively, and will be discussed in the last section of the 
chapter. 

We shall continue to use the notation introduced in Chapter 10 without 
further explanation. 

12.2 Implicit Strong Taylor Schemes 

In this section we shall systematically examine implicit strong schemes obtained 
by adapting corresponding strong Taylor schemes. 

The Implicit Euler Scheme 
The simplest implicit strong Taylor scheme has strong order "I = 0.5. This is 
the implicit Euler scheme, which, in the I-dimensional case d = m = 1, has 
the form 

(2.1) 

where we follow our convention in writing b = bern, Yn). From this and the 
explicit Euler scheme (10.2.1) we can easily construct a family of implicit Euler 
schemes 

(2.2) Yn+l = Yn + {aa (rn+l, Yn+d + (1- a) a} d + baW, 

where the parameter a E [0,1] characterizes the degree of implicitness. We 
note that for a = 0 we have the explicit Euler scheme (10.2.1) and for a = 1 
the scheme (2.1), whereas for a = 0.5 we obtain from (2.2) a generalization of 
the deterministic trapezoidal method (8.1.11). 

In the general multi-dimensional case d, m = 1, 2, ... the family of implicit 
Euler schemes has kth component 

with parameters ak E [0,1] for k = 1, ... , d. 
We shall use the following 2-dimensional linear Ito stochastic differential 

equations in PC-Exercises to test the above family of implicit schemes and 
others to be introduced later. 

Example 12.2.1 Let W be a I-dimensional Wiener process and 

A _ [ al,l al'2] [b 0] 
and B = bI = 0 b - a2,l a2,2 

for real numbers al,l al ,2, a2,l, a2 ,2 and b. Then 
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(2.4) dXt = AXt dt + BXt dWt 

is a 2-dimensional, homogeneous linear Ito stochastic differential equation in 
the terminology of Section 8 of Chapter 4. Since the matrices A and B com
mute, it follows from (4.8.7) that (2.4) has the explicit solution 

(2.5) X t = exp (( A- ~ B2) t+ BWt) Xo. 

Exercise 12.2.2 Use (6.9.22)-(6.9.24) and the fact that the sum of the Lya
punov exponents equals the trace of the matrix A - -! B2, that is the sum of its 
main diagonal components, to show that the Lyapunov exponents of (2.4) are 
the real parts of the eigenvalues of the matrix A - ! B2. 

For the matrices 

(2.6) 

the Lyapunov exponents of the stochastic differential equation (2.4) are 

(2.7) 1 2 Al = --b , 
2 

1 2 A2 = --b - 2a. 
2 

With a = 25 and b = 2, for example, we have Al = -2 > A2 = -52. In 
accordance with Section 8 of Chapter 9, we can thus consider equation (2.4) 
with the corresponding coefficient matrices A and B to be an example of a stiff 
stochastic differential equation. We note that the matrix exponential in the 
expression (2.5) can be evaluated by diagonalizing the matrix 

at each instant t ~ O. In this way we obtain 

(2.8) X t = p [ exp (p+(t» 0 ] p-l Xo 
o exp (p- (t» 

where 

and 

p--1 [1 1] 
-.,f2 1 -1 

with p-l = P. 

PC-Exercise 12.2.3 Consider the 2-dimensional Ito process X satisfying 
the stochastic differential equation (2.4) with coefficient matrices (2.6) with a 
= 5 and b = 0.01 on the time interval [0, T) with initial value Xo = (1,0) and T 
= 1. Compute M = 20 batches each of N = 100 simulations of XT and of the 
values y6 (T) of the implicit Euler approximation with ctl = ct2 = 0, 0.5 and 1.0 
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Results of PC-Exercise 12.2.3 with at = 0'2 = 0.5. 
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corresponding to the same sample paths of the Wiener process for equidistant 
time steps with step size 6 = ~ = 2-2 • Evaluate the 90% confidence intervals 
for the absolute errors f. Repeat for step sizes 6 = 2-3 , 2-4 and 2-5 and plot 
log2 f versus log26 for the three cases 0'1 = 0'2 = 0, 0.5 and 1.0, respectively. 

We can see from Figure 12.2.1 that the explicit Euler scheme, that is with 
0'1 = 0'2 = 0, does not give an acceptable result for the stiff system under 
consideration. On the other hand Figure 12.2.2 indicates that the generalized 
trapezoidal scheme with 0'1 = a2 = 0.5 is reliable and, from the slope, that it 
is an order I = 0.5 strong scheme. Figure 12.2.3 suggests similar behaviour for 
the implicit Euler scheme with a1 = a2 = 1.0. 

The Implicit Milstein Scheme 
The Milstein scheme (10.3.1) is the order 1.0 strong Taylor scheme. We shall 
call its implicit counterpart an implicit Milstein scheme. In the I-dimensional 
case d = m = 1 this has the Ito version 

and the Stratonovich version 

(2.10) Yn+1 = Yn + ,g,(Tn+l, Yn+d ~ + b~W + ~ bb'(~W)2, 

Ld(Eps) 
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Figure 12.2.3 Results of PC-Exercise 12.2.3 with al = a2 = 1.0. 
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where.!! = a - !bb'. These will generally be different, so we have two distinct 
types of implicit Milstein schemes. 

As with the Euler schemes, we can also interpolate between the explicit and 
implicit Milstein schemes of the same type. In the general multi-dimensional 
case d, m = 1,2, ... with commutative noise (see (10.3.13)) we obtain an Ito 
version of a family of implicit Milstein schemes with kth component 

m 

+ Lbk •i awi 
i=1 

where 0it.i2 is the Kronecker delta symbol 

iI=i2 
otherwise, 

and a Stratonovich version with kth component 

Y': + {O'Hl (Tn+b Yn+d + (1- O'k).!!k} a 

+ tbkJ awi + ~ t Litbk.i2awitawh . 
. 1 2. . 1 
J= JIJ2= 

Here the parameter O'k E [0,1] indicates the degree of implicitness of the kth 
component for k = 1, ... , d. When O'k = 0 we have the explicit Milstein scheme 
in the kth component, and the implicit Milstein scheme when it equals 1.0. 
The case O'k = 0.5 gives an order r = 1.0 generalization of the deterministic 
trapezoidal method (8.1.11). 

In the general case the family of implicit Milstein schemes has kth compo
nent 

(2.13) 

m m 

+ 2:)k.i awi + L Lit bk •i2 I(h.h) 
i=l h.h=1 

in its Ito version and 

(2.14) 

m m 

+ ""bk.i awi + "" Lhbk.hJ( . . ) ~ ~ Jl.J2 
;=1 it.h=1 
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in its Stratonovich version, where ak E [0,1] for k = 1, ... , d. The multiple 
stochastic integrals lUl,h) and J(it,h) here can be approximated by the method 
proposed in Section 3 of Chapter 10. 

PC-Exercise 12.2.4 Repeat PC-Exercise 1~.2.9 for the Ito version of the 
im.plicit Milstein schemes with al = a2 = 0.5 and 1.0. 

Figures 12.2.4 and 12.2.5 suggest that the implicit Milstein schemes with 
al = a2 = 0.5 and 1.0 have strong order r = 1.0. 

The Implicit Order 1.5 Strong Taylor Scheme 
For the I-dimensional autonomous case d = m = 1 the implicit order 1.5 strong 
Taylor scheme in its simplest version has the form 

1 
(2.15) Yn +1 = Yn + 2 {a (Yn +1) + a} ~ 

+ (ab' + 4b2bll ) {~W~ - ~Z} 

+alb{ ~Z - 4~W ~} + 4bbl{(~W)2 - ~} 

+4 b (bb')' {~(~W)2 - ~} ~W, 

where ~w and ~z are Gaussian random variables with zero means and 
E«~W)2) = ~, E«~Z)2) = ~~3 and E(~W~Z) = !~2, as in (10.4.3). 

In the general multi-dimensional case we obtain the family of implicit order 
1.5 strong Taylor schemes with kth component 

(2.16) 

m 

+ 2: (bk,i ~Wi + LObleJ l(o,j) + Lia/c {I(j,O) - ak~Wi~}) 
i=1 

m m 

+2: 2: 

where the parameters ale, 13k E [0,1] for k = 1, .. . ,d. The multiple stochastic 
integrals here can also be approximated as in Section 4 of Chapter 10. 

The preceding scheme has a simpler structure in some important practical 
cases. For instance, for additive noise where b(t,z) == bet), the scheme (2.16) 
reduces to 
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(2.17) Y:+1 = Y: + {Qkak (Tn +1 , Yn+t> + (1- Qk)ak } a 

+ (~ - Qk) {PkLOak (Tn+l. Yn+d + (1 - Pk) LOak } a 2 

+ I: bk,i aWi + Db .J {awia-azi} m [ k' 

;=1 at 
+Liak {azi - QkaWia}] 

with Qk, Pk E [0,1] for k = 1, ... , d. For the choice Q1 = ... = Qd = 0.5 we 
obtain a particularly simple scheme of strong order "f = 1.5, since the second 
line in (2.17) vanishes. 

Another interesting special case is that of commutative noise of the second 
kind (10.4.13). Then, in the general multi-dimensional case with d, m = 1, 2, 
... , the scheme (2.16) takes the form 

(2.18) Y:+1 = Y: + {Qkak (Tn+l' Yn+d + (1 - Qk)ak } a 

+ (~ - Qk) {PkLOal: (Tn+l' Yn+l) + (1- Pk) LOak} a 2 

+ t [bkJ awi + !Libl: J {(awi)2 - a} 
;=1 2 

+Lobl:·; {awia-azi } + Lial: {azi -akaWia}] 

m il-1 
+ I: I: Li1 bk,h awiaawh 

il=1 i2=1 

m it-1h-1 
+ I: I: I: LilLi2 bkJ3 awilawhawi " 

il=1h=1ia=1 

where Qk, PI: E [0,1] for k = 1, ... , d. We note that this scheme involves only 
the Gaussian random variables awi and azi , j = 1, ... , m. 

PC-Exercise 12.2.5 Repeat PC-Exercise 12.2.9 for the implicit order 1.5 
strong Taylor scheme (2.16) with a1 = a2 = 0.5. 
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Figure 12.2.6 Results of PC-Exercise 12.2.5. 
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Figure 12.2.6 suggests that the implicit order 1.5 strong Taylor scheme with 
a1 = a2 = 0.5 does indeed have strong order r = 1.5. 

The Implicit Order 2.0 Strong Taylor Scheme 
Analogously as in Section 5 of Chapter 10, we can also derive implicit schemes 
with strong order r = 2.0 from the Stratonovich-Taylor expansion. 

In the I-dimensional autonomous case d = m = 1 we have the following 
Stratonovich version of the implicit order 2.0 strong Taylor scheme: 

(2.19) 
1 

Yn + 2 {g(Yn+t> +gJ a+baw 

+J!b' {awa-aZ}+J!'b {az-4awa} 

+~ bb' (aw)2 + :, b (bb')' (aw)3 

+ ~, b (b (bb')')' (aw)4 

+J! (bb')' J(O,l,l) + b (J!b')' J(l,O,l) 

+b(.a.'b)' {J(l,l,O) - ~ (aw)2 a}. 
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The multiple integrals appearing here can be approximated as in Exercise 
10.5.1. 

In the general multi-dimensional case d, m = 1, 2, ... the kth component 
of the implicit order 2.0 strong Taylor scheme is given by 

(2.20) 

+ (4 -Otk) {Pk1..°!!k (Tn+l> Yn+d + (1- Pk)1..°g,k} tl.2 

+ t [bk,i tl.Wi +1..°bk,i J(O,n +1..i!!k (JU,O) - Otktl.Witl.}] 
J=1 

+ t [1..itbk'h J(itJ2) + 1..0 j) l bk,h J(O,it,i2) 
itJ2=1 

. Ok' +1..'1 1.. b ,12 JU1>O,j2) 

+1..itL.hg,k (J(it,hO) - ak tl.J(il,h)} ] 

m 

+ 

m 

+ E 
where ak, Pk E [0,1] for k = 1, .. " d. 

In special cases the scheme (2.20) also simplifies to ones which do not involve 
all of the multiple Stratonovich integrals. For instance, in the autonomous case 
with additive noise (10.2.7) the kth component of the order 2.0 implicit strong 
Taylor scheme reduces to 

(2.21) Y,,"+l = Y,," + {ak!l (Yn+d + (1- ak)!!k} tl. 

+ (4 -Otk) {PkL.°!!k (Yn+d + (1- Pk)L.°{!k} tl.2 

+ t [bk'i tl. Wi + L.i g,k {JU,O) - Otk 6. Wi tl.} ] 
J=1 

m 

+ ~ Lit rh{!k {.I( . . 0) - ak tl..l( . . )} ~ - .IJ. 11,]2, 11,)2 , 

itJ2=1 

with ak, Pk E [0,1] for k = 1, ... , d. This scheme becomes particularly simple 
when Otk = 0.5 for k = 1, ... , d, as it then differs from the strong order 1.5 
scheme (2.17) only by the inclusion of the last term. 
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There are also Ito counterparts of the above implicit order 2.0 strong sche
mes, but the Stratonovich versions are more convenient, as we have already 
seen for the explicit schemes themselves. 

PC-Exercise 12.2.6 Repeat PC-Exercise 12.2.3 for the implicit order 2.0 
strong Taylor scheme (2.20) with Cl'l = Cl'2 = 0.5. 

Figure 12.2.7 gives the impression that the scheme (2.20) really is an order 
2.0 strong scheme. 

12.3 Implicit Strong Runge-Kutta Schemes 

In this section we shall discuss implicit schemes which avoid the use of deriva
tives in the terms involving non-deterministic multiple stochastic integrals. 
They are obtained from the corresponding implicit strong Taylor schemes by 
replacing the derivatives there by finite differences expressed in terms of ap
propriate supporting values. For this reason we shall call them implicit strong 
Runge-Kutta schemes, but we emphasize that they are not simply heuristic 
adaptations to stochastic differential equations of the deterministic Runge
Kutta schemes. 
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The Implicit Order 1.0 Strong Runge-Kutta Scheme 

In the I-dimensional case d = m = I the implicit order 1.0 strong Runge-Kutta 
scheme is 

(3.1) Yn + a (Tn+l' Yn+1) A + bAW 

+ ~ (b(Tn ,Tn )-b){(AW)2_ A } 
2vA 

with supporting value 

By interpolating between this implicit scheme and the corresponding explicit 
scheme (11.1.7), we can form a family of implicit order 1.0 strong Runge-Kutta 
schemes. In the general multi-dimensional case d, m = 1, 2, ... these have kth 
component 

m 

with vector supporting values 

for j = 1, ... , m, and parameters O:k E [0,1] for k = 1, ... , d. The multiple Ito 
integrals I(h,h) here can be approximated as in Section 3 of Chapter 10. 

There is also a Stratonovich version of (3.2). For commutative noise 
(10.3.13) it reduces to 

(3.3) Y:+1 = Y: + {O:k!l (Tn +1 , Yn\l) + (1- O:k),g1:} A 

+4 f:{b1:J(Tn'~n)+bkJ} AWi 
i=l 

with vector supporting values 

m 

~n = Yn +,gA+ I:ll AWi 
i=l 

and parameters 0:1: E [0,1] for k = 1, ... , d. We remark that the term,g,A can 
be omitted from ~n and note that the diffusion coefficient b must be evaluated 
at two points for each time step. 
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Figure 12.3.1 Results of PC-Exercise 12.3.1. 

PC-Exercise 12.3.1 Repeat PC-Exercise 12.2.9 for the scheme (3.3) with 
t:rl = t:r2 = 1.0. Then repeat the calculation with the supporting value 

~n = Yn+b~W. 

Compare the results with those of PC-Exercise 12.2.4. 

The Implicit Order 1.5 Strong Runge-Kutta Scheme 
As above, we can also derive implicit order 1.5 strong schemes by replacing 
derivatives by their corresponding finite differences. 

In the autonomous l-dimensional case d = m = 1 an implicit order 1.5 
strong Runge-Kutta scheme obtained in this way has the form 

(3.4) 
1 

Yn + '2 {a (Yn+d +a} ~ +b~W 

+ ~{b(1'+)-b(1'_)}{(~W)2-~} 
4v~ 

+2~ {b (1'+) - 2b+ b (1'_)} {~W~ - ~Z} 

+ 21- {a (1'+) - a(1'_)} {~Z -4~w~} 
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with supporting values 

and 

+ 4~ {b (c) +) - b (c) _) - b (t +) + b (t -)} 

X {~(~W)2 - ~} LlW 
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For the general multi-dimensional case d, m = 1, 2, ... we have the implicit 
order 1.5 strong Runge-Kutta scheme in vector form 

(3.5) 

+ 1; [11 aWi + ! {II (Tn+1' Yn) -II} [(O,i) 

+2~{a(Tn,t~) -a(Tn,t~)}{[(j,O)_~~Wi~}] 

+ ~ f {112(Tn,T~)-112(Tn,t~)}I(itJ2) 
2v~ .. 1 

JI.32= 

with vector supporting values 

and 

_. 1 . r;:
T~ = Yn + - a ~ ± b' V ~ 

m 

c)i±,h = T~ ±111 (Tn' t~) .fX. 
To avoid too many terms here we have restricted our attention to the degree of 
implicitness ctk = 0.5. We note that the diffusion coefficient b must be evaluated 
at 2m + 1 points for each time step. This scheme also simplifies considerably 
in special cases. For instance, with additive noise it becomes 

(3.6) 
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Figure 12.3.2 Results of PC-Exercise 12.3.2. 

-2 

Lr.!H)f)lta) 

with 

PC-Exercise 12.3.2 

-j 1 . 17 
'T ± = Yn + - a A ± b' vA. 

m 

Repeat PC-Exercise 12.2.3 with the scheme {3.5}. 

An Implicit Order 2.0 Strong Runge-Kutta Scheme 
To avoid cumbersome notation we shall restrict ourselves to the case of scalar 
additive noise and, as before, to the Stratonovich version of the order 2.0 sche
mes. 

In the autonomous 1-dimensional case d = m = 1 with scalar additive noise 
we propose the implicit order 2.0 strong Runge-Kutta scheme 

(3.7) Yn+l = Yn + { l! (1' +) +!.l (1' -) - 4 (!.l (Yn+d +!.l)} A + b AW 

with 
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- 1 1 ( - -) T:!: = Y" + "211 A + A b AZ ± ( , 

where 
- 1 1 

az= "2AZ+4AWA 

and 

This generalizes in the multi-dimensional case d = 1, 2, ... and m = 1 with 
scalar additive noise b(t, z) == b(t) to the implicit order 2.0 strong Runge-Kutta 
scheme in vector form 

(3.8) Y,,+l = Y" + {11 (t +) + 11 (t -) - 4 (.g(Y,,+d + 11)} A + bAW 

1 + a {b(r,,+d - b}{AWA - aZ} 

with 

where AZ and ( are as above. 

PC-Exercise 12.3.3 Repeat PC-Exercise 11.3.2 with the scheme (3.8) 
with 11 determined by interpreting the time t as the first component of a 2-
dimensional Ito process {(t, X,), t ~ OJ. 

Exercise 12.3.4 Use Theorem 11.5.2 to show under appropriate assump-
tions that (9.8) is an order 2.0 strong scheme. 

12.4 Implicit Two-Step Strong Schemes 

We saw in Section 4 of Chapter 11 that the number of evaluations of deriva
tives of the drift and diffusion coefficients can be reduced by using multi-step 
schemes. Here we shall describe some implicit two-step schemes which can be 
used for the efficient simulation of stiff stochastic differential equations. 

Implicit Two-Step Order 1.0 Strong Schemes 
For the autonomous I-dimensional case d = m = 1 we have the following Ito 
version of an implicit two-step order 1.0 strong scheme: 

(4.1) with 
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The Stratonovich version of this scheme is 

with 

and a derivative free Stratonovich version is 

with 

where 

There is a family of implicit order 1.0 two-step strong schemes for which 
the kth component of the Ito version in the general multi-dimensional case d, 
m = 1, 2, ... is given by 

(4.4) Yn+1 = (1 - 'YA:) Y': + 'YI:Y':-l 

with 

+ [0'2,A: aA: (Tn+1' Yn+1) + hA:O'l,A: + (1- 0'2,1:)}al: 

+'YI: (1 - 0'1,1:) al: (Tn-b Yn-d] ..:l 

+V,: +'YI:V':_l 

m m 

v.1: = '" bl:J ..:lWj + "'" Lit bl: J2 L(j .) n L..J n L...J 1,J2 ,T"tT,,+l 

j=l jl';2=1 

and parameters 0'1,1:, Q2,1:, 'YI: E [0,1] for Ie = 1, ... , d. 
The Straionovich version of (4.4) is 

(4.5) Yn+l = (1 - 'YI:) Y': + 'YI: YLI 

with 

(4.6) 

+ [0'2,l:g A: (Tn+l' Yn+l ) + hi:O'I,i: + (1- 0'2,I:)}gA: 

+'YA: (1- O'I,I:),g1: (Tn-I, Yn- 1)] ..:l 

+Y! + 'YA:Y.!-l 
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and parameters al,A:, a2,A:, '"'fA: E [0,1] for k = 1, ... , d. We can obtain a 
derivative free version of this scheme if, instead of (4.6), we use 

with 

For commutative noise we can substitute ~6.W~16.W~2 for the Stratonovich 
double integral J(il,i,),TR ,TR +l in (4.6) and (4.7) or we may set 

~ = ~ t {bk'i (Tn' Tn) + bA:,i} ~W~ 
i=l 

with 
m 

Tn = Yn + i!6. + LII6.W~. 
i=l 

We note that if we set '"'fA: = 0 in the above schemes, then we obtain our 
implicit one-step schemes. On the other hand, if we set a2,A: = 0, then we have 
our explicit two-step schemes. We can control the stability of these schemes by 
an appropriate choice of parameters '"'fA:, al,A: and a2,A:. In Section 5 we shall 
check their regions of absolute stability. 

PC-Exercise 12.4.1 Repeat PC-Exercise 12.2.3 for the scheme (4.4) with 
parameters '"'fA: = al,A: = a2,A: = 1.0 using the implicit Milstein scheme (2.11) 
as the starting routine. 

Implicit Two-Step Order 1.5 Strong Schemes 
In the autonomous I-dimensional case d = m = 1 an implicit two-step order 
1.5 strong scheme is given by 

(4.8) 
1 

= Yn- 1 + '2 {a (Yn+t) + 2a + a (Yn-d} 6. 

+Vn + Vn- l 

with 

Vn = b6.Wn + (ab' + ~b2b") {6.Wn 6. - ~Zn} 

+a'b { 6.Zn - ~ 6.Wn 6.} + 4 bb' {(6.Wn)2 - 6.} 
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We have in the general multi-dimensional case d, m = 1,2, ... the following 
family of implicit two-step order 1.5 strong schemes with kth component: 

with 

l{k( k k } +2' a Tn+1,Yn+d+(I+'Yk)a +'Yka (Tn-llYn-I) a 

1 ~ . k . -2' (1- 'Yk) L.JL'a (Tn-t. Yn-d aW~_1 a 
j=l 

+V: + 'Yk V:_ I 

v; = t [bkJ aw~ + LObkJ {dw~a - az~} 

+Li ak { az~ - 4dw~a } ] 
m 

+ E Lhbk,h I(itJ2),Tft,T"+1 
hJ2=1 

and 'Yk E [0,1] for k = 1, .. '1 d. 
A derivative free version of the above family of implicit two-step order 1.5 

strong schemes (4.9) has kth component 

(4.10) 

with 

V; = t [bk,j a w~ + ! {bkJ (Tn+t. Yn ) - bkJ } I(oJ),T ... T .. +l 
J=l 
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with 

+_1_ ~ [bk,jS (T. ~l,h+) _ bk,js (T. ~l,h-) 2d L...J n, n n, n 
i> J2,js=1 

_bkJs (Tn, t~l+) + bk,js (Tn, t~l-) ] I(jl,hJs),T .. ,T"+l 

_.± 1 . /7" 
1'~ = Yn + - ad ± b' V d, 

m 

and 'Yk E [0,1] for k = 1, ... , d. 
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If we set rk = 0 in the above two-step schemes we obtain implicit one-step 
schemes. We shall see later from (6.7) that it is possible to derive other schemes 
with different degrees of implicitness than the O'k = 0.5 values used above. 

PC-Exercise 12.4.2 Repeat PC-Exercise 12.2.3 for the scheme (.4.9) with 
rk = 1.0 using the implicit order 1.5 strong Taylor scheme (2.16) as the starting 
routine. 

The Implicit Two-Step Order 2.0 Strong Scheme 
As before, we shall consider only the Stratonovich versions of order 2.0 schemes. 

For the autonomous I-dimensional case d = m = 1 with additive noise we 
have the implicit two-step order 2.0 strong scheme 

(4.11) 
1 

= Yn-1 +"2 {!!(Yn+d + 2!l +!!(Yn-d} d 

+Vn + Vn- 1 

with 

Vn = bdWn+g'b {dZn-4dWnA} 

+!!"b2 {J(1,1,0)'T"'T"+1 - ~ (dWn )2 A} . 
We note that if gil ;: 0, as in the linear case, then the final term in Vn with the 
multiple integral J(1,1,0) vanishes. 
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In the nonautonomous multi-dimensional case with scalar additive noise d 
= 1, 2, ... and m = 1 there is a family of implicit two-step order 2.0 strong 
schemes for which the kth component is 

(4.12) Y:+l = (1-"Yk)Y: +'nY:-I 

+~ {gk (Tn +1 , Yn+t) + (1 + "Yk)!l + "Ykgk (Tn-I, Yn-d} ~ 

-~ (1- "Y1e)L1!l (Tn-I, Yn-d ~Wn-l ~ 

-~ (1- "Y1e),L11/g.1e (~Wn)2 ~ 

+V: + "Ylc V:_ 1 with 

+LI!!k {~Zn - ~ ~Wn ~} 

+I.lL.1g.k {J(l,l,O)'T"'T"+l - ~ (~Wn)2 ~} , 
where "Yk E [0,1] for k = 1, ... , d. 
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Figure 12.4.1 Results of PC-Exercise 12.4.3. Ld(Dtllt.) 
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All of the schemes introduced in this section follow from formula (6.7), 
which will be given in Section 6. Other two-step strong schemes, including 
derivative free ones can also be derived from (6.7). However, this is more 
conveniently done for special classes of stochastic differential equations which 
allow simplifications in the formulation of the schemes. 

PC-Exercise 12.4.3 Repeat PC-Exercise 11.3.2for the scheme (,1.12) with 
1'k = 1.0 using the implicit order 2.0 strong Taylor scheme (2.20) with O!k 

0.5 as the starting routine. 

12.5 A-Stability of Strong One-Step Schemes 

Here we shall investigate the region of absolute stability, which we defined in 
Section 8 of Chapter 9, for some of the explicit and implicit strong schemes 
presented in Chapters 10, 11 and 12. 

We recall that we introduced complex-valued test equations (9.8.3) 

(5.1) dX, = AX, dt + dW, 

where A is a complex number with real part Re(A) < 0 and W is a real-valued 
standard Wiener process. When we apply a one-step scheme to (5.1) we often 
obtain a recursive expression of the form 

(5.2) 

where the Zn are random variables which do not depend on A or on the Yo, 
Y1 , ...• The region of absolute stability of the scheme is then the subset of the 
complex plane consisting of those A~ with Re(A) < 0 and real-valued a > 0 
which are mapped by G into the unit circle, that is with 

(5.3) IG(A~)I < 1. 

If this region coincides with the left half of the complex plane, we say the 
scheme is A-stable. 

In Section 8 of Chapter 9 we found that the region of absolute stability 
of the explicit Euler scheme (10.2.4) is the open disc of unit radius centered 
on the point (-1,0), that is the complex number -1 + 0 •. It is easy to see 
that this set is also the region of absolute stability for the Milstein schemes 
(10.3.3) and (10.3.4). In addition we saw that the implicit Euler scheme (9.8.6) 
is A-stable. For the families of implicit Euler and Milstein schemes, (2.3) and 
(2.13) respectively, with a common implicitness parameter O! E [0,1] in both 
components, the mapping G in (5.2) is 

(5.4) 
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Inequality (5.3) for the G in (5.4) is equivalent to the inequality of complex 
moduli 

11 + (1- ap dl2 < 11 - a A dl2 , 

which in turn is equivalent to 

(5.5) 

where ..\ = ..\1 + 1..\2' For! ::5 a ::5 1 this is satisfied by all ..\ with ..\1 < 0, so 
the schemes are then A-stable. For 0 ::5 a < ! we can write (5.5) as 

(A1 d +A)2+(A2 d )2 < A2, 

where A = (1 - 2a)-1, so the region of absolute stability is the interior of the 
circle with radius A and centered at -A + Oz. 

Exercise 12.5.1 Show that the implicit order 1.5 strong Runge-Kutta sch
eme (3.5) is A-stable. 

Exercise 12.5.2 Show that the mapping G for the implicit order 2.0 strong 
Runge-Kutta scheme (3.8) is given by 

G(..\d) = (1+~Ad)-1 (1+~Ad+A2d2) 

Figure 12.5.1 Region of absolute stability of the Runge-Kutta scheme (12.3.8). 
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and that the corresponding region of absolute stability satisfies the polar coor
dinate inequality 

4r COS2 () + (2 + 3r2) cos () + r3 < 0 

with ~11' < () < i1l', where r = ,j>.~ + >'~.6. and () = arctan (>'2/>'d. 

For some higher order schemes terms such as LOa are required. These may 
have to be determined from the real 2-dimensional form of (5.1), that is 

(5.6) d ( ~~ ) = [~: ~~2l ( ;~ ) dt + ( ~ ) dWt 

where X, = xl + ,Xl, and then converted back into complex notation. For 
example, LOa for (5.6) becomes >.2 X. 

Exercise 12.5.3 Determine LOa for 

and show that it can be written equivalently in complex notation as >.2 X. 

Exercise 12.5.4 For the families of implicit order 1.5 and 2.0 strong Taylor 
schemes (2.16) and (2.20), respectively, with common implicitness parameters 
a, f3 E [0,1] in both components show that 

G(>'.6.) = (l-a>..6.- (~-a) .8>.2.6.2)-1 
x (1 + (1 - a». .6. + (~ - a ) (1 - (3) >. 2 .6.2) 

and that their region of absolute stability is given by the polar coordinate in
equality 

{2 + (1 - a)(l - 2 a)r2} cos() + 2(1 - 2a)r cos2 () 

1 +4 (1 - 2a)2(1- 2.8)r3 < 0 

with ~11' < () < ~1r. Hence deduce that these schemes are A-stable if and only 
if a =!, f3 E [0,1] ora,.8 E [i,l]. 

Determining the region of absolute stability is more complicated when the 
implicitness parameters have different values in the different components of 
the scheme. In these cases it is often more manageable to use the real 2-
dimensional equation (5.6) and the corresponding real 2-dimensional scheme. 
The complex equation (5.2) then takes the real 2-dimensional vector form 
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(5.7) Yn +1 = G (A1~' A2~) Yn + noise terms 

where G (A1 ~,..\2 6.) is a real 2 x 2 matrix and the region of absolute stability 
is now determined from the real inequalities 

(5.8) A1 < 0 and IG(A1~,A26.)1 < 1 

involving the matrix norm IGI = IlgiJlI = JL,~,j=1(gi,j)2. 
For the family of implicit Milstein schemes (2.13) we have 

[ 
1 - (l'lAl6. (l'l A26. ]-1 

-(l'2..\2~ 1 - (l'2A1~ 

x [ 1 + (1 - (l'l)Al6. -(1 - (l'1)..\2~ ] 

(1 - (l'2)A26. 1 + (1 - (l'2)"\16. 

and the second inequality in (5.8) is equivalent to 

which reduces to 

These implicit Milstein schemes are thus A-stable for implicitness parameters 
(l'1, (l'2 E [0, 1] satisfying 

For example, one component could be fully explicit and the other fully implicit, 
if this were computationally convenient. When 0 ::; (l'1 + (l'2 < 1 the regions 
of absolute stability are the interior of circles of radius A and centre -A + 0" 
where A = (1 - Cl'1 - (l'2)-1. 

Exercise 12.5.5 Determine the regions of absolute stability for the fami
lies of implicit order 1.5 and 2.0 strong Taylor schemes (2.16) and (2.20), 
respectively, with different implicitness parameters (l't. f31 and (l'2, f32 in the two 
components of the schemes. 

12.6 Convergence Proofs 

The orders of strong convergence of the implicit schemes presented in this chap
ter follow from TheoremJ1.5.1 if they are based on the Ito-Taylor expansion 
and from Theorem 11.5.2 if they are based on the Stratonovich-Taylor expan-
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sion. However, we must first show that the schemes can be represented as 
strong Ito or Stratonovich schemes as required by these theorems. In doing 
so we shall gain some insight into how implicit schemes can be derived in a 
systematic way. 

We shall begin with the general strong Ito schemes which we defined in 
(11.5.1) by the recursive relation 

(6.1) Yn+1 = Yn + E ga,nla + /In, 
aEA.,\{v} 

where the conditions (11.5.2)-(11.5.4) must be satisfied. Applying the Ito
Taylor expansion (5.5.3) with A = Aa and !(t,z) == z at time t + ~ to the Ito 
process Xt,z starting at z at time t, we obtain the expansion 

(6.2) x:~L1 = z + E fallal + Ra(t) 
a/EA~\{v} 

with 
m 

E (IJ dW j + LOIJ I(oJ) + LjaI(j,o») 
j=l 

+ ~ [LhIJ21(' . )+LoLh IJ2 1(0' .) L..J 11,]2 ,J1,J2 
it,h=l 

+Lj1 LOIJ2 1(' 0') + Lit Lhal(. . 0)] Jt, .12 J1,}2. 

+ 

m 

+ Lit LhLjsdfl . . . . + R- (t) 
IT (J1,J2.J3,Jf) a, 

where Ra(t) represents the remainder term. Here the coefficient functions are 
evaluated at (t, z) E !R+ x!Rd and the multiple stochastic integrals are over the 
time interval [t, t + al, that is Ia = Ia,t,t+L1' 

The only nonrandom multiple Ito integrals in (6.2) are contained in the 
terms a d and t LOa ~ 2 • Consequently, these are the only terms that we can 
change in forming an implicit scheme if we are to avoid the type of problem 
due to inverses of Gaussian random variables in the fully implicit Euler scheme 
(9.8.7). 

Applying the Ito-Taylor expansion (5.5.3) again, but now with A = A1.5 
and !(t,z) = a(t,z), and rearranging, we get 
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(6.3) aCt, x) a (t +~, X::;l!.) -

with 

1 ° 0 2 ~(. . o· . 0 ) Nl!.(t) = -2L L a~ - L- L'a~W1 +L L'aI(o,j)+L'L aI(j,o) 
j=1 

m 

L: 
m 

L: 

where again the coefficient functions are evaluated at (t, x) and the multiple 
stochastic integrals are over the time interval [t, t + ~]. 

Repeating this procedure once more, but with A = Al and I( t, x) = 
LOa(t,x), we obtain 

(6.4) 

with 
m 

Pl!.(t) = _LoLoa~_ LLjLOa~Wi 
i=l 

m 

L . . ° -L'lL'~L al(· . )+RI(t) }1,}:I • 

Taking real numbers a, f3 E [0,1]' we can insert (6.3) and (6.4) into (6.2) 
as follows 

1 
= x + aa~ + (1-a)a~ + 2 LOa~2 + Ml!.(t) 

= x+{a[a(t+~,X::;l!.)+Nl!.(t)] +(1-a)a} ~ 

+ (4 -a) LOa~2 + Ml!.(t) 

+ (~-a) {f3Loa + (1 - f3)LOa} ~2 + Ml!.(t) 

x + {aa (t + ~'X:::l!.) + (1-a)a} ~ 
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+ (~- a:) {,BLoa (t + ~,X:::a) + (1- ,B)LOa} a 2 

+a:Na(t) ~ + (~ - a:) ,BPa(t)~2 + Ma(t). 
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This contains implicit terms with a (t + a, X:::a) and LOa (t + a, X::;a). It 
is the starting point for the derivation of implicit strong Taylor schemes, with 
those terms being discarded which are not required to satisfy the conditions 
(11.5.2) - (11.5.4) of Theorem 11.5.1 for the resulting truncation to have a 
desired order of convergence. To justify this we need first to show that the 
approximation Y satisfies an a priori estimate 

for q = 1, 2, ... and to assume that the coefficient functions fO/ present have 
polynomial growth. In this way it can be shown that the implicit strong Taylor 
schemes and, under corresponding regularity assumptions also the other one
step schemes of this chapter, converge with the asserted strong order. 

The derivation of implicit two-step schemes starts from the identity 

(6.6) (1 - e) </>X::;a + [1 - </> (1 - e)] x 

+ (X::;2ll. - X::;a) + [1 - </> (1- e)] (X::;a - x) 

for all </>, e E [0,1]. Using (6.5) to express the increments 

and (X:::a - x), 

we end up with a two-step representation for X::;2a. An example of such a 
representation will be given in (6.7) at the end of the section. This expansion 
can then be used to construct two-step strong Taylor schemes of the desired 
strong order. The proof of their strong convergence then follows by an obvious, 
slight generalization of Theorem 11.5.1. There is also no difficulty in replacing 
the derivatives in these two-step schemes by the appropriate finite differences to 
obtain the corresponding derivative free schemes, as was done for the explicit 
two-step schemes in Section 4 of Chapter 11. The strong convergence with 
the asserted order of the other implicit two-step schemes in Section 4 of this 
chapter follows in much the same way as for the Taylor schemes. 

A similar expansion to (6.5) based on the Stratonovich-Taylor formula can 
also be derived. It turns out to be the same as (6.5), but with .{!, 1/ and JO/ 
instead of a, Li and [0/. 

We conclude this section by stating the general multi-dimensional, implicit 
two-step expansion announced above in its Stratonovich version, which de
scribes all of the terms which are needed to derive an implicit two-step order 
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2.0 strong Taylor scheme. It is derived from (6.6) with t/J = 1 and "'/" = e. We 
shall use the abbreviations 

and I = I(Tn, Xn) for the functions 1= ll, b, LOg" ... , where Xn- 1 is the value 
of X at Tn-I. The kth component is then 

with 

+ [a2.A:QA: (Tn+1,Xn+1) + (1- C¥2.A: + 1A:al.A:)QA: 

+1A:(1- C¥1.A:)g,A: (Tn-lJ Xn-d ] Ll 

+ [ (4 -a2.A: ) f32.A:L. ° gA: (Tn+lJ Xn+d 

m 

+ { (4 -a 2.A:) (1- f32.A:) + 1 (4 - al.A:) PI.A:} L.0gA: 

+1 (4 -al.A:) (1- Pl.A:)LOllA: (Tn-lJ Xn-l)] a 2 

-L [a2.A:LlllA: aw~ + 1a l.A:Li llA: (Tn-I,Xn-d awLt} a 
j:::l 

+1U l.A:Ji 1Li2g,A: (Tn-l,Xn-d J(itJ3).Tn_l.Tn] a 

+V,," +1V:_l 

v: = t [bA:J aw~ + .L.°bA:·j J(OJ).T ... T .. +1 + liflA: J(j.O).T .... T .. +l] 
1=1 
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m 

+ L 
+ higher order terms, 

where the parameters al,t, a2,t, Ih,t, Iht, '''fj: E [0, I] for k = 1, ... , d. 

Variations of the above schemes can be obtained by extrapolating instead 
of interpolating the constituent schemes, that is by choosing the parameters 
al,t, a2,t, {il,t, {i2,1c and 1'1c outside of the interval [0,1]. 

Exercise 12.6.1 Show under appropriate assumptions that the two-step or
der 1.5 strong scheme (11..4.4) converges with strong order l' = 1.5. 

Exercise 12.6.2 Under sufficient conditions prove that the implicit order 
2.0 strong Taylor scheme (2.19) converges with strong order l' = 2.0. 

Exercise 12.6.3 the order of strong convergence of the implicit two-step order 
1.5 strong scheme (4.8). 



Chapter 13 

Selected Applications of Strong 
Approximations 

Several applications of the strong schemes that were derived in the preceding 
chapters will be indicated in this chapter. These are the direct simulation 
of trajectories of stochastic dynamical systems, including stochastic flows, the 
testing of parametric estimators and Markov chain filters. In addition, some 
results on asymptotically efficient schemes will be presented. 

13.1 Direct Simulation of Trajectories 

An important practical application of strong approximations is the direct sim
ulation of stochastic dynamical systems. The examples in the preceding chap
ters on strong approximations are typical of such direct simulations. In specific 
applications, like those described in Chapter 7, direct simulations of the tra
jectories of the stochastic differential equation can provide useful information 
on, or suggestions about, the qualitative behaviour of the model under inves
tigation. In this section we shall describe some examples of direct simulations 
which can be interpreted as stochastic flows. Broadly speaking, a stochastic 
flow is a probabilistic model for the simultaneous random motion of an ensem
ble of particles in "space", for instance, the diffusion of aerosol particles in a 
gas. 

The Duffing-Van der Pol Oscillator 
We shall look at a simplified version of a DujJing- Van der Pol oscillator 

driven by multiplicative white noise {, where a is a real-valued parameter (see 
also equation (7.7.9)). The corresponding Ito stochastic differential equation is 
2-dimensional, with components Xl and X 2 representing the displacement x 
and speed :i: I respectively, namely 

(1.1) dxl 
dX; 

xldt 
{Xl (a- (X,t)2) -Xl} dt+uxldWt 

where W = {Wt, t ~ O} is a I-dimensional standard Wiener process and u ~ 
o controls the strength of the induced multiplicative noise. 



428 CHAPTER 13. SELECTED APPLICATIONS 

The deterministic version of (1.1) with u == 0 has the steady states 

(1.2) X2 = 0 for all a 

and 

(1.3) X2 = 0 for a ~ 0, 

the first of which is also a degenerate stationary state of the stochastic differ
ential equation (1.1). 

We shall begin by looking at the phase plane of the deterministic system. 

PC-Exercise 13.1.1 Use the Milstein scheme (10.3.2) with equidistant step 
size ~ = 2- 7 to simulate linearly interpolated trajectories of the Duffing- Van 
der Pol oscillator (l.I) with a = 1.0 and u = 0.0 over the time interval [0, T] 
with T = 8, starting at (XJ, X5) = (-k{, 0) for k = 11, 12, ... , 20, where { 
= 0.2. Plot the results on the (Xl, X2) phase plane. 

From Figure 13.1.1 we see that the typical trajectory starting with nonzero 
displacement and zero speed is oscillatory and is attracted to one or the other 
of the nontrivial steady states (±1,0). We could determine the regions of 
attraction of these two steady states by appropriately marking each initial 
value on the phase plane according to the steady solution which attracts the 
trajectory starting there. 

We shall now include noise with small strength and repeat the above cal
culations. 

PC-Exercise 13.1.2 Repeat PC-Exercise 13.1.1 with a = 1.0 and u = 0.2 
using the same driving sample path of the Wiener process for each trajectory 
starting at the different initial values. 

We observe in Figure 13.1.2 that the trajectories are now random in ap
pearance, with paths usually remaining near to each other until they come 
close to the origin (0,0), after which they separate and are attracted into the 
neighbourhood of either (-1,0) or (1,0). 

Finally, we shall examine the effect of a stronger multiplicative noise in the 
Duffing-Van der Pol oscillator over a long period of time. 

PC-Exercise 13.1.3 Repeat PC-Exercise 13.1.1 with a = 1.0 and u = 0.5 
using the same sample path of the Wiener process for each of the initial values, 
but now plotting the displacement component Xl against time t. 

It is now quite obvious that while the noisy trajectories are initially at
tracted by one or the other of the points (±1,0), not all of them remain in
definitely in the vicinity of the same point. Instead, after spending a period 
of time near one of the points, the trajectories switch over to the other point, 
which first happens in Figure 13.1.3 at about the time t = 128. This might be 
interpreted as a form of tunneling. 

To convince ourselves of the reliability of the above results, we could repeat 
the calculations using a smaller step size or some other strong scheme. While 
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4 IC1 
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-8 

Figure 13.1.1 Results of PC-Exercise 13.1.1 
for the Duffing-Van der Pol oscillator without noise. 
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Figure 13.1.2 Results of PC-Exercise 13.1.2 
for the Duffing-Van der Pol oscillator with white noise. 



430 

Xl( t> 

4 

2 

o 

-2 / 

-4 

1U(t) 

4 

a 

-2 

-4 

i 

CHAPTER 13. SELECTED APPLICATIONS 



13.1. DIRECT SIMULATION OF TRAJECTORIES 431 

1U<t) 

4 

2 

16 

-2 

-4 

1C1<t> 
4 

2 

152 

-2 

-4 

21 22 23 24 

153 154 155 160 t 

Figure 13.1.3 Results of PC-Exercise 13.1.3: displacement xl versus t 
for different particles satisfying the Duffing-Van der Pol equation with noise. 
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the quantitative details may then differ, the qualitative picture should be much 
the same. With this check we may be able to avoid results that are only 
an artifice of a particular numerical scheme. It turns out that higher order 
schemes can, for instance, ensure the preservation over a long period of time 
of the important diffeomorphism property that neighbouring particles remain 
neighbours. 

Stochastic Flow on a Circle 
The above simulations of trajectories of the noisy Dufling-Van der Pol equation 
with the same trajectory of the driving Wiener process for different initial values 
is an example of a stochastic flow. Of special interest are stochastic flows on 
manifolds, such as the unit circle SI and the 2-dimensional torus T2. These 
arise, for instance, in stability and bifurcation problems. 

Carverhill, Chappel and Elworthy considered the gradient stochastic flow 
on 8 1 described in terms of the Stratonovich stochastic differential equation 

(1.4) dX~'''' = sin (X~'''') 0 dwl + cos (X~'''') 0 dwl 

with initial value :l: E [0,211"), which is driven by two independent standard 
Wiener processes Wi and W 2 • Equation (1.4) has period 211" and can be inter
preted modulo 211", which gives the standard embedding of SI in !R1 . 

Here we shall apply the Milstein scheme to (1.4) for different initial values 
:l: E [0,211"), but always with the same realization of the driving Wiener process 
W = (Wi, W2), taking values modulo 211". Thus, we shall need to approximate 
the multiple Ito integral 1(1,2)' This will provide us, approximately at least, 
with a simulation of the corresponding stochastic flow on the unit circle SI 
identified as the interval [0,211"). We can imagine that a different particle is 
located at each initial point and interpret the resulting flow as the motion over 
time of this ensemble of particles. 

PC-Exercise 13.1.4 Simulate the gradient stochastic flow of N = 10 par
ticles on the unit circle Slover the time interval [0,11 with T = 5 by applying 
the Milstein scheme with step size ~ = 2-7 to the stochastic differential equa
tion (1.4), modulo 211", for the initial values :l: = 211"k/N where Ie = 1, ... , N. 
Plot the linearly interpolated trajectories on the same :l: versus t a:l:es for 0 :5 
:l: < 211" and 0 :5 t :5 T. 

Figure 13.1.4 shows that most neighbouring particles move closer together 
and leave their initial location. Eventually, the particles appear to form a 
cluster which moves like a Brownian motion on the circle. Repeating the cal
culations with a different realization of the driving Wiener process produces 
another cluster, which behaves similarly. 

PC-Exercise 13.1.5 Repeat PC-Exercise 19.1.4 using a different seed for the 
random number generator. 
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H(t ) Figure 13.1.4 Result of PC-Exercise 13.1.4: 

stochastic flow on a circle. 

o 

o 3 4 

The dynamical behaviour observed here is a consequence of the flow's having 
a negative Lyapunov exponent. 

Stochastic Flow on a Torus 
It is interesting to generalize the I-dimensional flow on the circle 3 1 to a 2-
dimensional flow on the torus T2. We recall that a torus is a surface of rev
olution formed by revolving a circle about a non-intersecting axis in ~3 . The 
standard torus T2 can be identified with the rectangle [0, 21r)2 in ~2, with each 
point characterized by two angular coordinates. 

Baxendale proposed a parametrized stochastic flow on T2 in terms of a 
2-dimensional Stratonovich stochastic differential equation 

4 

(1.5) dX~'~ = L IJ (XtO'~) 0 dW/ 
j=l 

with diffusion coefficients 

(1.6) bl (x) = bl (xl ,x2) = ( :~:: ) sin (xl) , 

b2(x) = b2(x l ,x2) = (:~::) cos(x1), 
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Here Wl, W2, W 3 and W4 are independent, I-dimensional standard Wiener 
processes and (l' E [0,71'/2] is a parameter. Baxendale's stochastic flow on T2 
is obtained from (1.5) by interpreting the solution X~,z modulo 271' in both 
components. It can thus be plotted on the rectangle [0,271')2 with the points 
(x, 271') and (271',y) being identified with (x,D) and (O,y), respectively, for all x, 
y in [0,271']. We can visualize it by applying a numerical scheme to (1.5) with 
the same realization of the driving Wiener process W = (Wl, W 2 , W 3 , W4) 
for a grid of initial values in [0,271']2 and plotting the grid of calculated values 
at selected times. 

PC-Exercise 13.1.6 Use the Milstein scheme with step size a = 0.01 and 
the same realization of the driving Wiener process W to simulate 225 trajecto
ries of (1.5) with parameter a = 0.1 starting at the points of a uniform I5x 15 
grid in [0,271']2. Plot the grid of calculated values at time T = 0.5, using line 
segments to join those corresponding to adjacent initial values. Continue the 
calculations for larger values of T. 

Figure 13.1.5 illustrates the fact that the two components of the flow are 
coupled for (l' = 0.1, with the initial grid becoming more and more distorted 
as the flow evolves in time. Eventually, all of the particles will cluster into a 
single moving point. 

PC-Exercise 13.1.7 Repeat PC-Exercise 13.1.6 for parameter a = 1.0 for 
the times T = 0.5, 1.0, 2.5 and 3.0. Plot the points at each of these times in 
[0, 271'F. 

From Figure 13.1.6 we see that after some time the particles cluster along 
strings and form randomly moving substructures. It can be shown that the flow 
here has a negative Lyapunov exponent, which accounts for the contraction 
to form the strings, and a positive Lyapunov exponent which accounts for the 
random motion on the strings. If we repeated the calculations for the uncoupled 
case (l' = 0.0, we would obtain a single randomly moving cluster of particles 
since both of the Lyapunov exponents are now negative. 
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13.2 Testing Parametric Estimators 

We have already considered the problem of estimating parameters in the drift 
coefficient of a stochastic differential equation in Section 4 of Chapter 6. Even 
if the statistical consistency of a proposed estimator has been established theo
retically, it is still of practical interest to test the estimator by direct simulation, 
for instance, because the observations are often only available at discrete times. 
We shall do this here for two specific examples. 

The Ornstein-Uhlenbeck Process 
We shall consider the Ornstein-Uhlenbeck process (see Example 4.2.1) 

(2.1) X t = Xo+a l' X.ds+ W" 

supposing that the true value of a is -1 and that the process starts at Xo = 
o. From (6.4.8) we have the maximum likelihood estimator 

(2.2) 

Usually, only time discrete observations at discretization instants are available, 
so only an approximation of this estimator can be evaluated, the simplest being 

nT-1 /nT-1 
(2.3) a1(T) = E XTa (XTft+1 - X T,,) ~ (XTft)2 .6.n 

where 
.6.n = Tn+1 - Tn· 

We observe that a1 (T) maximizes the discrete time maximum likelihood ratio 
(6.4.6). 

We shall also consider a variation of this approximate estimator. Using the 
Ito formula (3.3.6), we can write the integral in the numerator of (2.2) as 

In addition, we can approximate the integral in the denominator of (2.2) by 

Inserting these into (2.2), we obtain a second approximate estimator 
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Figure 13.1.5 Results of PC-Exercise 13.1.6: flow on a torus 
plotted as a moving grid with ex = 0.1. 
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Figure 13.1.6 Results of PC-Exercise 13.1.7: flow on the torus with a = 1.0. 
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In the following PC-Exercise a simulated trajectory of the Ornstein-Uhlenbeck 
process (2.1) will be used to compare the two estimators al(T) and a2(T) for 
sufficiently large times T. 

PC-Exercise 13.2.1 Simulate a single trajectory of the process (2.1) with 
c:r = -1 and Xo = 0 using the order 2.0 strong Taylor scheme (10.5.,0 with 
equidistant step size ~n = .6. = 2-3 and evaluate the estimators a1 (T) and 
a2(T) with the same step size~. Plot linearly interpolated values for the same 
step sizes of the estimators against T for T E [0,6400]. 

We observe from Figure 13.2.1 that both estimators converge asymptotically 
to the true value c:r = -1 of the parameter, with a2(T) converging more rapidly. 

A Population Growth Model 
Several elementary models of population growth were introduced in Section 2 
of Chapter 6 and in Section 1 of Chapter 7. Here we shall consider a similar 
model described by the Ito equation 

(2.5) 

with initial value Xo = 1.0, where /3 represents the growth rate of the population 
which must often be estimated in practical applications. 

alpha( t> 

1 + alpha1(64D0>:-0.9334 

alpha2(6400):-1.007704 

o 

-1 

++----~----~---r----+---~-----r----+---~~) 
o 800 1600 2400 3200 4000 4800 5600 6400 t 

Figure 13.2.1 Results of PC-Exercise 13.2.1: the estimators (h{T) and &2{T). 
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Figure 13.2.2 Results of PC-Exercise 13.2.2: the estimator flt(T). 

From Heyde, Sj2Irenson and others an estimator for f3 is 

(2.6) /J(T) = loT (1- X.) dX. / loT (1- X.)2 X. ds. 

By the Ito formula (3.3.6), we can write 

441 

Hence, with analogous approximations to those used above, we obtain the 
approximate estimator 

(2.7) 

We shall now test this estimator for the true parameter value f3. 
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PC-Exercise 13.2.2 Use the explicit order 1.0 strong scheme (11.1.3) with 
equidistant step size A = 2-3 to simulate an approximate trajectory of the Ito 
process (2.5) with (J = 2.0 and initial value Xo = 0.5. Evaluate the approximate 
estimator Pl(T) and plot linearly interpolated values of Pl(T) against T for T 
E [0,6400]. 

13.3 Discrete Approximations 
for Markov Chain Filters 

In Section 6 of Chapter 6 we mentioned a nonlinear filter (6.6.10) which allows 
the computation of the conditional probabilities for the states of a finite state 
Markov chain based on noisy observations. In this section we shall apply strong 
approximations of stochastic differential equations to approximate the optimal 
continuous time Markov chain filter, which is the solution of an Ito stochastic 
differential equation. 

Let (0, A, P) be the underlying probability space and suppose that the 
state process e = {et, t E [O,T]} is a continuous time homogeneous Markov 
chain (see (1.6.17)-(1.6.21» on the finite state space S = {at, a2, ... , ad}. Its 
d-dimensional probability vector pet), with components 

for i = 1, ... , d, then satisfies the vector ordinary differential equation 

dp 
dt = Ap, 

where A is the intensity matrix. In addition, suppose that the observation 
process W = {W" t E [0, T]} is the solution of the stochastic equation 

(3.1) Wt = 1t h(e.) ds+ wt, 

where W* = {Wt", t E [0, T]} with WO' = 0 is a Wiener process with respect 
to the probability measure P and is independent of e. Here Yt denotes the 
u-algebra generated by the observations W. for 0 ~ s ~ t ::; T. Our reason 
for denoting the observation process by W rather than by Y, as we did in 
Chapter 6, will be made clear below. While we only consider a I-dimensional 
observation process here, most of the results that we shall present also hold in 
a natural extension to the general multi-dimensional case. 

Our task is to filter as much information about the state process e as we 
can from the observation process W. With this aim we shall evaluate the 
conditional expectation 

for a given function 9 : S -+ !R. 
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We note that W is, generally, not a Wiener process with respect to the 
probability measure P, but is only a "drifted" Wiener process. However, by 
applying ~he Girsanov transformation (4.8.17), we can construct a probability 
measure P, where 

(3.2) with 

such that W is a Wiener process with respect to P. Moreover, e and Ware 
independent under P. This set up allows a much easier analysis of the filtering 
problem. 

We write the un-normalized conditional probability X; for the state at E S 
at time t as the conditional expectation 

with respect to the probability measure P. It follows from the Kallianpur
Striebel formula that the conditional probabilities of et given Yt are 

d 

(3.4) P (e, = ai I y,) = E (I{G;} (e,) I y,) = xl/ t;xf 
for at E Sand t E [O,T), where the d-dimensional process X, = {xl. ... , xl} 
of the un-normalized conditional distribution satisfies the homogeneous linear 
stochastic equation, known as the Zakai equation, 

(3.5) x, = p(o) + l' A X" ds + l' H x" dW" 

for t E [0, T). Here the second integral is an Ito integral and H is the d x 
d diagonal matrix with iith component h(a;). Suppose that we are given a 
function 9 : S - !R such that 

for t E [0, T), which is no restriction since S is finite. Then the optimal least 
squares estimate for g(e,) with respect to the observations W" for 0 :5 s :5 t, 
that is the u-algebra Y" is given by the conditional expectation 

(3.6) 

d 

= Eg (ai:) P (e, = al: I y,) 
i:=1 
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which we shall call the optimal filter. 
To compute the optimal filter (3.6) we need, in general, to know a complete 

sample path of the observation process W on the subinterval [0, t] and to have 
a way of solving the Ito equation (3.5). In practice, however, it is impossible 
to detect W completely on [0, t], so electronic devices are used to obtain in
crements of the integral observations over small time intervals, which might be 
interpreted in the simplest case as the increments of W 

l Tl lTft+l 
dW., ... , dW., ... 

TO Ta 

or, with more sophisticated devices, could also include multiple Ito integrals 
such as 

With such observations of multiple Ito integrals, it is possible to construct a 
strong time discrete approximation y6 with maximum step size Ii of the solution 
X of the stochastic differential equation (3.5). The corresponding approximate 
Markov chain filter for a given function g is then 

(3.7) 

for t E [0, T]. If we use the Euler scheme (10.2.4), for example, it can be shown 
(see Newton (1983» that we have an error of the form 

E (Int(g) - n:(g) I) ~ K 61/ 2 • 

We saw in Chapter 10 that the achievable order of strong convergence for a 
time discrete approximation is restricted if it uses only the increments of the 
Wiener process. For instance, for the noncommutative noise system considered 
in Example 10.3.4 such an approximation can achieve at most the strong order 
i = 0.5, which, as the above estimate shows, can be already obtained using 
the simple Euler scheme. For a higher order of strong convergence we need, 
in general, to use a time discrete approximation which involves higher order 
multiple Ito integrals. We have discussed such schemes extensively in Chapters 
10 and 11. 

Given an equidistant time discretization of the interval [0, T] with step size 
6 = ~ = TIN for some N = 1, 2, ... , we shall define the partition u-algebm 
P}" as the u-algebra generated by the increments 

L~ 1~ 1~ ~Wo = dW" ~Wl = dW., ... , ~WN-l = dW •. 
o ~ (N-1)~ 
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Thus, 1'Jv contains the information about the increments of W for this time 
discretization. Moreover, it is all that is needed to apply the Milstein scheme to 
the linear stochastic differential equation (3.5), since the noise appears here di
agonally and, hence, commutatively (see (10.3.11) and (lO.3.14». The Milstein 
scheme (10.3.12) then simplifies to 

with initial value Yo = X o, where I is the dx d unit matrix. It follows from 
Theorem lO.3.5 that (3.8) converges with strong order 'Y = 1.0. In addition, 
Newton has shown that the anologue for the Milstein scheme of the approximate 
filter (3.7) also converges with this order, that is its error satisfies 

We can obtain higher accuracy if we use the order 1.5 strong Taylor approx
imation (10.4.5), but then we would need the additional integral observations 

l(n+l)A l' 
aZn = I(l,O),nA,(n+1)A = dW,. ds, 

nA nA 

on the intervals rna, (n+l)a] for n = 0, ... , N -1, to ensure strong convergence 
of order 'Y = 1.5. If these were not available, we could instead look for some 
"best" scheme amongst the class of order 1.0 strong schemes. This, as we shall 
see in the next section, yields the order 1.0 asymptotically efficient scheme 

(3.9) Yn+1 = [I+Aa+HaWn+4 (LlWn)2- a ) H2 

+4A2 Ll2 + 4 (AH + H A) LlWn a 

+~H3 (aWn)3 - 3aWn a) 1 Yn 

with Yo = X o, which is due to Newton. We can obtain (3.9) directly from 
the order 1.5 strong Taylor scheme (10.4.5) by replacing all of the multiple Ito 
integral expressions there that are not 1'Jv-measurable by their Ph-conditional 
expectations, that is by replacing each aZn by 

E (I(l,O),nA,(n+l)A 1 Ph ) 

= E (J(1,O),nA,(n+l)A 1 Ph ) = 4 aWn a, 

which follows from (5.2.36) and (5.8.9), where E denotes the expectation with 
respect to the probability measure P under which W is a Wiener process. 
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In the next section we shall see that one cannot obtain better accuracy by 
repeating this procedure for strong Taylor schemes of higher order since the 
leading error coefficient is already contained in the scheme (3.9). However, 
we can obtain better accuracy if we do the conditioning with respect to the 
partition u-algebra p},/ generated by the observations dWo, ... , LlWN- 1 , 

LlZo, ... , dZN_l over the time interval [0,1'). With this information we can 
implement order 1.5 schemes such as the order 1.5 strong Taylor scheme. In 
addition, we could look for the "best" scheme among the class of order 1.5 
schemes, for example by replacing the multiple stochastic integrals in the order 
2.0 strong Taylor scheme (10.5.2) which are not Pi/-measurable by their pJ/
conditional expectations. In particular, we need to replace the Stratonovich 
integrals J(O.l.l), J(1.0.1), J(1.1.0) by 

E (J(O.l,l) I p}/) = 5 2 1 2 1 
12 Ll (LlWn ) + 12 d - 2' dWn LlZn , 

E (J(l,O,l) I pj/) = _2. Ll (Llw' )2 _ 2. d 2 dw' LlZ _ (dZn )2 
12 n 12 + n n Ll 

E (J(1,1,0) I pJ/) 1 2 1 (LlZn )2 
6 Ll (LlWn ) -2'dWn dZn + Ll ' 

respectively, where we have used the relations (5.8.9) to evaluate the expecta
tions. For the linear stochastic differential equation (3.5) we thus obtain the 
order 1.5 asymptotically efficient scheme 

(3.10) Yn +1 = [1 + ALl + H dWn + ~ (dWn )2 H2 

1 
+2'A2 Ll2 + A H LlZn + H A {LlWn Ll- LlZn } 

+.!. H3 (Ll w, )3 + .!. H4 (d W. )4 3! n 4! n 

with Yo = X o and 
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Example 13.3.1 Consider the random telegraphic noise process introduced 
in Example 1.6.8, that is the two state continuous time Markov chain e on the 
state space S = {-I, +1} with intensity matrix 

A = [-0.5 0.5] 
0.5 -0.5 

and initial probability vector p(O) = (0.9,0.1). Suppose that the observation 
process W satisfies the stochastic equation {3.1} with 

We want to determine the actual state of the chain on the basis of these obser
vation.s, that is to compute the conditional probability vector 

p(t) = (p (et = -IIYt) , p (et = +lIYt)) . 

We could say thai et has most likely the value +1 if p (et = +lIYt) ~ 0.5, 
and the value -1 otherwise. To do this in practice, we need to evaluate the 
conditional probability 

which is the optimal filter here. We can use a filter ITt (I{+1}) based on a time 
discrete approximation to obtain a good approximation of IIt (I{+1})' 

PC-Exercise 13.3.2 Suppose in Example 13.3.1 that we have a realization 
of the Markov chain on the interval [0,41 with 

et = { 
+1 
-1 

O~t<~ 

! ~ t ~ 4. 

Compute the approximate filters II: (I{ +1}) for the same realization of the 
Wiener process W· using the Euler, Milstein, order 1.5 strong Taylor and 
order 1.5 asymptotically efficient schemes with equidistant step size 6 = A = 
2-7 • Plot and compare the calculated sample paths. 

We see from Figure 13.3.1 that the Euler scheme succeeds in detecting the 
jump in the unobserved state at time t = 0.5, but also computes meaningless 
negative "probabilities". The printout for the Milstein scheme in Figure 13.3.2 
shows better numerical stability. In Figure 13.3.4, the order 1.5 asymptotically 
efficient scheme appears to detect the unobserved state a little better than the 
order 1.5 strong Taylor scheme in Figure 13.3.3. 
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P(t) 
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Figure 13.3.1 Euler scheme in PC-Exercise 13.3.2 
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0.991075 

0.007862 

O.S 1.5 
a a.5 

Figure 13.3.2 Milstein scheme in PC-Exercise 13.3.2 
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P(t) 

0.989628 
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0.11 

1 
1.11 

a a.:11 3 

Figure 13.3.3 1.5 Taylor scheme in PC-Exercise 13.3.2 

P(t) 

0.9."46 

0.005657 

0.5 1.5 a.s 

Figure 13.3.4 1.5 asympt. eff. scheme in PC-Ex. 13.3.2 
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PC-Exercise 13.3.3 Simulate the observation process of Example 13.3.1 
using a realization of the telegraphic noise process as in PC-Exercise 13.3.2. 
Apply each ofihe four approximate Markov chain filters in PC-Exercise 13.3.2 
to detect the state of the Markov chain at time T = 1 and estimate the frequency 
of failure of the filter. Take equidistant step sizes Ii = 2-3 , 2-4 and 2-5 and 
generate M = 20 batches with N = 100 simulations. Plot the 90%-confidence 
intervals against Ii. 

Example 13.3.1 is rather nice, but in practice the intensity matrix of some 
Markov chain filters yields a stochastic differential equation (3.5) which is stiff. 
In these cases we need to use the implicit schemes from Chapter 12 to ensure 
that the numerical results are reliable. 

EXRIllple 13.3.4 
placed by 

Consider Example 13.3.1 with the intensity matrix re-

[ 
-50.0 

A= 
50.0 

50.0 1 
-50.0 

and the initial probability vector p(O) = (0.9,0.1). Now the state process usually 
jumps very quickly between +1 and -1. 

PC-Exercise 13.3.5 Repeat PC-Exercise 13.3.2 for Example 13.3.4 using 
the explicit and implicit Euler and Milstein schemes, using parameters al = 
a2 = 1.0 in the implicit versions. 

It is apparent from Figure 13.3.5 with the Euler scheme results above and 
the Milstein scheme results below that the implicit filters in Figure 13.3.6 detect 
the state of the system better in some sense than their explicit counterparts. 
The corresponding 90% confidence intervals should also show that the implicit 
filters perform better than their explicit versions for this particular system. 

PC-Exercise 13.3.6 Repeat PC-Exercise 13.3.3 for Example 13.3.4 com
paring the explicit approximate filters with the implicit Markov chain filters 
based on the corresponding explicit and implicit Euler and Milstein schemes. 
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Figure 13.3.5 Explicit Euler and Milstein schemes 
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Figure 13.3.6 Implicit Euler and Milstein schemes 
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13.4 Strong Asymptotically Efficient Schemes 

We saw in the previous section, in the context offiltering problems, that we can 
often achieve only a restricted strong order of convergence for time discretiza
tions because we have access to only the simplest integral observations of the 
driving Wiener process. In such situations we can look for those schemes which 
minimise the leading coefficient in the expansion of the mean-square errors as 
power series in the maximum step size. In this section we shall summarize 
some results on such schemes, due to Newton, which we shall call asymptoti
cally efficient. 

Let X = {X"~ t E [0, T]} be a d-dimensional Ito process satisfying the 
stochastic differential equation 

(4.1) 

for t E [0, T], where W is a I-dimensional Wiener process and, for simplicity, 
suppose that Xo is nonrandom. As before, we take an equidistant time dis
cretization with step size e = .6. = TIN for some N = 1,2, ... and denote by 
PJv the partition u-algebra generated by the increments 

12~ lN~ 
aWl = dW ..... , aWN-I = dW •. 

~ (N-l)a 

For any sequence {Z6, 0 E (0, I)} of PJv-measurable random variables we 
have 

E (Ie-leT (XT - Z6) 12 I pAr ) + 1 
liminf > 1 

6 ..... 0 E (le-Ic T (XT - E (XT IpJv)) 12 IPJv) + 1 -
(4.2) 

for all c E ~d, w.p.1. Thus the conditional expectation E (XT IPAr) is the 
best PJv-measurable least squares approximation of XT. Compare this with 
(2.2.19). This suggests the following concept of efficiency for PJv-measurable 
approximations of the solution of (4.1): 

A time discrete approximation y6 is order 1.0 asymptotically efficient if 

(4.3) 

for all c E ~d, w.p.1. 
We shall now list some schemes which will turn out to be order 1.0 asymp

toticallyefficient. If we replace the .6.Zn = I(l,O) terms in the order 1.5 strong 
Taylor scheme (10.4.5) by the conditional expectations 
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we obtain the scheme 

(4.4) Yn +1 = Yn+a6+b6Wn+4Llb{(6Wn)2-6} 

where, as previously, 

and 

+4 (L1a + LOb) AWnA+4LOaA2 

+4 Ll Lib {~(AWn)2 - 6} AWn 

The scheme (3.9) for the linear stochastic differential equation (3.5) is a spe
cial case of this scheme. Another example is the following Runge-Kutta type 
scheme: 

(4.5) 
1 

= Yn +"2(ao+ad A 

1 + 40 (37bo + 30b2 - 27bg) AWn 

+ 116 (8bo + b1 - 9b2) (3A)I/2 

where 
aO = a (Yn ) , bo = b (Yn ) , 

and 

Finally, using the corrected drift 
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of the Stratonovich stochastic differential equation corresponding to (4.1), we 
also have the following Stratonovich version of a Runge-Kutta type scheme: 

(4.6) 

where 

!!o = .a (Yn) , bo = b(Yn), 

and 

Newton established the following result. 

Theorem. 13.4.1 that a and b are Lipschitz continuous with all derivatives 0/ 
a up to and including order 3 and all derivatives 0/ b up to and including order 
4 o/polynomial growth. Then, each o/the schemes (4.4), (4.5) and (4.6) is an 
order 1.0 asymptotically efficient scheme. 

We refer the reader to Newton (1991) for the proof, which involves stochastic 
Taylor expansions and a detailed analysis of the influence of the leading error 
coefficient. In particular, Newton showed that the PAr-conditional distribution 
of the normalized error 

converges with probability one to a normal distribution with mean zero and 
covariance matrix ~T, with {'11f t , t E [O,T]} being the unique solution of the 
matrix Stratonovich equation 

(4.7) 'lifT = loT [V'.a(Xt)T '11ft + 'llfTV'.a(xt ) 

+ 112 L[g, b] (Xt ) L[g, b] (Xt)T ] dt 

+ loT [V'b(Xt)T '11f t +~TVb(Xt)] odWt , 
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where V is the gradient operator and L[a, b] is the Lie bracket operator of !J. 
and b defined by 

L[g,b](z) == (Vg(z»T b(z) - (Vb(z»T J!(z). 

It can be shown that many order 1.0 strong schemes, such as the Milstein 
scheme, are not order 1.0 asymptotically efficient. These asymptotically effi
cient schemes require more computational effort than, say, the Euler or Milstein 
schemes, but can give better results in certain circumstances. 

Simulation studies comparing the Euler, Milstein and order 1.5 strong Tay
lor schemes with the order 1.0 asymptotically efficient schemes (4.4), (4.5) 
and (4,6) provide an indication of the advantages and disadvantages of such 
schemes. As an example, we shall consider the computation of approximate 
Markov chain filters to detect from noisy observations the current state of the 
continuous time Markov chain e on the state space S given in Example 13.3.1 

PC-Exercise 13.4.2 Repeat PC-Exercise 19.9.9 for Example 19.9.1 'Using 
the order 1.0 asymptotically efficient schemes (.I.4), (.I.5) and (.I.6). 

The dynamics of the different components in the above example all have nearly 
the same time scales, so the explicit schemes presented in this section provide 
satisfactory numerical results. However, they may not be adequate or reliable 
for a stiff stochastic differential equation, such as the one in Example 13.3.4, 
and implicit schemes may have to be used. 



Chapter 14 

Weak Taylor Approximations 

In this chapter we shall use truncated stochastic Taylor expansions as we did in 
Chapter 10, but now to derive time discrete approximations appropriate for the 
weak convergence criterion. We shall call the approximations so obtained weak 
Taylor approximations and shall investigate the corresponding weak Taylor 
schemes. As with strong approximations, the desired order of weak conver
gence also determines the truncation that must be used. However, this will be 
different from the truncation required for strong convergence of the same order, 
in general involving fewer terms. In the final section we shall state and prove a 
convergence theorem for general weak Taylor approximations. Throughout the 
chapter we shall use the notation and abbreviations introduced in Chapter 10. 

14.1 The Euler Scheme 

We have already considered the Euler scheme in varying degrees of detail in 
Chapters 9 and 10. The Euler approximation is the simplest weak Taylor 
approximation and attains the order of weak convergence {J = 1.0 under suitable 
smoothness and growth conditions on the drift and diffusion coefficients, which 
was first shown by Milstein and Talay. 

We recall from (10.2.5) that for the general multi-dimensional case d, m = 
1,2, ... the kth component of the Euler scheme has the form 

m 

(1.1) y'A: - y'A: + ak a + '"' bA:J awj 
n+1 - n L...J ' 

j=l 

with initial value Yo = X o, where 

a = Tn+! - Tn and aw; = wt"+1 - wt ... 

In what follows we shall use the Euler approximation yeS = { yeS(t), t E [0, T]} 
defined in (10.2.16), that is the solution of the Ito equation formed by freezing 
the drift and diffusion coefficients at their values at the beginning of each 
subinterval of the time discretization (T)eS. For notational clarity we shall often 
omit the superscript 6 from y6 in complicated expressions. 

The Euler scheme (1.1) corresponds to the truncated Ito-Taylor expansion 
(5.5.3) which contains only the ordinary time integral and the simple Ito inte
gral. We shall see from a general convergence result for weak Taylor approxima
tions, to be stated in Theorem 14.5.1 of Section 5, that the Euler approximation 
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has order of weak convergence P == 1.0 if, amongst other assumptions, a and b 
are four times continuously differentiable. This means that the Euler scheme 
(1.1) is the order 1.0 weak Taylor approximation. 

Exercise 14.1.1 Show that the I-dimensional Ito process X satisfying 

3 1 1 1 2 
dXt == 2' X t cit + 10 X t dWt + 10 X t dWt 

with the initial value Xo == 0.1, where Wl and W 2 are two independent standard 
Wiener processes, has expectation 

E(XT ) = O.lexp (~T). 

PC-Exercise 14.1.2 For the Ito process X in Exercise 14.1.1 simulate M 
= 20 batches each of N = 100 trajectories of the Euler approximation y6 using 
the Euler scheme (1.1) with equidistant time steps of step size 6 = ~ == 2-2 • 

Determine the 90%-confidence interval for the mean error 

at time T = 1. Repeat the calculations for step sizes 2-3 , 2-4 and 2-5 , and 
plot log2 Ipi versus log2 .!l. 

For weak convergence we only need to approximate the measure induced 
by the Ito process X, so we can replace the Gaussian increments A Wi in (1.1) 
by other random variables .!l Wi with similar moment properties. We can thus 
obtain a simpler scheme by choosing more easily generated noise increments. 
This leads to the simplified weal: Euler scheme 

(1.2) 

where the ~Wi for j = 1, 2, ... , m must be independent AT"+l-measurable 
random variables with moments satisfying the conditions 

for some constant Kj see also (5.12.7). A very simple example of such a .!lWi 
in (1.2) is a two-point distributed random variable with 

Exercise 14.1.3 Verify that the above two-point distributed random vari
ables satisfy the moment conditions required by the simplified weal: Euler sch
eme (1.!!). 
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Figure 14.1.1 Results of PC-Exercise 14.1.2. 
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-3 

PC-Exercise 14.1.4 Repeat PC-Ezercise 1-4.1.e using the simplified weak 
Euler scheme (1.2) with the noise increments generated by two-point distributed 
random variables. Compare the results with those of PC-Exercise 1-4.1.2. 

As mentioned above, we shall be able to conclude from Theorem 14.5.1 that 
the Euler scheme (1.1) converges weakly with order {3 = 1.0 when the drift 
and diffusion coefficients a and b are four times continuously differentiable. 
Many stochastic differential equations occuring in applications, however, do 
not possess this degree of smoothness. Nevertheless, we can show directly that 
the Euler scheme still converges weakly, but with order (3 < 1.0 when the 
coefficients are only Holder continuous. For greater clarity we shall prove this 
here only for a d-dimensional Ito process with m = 1, that is with scalar noise, 
but first we shall need to introduce some additional terminology. The more 
practically minded reader can omit the rest of this section. 

We say that a function /: !Rk -. !R' is Holder continuous with index v E 
(0,1) if there exists a positive constant K such that 

I/(x) - f(y)1 $ K Ix _ ylV 

for all x, y E ~k. For z = (zl,.,., zd) E!Rd and TI = (TIl, . .• , TId) with Tlj = 0, 
1, ... for j = 1, ... , d we shall abbreviate partial differentiation by 
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ak ._ (2-.) k 
t·- at 

for k = 1, 2, ... , and write 
a~ u = a~ u, 

where 1 = 17]1 = 7]1 + ... + 7]d ~ 1 with 

a? u = a2 u = u. 

We shall denote by 1i~) the space of functions u : [0, T] X ~d -+ ~ with partial 
derivatives ar 8; u Holder continuous with index I - [I] in x and index (I - 21' -
s)/2 in t for all 2r + s ~ I, where lEe := (0,1) U (1,2) U (2,3). Here [I] is 
the integer part of I, that is the largest integer that does not exceed I. On 1l~) 
we shall use the norm 

(1.3) lIull~) = E supI8[8;u(t,x)1 
2r+.~[ll t," 

" (Ia; 8; u(t, x) - 8; 8; u(t, xl)l) + L.J sup I 1-[1] 
2r+.=[1] t,.,,,.,1 Ix - x I 

" (Ia; a; u(t, x) - a~ a; u(t' , x)l) 
+ L.J t~~P It _ t' I(I-2r-.)/2 . 

O<I-2r-.<2 ~ ,., 

In addition, we shall denote by 1i(I) the space of all functions u E 1l~) which 
do not depend on the time parameter t, and by II '11(1) its norm, which can be 
obtained from (1.3) by omitting all time dependency. 

We recall that k /\ 1 is the minimum of k and I, and that (x, y) is the 
Euclidean inner product (1.4.36) on ~d. Finally, we define the dx d-matrix 

(104) B(t,x) = b(t,x)b(t,x)T 

for all (t, x) E [0, T] X ~d, where b is the vector diffusion coefficient and bT its 
transpose. 

Theorem 14.1.5 Let X = {Xt, t E [0, T]} be a d-dimensional Ito process 
with scalar noise, so m = 1, for which all moments of X T exist, with 

(1.5) (B(t,x)(,() ~ A 1(12 

for all t E [0, T] and x, ( E ~d and some positive constant A, and 

(1.6) a, B E 1l~) 

for some 1 E C. In addition, suppose that y6 = { Y/, t E [0, Tj} is the Euler 
approximation (10.2.16) corresponding to a time discretization (r)6 and that 
9 : ~d -+ ~ satisfies 

(1.7) 
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Then 

(1.8) 

with 

(1.9) { 
1/2 

X(/) = ~/(3 - I) 

where K does not depend on 6. 

IE (0,1) 

IE(I,2) 

IE (2,3) 
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We note from this theorem, which is due to Mikulevicius and Platen, that 
the Euler approximation converges weakly for some order f3 > ° when a and B 
are Holder continuous. For it to have order f3 = 1.0, we need these coefficients 
to be only a little more than twice continuously differentiable, rather than four 
times as required by Theorem 14.5.1. We note that it is easy to prove (1.9) in 
the case I = 1 with XCI) = ! using the Lipschitz continuity of 9 and Theorem 
10.2.2 under assumptions like those in Theorem 14.1.5. 

In the proof of Theorem 14.1.5 we shall use the following lemma. 

Lemma 14.1.6 Suppose that a and B are bounded. Then for each TJ E (0,1] 
there exists a positive constant K" such that 

(1.10) 

for all s E [0, T] and f E 1i~) with I E ['7,1) U (1,2) U (2,3), where x(l) was 
iefined in (1.9) and nt in (9.1.15). 

Proof Let W E C~(lRd) be a smooth nonnegative function with support in 
{z E lRd : Izl ~ 1 } and 

[ w(z)dz = 1. 
J.~d 

For (, h E (0,1) we define the mollifier function 

wf(z) = (~ W (~) 
and the convolution 

1 I t+h [ fh'f(t, z) = h t lJtd f (u A T, y) wf(x - y) dydu 

for (t, z) E [0, T] X lRd . Then fh,< is continuously differentiable in t and smooth 
in the variable z and satisfies the inequalities 

(1.11 ) 

(1.12) supla!fh,f(t,z)1 < Kllfll~)E(I-i)"O, 
I,Z 
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(1.13) sup IOtfh,l(t,X)1 ::; K IIfll~) h(-1+1/2)AO, 
t," 

for i = 1 and 2, where the positive constant K does not depend on f, I, ( or h. 
For convenience we shall now write Y instead of y6. By the triangle in

equality we have 

< 2 sup If(t, x) - fh'f(t, x)1 
t," 

From the Ito formula (3.3.6), (1.6), (1.12) and (1.13) we obtain 

(1.15) IE (fh'f(S, yes)) - fh" (Tn., Yn.) IAr ... ) I 

< IE( 1:. [Otfh'f(U, Y(u» 

1 d .. 
+'2 L B',] (Tn., Yn.)O:>;iO.,; fh,,(U, Y(u» 

i,j=l 

where the positive constant K does not depend on f, I, ( or h. 
Using (1.11) and (1.15) in (1.14) we thus have 

IE (f(s, yes)) - f(Tn., Yn.) IAr .. JI 

~ K IIfll(l) { inf (h(I/2)1\1 + h( -1+1/2)1\0 6) 
T hE(D,I) 

+ inf ((1/11 + (1-2)/106) }. 
fE(D,l) 

The asserted bound (1.10) then follows when we evaluate these infima for the 
different cases of the index I. 0 
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Proof of Theorem 14.1.5 We recall the operator 

dId 

LO = at + L:at 0"," + '2 L: Bt,IO",,,O,,,1 
t=l t,l=l 

introduced in (10.1.1). It follows from Theorem 5.2 on page 361 of Ladyzhen
skaya, Solonikov and Uraltseva (1968) that there exists a unique solution v E 
1t~+2) of the final value problem 

(1.16) 

(1.17) 

with 

(1.18) 

v(T,x) = g(x) 

From (1.16) and the Ito formula (3.3.6) we have 

(1.19) E(v(O,Xo» = E(v(T,XT» = E(9(XT». 

Thus, from (1.16), (1.17), (1.19) and the Ito formula (3.3.6) we obtain 

IE (g (XT» - E (g (Y(T)))I 

= IE(v(T,Y(T»)-E(v(O,Xo»1 

= IE (v (T, YeT»~) - E (v (0, yo» I 

= IE(lT [~t Bt,I(Tn.,Yn.)O",,,O,,,lv(s,Y(s» 
o t,1=1 

d 

+ L:al: (Tn., Yn.) a",,, V (s, Y(s» 
1:=1 

+Ot v (s, Y(s» - LOv (s, Y(s» 1 dS) I 

< J.T IECt, {B'" (Tn .. Yn.) - B',' (Tn.,Y(.))} a •• a., .(s, Y(s))) Ids 
+ lT /E(t. [at (Tn., Yn.) - al: (Tn., Yes»~] 0"," v (s, Y(s») / ds 

< lT E({ t /E(BI:" (Tn.,Yn.) 0",,,0,,,1 V(rn., Yn.) 
° 1:,1=1 
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_Bk•1 (Tn., Y(s» 8",,,8,,,1 V (s, Y(s» IA ..... ) I 

+IE (B"'" (Tn., Yn.)[8",,,8,,,1 V (Tn., Yn.) - 8",,,8,,,1 V (S, YeS))] IA ..... ) I} ) ds 

+ lT t.E( {lE(ak (Tn., Yn.) 8",,, v(s, Yn.) 

-a'" (Tn., yeS»~ 8",,, V (s, yes»~ IA ..... ) I 
+ IE (ak (Tn., YnJ [8",,, V (Tn., Yn.) - 8",,, V (8, yes))] IA ..... ) I} ) ds. 

Now, the functions Bk.18",,, 8",1 V, 8",,,8,,,1 V, ak 8",,, V and 8z " V belong to the space 
1f.~), so we can use (1.6) and Lemma 14.1.6 to obtain the desired inequality 
(1.8). 0 

14.2 The Order 2.0 Weak Taylor Scheme 

As with strongly convergent schemes, we can derive more accurate weak Taylor 
schemes by including further multiple stochastic integrals from the stochastic 
Taylor expansion. However, now the objective is to obtain more information 
about the probability measure of the underlying Ito process, rather than about 
its sample paths. Most of the schemes in this section are due originally to 
either Milstein or Talay. 

Here we shall consider the weak Taylor scheme, which will be of weak order 
f3 = 2.0, obtained by adding all of the double stochastic integrals from the Ito
Taylor expansion (5.5.3) to the Euler scheme. In the autonomous I-dimensional 
case d = m = 1 we have the order 2.0 weak Taylor scheme 

(2.1) Yn+l = Yn + a~+ b~W + ~ bb' {(~W)2 -~} 

+a'b~Z + ~ (aa' + ~ a"b2) ~2 

+ (ab' + ~b"b2) {~W ~- ~Z}. 

Once again ~Z represents the double Ito integral 1(1.0). We can use (10.4.3) 
to generate the pair of correlated Gaussian random variables ~W and ~Z. 

We have much more freedom with the weak convergence criterion than with 
the strong convergence criterion as to how we can generate the noise increments 
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in a time discretization scheme. For instance, we can avoid the second random 
variable tJ.Z in the preceding scheme (2.1) and only use a single random variable 
tJ. W with analogous moment properties to tJ. W with tJ.Z replaced by ! tJ. W tJ.. 
In the above autonomous I-dimensional case we have the simplified order 2.0 
weak Taylor scheme 

(2.2) Yn +1 = Yn+atJ.+btJ.W+%W{ (tJ.Wf -tJ.} 

+% (a'b + ab' + ~ b"b2) tJ.W tJ. 

+~ (a a' + ~ a"b2) tJ.2, 

where tJ.W must be AT .. +1-measurable and satisfy the moment conditions 

(2.3) IE (tJ.W) I + IE (( tJ.Wr) I + IE ( (tJ.Wf) I 

+ IE ( (tJ.wf) - LlI + IE ( (LlWr) - 3Ll21 ~ f{ tJ.3 

for some constant K. These conditions will follow from condition (5.12) in the 
general convergence result Theorem 14.5.2. Also see (5.12.9). We remark that 
the ATn+1-measurability holds automatically if we choose the Ll W at each step 
to be independent. 

An N(O; tJ.) Gaussian random variable certainly satisfies the moment con
ditions (2.3) and so does a three-point distributed random variable tJ.W with 

(2.4) 

Exercise 14.2.1 Show that a three-point distributed random variable with 
(2.4) satisfies the moment conditions (2.3). 

PC-Exercise 14.2.2 Consider the Ito process X from (9.4.2) satisfying the 
linear stochastic differential equation 

dXt = aXt dt + bXt dW, 

on the time interval [0, TJ, where T = I, with initial value Xo = 0.1 and a = 
1.5, b = 0.01. Generate M = 20 batches each of N = 100 trajectories of the 
order 2.0 weak Taylor approximation yeS using the order 2.0 weak Taylor scheme 
(2.1) with equidistant time steps 6 = tJ. = 2-2. Determine the 90%-confidence 
interval for the mean error 
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Repeat the calculations for step sizes 2-3 , 2-4 and 2- 5 , and plot log2 Ipl against 
log2 A. 

Figure 14.2.1 indicates a higher than linear dependence of the mean error 
on the step size A for the order 2.0 weak Taylor scheme (2.1). 

PC-Exercise 14.2.3 Repeat PC-Exercise 14.2.2 for the simplified order 2.0 
weak Taylor scheme (2.2) with noise increments generated by the three-point 
distributed random variable (2.4). Compare the results with those of PC
Exercise 14.2.2. 

In the multi-dimensional case d = 1, 2, ... with m = 1, the kth component 
of the order 2.0 weak Taylor scheme with scalar noise is given by 

(2.5) Y:+ 1 = Y:+akA+bkAW+~Llbk {(AW}2_A} 

+.! LOak A2 + LObk {AW A - AZ} 
2 

where the operators LO and L1 were defined in (1O.1.1) and (10.1.3); see also 
(5.3.1) and (5.3.2). 

In the general multi-dimensional case d, m = 1, 2, ... the kth component 
of the order 2.0 weak Taylor scheme takes the form 

1 
(2.6) Y:+1 = Y: + ak A +"2 LOak A2 

m 

+E 
Here we have multiple Ito integrals involving different components of the 
Wiener process. As we saw in Chapter 10, these are generally not easy to 
generate. Consequently (2.6) is more of theoretical interest than of practical 
use. However, for weak convergence we can substitute simpler random variables 
for the multiple Ito integrals. In this way we obtain from (2.6) the following 
simplified order 2.0 weak Taylor scheme with kth component 

1 
(2.7) Y:+ 1 = Y: + ak A + "2 LOak A2 

+ t {bkJ + ~ A (Lob/:,i + Liak)} AWi 
J=l 
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Figure 14.2.1 Results of PC-Exercise 14.2.2. 

-2 
LdU,.lta) 

467 

Here the .£lWi for i = 1, 2, ... , m are independent random variables satis
fying the moment conditions (2.3) and the V;bi2 are independent two-point 
distributed random variables with 

(2.8) 

for h = 1, ... , i1 - 1, 

(2.9) 

and 

(2.10) 

1 
P (V;l,h = ±.£l) = "2 

for h = it + 1, ... , m and it = 1, ... , m. We can obviously choose the awi 
in (2.7) as in (2.4). See also (5.12.9) regarding the choice of random variables. 

The next theorem provides conditions under which the above schemes con
verge weakly with order f3 = 2.0. 

Theorem 14.2.4 Suppose in the autonomous case that Yo and Xo have the 
same probability law with all moments finite. In addition, suppose that a and b 
are six times continuously differentiable with all of these derivatives uniformly 
bounded and that the products bk,ib'J for i = 1, ... , m and k, I = I, ... , d 
have a linear growth bound. Then the schemes (2.1), (2.2), (2.5), (2.6) and 
(2.7) all converge weakly with order f3 = 2.0. 
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The proof of a similar theorem was first given by Talay. The proof of Theorem 
14.2.4 will also follow from Theorem 14.5.2, which we shall state and prove in 
Section 5. We shall see in Theorem 14.5.2 that the assumptions here can be 
considerably weakened. By taking the time t to be the first component of the 
Ito process the theorem also covers the nonautonomous case. 

14.3 The Order 3.0 Weak Taylor Scheme 

We shall now consider weak Taylor schemes of order 3.0. These generally 
contain a large number of terms, because, as we shall see from Theorem 14.5.2, 
we need to include all of the multiple Ito integrals of multiplicity three from 
the Ito-Taylor expansion in order to ensure that the scheme converges weakly 
with order 3.0. We shall see later that such higher order weak schemes have 
a crucial theoretical importance and allow the construction of much simpler 
schemes with the same weak order of convergence. 

In the general multi-dimensional case d, m = 1, 2, ... the kth component 
of the order 3.0 weak Taylor scheme, which is due to Platen, takes the form 

m m 

(3.1) Y': + ak ~ + Ebk,j ~Wi + LLiak I(j,o) 

;=1 i=O 

m m m 

+ E L Litbk,h JU1,h) + L Li1 Lha lc [(it,hoO) 
it=Oh=1 i1,h=0 

m m 

+ '" '" Lit Lh blc ,j, I(. . .). L.J L.J ]1,]2,]3 

it,i2=Oj,=l 

As we have already mentioned, this scheme is mainly of theoretical interest be
cause the multiple integrals of higher multiplicity are difficult to generate and, 
in addition, the corresponding coefficient functions become rather complicated. 
To obtain more usable schemes we shall look at some special cases. 

In the scalar case d = 1 with scalar noise m = 1 we propose the following 
simplified order 3.0 weak Taylor scheme 

(3.2) Yn+a~+b~W+~Llb {(~Wr -~} 

+Lla~Z + ~LOa~2 + LOb {~W ~ - ~Z} 

+! (LO Lab + LO L1a + L1 LOa) ~W ~2 
6 

+~ (LIL1a+LILob+LoL1b) {(~Wr -~} ~ 

+~LO LOa~3 + ~Ll LIb { (~Wr - 3~} ~W, 
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where ~ W and ~Z are correlated Gaussian random variables with 

~W '" N(O; ~), 

and covariance 

Simpler random variables than these Gausssian ones could also be used for the 
noise increments, provided they satisfy the moment properties which will follow 
from condition (5.12) of Theorem 14.5.2. See (5.12.10) too. 

PC-Exercise 14.3.1 Repeat PC-Exercise 1,1.2.2 with a = -5.0 and b = 0.1 
for the simplified order 3.0 weak Taylor scheme (3.2). 

Figure 14.3.1 suggests an approximately cubic dependence of the mean error 
on the step size for the scheme (3.2). 

Another special case of practical importance involves additive noise (10.2.7). 
For the general multi-dimensional case d, m = 1, 2, ... an order 3.0 weak Taylor 
scheme for additive noise has componentwise form 

(3.3) 

LdU' .. e) 

-11 

-12 

-13 

-14 

-16 

-11 

-18 

-19 

-20 

-21 

~--------------+-------------~--------------~:) -5 -4 -3 

Figure 14.3.1 Results of PC-Exercise 14.3.1. 

-2 

Ld(Delt.) 
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+ t [Li a" LlZj + LOb"J {LlWi Ll- LlZi} 

+~ (LOLob"J + LOLi a" + Li LOa") LlWi Ll2] 

+~ . t Lil Lha" {LlWit LlWh - I{it=i2} .6.} Ll. 
11.12=1 

Here the LlWi and LlZi for each j = 1, ... , m are correlated Gaussian random 
variables as in the previous scheme (3.2), but are independent for different j. 

Conditions under which the above schemes converge weakly with order f3 
= 3.0 will be provided by Theorem 14.5.2. 

14.4 The Order 4.0 Weak Taylor Scheme 

To construct the order 4.0 weak Taylor scheme we need also to include all of 
the fourth order multiple Ito integrals from the Ito-Taylor expansion (5.5.3). 
Since many terms are involved, we shall write a" as b"·o in order to simplify 
the resulting formulae. Then, in the general multi-dimensional case d, m = 1, 
2, ... we can write the kth component of the order 4.0 weak Taylor scheme as 

4 m 

(4.1) Y:+1 = Y: + L: L: Lil .. ·Lh-l b"JI IOl •... J!)· 
1=1 ;. •...• il=O 

In practice the order 4.0 weak Taylor scheme, which is also due to Platen, seems 
to be useful only in special cases, for example for scalar stochastic differential 
equations with additive noise, that is with b(t,z) == bet) for all (t,z). 

For the I-dimensional case d = m = 1 with additive noise, we obtain from 
(4.1) the following simplified order 4.0 weak Taylor scheme for additive noise: 

(4.2) Yn + aLl + bLlW + 4 LOaLl2 + L 1aLlZ 

+LOb {.6.W Ll- .6.Z} 

+ :! {La Lab + L 0 L 1 a + L 1 L Oa} ..1 W..12 

+L1 L1a { 2.6.W .6.Z - ~ (.6.Wf .6. - ~ Ll2 } 

1 1 +- LO LOa.6.3 + - L O LO LOa.6.4 
3! 4! 
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+ :!{LILOLOa + LOLl LOa + LOLoLla +LoLOLOb}.6.W ~3 

+ ~! {LILILoa+LoLIL1a+LILOL1a} {(.6.Wf -.6.} ~2 

+ ~! L 1 L 1 L 1 a ~ W { (~W r -3~} .6.. 

Here ~ W and ~Z are correlated Gaussian random variables with ~ W 
N(O; .6.), ~Z --- N(O; i~3) and E(~W ~Z) = l~2, which we have already 
used several times. See (10.4.3) for the generation of such random variables. 

The weak convergence with order j3 = 4.0 of the above scheme will follow 
under suitable conditions from Theorem 14.5.2. 

PC-Exercise 14.4.1 Consider the Ito process X satisfying the linear 
stochastic differential equation with additive noise 

dXt = aXt dt + bdWt 

on the time interval [0, T], where T = 1.0, with initial value X o = 0.1, a = 2.0 
and b = 0.01. Simulate M = 20 batches each with N = 100 trajectories of the 
order 4.0 weak Taylor scheme (4.2) for equidistant step size 6 = ~ = 2° and 
evaluate the 90%-confidence interval for the mean error I' at time T. Repeat 
the calculations for the step sizes 2-1 and 2-2 and plot log211'1 versus log2 ~. 

LdU1ue) 
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Figure 14.4.1 Results of PC-Exercise 14.4.1. LdCDelta) 
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14.5 General Weak Taylor Approximations 

In the preceding sections we have considered weak Taylor approximations of 
up to order 13 = 4.0. Higher order schemes can be obtained by adding in an 
appropriate way more terms from the Ito-Taylor expansion. We shall show here 
that a weak Taylor scheme of order fJ = 1.0, 2.0, ... needs all of the multiple Ito 
integrals from the Ito-Taylor expansion of up to and including order 13. This 
rule leads to weak Taylor schemes differing from the strong Taylor schemes 
(10.6.3) of the corresponding order. These will involve an index set rp, to be 
defined in (5.3), rather than the set A-y defined by (10.6.2). This underlines the 
clear difference between weak and strong convergences in stochastic numerical 
analysis, as well as in other branches of stochastics. 

In what follows we shall use the notation from Chapter 5 where we formu
lated the Ito-Taylor expansion. In particular, for the function f(t,x) == x we 
have the Ito coefficient functions (5.3.3) 

(5.1) 

for all (t, x) E !Rx!Rd and all multi-indices a = (h, ... ,il) EM, where we have 
used bO = a and the differential operators [) for i = 0, 1, ... , m are given by 
(5.3.1) and (5.3.2). We note that the fa do not depend on t in the autonomous 
case. In addition, for a multi-index a = (h, ... ,ij) E M we define the multiple 
Ito integral 

(5.2) Ia ,T .. ,T"+l = 1T"+116
' ••• 162 dw1: ... dw1::::dw1,', 

T. T. T. 

where we set dW~ = ds. 
We shall see that a weak Taylor scheme of order 13 = 1.0, 2.0, 3.0, ... is 

associated with the set of multi-indices 

(5.3) rp = {a EM: lea) ::=::; f3}, 

where lea) denotes the number of components of the multi-index a. Obviously, 
r p contains all multi-indices with fJ or fewer components. We recall from 
Exercise 5.4.3 that the sets rp are hierarchical sets for all 13 = 1.0,2.0,3.0, .... 
We can thus use them to form Ito-Taylor expansions. 

Let (Th be a time discretization as defined in (9.5.3). In the general multi
dimensional case d, m = 1, 2, ... for fJ = 1.0, 2.0, 3.0, ... we define the weak 
Taylor scheme of order fJ by the vector equation 

(5.4) Yn+1 = Yn + L fa (Tn, Yn ) IOI,T .. ,T,,+t 
aEI',,\{v} 

L fa (Tn' Yn ) Ia,T",T"+l 
aEI'" 
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with coefficient functions fOt corresponding to f(t,z) == z. Here Yo = Xo is 
assumed to be a nonrandom constant. It is easy to see that for f3 = 1.0, 2.0, 
3.0 and 4.0 the schemes given by (5.4) coincide with the weak Taylor schemes 
presented earlier in the chapter. 

We recall that C~ (lRd , lR) denotes the space of I times continuously differ
entiable functions 9 : lRd -+ lR for which 9 and all of its partial derivatives of 
orders up to and including I have polynomial growth; see Theorem 4.8.6 and 
the paragraph preceding it. We state the following theorem in terms of an au
tonomous Ito diffusion process X with drift a = a(z) and diffusion coefficient 
b = b(z). It goes back to Talay in the case f3 = 2.0 and was proved by Platen 
in the general case f3 ~ 1.0. 

Theorem 14.5.1 In the autonomous case let y6 be a weak Taylor approxi
mation of order f3 for some f3 = 1.0, 2.0, ... corresponding to a time discretiza
tion (r).s. Suppose that a and b are Lipschitz continuous with components a1:, 
b1:,j E C~(fJ+l) (lRd , lR) for all k = 1, .. "' d and j = 0, I, ... , m, and that the 
fa corresponding to f(t, z) == z satisfy the linear growth bound 

(5.5) Ifa(t, z)l ~ K (1 + Izl), 

where K < 00, for all z E lRd , t E [0,11 and ct E r fJ. Then for each 9 E 
C~(.B+l)(lRd,lR) there exists a constant Gg , which does not depend on 6, such 
that 

(5.6) 

that is y6 converges weakly with order f3 to X at time T as 6 -+ O. 

The assertion of Theorem 14.5.1 will follow from the more general result in 
Theorem 14.5.2 and from Exercise 14.5.3, where it is to be shown that the 
above weak Taylor approximations satisfy the conditional moment and regu
larity assumptions of this theorem. 

We note that Theorem 14.5.1 also applies to the nonautonomous case if we 
take the time t as the first component of the Ito process X. However, it imposes 
stronger than necessary conditions on the derivatives of the coefficients a and b 
wit.h respect to the time variable t, since the same result can be proved directly 
using regularity conditions of lower order on the time derivatives than on state 
variable derivatives. 

If we interpolate the weak Taylor approximations in the same way as we 
did for the strong Taylor approximations in (10.6.4), then we can show that 
such an interpolated weak Taylor approximation of order f3 converges weakly 
on the whole interval [0,11 with order f3 as 6 -+ O. This means that there is a 
constant Gg independent of 6 such that (5.6) holds not only for t = T, but for 
all t E [0,11. 

We emphasize the important fact that the order of weak convergence does 
not depend on the specific choice of the test function g. All we need is that 9 
is sufficiently smooth and of polynomial growth. The convergence of the first, 
second and higher order moments of the approximations y~ to those of XT is 
automatically covered with the obvious choices of g. 
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Now we shall state a more general result on weak convergence for a wide 
class of time discrete approximations, which includes time discrete Markov 
chains on a discrete state space as well as weak Taylor approximations. For 
simplicity we shall also do this for the autonomous case. 

Theorem 14.5.2 Let y6 be a time discrete approximation of an au
tonomous Ito process X corresponding to a time discretization (r).s, such that 
all moments of the initial value Xo exist, that is 

(5.7) E (IXoO < 00 

for i = 1, 2, ... , and such that Yet converges weakly with order f3 to Xo as 
b - 0 for some fixed f3 = 1.0, 2.0, .... Suppose that the drift and diffusion 
coefficients are Lipschitz continuous with components 

(5.8) 

for all k = 1, ... , d and j = 1, ... , m and satisfy the linear growth bound 

(5.9) la(x)1 + Ib(x)1 ~ J( (1 + lxI), 

where J( < 00, for all x E ~d. In addition, suppose that for each P = 1, 2, ... 
there exist constants J( < 00 and r E {I, 2, ... }, which do not depend on 6, 
such that for each q E {I, ... , p} 

(5.10) 

and 

(5.11) 

for n = 0, 1, ... , nT - 1, and such that 

(5.12) 

for all n = 0, 1, ... , nT - 1 and (Pl, ... , PI) E {I, ... , d}', where I = 1, ... , 
2f3 + 1 and y6,Ph denotes the Ph th component of y6. Then the time discrete 
approximation y6 converges weakly with order f3 as b - 0 to the Ito process X 
at time T. 

We shall prove Theorem 14.5.2 at the end of the section. The most impor
tant assumption of the theorem is condition (5.12) which provides a rule on 
how to construct a time discrete approximation y6 of weak order f3. In it the 
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conditional moments of the increments of yeS are compared with those of the 
corresponding weak Taylor approximation. We shall see in the proof that they 
behave approximately like those of the Ito process itself. The initial moment 
condition (5.7) together with the Lipschitz continuity of the coefficients a and 
b ensure the existence of moments of all orders of the Ito process X. From 
condition (5.8) we see that more smoothness of a and b is needed for higher 
order convergence. Condition (5.9) ensures the regularity of the corresponding 
weak Taylor approximation. It holds if, for instance, the coefficients a and b 
and all of their derivatives are bounded. Conditions (5.10) and (5.11) require 
the regularity of the time discretization itself. In particular, (5.10) is necessary 
to make the weak convergence criterion meaningful. 

Summarizing the above, we can obtain a higher order weak approximation 
yeS if we construct it in such a way that the conditional moments of its in
crements approximate those of the Ito process X sufficiently closely and if we 
have sufficient smoothness of the drift and diffusion coefficients, together with 
some regularity of the approximation itself. 

Exercise 14.5.3 Show that the assumptions of Theorem 14.5.1 imply those 
of Theorem 14.5.2. 

Exercise 14.5.4 Check whether or not condition (5.12) is satisfied by the 
simplified weak Taylor schemes given in (2.2), (2.7), (3.2) and (3.3); see 
(5.12.8) - (5.12.10). 

In the special case of a nonrandom time discretization (r)eS it can be easily 
seen from the proof of Theorem 14.5.2 to follow that for each 9 E C;,(P+l) (1Rd, 1R) 
there exists a finite constant Cg not depending on 6 such that 

(5.13) 

In this sense, as we mentioned already in the first theorem, we have uniform 
weak convergence of order f3 on the interval [0,1']. 

We now list some useful results in preparation for the proof of Theorem 
14.5.2. We shall make extensive use of the diffusion process 

(5.14) X;·y = Y + it a (X~·y) du + it b (X~·y) dWu , 

for s :5 t :5 T, which starts at y E 1Rd at time s E [0, T] and has the same 
drift and diffusion coefficients as the Ito process X = {X,; 0:5 t :5 T} which 
we are approximating. As in (4.8.11), for a given function 9 E C;,(P+I)(!Rd ,1R) 
we define the functional 

(5.15) u(s, y) = E (g (X;:Y» 

for (s,y) E [O,T]x!Rd• Hence we have 

(5.16) 
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From Theorem 4.8.6 we know that u is the unique solution of the Kolmogorov 
backward equation 

(5.17) 

for (8, y) E (0, T) X lRd with the final time condition 

u(T, y) = g(y) 

for all y E lRd • Moreover, we have 

(5.18) 

for each y E lRd • By the Ito formula (3.3.6) it then follows that 

(5.19) 

for all n = 1, ... , nT and y E ~d. As with the estimate (4.5.13) it can be shown 
that for each p = 1,2, ... there exists a finite constant I\ such that 

(5.20) 

for all q = 1, ... , p, all n = 1, ... , nT and all y E ~d. 
We shall write 

(5.21 ) 1J~,fJ = L Ia[!a(Tn-l,y)k_l,T,., 
aEPj9 

for each y E ~d and n = 1, ... , nT, and, as in Section 11 of Chapter 5, 

I 

(5.22) FP(y) = II yPh 
h=l 

for all y = (yI, ... , yd) E lRd and p = (Pl, ... , PI) E P" where 

P, = {I, ... ,d}' 

for I = 1, 2, .... Also, in what follows the I\ and r E { 1, 2, ... } will denote 
constants, which will generally take different values in the different places that 
they appear. 

According to Lemma 5.11.7 there then exist finite constants [{ and r E {I, 
2, ... } such that 

(5.23) IE (Fp (1J:~_1 - YL1) - Fp (X;:_1,Y:_ 1 - YL1) IAT"_l) I 

~[{ (1+/YLl) 6fJ(Tn-Tn_t} 



14.5. GENERAL WEAK TAYLOR APPROXIMATIONS 477 

for each n = 1, ... , nT and p E P, for I = 1, ... , 2(fj + 1). In addition, by 
Lemma 5.11.4 for each p = 1, 2, ... there exist finite constants K and r E {I, 
2, ... } such that 

for each q = 1, ... , p, n = 1, ... , nT and pE P, for I = 1, ... , 2(fj+ 1). 

Proof of Theorem 14.5.2 We need to estimate the difference 

(5.25) 

In view of (5.16) and the final time condition for the Kolmogorov backward 
equation (5.17) we have 

Since Yo6 converges weakly to Xo with order fj as 6 -+ 0 we obtain 

We shall write henceforth Y for y6 except where we wish to emphasize the role 
of 6. From the relation (5.19) we have 

(5.26) H ::; IE(~ [ {U(Tn, Yn) - U (Tn-I, Yn-l)} 

where 

- {U (Tn,X;:-l,Y .. - 1 ) - U(Tn-l, Yn-l)} l) I + K 6P 

< HI + H2 +K6P 

(5.27) Hl = IE(~ ( {U (Tn, Yn) - U(Tn-l, Yn- l )} 

-{U(Tn'77~~-l) -U(Tn-I,Yn-d} ))1 
and 

(5.28) H2 = IE(~({U(Tn'77~~p-l)-U(Tn,Yn_I)} 

- {U (Tn,X;:-l,Y,,-l) - U(Tn' Yn-d} )) I. 
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Using the smoothness of u expressed in (5.18) we can expand the increments 
of u in HI by the deterministic Taylor formula, obtaining 

I ( nT {[ 2P+l 1 
(5.29) HI = E E Eli E a[U(Tn' Yn-dFp(Yn - Yn - 1) 

n=1 '=1 pEP, 

+Rn,p (Yn ) ] 

Here the remainder terms have the form 

Rn,p(Z) 

(5.30) 

for Z = Yn and "';':1'-1, respectively, where Op,n(Z) is a dx d diagonal matrix 
with 

(5.31) O;:!(Z) E (0,1) 

for k = 1, ... , d. 
From (5.29) we have 

( nT {2p+l 1 
HI < EEL Ii L IO:U(Tn,Yn-dl 

n=1 1=1 pEP, 

(5.32) x IE (Fp (Yn - Yn-d - Fp (",:-:;1 - Yn- 1) IAT .. -l) I 
+E (IRn,p (Yn)IIA T,,_.) + E (lRn,p ("':''P- 1

) IIA T .. - 1 ) }) 

and from (5.30), (5.18), (5.31) and (5.11) 

(5.33) E (IRn,p (Yn)IIAT .. _l) 

::; K E (E (la[u (Tn, Yn-l + Op,n(Yn) (Yn - Yn_l»12 IAT .. _l)) 1/2 

pEP~(JI+l) 

x (E (IFp(Yn _ Yn_l)12IAT,,_1)) 1/2 

::; K (E (1 + IYnl2r + IYn - Yn_112r IAT"_l)) 1/2 
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x (E (IYn - Yn_d4(P+l) IAT.-l) f/2 
~ K (1 + max IYk12r) 6P (Tn - Tn-I) 

0~k~n-1 
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for n = 1, ... , nT. In a similar way from (5.30), (5.21), (5.8) and the moment 
properties of multiple Ito integrals (see Lemma 5.7.5), we find that 

(5.34) E (!Rn,p (1J~p-l) !!ATn_l) ~ K (1 + IYn_d2r) 61t (Tn - Tn-I) 

for n = 1, ... , ~. Hence, applying (5.18), (5.23), (5.21), (5.12), (5.33), (5.34), 
(5.11) and (5.10) to (5.32), we obtain the estimate 

(5.35) E (I:K (1 + max IYkI2r)) 6fJ (Tn - Tn-d 
0<k<n-1 

n=1 - -

< K 6P (1 + E (1Y012r)) 

< K6P. 

Here the constant K differs from line to line, as indicated earlier. 
We can derive an estimate for H2 in an analogous way, but now using the 

inequality (5.23) instead of (5.12). To begin we have 

( 
nT {2fJ +1 1 _ 

(5.36) H2 ~ E :L :L iT :L I~U(Tn' Yn- 1)1 
n=1 1=1 PEP. 

x IE (Fp ('1;':P- 1 - Yn - 1) - Fp (X::-l,y .. -l - Yn - 1) IAT"_l) I 
+E (IRn,p (1J~':P-l) IIATft-l) + E (I~,p (X;:-l,Y"-l) IIATn-J }) 

~ E(~ {K (1 + IYn_112r) 61t (Tn - Tn-d 

+E (IRn,p (X;:-l,Y,.-l) IIAr,._J }) 

for n = 1, ... , nT. We can estimate the remainder in (5.36) as in (5.34), but 
now using (5.20). Hence we obtain 
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Then, from (5.10) and the fact that Y; has finite moments we have 

(5.37) 

Combining (5.25), (5.26), (5.35) and (5.37) we have the desired result that 

where the constant Cg depends on the particular function g that we have been 
using. This completes the proof of Theorem 14.5.2. 0 

14.6 Leading Error Coefficients 

In Theorem 14.5.2 we described conditions under which time discrete approx
imations converge weakly with a given order. For theoretical, and sometimes 
practical, purposes it is helpful to know at least the structure of the leading 
coefficients of the error expansion with respect to powers of the step size D. Us
ing the same notation as in the previous section we shall formulate a theorem 
here which provides a characterization of these leading error coefficients. This 
theorem was first proved by Talay and Thbaro for the cases {3 = l.0 and 2.0. 

We shall fix {3 E {l.0, 2.0, ... } and choose an order {3 weak approximation 
y6 of an autonomous Ito processs X = {X,; t E [0,11}, with Yet = Xo, corre
sponding to an equidistant time discretization (T)6 of [0,11 with step size 6. In 
addition, we shall suppose that the following are satisfied: the conditions (5.7) 
for the moments of Xo; the linear growth bound (5.9) for the Lipschitz con
tinuous drift and diffusion coefficients; conditions (5.10) and (5.11) concerning 
the regularity of y6; and 

(6.1) 

for each k = 1, ... , d and j = 1, ... , m. Finally, we shall assume for all n = 0, 
1, ... , nT -1, I = 1, ... , 4{3+ 1 and p= (Pl, ... , p,) E P, := {I, ... ,d}' that 
the partial derivative of u (see (14.5.15» 

8' ~ 
8yPl • .. 8yP' u(·,y) = a:u(.,y) E Cp([O,11,~) 

for all y E ~d and that 
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I A,_) -1' ">,f (Y:) 0'+'1 
< K (1 + max 1y;612r ) 62/1+1 
- O$k$n k , 

for certain functions c-y,p E Cp'(~d,~), "Y = {3, ... , 2{3-1, where y6.Ph denotes 
the Ph th component of y6. 

Theorem 14.6.1 Under the above assumptions, for an order {3 weak ap-
proximation y6 the error expansion of the functional satisfies 

2/1-1 

(6.3) E (g (y6(T»)) - E (g (XT» - E ..pg.-y(T) cP ~ Cg 62/3, 

-y=/3 

where the leading error coefficients ..pg.-y(T) for "y = (3, ... , 2{3 - 1 are well 
defined real numbers which, like the constant Cg, do not depend on 6. 

The main assertion of the theorem is the fact that there exist leading error 
coefficients at least up to the power 2{3 - 1 of 6 which do not depend on 6. This 
will be used in Section 3 of Chapter 15 to construct extrapolation methods. 

In the I-dimensional case d = m = 1 where y6 is the Euler approximation 
(14.1.1) the leading error coefficient is 

(6.4) 

where 

(6.5) Cl.(l) -~ { aa' + ~b2al1} 

Cl.(1.1) = -4 {2abb' + b2 (2a' + (b,)2 + bbll)} 

Cl.(l,I.I) 3b2 bb' 

CI,(I.I.I.I) 0, CI.(I.I.I.I.1) = 0. 

Fortunately, the explicit form of the leading error coefficients is not important 
in many applications. 

For the proof of Theorem 14.6.1 we shall need the following lemma. 

Lemma 14.6.2 Suppose that the above asumptions hold and let {3 E 
{I, 2, ... J, 6 E (0,1) and n = 1, ... , nT be given. Then, for any function 
w : [0,11 x ~d - ~ with w(t,.) E Cp' (~d,~) for all t E [0,11 and we, x) E 
CP'([O, 11,~) for all x E ~d, there exist a finite constant K and functions tPo, 
... , tP2/3-1 : [0,11 X ~d - ~ depending on w such that 
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Proof Applying the Ito-Taylor expansion (5.5.3) with hierarchical set r 2p - 1 

and using the properties of multiple Ito integrals, we obtain in a straight for
ward manner an expansion for E{cSW(Tn,X,. .. _I» and the estimate 

E (1~:1 W (s,X,) dS) - E (6w (Tn-l,XT,,_I)) 

2fJ-2 cSrl +r " ])1 
- r?; 6 (LOr" (LOri W (Tn-I. X,. .. _l) (rl + I)! (r2 + I)! 

~ KcS2J3+1. 

Continuing in the same way we get 

where (0, ... , (2P-l are fixed real numbers. 
On the other hand from the deterministic Taylor expansion we have 

2P-l ((a)' ) cS'l -6~E at W(Tn-l,X,. .. _J Ii ~K62P+l. 

Then, applying (6.7) but analogously to 6 E({f,)'W{Tn-l,XT,,_l» in the above 
formula, we obtain the desired estimate (6.6). 0 
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Proof of Theorelll 14.6.1 The proof is similar to that of Theorem 14.5.2. 
We shall use the notation introduced there and analogous arguments without 
specifying further details. 

As in (5.25)-(5.28) we can write 

(6.9) 

with 

(6.10) fIt = E(E[{U(Tn,Y:)-U(Tn,YLl)} 

- { U (Tn' '1~~/; ) - U (Tn' Y:-1) } ]) 

and 

(6.11) fI2 

{ ( XTft-l'Y~-l) (y6)}]) - U Tn, Tft - U Tn. n-l . 

Using (6.10) and the smoothness of u, we can expand the increments of U 

in fII by the usual deterministic Taylor formula to obtain 

xE (Fp (Y': - YLl) - Fp ( '1~~/;' - YLl) I ATft_l) 

+Rn,21' (Y:) - Rn,2{J ('1~~pl) }). 
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Applying (6.2) we have from (6.12) 

4,8+1 1 2,8-1 nT 

llt- Eli E E EE((at"U(Tn ,Y.!-I))C'Y,P(Y.!-I)) 6'Y+l $K62,8. 

'=1 pep! 'Y=f3 n=1 

Now, from (5.13) we can conclude that 

_ 4,8+1 1 2,8-1 nT _ 

(6.13) H1- L T! E E 6'YEcE((a:U(Tn ,XT ,,_l))C'Y,p(XT .. _J) 
'=1 pep! 'Y=,8 n=1 

Hence, with the help of (6.6), it follows from (6.13) that 

(6.14) 
_ 4,8+1 1 2/J-l T 

HI - L T! E E 6'Y 10 E ((~u (s, X.») c'Y,p(X.») ds 
1=1 pep, 'Y=/J 0 

2,8-1 {4 f3 +1 1 T } 
= H1- LET! E 10 E((a;u(s,x.»c'Y'p(X,)} ds 6'Y 

-r=f3 1=1 pep, 0 

$ K 62,8. 

Similarly as (5.37), it follows from (6.11) that 

(6.15) 

Thus, combining (6.9), (6.14) and (6.15), we obtain the desired estimate 

2f3-1 

(6.16) H - E tPg,'Y(T) 6'Y $ K 62f3 , 
'Y=f3 

where for r = (3, ... ,2(3-1 the tPg,.,(T) are real numbers which do not depend 
on 6.0 



Chapter 15 

Explicit and Implicit Weak 
Approximations 

We saw in the previous chapter that higher order weak Taylor schemes require 
the determination and evaluation of derivatives of various orders of the drift and 
diffusion coefficients. As with strong schemes, we can also derive Runge-Kutta 
like weak approximations which avoid the use of such derivatives. Here too, 
these will not be simply heuristic generalizations of deterministic Runge-Kutta 
schemes. We shall also introduce extrapolation methods, implicit schemes and 
predictor-corrector methods in this chapter. 

15.1 Explicit Order 2.0 Weak Schemes 

In the autonomous case d = 1,2, ... with scalar noise m = 1 Platen proposed 
the following explicit order 2.0 weak scheme: 

(1.1) Yn+1 = Y" + 4 (a (i') + a) a 

with supporting values 

and 

+~ (b (i'+) + b (i'-) + 2b) aw 
+~ (b(i'+) -b(i'-)) {(awf -a} a-1/ 2 

-± r. i = Y" +aa±bva. 

Here a W must be ..4..,. .. +1 -measurable and satisfy the moment conditions 
(14.2.3). For instance, aw could be Gaussian or it could be three-point dis
tributed with 

(1.2) 

Obviously, for each iteration we need to evaluate the drift a at two points and 
the diffusion coefficient b at three points. In addition, we need to generate 
one random variable. Comparing (1.1) with the corresponding simplified weak 
Taylor scheme (14.2.2), we see that (1.1) avoids the derivatives in (14.2.2) by 
using additional supporting values. 
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Ld(Itu.) 

-9 

-1D 

-11 

-13 

-13 

-14 

++------------~------------~------------+-~ -6 -, -4 -3 

Figure 15.1.1 Results of PC-Exercise 15.1.1. Ld(o.lta) 

PC-Exercise 15.1.1 Repeat PC-Exercise 1,/.2.2 with a = 1.5 and b = 0.01 
using the explicit order 2.0 weak scheme (1.1) with fJ = d = 2-3 , ••• , 2- 6 and 
compare the results with those of PC-Exercise 1,/.2.2. 

There is a multi-dimensional counterpart of(1.1). For the autonomous case 
with d, m = 1, 2, ... the multi-dimensional explicit order 2.0 weak scheme has 
the vector form 

(1.3) Yn +l = Yn + ~ (a (t) + a) d 

+~ t, [ (Ii (Hi-) + Ii (Ri_) + w) aw; 

+ t. (Ii (0+) + Ii (U~) - 21i) aw; ] 
r~; 

+i t, [(Ii (Hi-) -Ii (~) ) { (aw;)' - a} 

+ t (61 (u~) - 61 (u:) ) {dWj dW" + v,.,j} 1 d -1/2 

r~j 
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with supporting values 

m 

T =Yn +a~+ L:IJi AWj , 

j==l 

and 

where the random variables ~wj and Vr,j are defined in (14.2.8)-(14.2.10). 
In Section 5 of Chapter 14 we stated conditions on a and b under which the 
scheme (1.3) converges with weak order fJ = 2.0; see Theorem 14.5.2. 

For additive noise the explicit weak scheme (1.3) reduces to 

m 

+ L:IJi ~Wj. 
j==l 

In the deterministic case, that is with b == 0, this is just the Heun method 
(8.1.12). 

Several other schemes, which are not completely derivative free, have also 
appeared in the literature. For example, for the nonautonomous I-dimensional 
case d = m = 1 Milstein proposed the scheme 

1 ~ 1 1 (~ )2 (1.5) Yn+1 = Yn+2b~W+2(a-bb') ~+2bb' AW 

+~a (Tn+1' Yn +a~ + b~W) A 

1 ( 1~) ~ +"4b Tn+t,Yn+a~+ y'abAW ~W 

where the random variable ~W is as for the scheme (1.1). At each step here 
we have to evaluate the drift a at two points, the diffusion coefficient b at four 
points and its derivative b' at one point, as well as generating a single random 
variable. 

Another scheme involving the derivative b' was proposed by Talay. In the 
autonomous I-dimensional case d = m = 1 it has the form 
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+ (a (t) - 4 b (t) b' (t») ~ 

+4 w (~Wf +~b(t)b'(i') (~wf 

-~bb' (AW+AWf 
with the supporting value 

where A W and ~ W are independent random variables satisfying the moment 
conditions (14.2.3), that is they can be chosen like AW in the scheme (1.1). 
Each step here requires a, band b' to be evaluated at two points, together with 
the generation of two random variables. 

Exercise 15.1.2 Show that the scheme (1.1) satisfies condition (1.1.5.12) of 
Theorem 14.5.2 for weak convergence with order f3 = 2.0. 

PC-Exercise 15.1.3 Repeat PC-Exercise 14.2.2 for the schemes (1.5) and 
(1.6) with Gaussian ~W and ~W. Compare the results with those of PC
Exercise 15.1.1. 

15.2 Explicit Order 3.0 Weak Schemes 

Here we shall present some order 3.0 weak schemes which do not involve deriva
tives of the drift and diffusion coefficients. These are naturally more compli
cated than the order 2.0 weak schemes proposed in the previous section, so we 
shall first consider the simpler setting of additive noise. 

In the autonomous case d = 1, 2, ... with m = 1 we have in vector form 
the explicit order 3.0 weak scheme for scalar additive noise 

(2.1) Yn +1 = Yn + a~+b~W 

+/f (~ (at - a,) - ~ (at - a, )) (~Z 
+~ [a (Yn + (a+at) ~+«(+p)bv'X)-at-at+a] 

x [«(+p) ~Wv'X+~+(p {(~Wf -A}] 
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with 

and 

a~ = a (Yn + a ~ ± b v'li" q,) 

a~ = a (Yn + 2a ~ ± b ~ q, ) , 
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where q, is either ( or p. Here we use two correlated Gaussian random variables 
~W - N(O;~) and 6.Z - N(O; i ~3) with E(~W~Z) = 1~2, together with 
two independent two-point distributed random variables ( and p with 

1 P« = ±1) = pep = ±1) = -. 
2 

In this scheme, which is due to Platen, we have to evaluate the drift coefficient 
a at six points for each time step. 

PC-Exercise 15.2.1 Consider the scalar linear stochastic differential equa
tion with additive noise (4.,1.1) 

dX, = aX, dt + bdW, 

on the time interval [0, T] with T = 1, Xo = 0.1 at time to = 0, a = -4.0 
and b = 0.1. Simulate M = 20 batches each of N = 100 values y 6(T) of the 
explicit order 3.0 weak scheme (2.1) with equidistant step size 6 = 6. = 2° and 
determine the 90%-confidence interval for the mean error 

JJ = E (y6(T») - E (XT) . 

Repeat the calculations for step sizes .1 = 2- 1 and 2-2 and plot log21JJI against 
log2 L1. 

In the autonomous case d = 1, 2, ... with general scalar noise m = 1 we 
have the following generalization of the scheme (2.1) which we shall call the 
explicit order 3.0 weak scheme for scalar noise: 

(2.2) Yn+1 

+IfGa(~Z+ k Gb ( {(~Wr -~} 

+~F:+ (6.+«+P)v"X~W+(p {(6.Wf -6.}) 
+1.. (~++ + ~-+ + F+- + ~--) ~W 24 b b b b 

+ 24~ (Fb++ - Fb-+ + Fb+- - Fb--) { (6.W) 2 - ~} ( 

+ 2:6. (Fb++ + Fb-- - Fb-+ - Ft-) { (~W) 2 - 3} ~W (p 
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Ld(Hue) 

-5 

-6 

-7 

-8 

-9 

-2 

Figure 15.2.1 Results of PC-Exercise 15.2.1. 
o 

Ld(l)elta) 

with 

where 

and 

+_1_ (~++ + F-+ _ F',+- _ F--) {(LlW)2 - fl} P 
24v'X b b b b 

Hg = g+ + g- - ~ 9 - ~ (g+ + g-), 

Gg = ~ (g+ - g-) - ~ (g+ - g-), 

Ft± = g(Yn+(a+a+)Ll+b(~±b+p~)-g+ 

-g (Yn + a Ll ± b p~) + g, 

Fg-± = 9 (Yn + (a + a-) Ll- b(.../iS ± b- p.../is) - g

-g (Yn + aLl ± bp.../iS) + 9 

g± = 9 (Yn + aLl ± b ( ~) 

g± = 9 (Yn + 2a Ll ± V2b (va) , 
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with 9 being equal to either a or b. The random variables ~W, ~Z, ( and p 
here are as specified earlier for the scheme (2.1). 

It remains an open and challenging task to derive simpler derivative free 
order 3.0 weak schemes, at least for important classes of stochastic differential 
equations. 

PC-Exercise 15.2.2 Repeat PC-Exercise 1,.1.2.2 using the explicit order 3.0 
weak scheme (2.2) and compare the results with those of PC-Exercise 15.1.3. 

15.3 Extrapolation Methods 

In Chapter 8 we mentioned the Richardson extrapolation method (8.1.17) which 
improves the order f3 = 1.0 of a deterministic Euler approximation by extrap
olating the calculations for a given step size and twice the step size to give a 
result of order f3 = 2.0 accuracy. Here we shall use a similar approach for the 
approximate evaluation of the functional 

E(9(XT)) 

of an autonomous Ito process X = {Xt, t E [0, T]} at time T, where 9 is a given 
smooth function. It will turn out that extrapolation provides an efficient, yet 
simple way of obtaining a higher order weak approximation. 

Only equidistant time discretizations of the time interval [0, T] with TnT = 
T will be used in what follows. As before, we shall denote the time discrete ap
proximation under consideration with step size 6> 0 by y6, with value Y6(Tn) 

= y~ at the discretization times Tn, and the correponding approximation with 
twice this step size by y26, and so on. 

As an introduction, suppose that we have simulated the functional 

for an order 1.0 weak approximation using, say, the Euler scheme (14.1.1) or 
the simplified Euler scheme (14.1.2) with step size o. Suppose that we repeat 
the calculations with double the step size 26 to simulate the functional 

We can then combine these two functionals to obtain the order 2.0 weak ex
trapolation 

(3.1) Vg~2(T) = 2E (g (y6 (T»)) - E (g (y26 (T»)) , 

which was proposed by Talay and Thbaro. 

PC-Exercise 15.3.1 Consider the Ito process X satisfying the linear 
stochastic differential equation 

dXt = aXt dt + bXt dWt 
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with Xo = 0.1, a = 1.5 and b = 0.01 on the time interval [0, T] where T = 
1. Use the Euler scheme (l,.{.l.l) to simulate the order 2.0 weak extrapolation 
V;'2(T) for g(x) = x and {) = 2-3 . Generate M = 20 batches of N = 100 
trajectories each and determine the 90% confidence interval for 

Repeat the calculations for step sizes {) = 2-4, 2-5 and 2-6 and plot the results 
on log2 1J.l21 versus log2 {j axes. 

We can use an order 2.0 weak approximation y6, such as the order 2.0 weak 
Taylor scheme (14.2.1), the simplified order 2.0 weak Taylor scheme (14.2.2) or 
the explicit order 2.0 weak scheme (15.1.1), and extrapolate to obtain a fourth 
order approximation of the functional. The order 4.0 weak extrapolation has 
the form 

(3.2) 

Ld<tlu.> 

-7 

-8 

2\ [32E (g (y6(T»)) - 12E (g (y25(T»)) 

+E (g (y46(T»)) ]. 

-9 / 

/' 

-10 

-11 

-6 -5 -4 -3 

Figure 15.3.1 Results of PC-Exercise 15.3.1. Ld(D .. lta) 
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PC-Exercise 15.3.2 Repeat PC-Exercise 15.3.1 with a = -5.0 and b = 
2.0 using the order 4.0 weak extrapolation (3.2) and the order 2.0 weak Taylor 
scheme (14.2.1) for 6 = 2-2 ,2-3 and 2-4 , with 

instead of 1'2· 

Similarly, we can extrapolate an order 3.0 weak approximation yeS, such as 
the order 3.0 weak Taylor scheme (14.3.1), the simplified order 3.0 weak Taylor 
scheme (14.3.2) or the order 3.0 weak schemes (15.2.1) and (15.2.2), to obtain a 
sixth order approximation of the functional. The order 6.0 weak extmpolation 
is defined by 

(3.3) Vg~6(T) = 29105 [4032E (g (yeS(T»)) - 1512E (g (y2eS(T») 

+448E (g (y3eS (T»)) _ 63E (g (y4eS (T»)) ] . 

In general, for any f3 = 1.0, 2.0, ... it turns out that we can obtain an order 
2f3 weak approximation by extrapolating an order {3 weak approximation. Let 
yeS be an order f3 weak approximation of an autonomous Ito diffusion X on an 
interval [0,11 Then for a given sequence of step sizes 

Ld<Hu.) 

-4 

-5 

-6 
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-9 
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-11 

-12 

/ 
/ 

++------------------------------------------~~ -4 -3 

Figure 15.3.2 Results of PC-Exercise 15.3.2. 
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(3.4) 61 = dl6 

for 1 = 1, ... , /3 + 1 with 

(3.5) o < d1 < ... < dfJ+l < 00 

an order 2/3 weak extrapolation is given by the expression 

(3.6) 

where 

(3.7) 

and 

(3.8) 

,8+1 

V:.2,8(T) = L al E (g (y61 (T))) , 
1=1 

,8+1 

L al=1 
1=1 

,8+1 

L al (d/)1' = 0 
'=1 

for each 'Y = {J, ... , 2{J - 1. 
We note that {J+l simulations offunctionals are necessary for the evaluation 

of an order 2/3 weak extrapolation. It is clear that the extrapolations (3.1), (3.2) 
and (3.3) are covered by the above definition. Moreover, we can see from (3.5) 
that sequences of step sizes other than the ones proposed are also possible. 

Exercise 15.3.3 Show that (3.2) and (3.3) satisfy conditions {3.6)-{3.8} 
for /3 = 2.0 and 3.0, respective/yo 

The following theorem shows that an order 2/3 weak extrapolation does 
indeed converge weakly with order 2{J. 

Theorem 15.3.4 Under the assumptions of Theorem 1,./.6.1 for any given 
{J = 1.0, 2.0, ... the order 2{J weak extrapolation {3.6} satisfies the estimate 

(3.9) 

where the constant Cg does not depend on 6. 

Proof The proof is a straight forward application of the leading error ex
pansion given in (14.6.3). From (3.6), (14.6.3) and (3.4) we easily obtain 

(3.10) 

= 

< 

1V:,2,8(T) - E (g (XT»I 

l~aIE(g (y61 (T»)) - E(9(XT»1 

1
,8+1 2,8-1 } 

ttal{ E(9(XT» + {; tPg,1'(T)(61)1' - E(g (XT» 1+ J( 62,8, 
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where the tPg,-y(T) are the coefficients in the leading error expansion. Applying 
(3.7), (3.4) and (3.8), it follows from (3.10) that 

1V:'2P(T) - E (g (XT»I $ K 621', 

which completes the proof. 0 

Exercise 15.3.5 Show that 

(3.11) V:'4 (T) = 111 [18E (g (y6 (T») - 9E (g (y26 (T») 

+2E (g (y36(T») ]. 

is an order 4.0 weak extrapolation if y6 is the order 2.0 weak Taylor scheme. 

15.4 Implicit Weak Approximations 

In Section 8 of Chapter 9 we became aware of the necessity of implicit schemes 
for the numerical integration of stiff stochastic differential equations. We no
ticed that the use of discrete bounded random variables in weak schemes allows 
the construction of fully implicit schemes, that is with the diffusion coefficient 
implicit as well as the drift coefficient. 

In this section we shall describe a few implicit weak schemes which are 
suitable for stiff stochastic differential equations. In general, however, such 
schemes also require an algebraic equation to be solved at each time step, thus 
imposing an additional computational burden. 

The Implicit Euler Scheme 

The simplest implicit weak scheme is the implicit Euler scheme, which in the 
general multi-dimensional case d, m = 1, 2, ... has the form 

m 

(4.1) Yn+1 = Yn + a (Tn+b Yn+l) ~ + E'" (Tn' Yn ) ~wj, 
j=l 

where the ~wj for j = 1, ... , m and n = 1, 2, ... are independent two-point 
distributed random variables with 

(4.2) P (LlW; = ±v'X) = 4. 
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We can also form a family of implicit Euler schemes 

(4.3) 
m 

+ Ell (Tn' Yn) ~wj 
j=l 

with the ~wj as in (4.1). The parameter a here can be interpreted as the 
degree of implicitness. With a = 0.0 the scheme (4.3) reduces to the sim
plified Euler scheme (14.1.2), whereas with a = 0.5 it represents a stochastic 
generalization of the trapezoidal method (8.1.11). Under assumptions of suffi
cent regularity, it follows from Theorem 14.5.2 that the schemes (4.3) converge 
weakly with order (3 = 1.0. According to (12.5.4)-(12.5.5) the implicit Euler 
scheme (4.3) is A-stable for a E [0.5,1]' whereas for a E [0,0.5) its region of 
absolute stability is the interior of the circle of radius r = (1 - 2a)-1 centered 
at -r + Oz. 

PC-Exercise 15.4.1 Consider the 2-dimensional Ito process X in Example 
12.2.1 satisfying the stochastic differential equation (12.2.,1) with coefficient 
matrices given by (12.2.6) with a = 5.0 and b = 0.001 and initial value Xo = 
(1.0,0) on the interval [0, T] where T = 1. Compute M = 20 batches each of 
N = 100 values y 6(T) of the implicit Euler scheme (4.3) with a = 0.0,0.5 
and 1.0 for step size 6 = .d = 2-3 . Evaluate the 90 % confidence intervals for 
the mean error 

at time T = 1. Repeat the calculations for step sizes 6 = 2-4 , 2-5 and 2-6 and 
plot the results on separate I' versus 6 axes for the three cases a = 0.0, 0.5 and 
1.0. Finally, replot the results on log211'1 versus log26 axes. 

The Fully Implicit Euler Scheme 

In view of the definitions of Ito and Stratonovich stochastic integrals, we cannot 
construct a meaningful implicit Euler scheme simply by making implicit the 
diffusion coefficient in the implicit Euler scheme in an analogous way to the 
drift coefficient. As we saw in Section 9 of Chapter 4 the solution of such a 
scheme would not, in general, converge to that of the given Ito equation. To 
be meaningful an implicit Euler scheme should be at least weakly consistent 
(see (9.7.5)-(9.7.7». 

Exercise 15.4.2 Show that the scheme (9.8.8) is in geneml not weakly con
sistent. 

To obtain a weakly consistent implicit approximation we need to appropriately 
modify the drift term. 

In the 1-dimensional autonomous case d = m = 1 the fully implicit Euler 
scheme has the form 
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( 4.4) 

where A tV is as in (4.2) and a is the corrected drift coefficient defined by 

(4.5) a = a - bb'. 

Note how the correction term here differs by the absence of the factor! from 
that in the corrected drift .a of the corresponding Stratonovich stochastic dif
ferential equation (4.9.11). 

In the general multi-dimensional case d, m = 1, 2, ... we have, in vector 
notation, a family of implicit Euler schemes 

(4.6) 

m 

+ L {7]lJi (Tn+l' Yn+1) + (1-7])lJi (Tn, Yn )} AWi, 
i=l 

where the A Wi are as in (4.1) and the corrected drift coefficient alJ is defined 
by 

(4.7) 

The choice a = 7] = 1 in (4.6) gives us the fully implicit Euler scheme. For 
7] = 0.5 the corrected drift alJ = Q is the corrected drift of the corresponding 
Stratonovich equation, and for a = 0.5 the scheme (4.6) yields further stochastic 
generalizations of the deterministic trapezoidal method (8.1.11). 

Once again Theorem 14.5.2 provides conditions which ensure that the im
plicit Euler schemes (4.6) converge weakly with order f3 = 1.0. They are similar 
to those of the explicit Euler scheme (14.1.1). 

Exercise 15.4.3 Show that the scheme (4.6) for a = 7] = 0.5 and d = m 
= 1 is weakly consistent. 

Exercise 15.4.4 Using the definition in Section 8 of Chapter 9 check 
whether the scheme (4.6) with a = 1J = 1 is A-stable. 

PC-Exercise 15.4.5 Repeat PC-Exercise 15.4.1 for the implicit Euler sch
eme (4.6) with a = 7] = 1. 

The Implicit Order 2.0 Weak Taylor Scheme 

We shall now adapt the order 2.0 weak Taylor scheme to obtain implicit sche
mes. 

In the autonomous I-dimensional case d = m = 1 the implicit order 2.0 
weak Taylor scheme has the form 
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ALPHA=O -) 
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ALPHA::0.5 ->,....... _________ -< 
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Ld<Hue) 
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Figure 15.4.1 Results of PC-Exercise 15.4.1. 
LdCIMlta) 

(4.8) YnH = Yn + a (Yn+d ~ + b~W 

-~ {a (Yn+d a' (Yn+1 ) + 4 b2 (YnH) a" (Yn+d } ~2 

+4 bb' { (~W) 2 - ~ } 

+4 {-a'b + ab' + 4 b"b2 } ~W ~ 

where ~ W is N(O; ~)-Gaussian or three-point distributed with 

(4.9) p (~W = ±v'3A) = ~, 

For the general multi-dimensional case d, m = 1,2, ... Milstein proposed 
the following family of implicit order 2.0 weak Taylor schemes: 

(4.10) YnH = Yn + {aa(Tn+l, Yn+1) + (1- a)a} ~ 

+! ~ Lil';2 (~Wj,~Wh + v. . . ) 2 L..J Jl.J2 
h.h=l 
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+ t. {IJ + 4 (LOIJ + (1- 2O')Li a) a} awi 

+4(1- 20') {.8Loa + (1- .8)Loa (Tn+b Yn+1 )} a2 , 

where 0', .8 E [0,1] and the random variables awi and Vi .. h can be chosen as 
in (14.2.4) and (14.2.8)-(14.2.10). 

When /l' = 0.5 the scheme (4.10) simplifies to 

(4.11) 
1 

Yn + '2 {a (Tn+l' Yn+l) + a} a 

m 1 m 

+ LIJ awi + '2 LLOIJ awi a 
i=1 i=1 

We note that the last two terms in (4.11) vanish for additive noise with 6 == 
const. It is easy to check that the scheme (4.11) is A-stable. 

PC-Exercise 15.4.6 Repeat PC-Exercise 15.,/.1 with a = 5.0, 6 = 10-6 and 
C = a = 2-5 , ... , 2-8 for the implicit order 2.0 weak Taylor scheme (4.11). 

The Implicit Order 2.0 Weak Scheme 

We can also avoid derivatives in the above implicit schemes by using similar 
approximations as in the explicit order 2.0 weak scheme. 

In the autonomous case d = 1, 2, ... with scalar noise m = 1 Platen proposed 
the following implicit order 2.0 weak scheme 

(4.12) 

with supporting values 

+~ (6 (1'+) + 6 (1'-) + 26) aw 

+~ (6(1'+) -6(1'-» {(awf -a} a-1/ 2 

-± r7' l' = Yn + a a ± bv a, 

where aw must be as in (4.8). 
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There is a multi-dimensional counterpart of (4.12). For the autonomous 
case with d, m = 1, 2, ... the implicit order 2.0 weak scheme has the vector 
form 

(4.13) 

+~ t, [Ii (Ri,) + Ii (~) + 21i 

+ t (II (0+) + II (U:) - 211) a- 1/2] aWi 
r#'i 

+~ t, [(Ii (Ri,) -Ii (Ri_)) {(aw;), - a} 

+ t (II (0+) -II (0:) ) {aWl awr + v,.,i} ] a -1/2 

rr/;.; 

with supporting values 

and 

where the random variables aWi and VrJ are as in (4.10). We note that the 
scheme (4.13) is A-stable. 

In conclusion, we remark that specific assumptions for the implicit schemes 
(4.10) and (4.13) to converge with weak order 2.0 follow again from Theorem 
14.5.2. An expansion of the Ito process, which is useful for deriving such 
implicit schemes, will be given at the end of Section 6 of this chapter. 

PC-Exercise 15.4.7 Repeat PC-Exercise 15 . ../.6 for the implicit order 2.0 
weak scheme (4.19). 

15.5 Predictor-Corrector Methods 

We mentioned in Chapter 8 that deterministic predictor-corrector methods are 
used mainly because of their numerical stability, which they inherit from the 
implicit counterparts of their corrector schemes. In addition, the difference 
between the predicted and the corrected values at each time step provides an 
indication of the local error. In principle, these advantages carryover to the 
stochastic case. Here we shall describe a few predictor-corrector methods, due 
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to Platen, for stochastic differential equations. They use as their predictors 
weak Taylor or explicit weak schemes and as their correctors the corresponding 
implicit schemes made explicit by using the predicted value Yn +1 instead of 
Yn+1 on the right hand side of the implicit scheme. The asserted weak order 
of convergence of these schemes follows from Theorem 14.5.2 and expansions 
that will be given in Section 6 at the end of the chapter. 

An order 1.0 Predictor-Corrector Method 

In the autonomous I-dimensional scalar noise case, d = m = 1 we have the 
modified trapezoidal method of weak order {J = 1.0 with corrector 

(5.1) 

and predictor, the weak Euler scheme, 

(5.2) 

Here the .6.W can be chosen as Gaussian N(O;.6.) distributed random variables 
or as two-point distributed random variables with 

(5.3) 

Using the family of implicit Euler schemes (4.6) as corrector, in the general 
multi-dimensional case d, m = 1, 2, ... we can form the following family of 
order 1.0 weak predictor-corrector methods with corrector 

m 

+ E {7]1Ji (Tn+l. Yn+1) + (1 - 7])1Ji (Tn, Yn)} .6. Wi 

for a, 7] E [0,1], where 

(5.5) 

and with predictor 

(5.6) 

j=l 

_ m d k. alJi 
a1j = a - 7] "" "" b ,}-L..JL..J axk' 

i=lk=l 

m 

Yn+1 = Yn + a.6. + E,,; .6. Wi , 
i=1 

where the .6.Wj are as in (5.3). 
We note that the corrector (5.4) with 7] > 0 allows us to include some degree 

of implicitness in the the diffusion term too. 
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Figure 15.5.1 Results of PC-Exercise 15.5.1. 
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PC-Exercise 15.5.1 Repeat PC-Exercise 15.4.1 with a = 5.0 and b = 0.1 
for the predictor-corrector method {5.4)-{5.6} with a = 0.5 and 1] = O. 

From Figure 15.5.1 we can see that the predictor-corrector method (5.4)
(5.6) with a = 0.5 and 1] = 0 is numerically stable and, in fact, of weak order 
2.0 for the example under consideration. The higher than expected order here 
is a consequence of the special structure of both the scheme and the particular 
example. 

Order 2.0 Weak Predictor-Corrector Methods 

We shall now combine the order 2.0 weak Taylor scheme and its implicit coun
terpart to form an order 2.0 predictor-corrector method. 

In the autonomous I-dimensional scalar noise case, d = m = 1, a possible 
order 2.0 weak predictor-corrector method has corrector 

(5.7) 

with 
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and predictor 

(5.8) Yn+1 = Yn + a.£1 + \lin 

+4a'b A.W.£1+ 4 (aal + 4allb2) .£12, 

where the A.W are N(O;.£1) Gaussian or three-point distributed with 

(5.9) 

For the general multi-dimensional case d, m = 1, 2, ... this generalizes to 
a method with corrector 

(5.10) 

where 

and predictor corresponding to the order 2.0 weak Taylor scheme 

- 1 0 2 1~. ~. 
Yn +1 = Yn + a.£1 + \lin +"2L a.£1 +"2 L..J L1a .£1W1.£1, 

j=1 

(5.11) 

where the independent random variables .£1Wi and Vjl,h can be chosen as in 
(14.2.7). 

PC-Exercise 15.5.2 Repeat PC-Exercise 15.4.1 with a = 5.0 and b = 0.8 
for the predictor-corrector method (5.10) - (5.11). 

Figure 15.5.2 shows for this particular example that the predictor-corrector 
method (5.10)-(5.11) is numerically stable and of weak order f3 ;::: 3.0. 

We can also formulate a weak order 2.0 predictor-corrector method which 
avoids the need to determine and evaluate the derivatives of a and b. 

In the autonomous case'd = 1, 2, ... with scalar noise m = 1 a derivative 
free order 2.0 weak predictor-corrector method has corrector 

(5.12) 

where 

¢n = ~ (b (1'+) + b (1'-) + 2b) .£1W 

+~ (b (1'+) - b (1'-)) { (.£1Wf -.£1} .£1- 1/ 2 
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Figure 15.5.2 Results of PC-Exercise 15.5.2. 

with supporting values 

and with predictor 

(5.13) 

with the supporting value 

-3 
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Here the dW can be chosen as in (5.8). Essentially, t is used as an initial pre
dictor which is corrected in (5.13), with the output Yn+I being itself corrected 
in (5.12). 

We also have a multi-dimensional counterpart of (5.12)-(5.13). For the 
autonomous case with d, m = 1,2, ... the method has corrector 

(5.14) 

where 
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+ t (tJ (U~) + /)i(D:) - 211) ~ -1/2] ~wj 
'_i 

+ t (ll (U~) -ll (D~» (~Wj ~Wr + Vr,j) ] ~ -1/2 

r~j 

with supporting values 

and with predictor 

(5.15) 

with the supporting value 

m 

t = Yn + a ~ + L II ~ wj . 
j=1 

Here the independent random variables ~wj and Vr,j can be chosen as III 

(14.2.7). 

PC-Exercise 15.5.3 Repeat PC-Exercise 15.../.1 with a = 5.0 and b = 0.08 
using the predictor-corrector method (5.12)-(5.13). 

At each step in the above schemes we first compute the predicted approxi
mate value Yn +1 and then the corrected value Yn +1 • Their difference 

Zn+l = Yn+1 - Yn+1 

provides us with information about the local error at each step, which we could 
use on-line to improve the simulations. For instance, if the mean of Zn+1 is 
rather large, we should change to a finer time step and repeat the calculation. 

15.6 Convergence of Weak Schemes 

We shall now indicate the key steps required by Theorem 14.5.2 to show the 
weak convergence, with the asserted order, of various schemes introduced in 
this chapter. Before looking at specific schemes, we shall write down for the 
simple I-dimensional case d = m = I the conditional moments of the increments 
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of weak Taylor schemes, which satisfy the crucial condition (14.5.12). This will 
make it easier to verify this condition for the specific schemes. 

Conditional Moments of Increments 

Following the usual convention, we shall use the error abbreviation O(l::..k ) to 
indicate that the remaining terms satisfy 

lim 0 (I::..k) / U < 00 . 
.0.-+0 

We shall also omit explicit dependence on Yn , absorbing it into the O(l::..k ) term. 
In the case {3 = 1.0, it is easily shown that the Euler scheme (14.1.1) satisfies 

the conditions 

(6.1) E (Yn +1 - Yn I Ar..) 

E (IYn +1 - Yn 12 I Ar .. ) 

al::..+O(d2) , 

b21::..+0(1::..2) , 

E (Yn +1 - Yn)3 I Ar .. ) 

For {3 = 2.0, the order 2.0 weak Taylor scheme (14.2.1) satisfies the condi
tions 

E (Yn +1 - Yn)2 I Ar .. ) = b2 I::.. + ~ [2a (a + bb') + b2(2a' + (b')2 

+bb")] ~2 + 0 (~3), 

E (Yn+l - Yn)3 I Ar .. ) = 3b2 (a + bb') 1::..2 + 0 (~3), 

Finally, in the case {3 = 3.0, we find that the order 3.0 weak Taylor scheme 
(14.3.1) satisfies 

(6.3) E (Yn +1 - Yn I Ar .. ) = a~ + ~ (aa' + ~ b2all ) d 2 + A 1::..3 + 0 (~4) 

with 
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A = ~ [a (al)2 + a" (a + bbl») + ~ b2 { 2aa'" + 3a'a" + 2alll bb' 

+a" (W' + (bl)2) + ~ a(iV)b2}]; 

E (Yn+1 - Yn)2 I AT") = b2 ~ + ~ [2a (a + bb') + b2 (2a' + (b,)2 

+bbll )] ~2 + B ~3 + 0 (~4) 

with 

with 

with 

and 

B ~ [2a {a (3a' + (b,)2 + bbll ) + bb' (3a' + (b')2)} 

+ab2 (7a" + 8b'b" + 2bb"') + b2{ 4 (a,)2 + 7bb'a" 

+ (b,)2 (4a' + (bl)2) + 8b (b,)2 b" + 4bb" a' 

+~ b2 (4a lll + 5 (b") 2 + Sb'blll + bb(iV») }] ; 

E (Yn+1 - Yn)3 I AT") = 3b2 (a + bb' ) d 2 + C ~3 + 0 (~4) 

C = a2(a+3bbl)+4ab2(9al+1l(bl)2+7bb") 

+~ b2 {bb' (lOa' + S (b,)2) + ~ b2 (7a" + 2Sb'b" + 4bb")} ; 

E (Yn+1 - Yn)4 I AT") = 3b4 d 2 + D~3 + 0 (~4) 

D = 2b2 [a (3a + 9bb') + ~ b2 (6a' + 19 (b' )2 + 7bb") ]; 

E (Yn+1 - Yn)5 I AT") = 15b4 (a + 2M') d 3 + 0 (~4) ; 

E (Yn+1 - Yn)6 I AT") = 15b6 ~3 + 0 (~4); 
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Having these expressions for the conditional moments of the increments of 
the weak Taylor approximations, it is now easy to check whether or not the 
condition (14.5.12) is satisfied, provided we can show that the a priori estimates 
(14.5.10) and (14.5.11) hold. Such a priori estimates are readily obtained by 
standard methods using the Gronwall inequality in Lemma 4.5.17 under the 
assumption, for instance, of boundedness of all of the derivatives of a and b. 

The mixed moments of multiple Ito integrals described in (5.12.7) will be 
useful in determining the multi-dimensional generalizations of (6.1)-(6.3). 

Expansion for Implicit Schemes 

Here we shall describe expansions ofIto processes which will enable us to derive 
second order weak implicit and predictor-corrector schemes. For this we shall 
slightly modify our notation for multiple stochastic integrals and coefficient 
functions in Chapter 5, now writing 

L(·.) -1(· .)[1] '1,'2 ,n - 'I,J2 T""T_+1 ' 

for n = 0, 1,2, ... and i, il, i2 = 1, ... , m. 
Thus, for a sufficiently smooth function 1 we obtain 

m m 

(6.4) 1 (Xn+1) ~ 1 (Xn) + L:/(j).n 1(;),n + L: I(il,h),n l(il,h),n 
j=O h.j,=o 

for n = 0, 1, ... by retaining only the terms oflocal weak order less than three 
from the Ito-Taylor expansion (5.5.3) of I. See Section 11 of Chapter 5 for 
more details. In particular, with the choice I(z) == z in (6.4), we obtain the 
following approximation for the increment of the Ito process: 

m m 

(6.5) Xn+1 - Xn ~ L:IU),n 1(j),n + L: l(hJ2),n 1Ul,h),n 
j=O ;',12=0 

for n = 0, I, .... Here we have omitted all those terms that are not relevant 
for a second order weak approximation, and shall continue to do so in the 
expressions that follow. 

From (6.5) we have 
m 

(6.6) X n+1 - Xn ~ [10 /(0),n + (1 - ' 0 ) I(o).n] A + L: IU),n 1U),n 

m 

+ L: IU1,h).n l(hJ2),n 
jl.h=O 

j=l 

for any 10 E !Rl . Inserting expansion (6.4) applied to the coefficient function 
I(O),n+1 after rearanging into (6.6), we then obtain 
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(6.7) X n+1 - Xn ~ 10 {/(O),n+l - tlu,o),n [m,n} ~ 
J::O 

m m 

+ LI(;),n [m,n + L IU.,h),n IU.,h),n 
;::1 ;.,h::O 

+ (1 -/0) I(O),n a. 

As in the order 2.0 simplified weak Taylor scheme, we can substitute ~Wi for 
A A 1 A. 

[(j),n. [(O,i),n = [U,o),n = 2~W1 ~ for [(OJ),n and IU,O),n. and 

A 1{ Ao A. } l(· .) = - aWJ· ~WJ2 + v. .. 
'"J2 ,n 2 J"J2 

for [U,J2),n with it. i2 E {I, ...• m} and i1 f. i2. This gives us 

(6.8) Xn+1 - Xn ~ {/O/(o),n+1 + (1 -10) f(o),n} ~ 
m m m 

+ Llm,n aw; + L L IU.,i2),n iU,J2),n 
;::1 j,::Oh::1 

m 

+ (1- 2/0) LIU,o),n i(i,O),n o 

;::0 

For any ho E lR1 we can insert the remaining terms of the expansion (6.4) 
applied to the coefficient I(O),n+l into (6.8) to get 

(6.9) X n+l - Xn ~ {/Of(D),n+1 + (1 - 10) I(o),n} ~ 

+4 {ho (1 - 2/0) 1(0,0),n+1 + (1 - ho) I(o,o),n} ~2 

~[1 1 ] A. + ~ IU),n +"2 I(o,;),n a +"2 (1- 2/0) 1(i,O),n a aWJ 
J::1 

m 

+ E 1(j,J~),n iU1J~),n' 
itJ2::1 

From expansion (6.9), via Theorem 14.5.2, we can now derive the implicit weak 
schemes (4.8), (4.10) and (4.11), and with an application of the deterministic 
Taylor expansion the schemes (4.12) and (4.13). The corrector expressions 
(5.7), (5.10), (5.12) and (5.14) also follow from (6.9). 



Chapter 16 

Variance Reduction Methods 

In this chapter we shall describe several methods which allow a reduction in the 
variance of functionals of weak approximations of Ito diffusions. One method 
changes the underlying probability measure by means of a Girsanov transfor
mation, another uses general principles of Monte-Carlo integration. Unbiased 
estimators are also constructed. 

16.1 Introduction 

In the preceding chapters we used weak approximations of an Ito process X 
satisfying the stochastic equation 

(1.1) Xt = Xo + it a (8, X.) d8 + t l' iJ (8, X.) dW( 
o j=l 0 

to evaluate functionals of the form 

(1.2) 

where 9 is a given function. Until now we have only considered direct time 
discrete approximations Y of the Ito process X, in the sense that the solution 
of the stochastic equation (1.1) is discretized directly. In this chapter we shall 
introduce additional classes of approximations which allow a reduction in the 
variance of an estimator of the functional (1.2). 

When applying a direct, time discrete weak approximation Y previously, 
we evaluated (1.2) with the functional 

(1.3) 

using the estimator 

(1.4) 
1 N 

fiN = N 2:g (YnT (W,.» , 
,.=1 

which is just the arithmetic mean of N independent simulations of the random 
variable 9 (YnT ). Here YnT (W,.) denotes the rth simulation of Y at time TnT :::: 

T. 
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We have already seen in Section 4 of Chapter 9 that we can represent the 
difference of the estimator (1.4) and the desired functional (1.2) 

(1.5) 

by the sum of the systematic error 

(1.6) 

and the statistical error 

which, for N -+ 00, is asymptotically Gaussian distributed with mean zero and 
variance 

(1.7) 

In particular, we noticed that the length of confidence intervals decreased 
only with order N-l/2 as N -+ 00. Hence, in order to obtain sufficiently 
small confidence intervals it is important to begin with a small variance in the 
random variable 9 (YnT ). With a direct simulation method one tries to fix the 
variance of 9 (YnT ) to a value which is close to that of the variance of 9 (X T). 
However, this variance, which depends completely on 9 and the given stochastic 
differential equation, may sometimes be extremely large. This problem leads 
to the question of whether it is possible to construct other estimators which 
have nearly the same expectation, but smaller variance. 

One way to construct such an estimator will be described in Section 2. It 
is based on a Girsanov transformation of the underlying probability measure 
and involves a modified Ito process X and a correcting process e, which are 
chosen so that the values of their functionals are related by 

(1.8) 

that is so that 9 (XT ) e and 9 (XT) have the same expectations. We shall see 

that we can control the variance of 9 (XT) e, and reduce it considerably, with 

an appropriate choice of XT. 
In Section 3 we shall consider other variance reducing estimators which are 

derived using the general principles of Monte-Carlo integration. Finally, in 
Section 4 we shall describe unbiased estimators 'TI which avoid any systematic 
weak errors, that is with 

(1.9) 

With such estimators we can focus our attention completely on the reduction 
of the variance of'TI. 

The aim of the following sections is to illustrate these variance reduction 
methods in the context of special classes of problems and examples. However, 
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in general, it may not be easy to construct an adapted and efficient variance 
reducing or unbiased estimator for a given, specific problem. 

16.2 The Measure Transformation Method 

Suppose we are given a d-dimensional Ito process X··II: = {X:·:r:, s ::5 t ::5 T}, 
starting at z E ~d at time s E [0, T), in terms of the stochastic equation 

(2.1) X:·II: = z + [t a (z, X;·II:) dz + t [t IJ (z, X;·II:) dWJ. 
• j=1 • 

Our aim is to approximate the functional 

(2.2) u(s, z) = E (g (X~:r:» 

for a given real-valued function 9 and time s = O. 
If we assume that the function 9 and the drift and diffusion coefficients a 

and b are sufficiently smooth (see Theorem 4.8.6), then the function u defined 
by (2.2) satisfies the Kolmogorov backward equation (2.4.7). That is, 

(2.3) 

for (s,z) E (O,T)x~ with 

(2.4) u(T, y) = g(y) 

for all y E !Rd , where LO is the operator 

Milstein proposed the use of the Girsanov transformation (4.8.16)-(4.8.1'0 
to transform the underlying probability measure P so that the process W 
defined by 

(2.5) w/ - w.j -1' di (z gO.II:) dz ,- , , II 

° 
is a Wiener process with respect to the transformed probability measure P 
with Radon-Nikodym derivative 

(2.6) 

Here the Ito process gO.1I: satisfies the stochastic equation 
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x+ 1t [a (z,X~,x) - ~bi (z,X~,x) di (z,x~,x)] dz 

+ tit bi (z,x~'x) dwl 
i=! 0 

and the correction process El satisfies the equation 

(2.8) 

with Elo ::j; 0, where the di denote given real-valued functions for j = 1, ... , m. 
We note that XO,X is d-dimensional, whereas El is only I-dimensional. 

Obviously, the process XO,X in (2.7) is an Ito process with respect to P with 
the same drift and diffusion coefficients as the Ito process X',x in (2.1). From 
this fact and (2.6), it follows that 

J 9 (X~,x) dP 

J 9 (X~,x) dP 

J 9 (X~,x) 0T/00 dP = E (0 (X~,x) 0T/0 0 ). 

Hence, we can estimate the expectation of the random variable 

(2.10) 

to evaluate the functional (2.2). This result does not depend on the choice of 
the functions di , j = 1, ... , m, so we can use them as parameters to reduce 
the variance of the random variable (2.10). 

The following situation is interesting from a theoretical viewpoint. Suppose 
that u(t,x) > 0 everywhere and that the corresponding solutions of (2.7) and 
(2.8) exist. In addition, we choose the parameter functions di as 

(2.11) 
d 

. 1 l: Ie' au d' (t, x) = --(-) b ,} (t, x) £l Ie (t, x) 
u t,x uX 

Ie=! 

for all (t,x) E [O,T)x~d and j = 1, ... , m. Then, from the Ito formula (3.4.6) 
with the aid of (2.7), (2.8), (2.11) and (2.3), it follows that 

(2.12) u (t, x~,x) El t = u(O, x )Elo 

for all t E [0, T]. 
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Exercise 16.2.1 Show (2.12). 

Combining (2.4) and (2.12), we can conclude that 

(2.13) ( -0 x) u(O, x) = g Xi er/eo. 

Hence, with the choice of parameter functions (2.11) the variable 

(2.14) 

is nonrandom and the variance is reduced to zero. 
If we could simulate the expression (2.14) approximately using our proposed 

weak approximations for the stochastic equations (2.7) and (2.8), we would ex
pect, in general, to obtain a small variance for the estimator (see PC-Exercise 
16.2.3 below). Unfortunately, for the construction of the parameter functions 
in (2.11) we need to know the solution u of the Kolmogorov backward equation, 
but this is exactly what we are trying to determine by means of the simula
tion. Nevertheless, the above discussion shows that it is possible to obtain a 
substantial reduction in the variance of the estimator by an application of a 
measure transformation. 

A practical way of implementing such a method is to, somehow, find or guess 
a function it which is similar to the solution u of the Kolmogorov backward 
equation (2.3)-(2.4). We can then use it instead of u to define parameter 
functions of the form 

(2.15) 
. 1 ~ k' au 

d1(t,x) = --=--( ) ~b .J(t,x)a k(t,x) u t,x x 
k=l 

for all (t, x) E [0, 11 X~d and j = 1, ... , m. Then 

g (X~,x) er/eo 

will still be a random variable, but with small variance if it is chosen sufficiently 
close to u. 

The weak schemes, especially the higher order ones, that we studied in the 
preceding chapters can be readily applied to provide weak approximations of 
the process (Xo.x, e) to estimate the functional 

We assumed above that u is strictly positive, which follows if g is strictly 
positive, but this is often not the case. When g > -c for some c > 0 the 
function ii + 2c is strictly positive, whereas if g is unbounded we can write g as 
the difference of its positive and negative parts 
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for c > O. We can then apply the above method with functionals involving the 
positive functions g, g+ + c and g- + c rather than with 9 itself. 

The above method has been found to be worthwhile, both in terms of pro
viding smaller confidence intervals and requiring less computational effort, in 
cases where the variance of the arithmetic averaging estimator (1.4) is large. 

Exercise 16.2.2 Check that 9 (X~s) 9T /90 is nonrandom and equal to 

for the linear stochastic equation 

(2.16) x, = z+ l' aX;s dz + l' pX;s dW;s 

with d = m = 1 when g(y) == y2 and d1 is defined by (e.ll). 

PC-Exercise 16.2.3 Evaluate E (XT )2) using the measure transforma
tion method for the linear problem in Exercise 16.e.t with a = 1.5, P = 1.0, 
z = 0.1 and T = 1. Apply the Euler scheme with equidistant step size D = 6. 
= 2-4 to generate M = 20 batches each with N = 15 trajectories. Determine 
the 90% confidence intervals for the mean error 1-'. Repeat the calculations for 
step sizes 6. = 2-5 , 2-6 and 2-7 • Plot the confidence intervals against 6.. 

16.3 Variance Reduced Estimators 

In this section we shall describe another way of constructing variance reduced 
random variables for the simulation of functionals of Ito processes. These re
sults are due to Wagner and are based on the theory of Monte-Carlo integration. 

We begin with a d-dimensional Ito process 

(3.1) x, = Xo + l' a(s,X,) ds + l' b(s,X,) dW. 

with scalar noise, m = 1, and wish to evaluate the functional 

(3.2) 

Suppose that we are given a time discretization 

o = TO < Tl < ... < TN = T 

ofthe interval [0,7']. As in Section 7 of Chapter 1, we shall denote by pes, y;t, x) 
the transition density ofthe Ito process (3.1) for the transition from the point 
y at time s to the point z at time t, where t ~ s. In addition, we shall denote 
the probability measure of the initial value Xo by p(dz). Using the Markov 
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property and the Chapman-Kolmogorov equation (1.7.5), we can represent the 
functional (3.2) in the form 

(3.3) xp (dxo) dXl .. ·dXN. 

If we set 

(3.4) 

and 

(3.5) 

dl'(C) = p (dxo) dXl ... dXN 

N 

F«) = IIp(Ti-l,xi-l; Ti,Xi)g(XN), 
i=l 

where' = (xo, .. • , XN) E r := (~d)N+l, then we can write (3.3) as the finite
dimensional integral 

(3.6) E(9(XT» = 1 F(C)dp«). 

A simple Monte-Carlo estimator for this integral is the one-point estimator 

(3.7) 
F(C) 

'11 = D(C)' 

where C is a random variable with density D with respect to the measure dp.. 
If we assume that 

(3.8) 

for all (xo, ... ,XN) = C E r with g(XN)::F 0, then it follows from (3.6) and 
(3.7) that 

(3.9) E ('11) = E (F(C») 
D(C) 

= i F«) r D(C) D«)dl'(C) 

= 1 F(C) dl'«) = E (g (XT» . 

The estimator (3.7) is thus unbiased. However, in general, the function F here 
is not known explicitly. 

The Variance Reducing Euler Estimator 

The estimator (3.7) is nevertheless still useful if we can somehow approximate 
or estimate the finite-dimensional density of the Ito process 
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(3.10) 
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N 

Q ('XO, . .. ,XN» = IIp( Ti-t. Xi-I; Ti, Xi) 
i=l 

by a similar, but known density. For instance, we could use the density of a 
weak time discrete approximation of the Ito process, the simplest being the 
Euler approximation. 

In what follows we shall represent the density of the Euler approximation 
in the form 

N 

(3.11) Q«() = IIPa,.,.(Ti-l,xi-l;Ti,xi) 
i:::l 

for all ( = (zo, ... ,XN) E r with the density for Gaussian increments 

(3.12) Pa,l1(s, y;t, x) = 1 

Jdet u(s, y)(21r(t - s»d 

x exp ( - 2(t ~ s) (o--l(a, y)A, A)) , 

where 
A = X - Y - a(s, y)(t - s). 

Here we are assuming that the symmetric matrix 

(3.13) u(s, y) = b(s, y)b(s, y)T 

is strictly positive definite for all (s, y) E [0, TJ X ~d and use the standard 
notation for the determinant det, the scalar product (., .), the matrix inverse 
u- 1 and the vector and matrix transpose bT • 

We define the variance reducing Euler estimator as 

(3.14) 

where ( = (xo, ... , XN) E r is a random variable with density D with respect 
to dJJ. We note that the systematic error of (3.14) does not depend on D and 
thus coincides with that of the direct Euler estimator obtained from (3.14) 
by replacing D with Q defined in (3.11), which, in turn, is equivalent to the 
systematic error of the weak Euler scheme discussed in Section 1 of Chapter 
14. An appropriate choice of the free parameter D in (3.14) then provides a 
means for reducing the variance of the estimator. 

The Optimal Density 

In order to determine the optimal version Dope of D we need to assume that 
we know the transition density p(s,y;t,x) of the Ito process. For the one-point 
estimator (3.7) it is easy to show that the random variable 
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(3.15) Dopt«) = IF«)I / i IF(z)1 dp(z) 

= Q«)19(ZN)I/E(l9(XT)I), 

where ( = (ZO, ... ,ZN) E r, has variance 

(3.16) Var (;p~~~») = (i IF«)I dP«») 2 - (i F«) dP«») 2 

Exercise 16.3.1 Show (3.16). 

On the other hand, from the Lyapunov inequality (1.4.12), for any given 
density D we obtain the inequality 

(3.17) (F«») 
Var D«) = E(I~~~~r) -(E(~~g))2 

~ (EC~~~~I))2 -(i F«() dP«») 2 

> (lIF«)1 dP«») 2 _ (l F«) dP«») 2 

This shows that the minimum possible variance, which is zero when 9 is only 
positive or only negative, is attained with the Dopt defined in (3.15), which 
justifies its being designated the optimal density. 

Usually the transition density p(s, y; t, z) ofthe Ito process, and hence Dopt , 

is not known. The method of choosing D close to Dopt in the one-point estima
tor (3.7) is known as importance sampling because the density is high in those 
regions making the most important contributions to the functional. 

When 9 changes sign, we can write it as the sum of its positive and negative 
parts and apply the above procedure to each part separately. The near opti
mal choice of the corresponding densities D+ and D- is then called stratified 
sampling, but we shall not say anymore about it here. 

The Direct Euler Estimator 

The optimal density Dopt obviously depends on the shape of the given function 
g. Here we shall consider the simple case that 9 takes only two distinct values. 
Such a function can be easily transformed to another, which we shall also denote 
by 9 for simplicity, satisfying 

(3.18) Ig (y)\ == const 

for all y E lRd • From (3.15) we then obtain 
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(3.19) Dope«() = Q«() 

for all ( E r, which is just the finite-dimensional density (3.10) of the original 
Ito process (3.1). Thus, we can approximate Dope in (3.19) simply by the 
density of the Euler approximation Q defined in (3.11) or by other explicitly 
given densities of weak schemes. If we use the Euler density Q in place of 
D in the variance reducing Euler estimator (3.14), we obtain the direct Euler 
estimator 

(3.20) 

for all (= (zo, ... ,ZN) E r. Consequently, the direct Euler estimator (3.20) 
is a good variance reducing estimator for functions 9 satisfying (3.18). 

Ito Processes with Constant Coefficients 

Another useful special case is when the drift and diffusion coefficients of the Ito 
process are constants, since the results obtained can also be used to provide an 
approximation ofthe optimal density when these coefficients differ only slightly 
from constants. 

We shall assume here that 

a(s,y) == a and b(s, y)b(s, y)T = tT(s,y) == tT 

for all (8, y) E (0, T] X ~d, where a and tT > 0 are constants. It is obvious from 
(3.10) and (3.11) that the density of the Ito process then coincides with that 
of t.he Euler scheme, that is 

(3.21) Q«() = Q(') 

for all ( E r. For this case it then follows from (3.15) that the optimal density 
IS 

(3.22) 

where 

(3.23) 

and 

(3.24) 

N 

DlJ ,I7«() = dfICo (ZN) II Di ,flC i_l>flCN(zi), 
i=l 

for all ( = (zo, ... , ZN) E r, with PlJ,l7 defined in (3.12). It is not difficult to 
show that Di,Zi_l,flCN(Zi) is the density of a Gaussian random variable Zi with 
vector mean 

(3.25) 

and covariance matrix 
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(3.26) 

for given i, Zi-l, ZN. 

(T - Ti) (Ti - Ti-l) 
(1' 

T- Ti-l 
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Exercise 16.3.2 Show (3.t5) and (3.t6) for d = I, a = const, (1' = const. 

Before we can begin simulating the conditional Gaussian random variables 
Zb ... , ZN-l step by step I we need to generate the starting value Zo according 
to p(dzo) and then ZN using the density d,;o(ZN). From (3.23) and (3.24) we 
note that only the second of these densities depends on the particular function g 
under consideration. It is useful to find approximations for d,;o (z N) for special 
classes of functions g, for instance, the indicator functions. 

Functionals involving Indicator Functions 

In Chapters 14 and 15 we restricted attention to functions g which were suffi
ciently smooth. We shall now investigate what happens in the I-dimensional 
case d = m = 1 if we use the indicator function 

(3.27) g(y) = II£,ll(Y) = { ~ 
otherwise 

for all y E !R1 where -00 < '" < C < 00. Obviously, 

(3.28) 

so with this functional we are estimating the probability that XT lies in the 
interval ~,c]. A possible approximation for d"'o(ZN) in (3.22)-(3.23) is the 
uniform density 

(3.29) 

for a uniformly distributed random variable on ~,c]. 
We shall use the following example in PC-Exercises to illustrate the possi

bilities of the variance reduction technique. 

Example 16.3.3 Let X 6e the I-dimensional Ito process with initial value 
Xo = 0, driven 6y additive noise with drift and diffusion coefficients 

( ) 1 1. 
as,y =2'-'2SIDY and 6(8, y) = 1. 

Consider the functional (3.2) with the indicator function 

g(y) = I[o.3,o.4j(Y) 

for y E !R1 and final time T = 1. 
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++-----+----------~------------------------+-) 
O. 15625 0.03125 0.0625 

0.125 

Figure 16.3.1 
Delta 

Results of PC-Exercise 16.3.4 with the direct Euler estimator. 

PC-Exercise 16.3.4 For Example 16.3.3 use the direct Euler estimator 
(3.20) to simulate M = 20 batches each of N = 200 trajectories and esti
mate the probability P(XT E [0.3,0.4]) for equidistant step sizes 6. = Ti+l - Ti 

= 2-3 J "'J 2-6 • Plot the corresponding 90% confidence intervals against 6.. 

PC-Exercise 16.3.5 Repeat PC-Exercise 16.3.4 using the variance reduc
ing Euler estimator (3.14), taking as the density D the expression Da,u in 
(3.22) with a = 0.5, tT = 1.0 and approximating d:J:o(ZN) in (3.22) by the 
d(ZN) in (3.29) with" = 0.3 and c = 0.4. 

A comparison of Figures 16.3.1 and 16.3.2 shows that a considerable reduc
tion in the variance of the estimation of the desired functional can be achieved 
with the variance reducing Euler estimator. We remark that it would require 
an immense amount of computer time to obtain a comparable variance with 
the direct Euler estimator. 

16.4 Unbiased Estimators 

The weak approximations that we have considered so far all produce some sys
tematic error. In this section we shall see how ideas from the theory of Monte
Carlo integration can be used to construct estimators which have no bias. The 
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0.048848 I 

0.04749 
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I 
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O. 15625 0.03125 0.0625 0.12S 
o.lta 

Figure 16.3.2 Results of PC-Exercise 16.3.5 
with the variance reduced Euler estimator. 
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following results are due to Wagner, who obtained unbiased estimators by re
placing the transition densities p(Ti-l> Xi-1; Ti, Xi) of the Ito process in the 
estimator (3.5)-(3.7) by the corresponding unbiased Monte-Carlo estimators 
q(Ti-1, Xi-1; Ti, Xi). These unbiased estimators result from the application of 
a powerful Monte-Carlo method due to von Neumann and Ulam to an integral 
equation which is related to the Kolmogorov backward equation. They allow 
us to introduce the variance reducing unbiased estimator 

N 

II q (Ti-1, Xi-1; Ti, Xi) 

(4.1) 11u = i-1 9 (XN), 
D«XO, ... ,XN)) 

where ( = (xo, ... , XN) E r is a random variable with density D with respect 
to the measure dp (see (3.4)) and q(Ti-1, Xi-1; Ti, Xi) for given i, Ti-t. Xi-1, 

Ti, Xi denotes a random variable with the property 

(4.2) 

If we choose the density D in the estimator (4.1) to be the Euler density Q 
given in (3.11), then we call 7Ju the direct unbiased Euler estimator. However, 
here we can also reduce the variance by chosing D close to the optimal density 
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Dopt , in which case we shall call flu the unbiased variance reducing Euler 
estimator. 

We shall describe the unbiased estimator q for the transition density p in 
the simple case of additive noise of the kind 

(4.3) b(s, y)b(s, yl == u I, 

where u > 0 is a constant and I is the d x d identity matrix. In addition, we 
shall assume that the drift a(s, y) is Holder continuous and bounded. 

To simulate the unbiased estimator q, for each i E {I, ... , N}, we need 
to generate a number Ii of auxiliary random time instants Ti,; in the interval 
[Ti-l, T;J for j = Ii, Ii - 1, ... , 1 with 

(4.4) Ti-l = Ti,l; < Ti,I;.,-1 < ... < Ti,l < Ti,O = Ti· 

The number Ii, which is random, is obtained automatically by the following 
procedure: starting with Ti,O = Ti, for j = 1, 2, ... choose 

Ti,j = Ti-l 

wit.h probability 

(4.5) P(Ti,j = Ti-l) = exp(- (Ti,j-l - Ti-d) , 

otherwise choose Ti,; as a random variable taking values in the interval [Ti-l, 
Ti,j-d with probability density 

(4.6) 
exp(Ti . - Ti-d e (T.' .) - ,J • 

T'i_l,Ta,j_l I,) - ( ) 1 ' exp Ti,j-l - Ti-l -

repeat this procedure until Ti-l is chosen as the value for Ti,; and take this j 
as the number Ii' 

Then, at the auxiliary times TiJ we need to generate auxiliary points :ei,j 
E lRd of the trajectory for each j = 1, ... , Ii - 1 and i = 1, 2, ... , N. For 
convenience we shall also write 

(4.1) :ej,O = :ej-O and :ei,l; = :ei· 

Analogously with (3.25)-(3.26), we generate the auxiliary points :ei,j for j = 1, 
... , Ii -1 and i = 1,2, ... , N as Gaussian random variables with vector mean 

(4.8) Tj - Tj ,I; - j _T.:.:.i ,I:.:.; -_Jt...' _----:T,;,:.;· ,I~; -.... ''-. +:...;,1 :ei,j -1 + Xi 
Ti - Ti,I;-j+l Ti - Ti,I;-j+l 

and covariance matrix 

(4.9) I (Ti - Ti,/i-j) (Ti,li-j - Ti,li-Hl) u . 
Ti - Ti,li-i+1 
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The unbiased estimator q for the transition density p is then given by 

(4.10) 

+PO,ul(Ti-l,Xi-liTi,Xi)exp(Ti - Ti-d 

';-1 

xL: 
1:=1 

x 4> (Ti-l. Xi-1i Ti,l:, Xi,I;_I:) 

PO,ul (Ti-l, Xi-1i Ti,l:, Xi,I;-I:) exp (Ti,1: - Ti-d ' 

where 

<)(6,.;',.)= J 1 ,exp ( 
(211'u(t - s)) 

Ix - y - aCt, x)(t - S)12 ) 

2u(t-s) 

and 

K( ) A".. ( ) (a(s,y)-a(t,x),x-y-a(t,x)(t-s)) 
s, y : t, x = "*' s, Yi t, x () . ut-s 

Prob 
0.055611 

0.039383 
++----~------------~----------------------~) O. 15625 0.125 

0.03125 0.0625 o.lta 

Figure 16.4.1 Results of PC-Exercise 16.4.2 
with the direct unbiased Euler estimator. 
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Wagner proved the following theorem, the proof of which we shall omit, 
using general results from the theory of Monte-Carlo integration. 

Theorem 16.4.1 Suppose for the variance reducing estimator (4.1) that the 
above assumptions hold, that D satisfies condition (3.8) and that p and g are 
such that 

(4.11) ( E(lg(y+ Wt)l) p(dy) < 00 
Jft4 

for all t > 0, where W is a d-dimensional Wiener process. Then the variance 
reducing unbiased estimator (4.1) satisfies 

(4.12) 

We shall use Example 16.3.3 from the last section to illustrate how unbiased 
estimators work. Our direct· unbiased Euler estimator has the form 

(4.13) 

Prob 
0.050854 

0.047804 
0.±1~5~62~5~-+-----------+-----------------------0-.+12~S) 

0.03125 0.0625 
o.lta 

Figure 16.4.2 Results of PC-Exercise 16.4.3 
with the variance reducing unbiased Euler estimator. 
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where the ZO, ••• , ZN are determined from a realization of the Euler scheme 
and the q(Ti-1, Zi-1; Ti, Zi) are generated by (4.10) using the auxiliary times 
Ti,j and points Zi,j' 

PC-Exercise 16.4.2 Repeat PC-Exercise 16.3.4 with the direct unbiased 
Euler estimator (4.13). 

To construct a variance reducing unbiased Euler estimator 

N 

II q (Ti-l, Zi-1; Ti, Zi) 

(4.14) - i-1 ( ) 1JN = - g ZN 
Do,1I «zo, ... , ZN» 

we can use the same Do,1I as in the last section, which was given by (3.21) and 
(3.25). 

PC-Exercise 16.4.3 Repeat PC-Exercise 16.3 . ../ with the variance reducing 
unbiased Euler estimator (4.1../). 

A comparison of Figures 16.4.1 and 16.4.2 shows that a considerable reduc
tion in variance is also possible for unbiased estimators. 



Chapter 17 

Selected Applications 
of Weak Approximations 

In this final chapter we indicate several examples of applications of weak ap
proximations. We begin with the evaluation of Wiener function space integrals, 
which generalize stochastic quadrature formulae, and then use weak schemes to 
approximate invariant measures. Finally, we compute the top Lyapunov expo
nents for linear stochastic differential equations. We believe that the techniques 
outlined here bear much potential for the development of effective numerical 
methods for higher dimensional partial differential equations, in particular non
linear ones. 

17.1 Evaluation of Functional Integrals 

In a number of problems in mathematical physics and other fields Wiener func
tion space integrals, which are also called functional integrals or Wiener inte
grals, play an important role. For instance, they arise in the analysis of wave 
scattering in random media (see Blankenship and Baras (1981» and representa
tions of the Schrodinger equation, which is just the time reversed Kolmogorov 
backward equation (4.8.15). The corresponding partial differential equation 
has the form 

(1.1) 

for 0 ~ t ~ T and z E ~m with final time condition 

u(T,z) = I(T,z), 

where V and I are given. From the Feynman-Kac formula (4.8.14) we have 

(1.2) u(t,z) = E (/(T, WT)exp (iT Yes, w.) dS) I w, = z) , 
where W = {W., 8 ~ t} is an m-dimensional Wiener process starting at z 
= (z1, ... , zm) E ~m at time t. The expectation here is with respect to the 
probability measure of the Wiener process W. 

The evaluation of the functional integral (1.2) is a typical problem for the 
weak approximations that we considered in Chapters 14-16. On the other 
hand, evaluating u(t,z) in (1.2) for all possible (t,z) is the same as solving the 
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parabolic equation (1.1). Weak aproximations for stochastic differential equa
tions thus provide a tool for solving second order partial differential equations, 
which can be particular efficient in higher dimensions if parallel computers are 
available. 

For given, sufficiently smooth functions f, t/J and a we introduce the func
tional 

(1.3) 

where W is an m-dimensional Wiener process starting at x = (xl, ... , xm) E 
~m at time t = O. Using the (m+ I)-dimensional Ito process X = {X, = (Xl, 
... , x;n+l), t ~ O} which satisfies the stochastic equation 

(104) Xl: , = xl: + 10' dW:, for k= I, ... ,m, 

Xm+l 
t = l' a (s,X.) ds, 

where X. = (X;, ... , X,:,), we can rewrite the functional (1.3) in the form 

(1.5) 

where 

F = E(f(T,XT)t/J(IoT 
a (s,X.) dS)) 

= E (f (T,XT) t/J (X;+l)) 

E(g(XT» , 

The expression (1.5) is now a functional of an multi-dimensional Ito process, so 
we can approximate it using a weak scheme. We note that the structure of the 
stochastic equation (1.4) is quite simple, so there are good propects of finding 
efficient weak schemes of high order with which to evaluate the functional (1.5). 

Example 17.1.1 For m = T = 1 in (1...I}-(1.5) with 

f(t, yl) == 1, t/J (y2) = exp (y2) , a (t, yl) = -4 (yl)2 

and Xo = 0 we obtain the functional 
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Exercise 11.1.2 Show for Example 17.1.1 that the function 

( 1 1 (1_e 2(T-t») 2 1 ( 2 )) 
u(t, z) = exp 2(T - t) + 2 1 + e2(T-t) z + 2 In 1 + e2(T-t) 

for t E [0, T] and z E !R1 satisfies the equation (1.1) with f == 1 and V(t, z) = 
!z2, and that the functional (1.5) takes the value 

~eT 
F = u(O, 0) = 2T' 

l+e 

We shall now apply some of the previously discussed weak schemes with 
equidistant step size A to the problem (1.4)-(1.5). 

The Euler scheme (14.1.1) for (1.4) is 

(1.6) y.1: = y'1: AWA 1: 
n+l n + u. n' for k = 1, ... ,m, 

with Yo = z and yom+l = 0, where Yn = (Y;, ... , Ynm). Here the A W: are inde
pendent N(O; A) Gaussian random variables or two-point distributed random 
variables with 

P (AW: = ±~) = 4 
for k = 1, ... , m and n = 0, 1, .... Using (1.6) with a step size C = A, we 
define the random variable 

(1.7) 

with nT = T / A. Its expectation provides an approximation for the functional 

(1.8) 

with weak order (J = 1.0, that is 

(1.9) 

PC-Exercise 11.1.3 Apply the Euler scheme with step size C = A = 2-3 

for Example 17.1.1 (see Exercise 17.1.2) to simulate M = 20 batches each of N 
= 100 realizations of the random variable FI and evaluate the 90% confidence 
interval for the mean error 

Repeat the calculations for step sizes C = A = 2-4 , 2-5 and 2-6 • Plot the 
confidence intervals on J.' versus C axes and also log21J.'1 versus log26 axes. 
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Figure 17.1.1 Results of PC-Exercise 17.1.3 with the Euler scheme. 
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If we apply the order 2.0 weak extrapolation method (15.3.1) to the above 
Euler scheme with step sizes A = 6 and A = 26, where T/26 is an integer, we 
obtain the random variable 

(1.10) 

Under the assumptions of Theorem 15.3.4, the expectation E(FD approximates 
F with weak order (3 = 2.0, that is 

(1.11) 

When f(T,y) == 1 and the AW: are Gaussian, the expression (1.10) reduces 
to the stochastic quadrature formula in Chorin (1973). 

The implicit weak scheme (15.4.13) for (1.4) takes the form 

(1.12) Y II: = yll: AWA II: 
n+l n + U n' for k = 1, ... ,m, 

with 'Yo = x and Yom +1 = 0, where 'Yn = (Y,.1, ... , Y,:"), and is in fact explicit 
because the 'Yn do not include the ym+l component. Here the AW: can 
be chosen as independent N(O; A) Gaussian random variables or three-point 
distributed random variables with 

P (AW! = ±v'3X) =~, 

for k = 1, ... , m and n = 0, 1, .... We define the random variable 

(1.13) F: = f (T, 'YnT) cf>( A;a (Tn' 'Yn) 

-~A {a(To,x)+a(TnT,'YnT)}) 

using (1.12) with step size 6 = A and nT = T/A. Its expectation E(FJ) 
then approximates F with weak order {3 = 2.0. We can interpret (1.13) as a 
stochastic generalization of the trapezoidal formula for Riemann integrals. 

PC-Exercise 17.1.4 Repeat PC-Exercise 17.1.3 with (1.13). A = 2-1 ••..• 

2-4 and the implicit order 2.0 weak scheme (1.12). 

We can apply the order 4.0 extrapolation method (15.3.11) to the implicit 
order 2.0 weak scheme (1.12) with step sizes A = 6,26 and 36, where T/M is 
an integer, to obtain the random variable 

(1.14) jli = ..!. [18F.1i _ 9F.21i + 2F.31i] 411 333 ' 
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Then, under the assumptions of Theorem 15.3.4, the expectation E(Ft) ap
proximates the functional F with weak order 4.0, that is 

Another order 4.0 weak extrapolation is given in (15.3.2). It uses step sizes 
A = 6, 26 and 46 with Tj46 an integer and the random variable 

(1.15) 

The expectation E(F~) also approximates F with weak order 4.0, that is 

under the assumptions of Theorem 15.3.4. 

PC-Exercise 17.1.5 Repeat PC-Exercise 17.1.4 with (1.15) and the ~m-
plicit order 2.0 weak scheme (1.12). 

Similarly, we could use an order 3.0 weak scheme for additive noise, such as 
the order 3.0 weak Taylor scheme (14.3.3), to approximate F with weak order 
3.0. Extrapolating as in (15.3.3) with step sizes A = 6, 26, 36 and 46 would 
then provide us with an order 6.0 weak approximation for the functional F. 

Exercise 17.1.6 Derive the order 3.0 weak Taylor scheme (14.3.3) for 
(1·4)· 

Exercise 17.1. 7 Write down an order 6.0 weak approximation method for 
the functional F. 

We shall now consider the special case of an exponential functional with f 
== 1 and <fJ(ym+l) = exp(ym+l) in (1.3), which then has the form 

(1.16) fr = E (exp (iT a (s, W.) dS) ) , 

where W = {Wt, t ~ O} is an m-dimensional Wiener process starting at ;r; = 
(xl, ... , xm) E ~m. It is easy to see that we have 

(1.17) 

for the Ito process X = {Xt = (Xl, ... , x;n+l), t ~ O} satisfying the stochastic 
equation 

(1.18) for k=I, ... ,m, 
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x;n+l = 1 + lt a (s,x.) x;n+1 ds, 

where once again X. = (X}, ... ,X;n). 
Gladyshev and Milstein proposed an order 4.0 weak scheme specifically for 

the stochastic equation (1.18). This is a one-step scheme in the first m com
ponents, which are uncoupled, and a two-step scheme in the last component, 
namely 

(1.19) Y:+ 1 
Ie A Ie Yn + .6-Wn , for k=I, ... ,m, 

ym+l 
n+2 ynm+1 + ~ {Kl + 2K2 + 2K3 + Kd 

with 

Kl = ( -) +1 a Tn, Yn ynm .6-

K2 = ( -) {m+1 1 } a Tn+1, Yn+1 Yn + 2Kl .6-

K3 = ( -) {m+1 1 } a Tn+l' Yn+1 Yn + 2K3 .6-

[(4 = a (Tn+2' Yn+2) {ynm+1 + K3} .6. 

with Yo = x, Yom+1 = 1, where Yn = (Y,t, ... , Y:'). Here T/2.6- is an integer 
and the .6-W: are independent N(O;.6-) Gaussian random variables for k = 1, 
... , m and n = 0, 1, .... The proof that this scheme converges with weak 
order 4.0 is similar to that of Theorem 15.7.1. Note the similarity of the 
last component of (1.19) with the deterministic Runge-Kutta scheme (8.2.8). 
Although it is a two-step scheme, we do not need a starting routine here as we 
can just use an even indexed term Yn~+1 and these depend only on their even 
indexed predecessors. 

Under sufficient smoothness of a, it is easy to show that the expectation of 
the random variable 

(1.20) 

for step size 6 = .6. approximates the functional Fin (1.16) with weak order f3 
= 4.0, that is 

We note that the above schemes may result in estimators with rather large 
variances. This problem can be handled with the variance reduction techniques 
discussed in Chapter 16, although the nice, simple structure of the stochastic 
equations (1.4) and (1.18) may then be lost. Other weak approximations from 
Chapters 14 and 15 are appropriate for the corresponding stochastic equations 
that arise when such variance reduction techniques are used. 
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To conclude this section we shall apply the measure transformation method 
described in Section 2 of Chapter 16 with the parameter function 

(1.21 ) 
T- t 1 

d1(t,yl)= 1+T-t Y 

to Example 17.1.1. From (16.2.7) and (16.2.8) we then obtain the system of 
stochastic equations 

(1.22) zi x + l' dW, - l' d (s, z;) ds 

Z; 1- ~ 1t (Z.n2 Z;ds 

Z; 1 + 1t d (s,Z;) Z: dW,. 

According to (16.2.9) we have 

(1.23) , ( 2 3) F = U(t, y) = E ZT ZT . 

We can use a weak approximation Y to approximate the solution of the stochas
tic system (1.22) in (1.23) and expect the functional 

(1.24) 

to have a relatively small variance. 

PC-Exercise 17.1.8 Repeat PC-Exercise 17.1.4 with variance reduction 
using (1.22)- (1.24) and the implicit order 2.0 weak scheme (15.4.12). 

A comparison of Figures 17.1.1-17.1.4 shows that the variance reduction 
technique yields an enormous improvement in the result relative to the neces
sary computation time. 

In this section we have seen how the solutions of the Schrodinger equation 
can be approximated numerically by solving an associated stochastic differential 
equation. We remark that it is possible to extend the described method to more 
general parabolic partial differential equations, in particular higher dimensional 
ones. This is still, however, very much an open area of research. 
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17.2 Approximation of Invariant Measures 

In this section we sha.ll consider an autonomous d-dimensional Ito process 

x, = Xo + l' a(X.) ds + f 1',,; (x.) dW: 
o j=1 0 

(2.1) 

for t ~ 0, which is driven by an m-dimensional Wiener process W = (WI, ... , 
wm). We shall assume that X = {X" t ~ O} is ergodic. Thus, by (4.8.18), it 
has a unique invariant probability law p such that 

(2.2) lim .! l' f (x.) ds = f fey) dp(y), '-00 t 0 Jft" 
w.p.l, for all p-integrable functions f : ~d - R and any admissible initial 
value Xo. We recall that Theorem 4.8.8 provides a sufficient condition for an 
Ito process X to be ergodic. 

In many applications we know on theoretical grounds that an Ito process 
X has a unique invariant probability law p and are interested in evaluating a 
functional of the form 

(2.3) F = f fey) dp(y) 
Jft" 

for a given function I : Rd - R, but we do not know p explicitly. For instance, 
when fey) == y the functional (2.3) is simply the asymptotic first moment 
limt_oo E(Xt ). In the next section we shall consider another example where it 
is the upper Lyapunov exponent of a linear stochastic system (2.1). 

An example of an ergodic Ito process is the Ornstein-Uhlenbeck process 

(2.4) X, = Xo -1' x. ds + l' V2dW .. , 

which has as its invariant measure p the standard Gaussian law N(O; 1) with 
density (see (1.2.12» 

(2.5) 

Using (2.2) with fey) = y2, we see that the asymptotic second moment of the 
Ornstein-Uhlenbeck process satisfies 

(2.6) 

Thus, if we did not already know the answer, we could use the expression 

(2.7) 

for large T as an estimate for the asymptotic second moment of X. We note 
that FT here involves just one sample path of the Ito process X, though taken 
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over a rather long time interval [0,11. We can determine it approximately by 
evaluating the sum 

(2.8) 

for a single trajectory of a time discrete approximation y6 with equidistant step 
size 6 = A = TinT' Later we shall see that F,J. converges under appropriate 
assumptions to the desired functional F given in (2.3) as T -+ 00 and 6 -+ O. 

This method, proposed by Talay, of using a single simulated trajectory to 
approximate a functional of the form (2.3) can also be used for other functions 
f and more general ergodic Ito processes X. We shall specify some additional 
weak schemes below which are useful for this purpose. 

When the invariant law J.l is absolutely continuous it has a density, which 
we shall denote by p. Under appropriate conditions this invariant probability 
density satisfies the stationary Kolmogorov backward equation (2.4.7) 

(2.9) ~ k ap 1 ~ i' a2p 
Cp = L...J a a k + 2 L...J b b' a ia j = 0, 

k=1 Y i,j=1 Y Y 

as well as the stationary Fokker-Planck equation (2.4.5) 

(2.10) C·p= 0, 

where C is the elliptic operator defined in (2.4.6) and C· is its adjoint. Expe
rience has shown that standard difference methods are usually inadequate for 
such partial differential equations in higher dimensions. The simulation method 
discussed above thus offers an alternative means for calculating the density p of 
an invariant law J.l or, equivalently, the stationary solution of a Fokker-Planck 
equation, and may sometimes be the only effective method available. 

Talay has proposed a criterion for assessing time discrete approximations 
y6 which are used to calculate limits of the form 

(2.11) 

where 6 = TinT is kept fixed. A time discrete approximation y6 is said to 
converge with respect to the ergodic criterion with order f3 > 0 to an ergodic 
Ito process X as 0 -+ 0 if for each f E CC; (~d, ~) there exist a positive constant 
Gl, which does not depend on 6, and a 60 > 0 such that 

(2.12) 

for 0 E (0,00)' Here F and F6 are defined in (2.3) and (2.11), respectively, and 
Cp(~d,~) denotes the space of smooth functions which, together with their 
derivatives of all orders, have at most polynomial growth. 

In view of the ergodicity relationship (2.2) we can interpret F as E(J(Xoo» 
and F6 as E(J(Y!». Thus, the ergodic convergence criterion (2.12) can be 
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considered to be an extension of the weak convergence criterion (9.7.4) to the 
infinite time horizon T = 00. 

Under appropriate assumptions it follows (see Talay (1990)) that the multi
dimensional Euler scheme 

m 

(2.13) Yn+1 = Yn + aA + 2: bi .6.W~, 
1=1 

where the AlVA are independent N(O; 1) Gaussian random variables, converges 
with respect to the ergodic criterion (2.12) with order f3 = 1.0. 

The simplified order 2.0 weak Taylor scheme (14.2.7) has the form 

(2.14) 
1 

Yn + a.6. + "2 LOa .6. 2 

+ t, {bi + ~ (LObi + Lja) A} .6.W~ 

+.!. ~ Litl)2 (SWj1 .6.W12 + v· .) 2 L..J n n )1,)2 

h,h=1 

where the .6.W~ are independent N(O; 1) Gaussian random variables and the 
V;"h are as in (14.2.8)-(14.2.10). We shall see from Theorem 17.2.1 to be 
stated below that this scheme converges with respect to the ergodic criterion 
with order (3 = 2.0. The same is true for the multi-dimensional explicit order 
2.0 weak scheme (15.1.3) 

(2.15) Yn+1 = Yn + 4 (a (1') + a) .6. 

+~ ~ [~ (R~) + ~ (~) + 2~ 

+ t (~ (lft) + Il ((j~) - 21)) ].6. W~.6. -1/2 

r'lt; 

+~ t, [ (V (w.) - V (iiq ) { (L'.W~)' - L'.} 

+ t (Il (0 ... ) -Il ((j~) ) {.6.W~.6.W': + Vr,j} ].6.- 1/2 

r~j 

with supporting values 

m 

l' = Yn +a.6.+ Lbi.6.W~, and 
j=1 
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where the random variables aw~ and Vjd~ are as in the scheme (2.13). 

A theorem of the following type is proved in Talay (1990). 

Theorem 17.2.1 Let m = 1 and suppose that the drift and diffusion coef
ficients ak , bk for k = I, ... , d have bounded derivatives of all orders, with the 
bk also bounded; that there is a constant C1 > 0 such that 

d 

(2.16) L bk(x)b'(x)(k(' ~ C1 1(12 

k,l=l 

for all x, <: = «I, ... , (d) E ~d; and that there exists a compact set [( and a 
constant C2 > 0 such that 

(2.17) 

for all x E ~d \ K. 
Then, the schemes (2.14) and (2.15) with Gaussian AWn converge with 

respect to the ergodic criterion with order {3 = 2.0 as 0 - O. 

We anticipate that most of the weak schemes of a given weak order {3 
introduced in Chapters 14 and 15 also converge with respect to the ergodic 
criterion with the same order (3 under appropriate assumptions. 

PC-Exercise 17.2.2 For the Ornstein-Uhlenbeck process (2.4) with Xo = 
0, use the Euler scheme (2.13) with step size 0 = a = 2-3 to simulate the sum 
F6 in (2.8) with T E [0,25600] to estimate the second moment of the invariant 
law. Plot the linearly interpolated values of F6 against T. 

PC-Exercise 17.2.3 Repeat PC-Exercise 17.2.2 using the scheme (2.15). 

PC-Exercise 17.2.4 Consider PC-Exercise 17.2.2, but now estimating the 
probabilities 

l (r+1)f 

p([n,(r+ 1)(D = rf dp(y) 

for r = -10, -9, ... , 8, 9 and ( = 0.3. Plot the results in a histogram. 

Such simple I-dimensional equations are not typically encountered in ap
plications. However, we note that good numerical results are also obtained in 
the multi-dimensional case, with the required computational effort increasing 
only polynomially with the dimension of the state. 
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17.3 Approximation of Lyapunov Exponents 

Investigations of the stability of a stochastic dynamical system are of crucial 
importance in engineering and other fields of applications. An indication can 
be seen in the examples of helicopter rotor blade stability and satellite orbital 
stability outlined in Section 5 of Chapter 7. 

The stability of such systems is characterized by the negativeness of their 
upper Lyapunov exponents, which we defined in Section 3 of Chapter 6. In 
general, it is not possible to determine Lyapunov exponents explicitly, so a 
numerical approach is needed. Talay (1989b) has proposed such a method, to be 
described here, which uses simulations of approximate trajectories of a system 
to evaluate an approximation of its upper Lyapunov exponents. Essentially, 
it is an application of the results of the last section on the approximation of 
functionals of invariant measures. 

We shall start from a d-dimensional linear Stratonovich stochastic differen
tial equation 

(3.1) 
m 

dZ, = AZ, dt + L Ble Z, 0 dwl, 
Ie=l 

where d ~ 2 and W is an m-dimensional Wiener process. As we have seen 
in Section 3 of Chapter 6, we obtain equations like (3.1) when we linearize 
nonlinear stochastic differential equations about stationary solutions. 

The projection 
Z, 

S, = IZtl 

of the solution Z, of (3.1) onto the unit sphere Sd-l then satisfies the Straton
ovich stochastic differential equation (see (6.3.23» 

m 

(3.2) dS, = h (5" A) cIt + L h (5" B Ie ) 0 dWtle , 
Ie=l 

where for any d x d matric C 

(3.3) h(s, C) = (C - (s T Cs) I) s. 

Under appropriate assumptions on the matrices A, Bl, ... , B m , from (6.3.24) 
we see that the upper Lyapunov exponent Al of the system (3.1) is given by 

(3.4) 

where 

Al = f q(s)dp(s) 
}Sd-l 

(3.5) q(s) = s T As + ~ (~s T (Ble + (BIe) T) s _ (s T Bles ) 2) 
and i1 is the invariant probability measure of the process S = {St, t ~ O} on 
Sd-l. 
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The problem of approximating Lyapunov exponents is thus one of approx
imating a functional of an invariant probability law of a diffusion process, so 
we can use the methods proposed in the last section. This, it turns out, is 
not an easy task on account of the sensitivity of the results to the numerical 
stability of the numerical scheme that is used. To illustrate this we shall look 
at an example due to Baxendale for which an explicit formula for the upper 
Lyapunov exponent is known. Here d = 2, m = 1 and equation (3.1) is 

(3.6) dZt = AZt dt + BZt 0 dWt 

with coefficient matrices 

(3.7) A=[~ ~], 
where a, band u are real-valued parameters. Baxendale has shown that the 
top Lyapunov exponent Al here is given by 

1 1 121r cos(20) exp (~ COS(20») dO 

A1=2(a+b)+2(a-b) 21r (a-b ) 1 exp 2u2 cos(20) dO 

(3.8) 

The functions (3.3) and ( 3.5) for this example are 

(3.9) 

(3.10) ( 
-US2 ) 

h(s, B) = us l 

and 

(3.11) 

The projected process St here lives on the unit circle S1, so we can represent 
it in terms of polar coordinates, specifically, the polar angle 4>. The resulting 
process 

(3.12) 

satisfies the stochastic equation 

(3.13) 4>t = 4>0 + ~(b - a) It sin (24)u) du + iT It dWu , 

which we interpret modulo 211". Moreover, it follows from (3.11) that 

(3.14) 
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Figure 17.3.1 Results of PC-Exercise 17.3.2: Lyapunov exponent approximated 
with the explicit order 2.0 weak scheme. 

Exercise 17.3.1 Show that tPt satisfies (9.19). 

We shall consider the case where the upper Lyapunov exponent is negative, 
so the system is stable and many potential numerical schemes are asymptoti
cally numerically stable. For a = 1.0, b = -2.0 and u = 10 formula (3.8) for 
the upper Lyapunov exponent gives At = -0.489 .... We shall investigate the 
behaviour of the approximate functional 

(3.15) 

with these parameter values, using different time discrete approximations y5 
of tP. 
PC-Exercise 17.3.2 Simulate the Lyapunov exponent At of (9.6) for the 
parameters a = 1.0, b = -2.0 and u = 10 by (9.15) using the explicit order 2.0 
weak scheme (2.15) with {) = A = 2-9 , T = 512 and Yo = tPo = 0.0. Plot the 
linearly interpolated values of Fl against t for 0 ~ t ~ T. 

We see from Figure 17.3.1 that Fl tends to value of Al as t -+ 00. 

In contrast, however, when the Stratonovich stochastic differential equation 
(3.2) is stiff, particularly for dimensions d ~ 3, we may encounter numerical 
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difficulties with many schemes. It will be necessary in such cases to use a weak 
implicit scheme to simulate the approximate trajectories for use in (3.15). As 
with many of the theoretical results and practical applications described in this 
book this is also an area open to more extensive research. 



Solutions of Exercises 

Solutions of Exercises for Chapter 1 

Exercise 1.4.1 An anti-derivative of 7rXp(x) = x/(l + x2 ) is In ~h + X2, so the 
one sided improper integrals Loo xp( x )dx and fooo xp( x )dx both diverge. Hence the 

two sided improper integral f~oo xp(x)dx diverges. 

Exercise 1.4.2 E«X - 11)2) = E(X2 - 2XII + 112) = E(X2) -2I1E(X) +112 = 
E(X2) _112 since II = E(X). 

Exercise 1.4.3 
a). Let X be Poisson distributed with parameter A > O. Then Pi = :; e->' for i = 0, 
1, ... , so 

and 

( 
00 Ai - 1 00 Ai - 1 ) 

Ae->' t; (i - I)! + 8(i - 1) (i - I)! 

(
00'1 00 .2) 

= Ae->' t; (iA~-l)! + A t; (i~-2)! = Ae->' (e>' + Ae>') = A + A2. 

Hence, by Exercise 1.4.2, Var(X) = E(X2) - (E(X»2 = A + A2 - A2 = A. 

b). Let X be U(a,b) uniformly distributed. Then 

Ibx 1221 
E(X) = a b _ a dx = 2(b _ a) (b - a ) = '2 (b + a) 

and 

2 Ib x 2 1 3 3 1 2 2 E(X ) = -b - dx = (b ) (b - a ) = - (b + ab + a ). -a 3 -a 3 a 

Hence Var(X) = t W + ab + a2) - t (b + a)2 = 112 (b - a? 

c). Let X be exponentially distributed with parameter A > O. Then 

E(X) = 100 
XAe->'x dx = lim ~ (1 - (Ax + l)e->'''') = ~ and 

a %-00 
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d). For a standard Gaussian random variable X the expectation E(X) = 0 because 

xp(x) = '* xe-1",2 has an anti-derivative - k e-1",2 so the one-sided improper 
integrals exist with 

10 ..j2; xp(x)dx = lim (e-1,,2 - 1) = -1, 
:&--00 -00 

from which it follows that E(X) = J~ooxp(x)dx exists and has the value (-1 + 
1)y'2; = O. Integrating by parts 

-- x e 2 x 1 100 
2 _.1",2 d 

..j2; 0 
= 

= 

and similarly J~oo x2 p(x) dx = t. Hence the two-sided improper integral exists, giving 

2 2 1 100 2 _.1,,2 1 1 Var(X) = E(X ) - 0 = r.::= x e 2 dx = - + - = 1. 
v21f -00 2 2 

Exercise 1.4.7 Let X,..., N(p;q2) and let k = 0,1,2, .... Using the substitutions 
z = (x - p)/q and t = z2/2 

= 

= 172"2(21<-1)/2 f3; 100 
t<2"-1)/2 e-t dt 

= 172"2(2"-1)/2 f3; r (k + 4) 
= 1·3·5· .. (2k - 1)172 = (2k - 1)!!q2, 

where r is the Gamma function. 
With similar substitutions and integration by parts for k ~ 1 
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which gives a reduction formula 1(2k+l) = 2k 1(2k-l). As in the solution of Exercise 
1.4.3(d) 1(1) == ,,(2;/2. A similar reduction formula holds for the integral from -00 
to 0, but with 1(1) having the opposite sign (the integrand is an odd function). Hence 
the two-sided improper integrals all exist and vanish, giving 

E«X - p.)2k+l) == .,; 1 2100 (x _ p.)2k+l e-(Z';:";/ dx == 0 
21ru -00 

for each k == 0, 1, 2, .... 
Finally E(IXr2) == 00 follows from Ixl-le-~:r2 ~ Ixl-le- l for Ixl ::; 1 and the 

divergence of the improper integral J~l Ixl-ldx. 

Exercise 1.4.8 Let X be a random variable with probability density p and let 9 : 
[0,00) -> [0,00) be a nondecreasing function such that E(g(IXI) < 00. Since p(x) ~ 
o 

E(g(IXI) == 1: g(lxl)p(x) dx ~ l:rl?a g(lxl)p(x) dx 

~ 1 g(a)p(x)dx==g(a)P(lXI~a) 
l:rl?a 

for all a > 0 
POXI ~ a) ::; E(g(IXI)/g(a). 

Using g(x) == x for a non-negative random variable X ~ 0 gives the Markov inequality 
and g(x) = x2 the Chebyshev inequality. 

Exercise 1.4.9 Let X be exponentially distributed with parameter A > 0 and let 
a> O. Then 

E(X I X ~ a) 100 xp(x) dx / 100 p(x) dx = 100 xAe-)..:Z: dx / 100 
Ae-)..:r dx 

lim {(a+rl)e->.a_(x+rl)e-).. ... }/ lim {e->.a_e->.:z:} 
x-oo :&_00 

Exercise 1.4.11 Let Xl, X 2 be uniformly U(O,I) distributed with joint density 
P(Xl' X2), let Yl , Y2 be the Box-Muller random variables 

Yl = V-21nXl cos(21rX2 ), Y2 == V-21nXl sin(21rX2) 

and let 

Xl == Xl(Yl,Y2) = e-1(Yt+yi), X2 = X2(Yl,Y2) ==...!.... arctan (Y2) . 
211' Yl 

Then the joint density q(yl, Y2) of (l'1, Y2) is given by 

I [&Xi] I 1 1('+') Q(Yl,Y2) == p(Xl(Yl,Y2),X2(Yl,Y2» det &Yj =1'21re- Yl Y2 

1 _.1. 1 _.1' --e .Yl. --e .Y. 
~ .j2i 

which is the product of the densities of two independent standard Gaussian random 
variables. Thus the Box-Muller variables Y1 , Y2 are independent N(O; 1) random 
variables. 
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For the Polar-Marsaglia random variables apply the above procedure to the pairs of 
independent uniformly distributed random variables W, Vi/V'W' and W, V2/V'W', 
respectively. 

Exercise 1.4.14 A theorem states that Gaussian random variables Xl, X 2 are 
independent if and only if they are uncorrelated, that is E(XIX2) = o. Thus Xl '" 
N(O; h) and X 2 '" N(O; h3 /3) with E(XIX2) = h2 /2 for h > 0 are dependent. The proof 
follows by showing that the joint density p(XI, X2) =F PI (Xt}P2(X2), the product of the 
individual densities. Here the covariance matrix 0-1 = [E«Xi -pi)(Xj -Pi»], so 

[ 4/h 
0= _6/h2 

with det C = 12/h'. Thus 

v'detC (1 ~ ., ) ~ exp -2'.~ C"'(Xi -pi)(Xi -Pi) 
1,,_1 

= 

Exercise 1.4.15 Inequality (4.41) follows from the inequality (a +bf :5 Cr(ar +br) 
for r > 0 and a, b > 0 where Cr = 1 if r < 1 and Cr = 2r - 1 if r 2: 1. Inequalities (4.42) 
and (4.43) are just the Minkowski and Holder inequalities, respectively. Proofs in 
the context of Lp spaces ca.n be found, for example, in Kolmogorov and Fomin (1975) 
or Royden (1968). 

Exercise 1.5.1 Let Xn = ,fiiIA" where An = {w E [0,1] : 0:5 w ::; l/n}. Then 

for 0 < f :5 ..;n. Thus 

lim P(IXn - 012: f) = lim P(Xn 2: f) = 0 
R_OO n-oo 

for all f > 0, so Xn converges in probability to X = o. However 

E (X~) = E (nI!,.) = E (nIA,,) = n E (IA,,) = n P (An) = n . (l/n) = 1. 

Hence limn_co E(IXn - X12) = 1, so X .. does not converge to X in the mean-square 
sense. 

Exercise 1.5.5 The Law of Large Numbers says only that the random variables 
An converge in probability to the mean p, a deterministic number. The Central 
Limit Theorem says that the ra.ndom variables 
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converge in distribution to a standard Gausian random variable. It thus also provides 
information about how the errors An -I' are distributed about the limiting value o. 

Exercise 1.6.3 Let W, be a standard Wiener process and let 0 :5 s < t. Then 

O(s, t) = E«W, - E(W,»(W. - E(W.))) = E(W, W.) 
= E«W, - W. + W.) W.) = E«Wt - W.) W.) + E (W:) 

= E(WI-W.)E(W.)+E(W:) =O·O+s=s 

since W. and WI - W. are independent for s < t. Analogously, O(s, t) = t for t < s. 
Hence 

O(s, t) = min{s, t} = ~ (Is + t\-\s - tl). 

This is not a function of (t - s) only, so the Wiener process is not stationary in the 
wide-sense. 

Exercise 1.6.6 For any ,\ E [0,1] 

p>.P = 

= 
= 

[ 
0.5 0.5 0 1 

(,\/2, ,\/2,1 - ,\) 00.5 0.5 0 
o 1 

(4(,\/2 + ,\/2), 4(,\/2 + ,\/2), 1 - ,\) 

(,\/2, '\/2,1 - ,\) = p>.. 

Exercise 1.6.10 For any initial probability vector p(O) = (p,1 - p) with p E [0,1] 

p(t) = 

= 

[ (1 + e-t )/2 (1 - e-')/2 ] 
p(O) P(t) = (p, 1 - p) (1 _ e- t )/2 (1 + e-')/2 

( 1(1 -') -t 1 (1 -') -t) 2 -e +pe'2 +e -pe 

(4,~) = past --+ 00. 

Exercise 1.6.11 Let 0 :5 tl :5 h :5 ... :5 tn and integers 0 :5 il :5 i2 ... :5 in . In 
view of the independent increments of the Poisson process Nt 

Hence 
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P (Nt"_ l = in-I, Nt .. = in) 

P (Nt .. _ l = in-I) 

(t t )i .. -i .. _l n - n-I -(t .. -t .. _l) 
(in - in-I)! e 

P (Ntl = iI, Nt2 = i2, ... , N t .. _1 = in-I, Nt .. = in) 

P (Ntl = iI, Nt2 = i2, ... , Nt .. _ 1 = in-I) 

P (Nt ... = in lNt1 = it. Nt2 = i2 , ••• , N t .. _ 1 = in-I) . 

Thus the Poisson process is a Markov process. It is a homogeneous Markov process 
because 

for all s, t ~ 0 and integers i ~ 0, and similarly for all of the finite-dimensional dis
tributions. In fact, it is a homogeneous Markov chain on {O, 1,2, ... } with transition 
probabilities pi.i(t) = 0 if j < i and pi.i (t) = ti-ie- t /(i - i)! if i $ j. 

Exercise 1.7.1 For the transition densities of a standard Wiener process 

I: pes, Xj r, z)p(r, Zj t, y) dz 

= 100 1 exp (-! (Z_X)2 + (Y_Z)2)) dz 
-00 211'v(r-s)(t-r) 2 r-s t-f" 

= 1 exp (_ (y - X )2) 100 _1 exp (_!u2) du 
V211'(t - s) 2(t - s) -00 ...;2r 2 

= p(s, Xj t, 7/) . 1 = p(s, Xj t, y) 

with the substitution 

u = u(z) = (z _ x(t - r) + y(r - a») J t - a . 
t-a (r-s)(t-r) 

This is the Chapman-Kolmogorov equation in terms of transition probabilities. The 
parameter r cancels out here. 

Exercise 1.7.2 For a standard Wiener process a(s, x) == 0 and b(s, x) == 1 because 

and 

a(a,x) = lim-1-E(We-W.IW.=x) 
t!. t - a 

= lim-1-E(Wt - W.) = lim-1-. 0 = 0 
t!. t - a e!. t - s 

= lim _1_ E (We - W.)2IW. = x) 
I!. t - s 

lim _1_ E (We - W.)2) = lim _1_. (t - s) = 1. 
fl. t - a t!. t - a = 
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For the Ornstein-Uhlenheck process with paramter i = 1 the substitution 

and ( -+ 00 gives 

a(s,x) 1 100 = lim -- (y - x)p(s, x; t, y) dy 
tl- t - 8 -00 

= lim -- exp - - dy . 1 100 y - x ( (y - xe-Cf--»2) 
fl- t - s -00 'v/211"(I _ e-2(t--» 2(1 - e-2(t-s» 

= lim _1_100 
_1_ (Uv'(1 _ e-2Cf-S» _ x (1- e-Ct--») exp (_.!.u 2 ) du 

fl_ t - 8 -00 $ 2 

. 1 - e(t-s) 
= -x· lIm = -x . 1 = -x 

fl_ t - s 

and 

= lim -- (y - X)2p(S, Xj t, y) dy 1 1"" 
fl. t - s _"" 

1 1"" (y - X)2 ( = lim-- exp 
fl' t - 8 _"" v'211"(1 _ e-2(t-.» 

= hm + -~------""-. (1- e-2Ct- s ) x 2(1- e-Ct-'»2) 
flo t - s t - 8 

= (2 + x 2 .0) . 1 = 2, 

using 

-- U exp --u du = -- exp --u du = 1 1 100 2 (1 2) 1 100 (1 2) 
..(2; -00 2 $ -00 2 

and 

~ 1"" uexp (_~U2) du = O. 
v211" -00 

Hence a( s, x) = -x and b( s, x) = ../i for the Ornstein-Uhlenbeck process with pa
rameter i = 1. 

Exercise 1.7.3 Since a(s,x) = -x and b2(s,x) = 2 for the Ornstein-Uhlenbeck 
process with parameter i = 1, the Kolmogorov forwards and backwards equations 
are 

ap a a2p ap ap a2p 
-+-(-yp)--=O and --x-+-=O 
at ay ay2 as ax ax2 ' 

respectively. It can then be verified directly that (7.4) satisfies the backwards equa
tion. 

Exercise 1. 7 .4 Integrate the differential equation 

d « 2) _) 1 d2 ( 2) - 1171 - Y P - - - 271 f = 0 dy 2 dy2 
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over the half-line y ;::: 0 and use the assumed asymptotic behaviour of p to obtain the 
first order separable differential equation 

. d (v -2 ) Ie dyP = -y- - 1 p. 

This has the general solution p = Ny,,-2 e- y, which has a singularity at y = 0 when v 
< 2. The constant of integration N is so that fooo p(y) dy = 1. For v < 1 the integral 
diverges and the only stationary probability density is the delta function 8(y) centered 
on 0, whereas for 1 :5 v < 2 the singularity is integrable. For all v ;::: 1 the improper 
integral converges and a suitable normalizing constant N can be determined. 

Exercise 1.7.5 For a standard Wiener process the increments W t - W. '" N (0; /t
s/), so from Exercise 1.4.7 with k = 2 and (1'2 = It - s/ it follows that 

Exercise 1.8.1 Var(SN(t) - SN(S» = 0 if t~N) :5 S :5 t < t~~i. Let t;N) :5 s :5 
t;~~ < ... < t~N) :5 t < t~~i. Then 

Var (SN(t) - SN(S» = Var (.t X;~) = Var ( t Xi) e.t 
'=1+1 '=1+1 

Ie 

= L Var (Xi) ~t = (k - j) e.t = [t ~/] e.t 
i=;+1 

--+ t-s 
1 

as e.t = - --+ O. 
N 

Here [xl denotes the integer part of x. 

Exercise 1.8.3 For tr,:v) :5 t < t~~)1 define 

so 

and, in view of the independence of SN(t<,;'» and X n +1, 

Var (SN (t» = E (SN (t)?) = E ( (SN (t<,;'») /) + N (t - t<,;'» 2 E (X~+I) 

[ 
(N)] (t _ t~N»2 

= n + N (t - t(N))2 = ~ ..<1t + ->-~~_ 
n ..<1t ..<1t 

--+t+O=t as N-+oo since It-t~N>I<..<1t=l/N. 

Here [x] denotes the integer part of x. However for t~> ~ SI < S2 < S3 < t~~ 

SN(S2) - SN(S!) = v'N (S2 - SI) X n +l , SN(S3) - SN(S2) = v'N (S3 - S2) X n +l, 
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so S N does not have independent increments. 

Exercise 1.8.4 For a standard Wiener process 

lim E (W(t») = lim 1. E(W(t» = lim 1. . 0 = 0 
1-00 t 1-00 t 1-00 t 

and 

from which it follows that limt_oo W(t)/t -+ 0 w.p.I. 

Exercise 1.8.5 Recall that a linear combination of Gaussian variables is also Gaus
sian. Let W be a standard Wiener process and define X(t) = Wet + s) - W(s) for 
all t ~ 0 and some fixed s ~ O. Then X(t) '" N(O; t) because 

and 

E(X(t)) = E(W(t + s)) - E(W(s» = 0 - 0 = 0 

E (X(t)2) = E(W(t + S)2) - 2E«W(t + s) - W(s»W(s» - E(W(S)2) 

= t+s-O·O-s=t. 

Moreover X(t + h) - X(t) = Wet + s + h) - Wet + s), so X also has independent 
increments and is thus a standard Wiener process. 
Now define Yet) = t W(l/t) for all t > O. From Exercise 1.8.4 t W(I/t) = W(s)/s -+ 

o as s = l/t -+ 0, so define YeO) = o. Then yet) '" N(O; t) because 

E(Y(t)) = E(t W(l/t)) = t E(W(I/t)) = 0 

and 

That Y has independent increments follows from 

yet) - yes) = tW(I/t) - sWells) = t (W(I/t) - W(l/s)) + (t - s) Wells) 

and the independence of the terms in the final expression. Hence Y is also a standard 
Wiener process. 

Exercise 1.8.7 The Brownian bridge process B: -: is Gaussian since it is a linear 
transformation of a Gaussian process with . 

E (B~-:(t») = ~ (x(T - t) + ty + (T - t)E(W(t») = ~ (x(T - t) + ty) = I'(t) 

and 

so 

E((B~-:(t»)2) =1'(t)2+ (T:;'2 t? E(W2(t))=I'(t)2+ (T:;'2 t? t, 

Var (Br,-:(t» = ;2 (T - t)2. 
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The expectation and variance remain the same under the substitution (x, y, t) -+ 

(y, x, T - t), so B~:(T - t) has the same distribution as B~:(t). Finally, with 0 ~ 
s,t $T 

Exercise 1.8.9 E (Xh(t») = 0 for all h > 0, so for s + h ~ t 

E (Xh(s) Xh(t») = :2 E «W(t + h) - W(t» (W(s + h) - W(s))) 

1 = h2 E(W(t + h) - W(t» E(W(s + h) - W(s» = 0·0 = 0 

and for s ~ t ~ s + h 

E (Xh(S) Xh(t») = :2 E «W(t + h) - Wet»~ (W(s + h) - W(s))) 

= :2 E «W(s + h) - W(t»2) = :2 (s + h - t) 

= X(l-t~S). 

Similar expressions hold on reversing the roles of s and t, so 

C(s, t) = E (Xh(S) Xh(t») = X max {o, 1 _ It ~ Sl} = e(t - s). 

Hence 

Exercise l.S.10 For the Ornstein-Uhlenheck process with parameter, > 0 

Sell) = 100 
e-..,I.le-2".",. ds = 2100 e(s)eh - 2 ". ... ). ds 

-00 0 

1 1 2, 
= + = . , + 211'111 , - 2lfW ,2 + 4lf2 ,,2 
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Obviously S(/I) -+ 0 as 'Y -+ 00, so the covariance c(t) tends to a delta function centered 
on 0, the covariance function of Gaussian white noise. Thus the Ornstein-Uhlenbeck 
behaves more and more like Gaussian white noise as its parameter 'Y increases without 
bound. 

Exercise 1.9.1 Let the Xi be a sequence of i.i.d. U(O, 1) random variables and let 
An = ~ 2:7=0 x;. Then 

1 1 
I'n = E (An) = '2 and Var (An) = 12n· 

By the Chebyshev inequality 

1 1 
P(lAn -I'nl ~ a) ~ 2" Var(An) = -12 2' a na 

which is no larger than 1 - a if 

n > n (a,a) = _1_. 
- 12a2 a 

By the Central Limit Theorem with Zn = (An - I'nh/12/n and b = av'12n 

P(lAn -I'nl < a) = P(IZnl < b) ~ 2~(b), 

which is no larger than 1 - a if 

> _( ) 1 (~-1(I_a/2»)2 n naa=-- , 12 aa 

For example with a = 0.1 and a = 0.05 

( ) 1000 n-(0.1,0.05) = (~-1(1 ~025»)2 "'"' 32. ii 0.1,0.05 = -6- ~ 167, 0.1 12 ,-

Solutions of Exercises for Chapter 2 

Exercise 2.2.1 Let x~n) = i/n for i = 0, 1, ... , n. Since I(x) = 2x is increasing on 
[0,1) the lower rectangular sums 

n~ n~ 

Ln = LI(x~n»(x~~~_x~n»)=L~e~1-;) 
;=0 ;=0 

n-1 

2- ~ i = 2 (n - 1 )n = 1 _ 1:. -+ 1 
n2 L...J n2 2 n = as n-+oo 

;=0 

and the upper rectangular sums 

Un = ~/( (n»( (n) (n») _ ~2(i+l) (i+l i) L...J X;+1 X;+1 - Xi - L...J n -n- - ;; 
~o ~o 

= 2- ~ k = 2- n(n + 1) = 1 + 1:. -+ 1 
n 2 L...J n2 2 n 

as n -+ 00. 

10=1 
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Hence the Riemann integral 101 2X dx exists and equals 1. 

Exercise 2.2.2 Here 0::; f(x) ::; 2 and the subsets Ei = E.([O, 1]; n) = {x E [0,1] : 
2i/n::; f(x) ::; 2(i + l)/n} = [i/n, (i + l)/n]. For the simple function ,pn(x) = 2i/n 
for x E Ei the Lebesgue integral 

n-l n-l 1 ,pndp = E2i peEn = E 2i! 
[0,1) ;=0 n ;=0 n n 

n-l 

= 2.. ~ i = 2.. (n - 1 )n = 1 _ 1. -+ 1 
n2 L...J n2 2 n as n -+ 00, 

.=0 

so the Lebesgue integral ~O,l) f dp exists and equals 1. 

Exercise 2.2.4 HereS = {0,A,AC,O} and T = {0, A,Ac , B, BC, AuB, (AuB)C, An 
B, (A n B)C, OJ, so 

E(XIS)(w) = ptC) l XdP for wEC where 01=CES 

and 

E(XIT)(w) = ptC) l X dP for wE C where 01= C E T. 

Hence for w E C = A, A C or 0 

E(E(XIT)IS)(w) = ptC) l E(XIT) dP 

= ptC) l (ptC) l XdP) dP 

= p(~)2l XdP 1 dP= p(~)2l XdP.P(C) 

= ptC) 1 XdP= E(XIS)(w). 

Exercise 2.2.5 Let r(Y) = E (XIY) so E U*(Y)IY) = E (XIY). Since 

E «X - r(Y» (J*(Y) - feY))) = E (E (X - reV) I Y) (J*(Y) - fey))) 

= E(E(X- X I Y) (r(y) - feY»~) = 0 

it follows that 

E (X - f(y»2) E (X - reV) + reV) - f(y»2) 

= E (X - r(y»2) + E (U*(Y) - f(y»2) 
+2E «X - r(Y» (r(Y) - feY))) 

> E (X - r(y»2). 

Exercise 2.2.6 Let F = Fl - F2 where Fl and F2 are bounded and monotonic on 
[a, b]. Then Fl and F2 have bounded variation on [a, b]. Since 

V:(F) = V: (FI - F2) ::; V: (FJ) + V: (F2) 
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it follows that F has bounded variation on [a, b]. Now let F have bounded variation 
on [a, b] and define Fl and F2 by 

for each:.; E [a, b]. The functions Fl and F2 are bounded and monotonic on [a, b]. 

Exercise 2.3.2 Since 

the maximal martingale inequality with p = 2 gives 

and the Doob inequality with p = 2 

Exercise 2.4.1 Integrating by parts once for the first order partial derivatives and 
twice for the second order gives 

and 

since the boundary limits vanish by assumption, so 

= J .... 9C:/d:.;. 

Exercise 2.4.3 Let C. = 2m / 2 for i = 2m + k where k = 1, 2, ... , 2m and let 
[ti,t!] be the interval on which Hi(:';) is nonzero. For j < i the interval [t',t~] is 
either disjoint from [tj, t!] or contained in it, 80 

11 it! H. (:.;)Hj (:.;) d:.; = OJ . H.(:.;)dx = 0 
o ~ 
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because Hi is an odd function on [t j , t!]. In addition for each j ~ 1 

it! Hj(x)Hj(x) dx = (2m/2)2 2-m- 1 + (2m/2)2 2-m- 1 =.!. +.!. = 1 
~ 2 2 

for each j ~ 1. Thus the Haar functions form an orthonormal system of functions. 
The Karhunen-Loeve expansion in terms of the Haar functions Wt(w) = 
2::=1 Zn(w)Hn(t) has coefficients 

where t# is the midpoint of the interval [t", t=], which are thus N(O; 1) distributed 
random variables. 

Solutions of Exercises for Chapter 3 

Exercise 3.2.7 Let 1 be a nonrandom function and define step functions In) by 
I(n)(t) = l(t7) for t E [t7,t7+1) where j = 01,2, ... n -1. Then 

iT I(t) dWt = lim 4 n ) mean square convergence 
o n_oo 

where 

n-1 

= rn)(T)WT - fn)(o)wo - LWti+1 (fn)(tj\d -In)(t'J)) 
.7=0 

-+ f(T)WT -iT W t /,(t)dt in mean square, 

giving iT I(t) dWt = I(T)WT -iT W t /,(t) dt. 

This will also hold for continuously differentiable random functions which are A t -

measurable and have independent increments. 

Exercise 3.2.8 Here I = l(t) = f:(2s)2 ds = ~e has inverse t = t(l) = (F)1/3, so 

- t(i) 
Zt = Zt(t) = 10 2s dW. 

is a standard Wiener process with respect to the O'-algebras Ai. 

Exercise 3.2.9 Let a = {w E [} : SUPto<.<t IZ.(w)1 > N} and B = {w E [} : 

1:: l(s,w)2 ds $ M}. Then - -

P(A) = p(An (BC U B» = P(A nBC) + P(A n B) 
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5 P(BC
) + P (IB 1: l(s,w)2 ds ~ N) 5 P(BC) + ~2 E ((lB Zt)2) 

5 P(BC) + ~2E(IB ltE(J(S)2)dS) 5 P(BC) + :,. 

Exercise 3.3.4 Let Yt = U(t,Xt) where dXI = IldWI and U(t,x) = x2n , so 
Ut(t, x) = 0, U,,(t, x) = 2nx2n - 1 and Uu(t, x) = 2n(2n _1)x2n- 2. Thus by the Ito 
formula 

1 2 
dYt = '2 II U"" dt + IIU" dWI 

= n(2n - 1)1: X:n - 2 dt + 2nltX:n- 1 dWI . 

For It == 1 and hence XI = WI this reduces to 

Exercise 3.4.2 Use Example 3.4.1. With e~ = 0 and I: = 1, X: = W; for i = 1, 
2. If Wi and W 2 are independent (4.10) applies giving 

d (WII Wn = W: dWI1 + wl dW:, 

whereas if Wi = W 2 = W then (4.10) applies giving 

d (WI)2) = 1 dt + 2WI dWI . 

Exercise 3.4.3 Apply the Ito formula to Yt = U(XI) with U(x) = cos x, sin x and 
XI = WI, that is with el = 0 and It = 1, to obtain 

Id2 d 1 . 
d (cos WI) = '2 dx2 (cos WI) dt + dx (cos WI) dWI = -2 cos WI dt - SIn WI dWI 

and 

d (sin WI) = ~ d~2 (sin WI) dt + d~ (sin Wt) dW, = -~ sin WI dt + cos WI dWI . 

Exercise 3.4.4 Apply the Ito formula U(x) = e", xe" and XI = WI, that is with 
el = 0 and It = 1, to obtain 

and 

dYeI = d (eWt ) = ~ dd:2 (e") I,,=wt dt + d: (e") I,,=wt dWI 

= ~ eWt dt + eWt dWI = ~Yel dt + Yel dWt 

dYe2 = d (WleWt ) = ~ d~2 (xeS) I,,=wt dt + d~ (xeS) I,,=wt dWt 

= ~ (Wte w, +2eWt ) dt+ (Wtew, +eWt ) dWt 

= ~ (Ye2 + 2YeI) dt + (Ye2 + Yel) dWI . 
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Exercise 3.5.2 Using ordinary calculus for the separable differential equation dy 

so y = In(1 +w). Thus the Stratonovich SDE has solution Yt = In (1 + We). Applying 
the Ito formula to U(x) = In(1 + x) and dX, = dW, then gives 

1 ~ d 
dYt = 2 dx2 (In(l + x» I.~=w. dt + dx (In(l + x» Iz=w. dW, 

= -1 dt + 1 dTJr' 1 -2Y. dt + -Y'dTJrT 
2(1 + W t )2 1 + W t H, = -2e e ''t. 

Solutions of Exercises for Chapter 4 

Exercise 4.2.2 X, is Gaussian as the linear combination of Gaussian random vari
ables because I.' f(t)dW, is Gaussian for a deterministic f and X'o is assumed to be 

to 
deterministic or Gaussian. 

Exercise 4.2.3 Applying the Ito formula to U(x) = x2 

so 

d (X:) = (aIX, + a2)' 2X, + ~(bIXt + b2 )2 .2) dt + (blXt + b2)· 2X, dWt , 

P'(t) dt = ;tE (X:) dt = E (d (X~» 
= E [(2aIX: + 2a2 X, +b~X~ +2bl b2 X, +bn dt] + E [(2bIX~ +2b2X,) dW,] 

= (2aIE(X:) +2a2E(Xt)+b~E(Xn +2bl~E(Xt)+bn dt+O 
since the expecta.tion of the Ito integral (differential form here) vanishes. Hence 

P' = (2al + bn p + 2 (a2 + bl~) m + b~ 
where m = E (Xt ). 

Exercise 4.2.4 For the Langevin equation (1.7) 
, 

m =-am, P' = -2aP+b2. 

These are :first order linear ordinary differential equations with solutions 

For the bilinear SDE (1.7) m' = am and P' = (2a + b2) P with solutions 

met) = m(O)eot , pet) = P(O)e(20+b2 )t. 

Exercise 4.3.2 Since (h-l)'(w) = l/h'(x) = g(x) and (h-1)"(w) = g(x)g'(x) the 
Ito formula applied to X, = h-I(Wt + h(Xo» gives 

dX, = i(h-I)"(Wt+h(Xo»dt+(h-I)'(W,+h(Xo»dW, 

= ig (X,) g' (X,) dt + 9 (X,) dW,. 
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Exercise 4.3.3 Applying the Ito formula to Xc = h-1(at + Wc + h(Xo» gives 

dXt {a (h-l)' (at + Wc + h(Xo» + ~ (h-1)" (at + Wc + h(Xo»} dt 

+ (h-1)' (at + Wc + h(Xo» dWc 

= { ag (Xc) + ~g (Xc) g' (Xc) } dt + 9 (Xc) dWc. 

Exercise 4.3.4 h' = I/g and h" = -g' /g2. Applying the Ito formula to yt = h(Xc) 
for 

dXc = a dt + b dWc = (fJgh + ~gg') dt + 9 dWc 

gives 

dyt = (ah' + ~b2 hIt) dt + bh' dWc = fJh(Xc) dt + dWc = fJYt + dWc. 

This Langevin equation has solution Yt = heX&) = efJlYo + efJI J: e-fJ' dW., so the 
original SDE has solution 

Xc = h-1 (efJCh(Xo) + eIJI l c 
e-IJ• dW.,) . 

Exercise 4.3.5 The equivalent Stratonovich SDE is dXc = g(Xc)odWc. By ordinary 
calculus the separable ODE dh = dx/g(x) = dw has solution hex) = w+conat .. Hence 
the Stra.tonovich SDE has solution h(Xc) = Wc + h(Xo), that is Xc = h-1 (Wc + 
h(Xo». 

Exercise 4.5.8 The X!") converge to the solution X!O) = x(t; 0, xo) of the ordinary 
differential equa.tion x = aCt, x) with the same initial value x(O) = Xo. This follows 
from Theorem 4.5.6 with aC")(t,x) == a(t,x) and bC")(t,x) == v for all v ~ O. 

Exercise 4.6.2 Xc = e-(I-.) X. + e-(C-o) J: e-Cr- o) dWr is a diffusion process 
because 

1 
--E(XI-x) 
t-a 

= _1_ (1 _ e-Cc-.») x + _I_E (e-CC- O) i C e-Cr- o) dWr) 
t-a t-a • 

= 
and t:;E (lXc - x12) 

_1_ (1 _ e-Cc-.») x + 0 -+ -x 
t-a 

as t -+ a+ 

t ~ a (1- e-Ct-.»)2 x2 + t ~ a (1- e-(C-.») xE (e-U-.) 11 e-Cr-.) dWr) 

+ t ~ 8 E (le-CC _ s) I.e e-Cr - s) dW{) 
= _1_ (1 _ e-Ct-.»)2 x2 + 0 + _I_e- 2cc-.) E (1 t e-2Cr-.) dr) 

t-a t-8 
s 

-+ 0 + 0 + 1 = 1 as t -+ a+, 

using l'Hopital's rule. 



566 SOLUTIONS OF EXERCISES 

Exercise 4.6.3 From (1.7.10) with f -+ 00 and t ...... s+ 

-,2-E (lXt - x/2) = -l-l(Y - X)2 P(s, Yj t, x) dx -- b2(s, x). 
-s t-s lR 

Exercise 4.7.3 Let Yi = f(Xt ) where dXt = -X, dt +..j2 dWt. By the Ito formula 

dYi = ( -Xd'(Xt ) + ~ (.../2)2 f"(Xt») dt + ../2f'(Xt} dW, 

= Cf(Xt ) dt + .../2f'(Xt ) dWt • 

Integrating and writing Me for the martingale f: ..;if'(X.} dWa 

f(Xt) = f(Xo) + it £f(Xt ) dt + M t • 

Exercise 4.8.1 For A the matrix in the drift coefficient, A21: = (_1)1:1 and A21:+J 

= (-1)1: A. By (8.8) 

co 00 00 

(A ) '" 1 A' I '" 1 A21: 21: '" 1 A21c+1 2k+l 
= exp t = L...J T! t = L...J (2k)! t + L...J (2k + I)! t 

1=0 1:=0 1:=0 

co co 

= '" 1 ( )1: 21:[ '" 1 ( )1: 21:+1 • L...J(2k)! -1 t + L...J(2k+1)! -1 t A=costI+smtA. 
k=O 1:=0 

Now 4};"1 = 4}i here, so by (8.5) 

Exercise 4.8.2 Equation (8.6) reduces to the deterministic matrix differential equa
tion d4}t,to = A4}t,to dt which has solution given by (8.8). 

Exercise 4.8.3 This is a multi-dimensional version of Exercise 4.2.3. See Arnold 
(1974), pages 131- 132, for details. 

Exercise 4.8.4 Let dXt = AXt dt + BXt dW,. Here B2 = -I and A = -21 
commutes with B, so by (8.5) and (8.8) the solution X t = 4}t Xo where 

4}t = exp ((A - ~B2) t+ BWt) = exp (-~It + BWt) . 

Exercise 4.8.5 Here the SDE (8.4) has 1 x 1 matrices A = -1 and B1 = B2 = 1, 
which all commute, so the solution is 

( 3 1 2) X t = X o4}t = Xo exp -'2t + W t + W t • 
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Exercise 4.8.7 For dXt = a(t,Xt ) dt+b(t,Xt ) dWt and yt = u(t,Xt ) the Ito 
formula gives 

Integrating and taking conditional expectations 

since the expectation of the Ito integral vanishes. Thus 

E (f(Xt ) IX. = x) = u(s, x) 

if 

Exercise 4.8.9 Theorem 4.8.8 can be applied with 

since x ::; t x2 for all x with Ix I ~ 2. 

Exercise 4.9.1 With subscripts for partial derivatives of U, which are all evaluated 
at (t,Xt ), the Ito formula for Y, = U(t, X,) and dXt = a dt + b dWt is 

dY, = (Ut + aU.., + ~b2Un) dt + bU.., dWt 

(Ut + !!U..,)dt + G(bU..,)(W.,)..,dt + bU., dW,) = (u, + !!U.,)dt + bU..,odW, 

= Ut dt + Uz (!!dt + b 0 dWt ) = Ut dt + Uz a dXt 

since!! = a - ibb.,. 

Exercise 4.9.2 Here a = a - 1bb = 1 - 12xl/221x-l/2 = 1 - 1 = 0 so - 2 II: 2 2 , 

dX, = 1 dt + 2...rx; dW, = 2.;x; 0 dW,. 

Hence X- 1 / 2dx = 20 dW" so 2X 1 / 2 = 2W, + const and the desired solution is X, = 
(W, + ,/X;;)2. 

Exercise 4.9.3 The Stratonovich SDE is dX, = -xldt+BXt 0 dW, since BT B = 
I, so 

lIT 1 1 a(x) = --x - -B Bx = --x - -Ix = -xl. 
- 2 2 2 2 
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Solutions of Exercises for Chapter 5 

Exercise 5.2.1 a = (0,0,0): l(a) = 3, n(a) = 3, -a = (0,0), a- = (0,0); 

a = (2,0,1): l(a) = 3, n(a) = I, -a = (0,1), a- = (2,0); 

a = (0,1,0,0,2): l(a) = 5, n(a) = 3, -Q = (1,0,0,2), a- = (0,1,0,0). 

Exercise 5.2.2 l(o,o,o)[I)o,T = loT 1o·s 10·· dSI dS2 dS3 = trra, 
1(2,O,I)[I]o,T = loT 10.3 10·· dW:1 dS2 dW~s' 1(I,2)[I)o,T = loT 10·' dW~1 dW: •. 

Exercise 5.2.5 1(0,1) = 1(0)1(1) - 1(1,0), 1(1,1) = ! ((1(1» 2 - 1(0»)' 

1(1,1,1) = ir ((1(1)3 -31(1)1(0»)' 

Exercise 5.2.6 Exercise 5.2.5 with 

1(1,1,1,1) = if ((1(1»· - 6 (1(1»2 1(0) + 3 (1(0»2). 

Exercise 5.2.7 E (1(1,0» = I E(W.) ds = 0, 

E ((1(0,1»2) = E (f sdW. I sdW.) = I s2 ds = fa3, 

E (1(1)1(0,1» = E (f dW. Is dW.) = Is ds = !a2, 

E ((1(1,0»2) = E([al(1) - 1(0,1)]2) = a2 E ((1(1»2) - 2aE (1(1)1(0,1» 

+ E ((1(0,1»2) = a3 (I - 1 + t) = ta3. 

Exercise 5.2.9 Apply (5.2.34). 

Exercise 5.2.12 1.(0,1) = 1.(0) 1.(1) - 1.(1,0), J.() - 1 (1.( »2 1.( )-1,1 - 2 1, 1,1,1-
tr (J(l)3 . 

Exercise 5.3.1 !c.l,O) = ba', 1(1,1,1) = b (b,)2 + bb") . 

Exercise 5.3.2 Apply (5.3.3). l(iI,i.,is,i4) = 611 [61.' (613'614' + bi3 614") + 

61· (b13 "bi4 ' + 2bj3 'bj4 " +613614"')]' 

Exercise 5.3.3 I = ba', I = b [W' + (b,)2] . £.(1,0) - £.(1,1,1) 

Exercise 5.4.1 {v, (I)}, {v, (0), (I), (0, I)}. 

Exercise 5.4.2 B ({v, (I))) = {(O), (0, 1), (1, I)}, B ({ v, (0), (1), (0, I)}) = {(I, 1), 
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(1,0), (0,0), (1,0,1), (0,0, In. 

Exercise 5.4.3 Yes. 

Exercise 5.4.4 B (r r) = {a EM: lea) = r + I} for r = 1, 2, .... 

Exercise 5.4.5 Yes. 

Exercise 5.5.2 

x, = Xo+a(O,Xo) l tds + b(O,Xo) l'dW. 

a it 1" +b(O,Xo) axb(O,Xo) 0 0 dW' l dW.,. 

Exercise 5.5.3 For ar = (1,0,0, ... ,0) with lr (a r ) = r 

I 

X, = Xo + L: [(-If ~ tr Xo + (-If-I 100r] . 
r=l 

Exercise 5.6.2 

X t Xo +1I.(0,Xo) 11 ds+b(O,Xo) l' dW. 

a it 1" +b(O,Xo) axb(O,Xo) 0 0 dW'lOdW.,. 

Exercise 5.6.3 The same result as for Exercise 5.5.3 as a = 11., 1(0 • ..• 0) = 1(0 •...• 0) 

and 1(1.0 •.... 0) = J(1.0 •...• 0) 

Exercise 5.6.5 Analogous to the proofs of Lemma 5.5.5 and Theorem 5.5.1, re
spectively. 

Exercise 5.8.1 Integra.te JU.O).' from (5.8.6) with respect to time: JU.o.O)., = f: J(j.o) •• ds to obtain the desired formula. 

Exercise 5.8.2 Evaluate the integrals in (5.8.5)-(5.8.7) with tl. = t. 

Exercise 5.8.3 Verify that the random variables in (5.8.10) are precisely those 
needed in (5.8.11) to give the formulae (5.8.9). 

Exercise 5.10.3 Analogous to the proofs of Propositions 5.9.1 and 5.9.2, respec
tively. 

Exercise 5.12.2 The proof of Corollary 5.12.1 is a slight modification of the proof 
of Proposition 5.11.1. 

Exercise 5.12.4 See the remarks after Lemma 5.12.3. 
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Solution of Exercises for Chapter 6 

Exercise 6.2.2 Let (t = ±1 with E«(t) = 0 and E«(n = 1 a.nd let 

X (N) .,(N) (N) 1 1 
A ,. = A k+1 - X,. = a N + b .,fFi (c. 

Then 

and 

N E ((AX~N)r) = !a2 +2ab Jw E«(e) + b2 E «(n = !a2 + 0 +b2 _ b2 

as N -+ 00. 

Exercise 6.3.3 For Vex) = x2 and a < _~b2 < 0 

1 
LV(x) = aX(1 + x2). 2x + '2(bX)2 ·2= (2a + b2 ) x2 + 2ax' ::; O. 

Exercise 6.3.4 Here the linearization of the Ito SDE about (Xl, X2) = (0,0) has 
the same coefficients in Ito and Stratonovich forms 

dZt = AZe dt + BZe dWc = AZe dt + BZt 0 dWt 

where 

[aa i 
] [ 0 

A = ax; 1,..=,.,,=0 = -1 - 2c 
and 

B _ [ab i 
1 ] _ [0 0] 

- ax; ,".=,.,,=0 - 1 0 ' 

since the correction term va.nishes. The Stratonovich version of the original. nonlinear 
SDE has drift coefficients 

1 1 2 2 ()2 ()3 . !l = a, .!l = a - a X2 + aX2 sin Xl , 

which has the same linearization AZ about (0,0). Hence the linearization of the 
nonlinear Stratonvich SDE coincides with that of the nonlinear Ito SDE in our case. 

Exercise 6.3.5 The solution is Xc = Xo exp(at + bWc) so 

1 1 1 
tin IXcl = tin IXol + a + btWt -+ 0 + a + 0 = a = A as t - 00. 

Thus the Lyapunov exponent A is negative when a is negative, whatever the value of 
b. 

Exercise 6.3.6 For the matrices A and B in the solution to Exercise 6.3,4 

qO(s) = 8 T A8 = -2CS182-b(82)2, q1(S) = 8 T Bs = S1 82, S T (B + BT) 8 = 281S2. 

Hence 

TIT ( T) (T )2 q(8) = 8 A8+'28 B+B 8- 8 B8 

= -2C8182 - b(82)2 + 8182 - (8182)2 = (1 - 2C)8182 - b(82)2 - (8182)2, 
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and 

). 
The equations (3.22)-(3.23) are then 

dRt = Rtqo(St} dt + Rtl(St) 0 dWt , dSt = h(St,A)dt + h(St, B) 0 dW1• 

Exercise 6.3.7 Let P = [pi,j], where p1,2 = p2,l, and p = (P1,P2,P3) = 
(p1,1,p1,2,p2,2). Then with ""/ = 1 + 2c 

[ 
2pl,2 

p' = AP + PAT + B P B T = 1 1 b 1 2 2 2 
-,",(p' - p' +P' 

so p' = Ap where 

A= [ ~""/ 
2 

-b ~ ]. 
-2",,/ -2b 

Its eigenvalues are the roots of the cubic 

and the zero solution is mean-square asymptotically stable when the real parts of 
these eigenvalues are all negative. 

Exercise 6.4.1 Here 

2 1 2 _",2 ( 1 )-1 

and u = ,;; 12 X e dx = 2. 

Exercise 6.5.1 Let subscripts denote partial derivatives of H. The HJB equation 

2 12 .{ 2 } H. +Cx + AxH", + -2u H.:<:£ +mm Gu +MuH", = 0 
uE12 

achieves its minimum where d'!. {Cu2 + M uHz } = 2Cu + MHz = 0, that is at u· = 
_~MG-l H",. The HJB equation is then 

2 1 2 1 2 -1 ( )2 H. + Cx + AxH", + 2u H:r:r - 4'M G Hz = o. 

Assuming H(s,x) = S(s)X2 + a(s) with a' = -S(s)u2 and cancelling x2 this gives 

S' + C + 2AS - M 2 C-1 S 2 = o. 

Exercise 6.5.2 Here A = 0, C = 4, C = R = 1, M = 2 and u = 4. S 
satisfies the Riccati equation S' = 4( S2 - 1) with S(T) = 1 and solution S( s) == 1. 
The optimal control u· = -2Sx = -2x, so the optimal path satisfies the SDE 
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dX: = -4X: di. -I- 4dWt with the solut.ioll X: = eH ( Xo + 4 fal e--h dW.). Also 

a' = 16S == -·16 wit.b a(T) = 0 bas solution a(s) = 16(T-s). This gives the optimal 
cost H(s, x) = 8(s) x2 + a(s) = x2 + 16(T - s). 

Exercise 6.6.1 Let C = H 2 /r2 > o. Then the Riccati equation (6.6) takes the 
form 

8' = _CS2 + 2AS + B2 = -C (S - S-) (S - S+), 

with real-valued S± = (A± v' A2 + B2C)/C. This is a separable differential equation 
solved by integrating 

+ _ S+ - S- (1 1) 
-C(S -8 ) dt= (S_S-)(S_S+)dS= (S-S+) - (S-S-) dS 

to obtain 

where Q = 2..1 A2 + B2C and Cl is tbe integration constant. 

Exercise 6.6.2 Here A = B = 0 and H = r = 1, so S' = _S2 with S(O) = q2 has 
solution S(t) = (12/(1 + q 2 t) and 

dX, = -S(t)XI dt + S(t) dY,. 

Let I(t) = exp (1: S(s) dS). Then d(X,I(t» = S(t)l(t) dYt so integrating with Xo 
= Yo = 0 gives 

X,I(t) = S(t)I(t)Yt - it Y.,(S(t)l(t»' dt = S(t)l(t)Yc 

as (SI)' = S'I + SI' = (S' - S2)1 = o. Hence Xt = S(t)Yt. 

Exercise 6.6.3 Here k = 1 and h1(i) = (_1)·+1 for i = 1, 2 so 

[ -05 
dQt = AQ, dt + H10 t dW, = O.~ 0.5 ] [1 0] -0.5 Q, dt + 0 -1 Ot dWt 

where QT = (Q(I), Q(2». 

Solutions of Exercises for Chapter 8 
Exercise 8.1.4 The modified Euler or Heun method is the second order Runge
Kutta. method with parameters given in equation (8.2.7). Its local discretization error 
is derived in Section 2 of Chapter 8 in the context of these Runge-Kutta methods. 
For the trapezoidal metbod let y(t) be the solution with y(tk ) = Yn and let A(t) = 
a(t, y(t». Using the Taylor expansion of A at tn witb second order remainder term 

1'''+1 
y(tn+d - Yn = I" A(s) ds 

1',,+1 (A(tn) + A'(tn)(s - tn) + ~I A"(Bn(s»(s - tn)2) ds 
t" 

1 1 11"+1 = a(tn, Yn)~n + -A'(tn)~! + 2' A"(Bn(s»(s - t n)2 ds 
2 . tn 
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Here 8n (s) E [tn, s] and 8n E [tn, tn+tl. The local discretization error is thus of order 
three. 

Exercise 8.1.6 Let Pn+1 be the interpolating quadratic for the points (tn-2, an-2), 
(tn-l, an-d and (tn, an) where an = a(tn, y(tn». It is known that there is a contin
uous function E(t) such that 

n 

aCt, y(t» - Pn+1(t) = E(t) II (t - ti). 
i=n-2 

The Adams-Bashford method (1.14) is derived from 

so its local discretization error is given by 

which is fourth order. 

Exercise 8.3.3 It needs only be shown that the second term in W satisfies a Lips
chitz condition. 

la (t' + .6.', x' + aCt', x').6.') - a (t + A, x + aCt, x).6.) I 

:::;; K (It' + A' - t - AI + lx' + a(t', x').6.' - x - aCt, x ).6.1) 

< K (It' - tl + lA' - .6.1 + Ix' - xl + la(t', x') - aCt, x )IIAI + la(t, x )11.6.' - .6.1) 

:::;; K (It' - tl + lA' - .6.1 + lx' - xl + K (It' - tl + lx' - xl) 1.6.1 + LI.6.' - AI) . 

This is global in (t,x) a.nd local in.6.. However A can be restricted without loss of 
generality to .6. :::;; 1, with the values of W being frozen at wet, x, 1) for larger .6.. The 
modified Iff is then globally Lipschitz in all three variables. 

Exercise 8.3.5 Let En = Yn - Yn. Then 

IEn+d = lEn + .6. (W(tn' Yn,.6.) - w(tn, Yn,.6.))1 

:::;; IEnl + .6.lw(tn• Yn, A) - W(t n , Yn, .6.)1 

:::;; IEkl + AK IYn - tinl ::; (1 + K.6.) IEnl. 

Hence with M = (1 + K .6.)nT 

IEnl :::;; (1 + K .6.)n IEol :::;; (1 + K .6.)"T IEoI :::;; M IEol 
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for n = 0, 1, ... , nT. 

Exercise 8.3.6 Solving Yn+l = Yn + tAAYn + tAAYn+l gives 

( 1 - ~ AA ) Yn+l = (1 + ~ AA ) Yn 

Absolute stability holds for 

I _I_+_-~~ A_A_I < 1 
1 - iAA 

i.e. for 

i.e. for the real part of AA being negative. The region of absolute stability is thus 
the left half of the complex plane. 

Exercise 8.3.7 The trapezoidal method is A-stable because its region of absolute 
stability is the left half of the complex plane. 

Exercise 8.3.8 For a(t, x) = Ax the Adams-Bashford method (1.14) is 

and the Adams-Moulton method (2.12) is 

Hence the required polynomials are, respectively, 

3 ( 23 ) 2 4 5 ( - 1 + -AD. ( + -AA( - -AA = 0, 
12 3 12 

and 

Solutions of Exercises for Chapter 9 

Exercise 9.1.1 Yn, = Xo + aTn, + bWr .. , '" N (Xo + aTn,; b2Tn,) . 

Exercise 9.4.4 

Var (It.,at) Var (it -It.y.) 

= Va, (.iN t.t.YT.,., - E(XTJ- (E(Y(T)) - E(XT))) 

= E ( MIN t. t (YT,k,j - E (Y(T)))2 ) 

M N 

(M~)2 L L E (YT,k,j - E (Y(T)))2) = J N Var(Y(T». 
j=1 k=l 
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Exercise 9.6.1 Yes. The Euler scheme approximation of an Ito diffusion with 
constant drift and diffusion coefficients coincides with the Ito diffusion itself so we 
have 'Y = 00. 

Exercise 9.6.3 

Exercise 9.6.4 

E (IE (Yn+~~ Yn I AT .. ) - a (Yn)1 2
) = Gbl (Yn)b (Yn)f + 0 (~n), 

E (~n IYn+l - Yn - E (Yn+1 - Yn I AT .. ) - b(Yn)~Wnn = O(~n). 

For b( x) == canst. the scheme is strongly consistent. 

Exercise 9.6.5 No. The trajectories do not converge pathwise to each other. 

Exercise 9.7.1 Yes. The probability measures of both Wiener processes are iden
tical. 

Exercise 9.7.2 

E(IE(Yn+~~Yn I AT .. ) _a(Yn)1 2
) =0, 

E (IE (~n (Yn+1 - Yn)2IAT .. ) - b2 (_Yn)1 2
) = 0 (.1~). 

Exercise 9.7.3 We obtain the same relations as in Exercise 9.7.2. 

Exercise 9.7.5 In the absence of noise it follows from (9.7.6) that 

and so similarly to (8.3.3) we obtain 

lim 1/J(t,y,6) =a(t,y), 
~-o 

whenever Yn is fixed at the value y. 

Exercise 9.7.6 Using conditional expectations we have 

Under appropriate assumptions it follows from Theorem 4.8.6 that the function 
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is sufficiently smooth and of polynomia.l growth together with its derivatives. Obvi
ously, the same also holds for the function g(x) = jlt,h(X) x, so we can write 

which is a functiona.l in the usua.l form. 

Exercise 9.8.1 As in the proof of Theorem 4.5.3 from the Lipschitz continuity of 
a and b we obtain 

The Gronwa.ll inequality and the Chebyshev inequa.lity then yield the desired limit 
(9.8.1). 

Exercise 9.8.4 We have 

Y:+ 1 - Y:+ 1 = Y: - Y: - 5 (Y: - Y:) 5 = (1 - 55)n+l (l'!t - Yen . 
For 5 < ..10 = 2/5 and f > 0 by the Chebyshev inequa.lity we obtain 

lim lim P ( sup IY: .. - :V: .. I ;;:: f)::; lim P (IYo6 - 506 1 ;;:: f) = o. 
Iyt-S'tl-o T-oo to~t~T •• Iyt-S',:i-o 

Exercise 9.8.5 With XI = X: + I X~ and A = Al + I A2 we have 

dX: = (AIX: - A2Xn dt + dW. 

dX: (A2X: + AIXt) dt. 

Solutions of Exercises for Chapter 10 

Exercise 10.3.1 

E (IE (Yn+16- Yn I Ar .. ) - a (Yn)1 2
) = 0, 

E (~ IYn+1 - Yn - E (Yn+1 - Yn I Ar .. ) - b(Yn) 6Wnn = ~ E (lbb'1 2
) 6.. 

Exercise 10.3.6 It follows from (5.5.3) that 

X~ = X~ + 1s W~ dW; + 1" (w: - W; ) dW; n.. ft... "_ 
Tn.. Tn. 

for all s E [0, T], so we have 

Exercise 10.4.1 For the terms (1004.1) look at (5.5A). From (5.2.22) we have 1(0,1) 

= 6 Wn 6 - 6Zn . For strong consistency it suffices that 
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E (~ IYn +1 - Yn - E (Yn +1 - Yn I A,. .. ) - b(Yn) ~Wnn :;; K{ ~E (lbb'12) ~ 

+~E (Ia'bn ~3+~E (labl + ~b2blf) ~3+~E (lb (bb ll + (bl)2) r) ~3}. 
Exercise 10.4.3 It follows from (5.2.16) and (5.2.22) for il :F h, il :F h, h :F i3 
that 

lUl,j2,J3) + 1(12.11,13) + 1(12.13,j.) = l(jd1(12,i3) , 

1(13,j2.11) + lUa.il.h) + lUl.J3.12) = lUIl IU3,i2)' 

IUd (1(12.j3) + I(j3.i2» = l(il)I(h)IU3)' 

2 (I(jl.i2,i2) + IU2.i"'2) + 1(12.i2,11» = 2I(j.)I(12.h) = IUd ((1(12»2 - ~) , 

6IU1,i1.ill = IUd ((1UIl)2 - 3~) . 
Exercise 10.5.1 Use (5.8.10) and (5.8.11) to see that the multiple Stratonovich 
integrals are just as described. 

Exercise 10.5.3 Take the hierarchical set 

A2.0 = {£I' EM: 1(£1') + n(Q') :;; 4} 

and use the truncated Stratonovich expansion (5.6.3) with f(t,x) == x to obtain the 
representation for the time increments of the scheme (10.5.3). 
In the same way as in Exercise 1004.1 note that the relations (9.6.5) and (9.6.6) hold 
true, but now including still more higher order terms on their right hand sides than 
in Exercise 1004.1. 

Exercise 10.5.4 Use (5.3.9) to see which coefficient functions become zero III 

(10.5.3). 

Exercise 10.6.1 for / = 0.5, 1.0, 1.5, ... and £I' E A..,. we have 

Hence we also have l( -£I') + n( -£I') :;; 2/ for each £I' E A..,. \ {v}, which means that -£I' 
E A..,.. But this gives condition (5.4.3) in the definition of an hierarchical set. 

Exercise 10.6.2 Ao = {v}, AO.5 = Ao U {(OJ, (I)), Al.o = AO.5 U {(I, I)}, 

Au = Au U {(O, 1), (1, 0), (0, 0), (1, 1, I)}, 

A2.0 = Au U HO, 1, 1), (1, 0,1), (1, 1,0), (1, 1, 1, I)}. 

Solutions of Exercises for Chapter 11 

Exercise 11.1.2 
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Exercise 11.1.4 The commutativity condition (10.3.13) is satisfied and by (10.1.4) 
we have ~ = -~x. Hence it follows from (11.1.11) and (11.1.12) that 

Exercise 11.3.1 Use the Ito formula (3.3.6) for the function 

X, = f(t, W,) = (1 + t)2 (1 +t + W,) 

to obtain the desired stochastic equation. 

Exercise 11.5.3 Using the deterministic Taylor formula it follows from (11.2.1) 
that 

with 

Y .. +1 = Yn+a~+b~W+ ~{a'b..;z;.+allab~3/2+ ... } 1(1,0) 

+ {a'a + ~all (b2 + a2~) + .. -} 1(0,0) 

+ {b'b + b"ba~ + ... } 1(1,1) 

+{b'a+~bll(a2~+b2) + ... } 1(0,1) 

G + 2~ 1(1,1,1) + ... 

G = {b(~+)-b(~_)}-{b(1'+)-b(1'_)} 

= ([b(~+) -b(1'+)] - [b(~_) -b(1'+)]} 
- {[b (1'+) - b] - [b (1' _) - b]} 

= { 2b' (1'+) b (1'+ ) ~} - {2b'b~} + ... 
= 2~ (bb')' (b + a~ + . ". 

Hence from the coefficient functions of the order 1.5 strong Taylor scheme (10.4.1) 
it can be seen that the conditions (11.5.1)-(11.5.4) of Theorem 11.5.1 are satisfied 
under appropriate assumptions on a and b. 

Exercise 11.5.4 From (11.3.2) we have 

Y .. +1 = Y .. + ~ { (~(1' +) -l!) - (l! (1' -) -l!)} ~ + a ~ + b ~ W 

= Yn + a~ + b ~W + ~Jl/a~2 + a'b ~Z 

+.!all ~ (!a2 ~2 + ob ~Z + b2 (~Z)2 ~ -1 + (2l ~ _ b2 (~Z)2 ~ -2») 2- 4- - (1,1,0) 

= Y .. + a~ + b~W + .!a/a~2 + a'b ~Z + Jl"b2l(1 10) 2 ' , 

1 II :2 .. 3 1 II Z +-0 a .... +-a ab~ ~+"" 8- - 2- -
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Hence using Theorem 11.5.2 and comparing the above with the order 2.0 strong Taylor 
scheme (10.5.4) with additive noise we see that the scheme (11.3.2) is of strong order 
'Y = 2.0. 

Solutions of Exercises for Chapter 12 

Exercise 12.2.2 For B = bI we have h(s, B) == 0, so equation (6.3.23) reduces to 
the ordinary differential equation'; = h(8,~)s where..d = A - !B2. Assuming that 
the matrix A is diagonalizable with eigenvalues Al(..1) and A2(A), so AP = PA 
where p-1 = pT and 

the differential equation (6.2.23) transforms to j = h(,,!, A),,!, that is 

·1 ,,! 

·2 ,,! 

= 

= 

((1 - (i)2) Al (..1) - (i)2 ~2~») i 

( (1 - (i) 2) A2 (..1) - (i) 2 ~1 (A») J!2 

where,,! = ("tl ,,,!2) T = p-l S ( in the nondiagonalizable case we can use the Jordan 
canonical form). The lim sup in formula (6.3.24) thus attains the value equal to the 
larger of the real parts of the eigenvalues of ~ and gives the top Lyapunov expo
nent. Since the sum of the Lyapunov exponents and the sum of the real parts of the 
eigenvalues both equal the trace of the matrix ~ = A - t B2, we see that the second 
Lyapunov exponent is equal to the real part of the other eigenvalue. 

Exercise 12.3.4 From (12.3.8) we get 

with 

Yn+1 =Yn+b~W+~~+Q 

Q = (r~ (y+) -~] + [~(y-) -~] - 4 fA (Yn+d - j!)} ~ 

= 

= 

2 {~I G~~ + b~Z~ -1) + 4~"b2 (~Z)2 + (()2) ~-2} ~ 
-~ {Il' G.!l~ + b~W) + ~~"b2 (6W)2} 6 + ... 

1 I 2 "( [1 1 ] 1 W ) '2~~~ +Il b 2 '2~Z+4~W~ -'2~ ~ 

+1l"b2 { ~ [(~Z)2 + 6Z 6W 6 + ~ (6W 6)2] 6-1 

1 )2 -1 1 )2 1 2 
+J(I,I;O) - '2 (6Z ~ + 8~ (~W - 46 (~W) 

+ 116 (26Z 6 -1 - 6 W) 2 6} + ... 
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Comparing this with the scheme (10.5.4) and using Theorem 11.5.2 we can conclude 
that (12.3.8) has strong order 'Y = 2.0. 

Exercise 12.5.2 For the test equation (12.5.2) the implicit order 2.0 strong Runge
Kutta scheme gives 

so 

G(A~)= (1+~A~)-I (1+~A~+A2~2). 

Hence the complex modulus inequality IG (A~) I < 1 takes the form 

11+~A~+A2~212 < 11+~A~r 
Writing A = Al + i'\2 and using polar coordinates with Al = T cos 8 and '\2 = T sill 
8, this becomes 

4T2 cos2 (J + 3T (1 + T2) cosO + 1 + ~T2 + T· < TCOSO + 1 + ~r2. 

As T > 0 this simplifies to 

Exercise 12.5.3 The time and second order spatial partial derivatives of al = 
,\IX1 -,\2X2 and a2 = A2XI +AIX2 vanish, so LO a k = al~ +a2~ for k = 1 and 
2. Hence 

LOal = (A1)2 - ('\2)2) Xl - 2,\1,\2 X2 , LOa2 = 2,\lA2Xl + (Ad - (A2)2) x 2 • 

Moreover, in complex notation we have 

Exercise 12.5.4 Using complex notation with a = Ax and b = 1 + zO we have LOa 

= A2 X and Lib == O. Thus with exk == ex and 13k == 13 the implicit order 1.5 strong 
Taylor scheme (12.2.16) gives 

Yn+1 = Yn + {exAYn+1 + (1- ex),\Yn} ~ 

+ G -ex) {f3A2Yn+l + (1 - (3)A2Yn} ~2 + noise terms, 

which we can write as Yn+l = G(A~)Yn + noise where G(A~) equals 

The implicit order 2.0 strong Taylor scheme (12.2.20) gives the same expression except 
that the noise terms differ. The inequality IG(A~)I < 1 is equivalent to 
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Using ,\ = rcosO + arsinO, so ,\2 = r2 cos 20 + ar2 sin 20, and simplifying we obtain 
the stated polar coordinate. For 0 = ±1r/2 we have cosO = 0 and the left hand side of 
the inequality reduces to t(1- 20')2(1- 2p)r3 which is either negative or identically 
zero for the stated parameter values. Also with cos 1r = -1 the left hand side of the 
inequality is the cubic 

-2 + 2(1 - 20')r - (1 - a - P)(1 - 20')r2 + ~(1- 20')2(1- 2P)r3 , 

which has no positive real root if and only if the parameters are as stated. From this 
we see that the region of absolute stability contains the entire left hand side of the 
complex plane if and only if the parameters are as sta.ted. 

Exercise 12.5.5 We use real coordinates with ale and LOale from Exercise 12.5.3, 
writing both schemes in the form Yn +1 = A-I BYn + noise where the 2 x 2 matrices 
A and B ha.ve components 

1 2 2 2 
1 - O'l'\l~ - 2{1 - 20't)Pl«,\t) - ('\2) )~ 

a l ,2 1 2 
0'1'\2~ + 2{1- 20't},8l2.\1'\2~ 

1 2 
-0'2'\2~ - 2(1- 20'2),822'\1'\2~ 

1 2 2 2 
1 - 0'2'\1~ - 2(1 - 20'2),82«'\1) - (A2) )~ 

1 + (1 - 0't}A1~ + 4{1- 20't)(1 - ,8t}«At}2 - (A2)2)~2 
1 2 

-(1 - 0'1)A2~ - 2(1- 20't)(1 - ,8l)2AIA2~ 

1 ( 2 (1 - (2)A2~ - 2{1- 20'2) 1 - P2)2.\IA2~ 

1 + (1 - (2).\I~ + ~(1 - 20'1)(1 - ,82)«Ad - ('\2)2)~2. 

Then G = A-I B and IGI < 1 is equivalent to IBI2 < IAI2, that is E~,j=1 (bi ,i)2 < 
'\;""'2_1(A"J)2. With polar coordinates TeosO = Al~ and rsinO = A2 6, so 2AIA2~:l 
L-,;',J -
= T2 sin 20 and «.\t}2 - (.\2?)~2 = r2 cos 20, we obtain the equivalent inequality 

1 [2 2 1 3 8" (1 - 2at) (1 - 2,8t) + (1 - 20'2) (1 - 2P2) r 

[2 + ~ {(1 - 2at}(1 - 0'1 -,8d + (1 - 20'2)(1- 0'2 - P2)} T2] cosO 

2(1 - 0'1 - 0'2)r cos2 0 < O. 

This describes the region of absolute stability and reduces to the inequality in Ex
ercise 12.5.4 when 0',.. = 0' and PI< = p. 

Exercise 12.6.1 Use representation (12.6.7) with 'Y = 1.0, al,le = ,8I,1e = 1.0, a2,Ie 
= ,82,k = 0 and observe that the scheme (11.4.4) coincides with it up to terms which 
do not disturb the order "y = 1.5 of strong convergence. Under appropriate conditions 
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order -y = 1.5 strong convergence can then be shown as in the proof of Theorem 
11.5.1. 

Exercise 12.6.2 Similarly to the previous exercise, using Ik = ° and 0'2,k = t. 
Exercise 12.6.3 Use (12.6.7) with "(k = 1.0, O'I,k = 0'2,k = t and compare with the 
scheme (12.4.8), neglecting those terms which are not necessary for strong convergence 
with order -y = 1.5 

Solutions of Exercises for Chapter 14 

Exercise 14.1.1 E(Xt) = E(Xo) + ! f: E(X.) ds = E(Xo) exp (~t). 

Exercise 14.1.3 E(~WJ) = E«~Wj)3) = 0, E«~Wj)2) = t~ + ~~ = ~. 

Exercise 14.2.1 E(~W) = E«~W)3) = E«~W?) = 0, 

• 2 1 1 
E«~W) ) = - 3~ + - 3~ =~, 

6 6 

Exercise 14.5.3 According to the definition of a weak Taylor scheme (14.5.4) Yo 
= Xo is a nonrandom constant, so it follows that (14.5.7) holds. Also (14.5.8) and 
(14.5.9) follow directly from the assumptions of Theorem 14.5.1. With Lemma 5.7.5 
it is easy to see from (14.5.4) that (14.5.11) holds. The relation (14.5.12) is trivial for 
a weak Taylor scheme. It remains to show that the moments of y6 are bounded. For 
simplicity we shall consider only the case d = m = 1 and denote all constants by K. 
Using the notation of Chapter 5 we can write 

with 

"Vi = Xo + it a. ds + it b. dW. 

a. = L:: fa (Tn" Yn.) la-,Tn"., 
aer" 

;/(0.)=0 

b. = L:: fa (Tn" Yn,) la-,Tn, ,s 
aer" 

;/(0)=1 

Applying the Doob inequality (2.3.7) we obtain 

+ (E (,~~~.I[ ,.df)) '1. + (E (,~~~. Il b.dW.n ) "'} 

,; K {1+ (E Oi,' 1,.1 df)) '1. + (.:~,)' (E (Ii,' Ib.1 dW.n ) .I.}. 
As in the proof of Lemma 5.7.5 we get 
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and hence by an application of Lemma 5.7.5 and the growth condition (14.5.5) 

Finally we use the Gronwall inequality (Lemma 4.5.1) to conclude that Zt is bounded 
for all t E [0,1'). 

Exercise 14.5.4 We shall fix {3 = 1.0, 2.0, ... and denote by l a ,to,l the weak 
approximation of a multiple Ito integral l a ,to,t for any £\! E r,8 \ {v}. If we can show 
for all choices of multi-indices a/c E r,8 \ {v} with k = 1, 2, ... , I and I = 1, ... , 2{3+ 1 
that 

see (5.12.2) too, then it is obvious that condition (14.5.12) also holds for the simplified 
schemes under consideration. On the other hand the relations (5.12.8)-(5.12.10) 
provide examples of weak approximations of multiple Ito integrals which satisfy the 
above condition and are used in the schemes mentioned. 

Solutions of Exercises for Chapter 15 
Exercise 15.1.2 Omitting higher order terms with respect to condition (14.5.12) 
we have from (15.1.1) 

Yn+1-Yn = a~+~(a(Y)-a)~+b~W 

+~ {(b (y+) - b) + (b (Y-) - b)} ~W 

+~ {(b (y+) - b) + (b (Y-) - b)} { (~W)2 _ ~} ~ -1/2 

+ ... 
. 1 '2 1, • 1" 2 ( .)2 = a~+b~W+2aa~ +2ab~W~+2a b ~W ~ 

+4 ab' ~W ~ + ~b"b2 ~W ~ + ~b'b {(~W)2 - ~} 
+ ... 

Examining the simplified order 2.0 weak Taylor scheme (14.2.2) then makes it easy 
to verify condition (14.5.12) for the scheme (15.1.1). 

Exercise 15.3.5 From Theorem 14.6.1 we have for 6 E (0,1) 

3 

E (g (y6(T») - E(g (XT» = E ,pg .. .,(T) 6'" + 0 (6') . 
..,=2 

Thus from (15.3.11) we obtain 

V:',(T) - E (g (XT» = 111 [,pg,2(T){18 - 9 ·4+ 2· 9} 62 

+ ,pg,a(T) {18 - 9·8 + 2· 27} 63 ] + 0 (6·) 
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Exercise 15.3.3 We have to show (9.7.6)-(9.7.7). With (15.6.6) we obtain 

and 

= E(lE(a (Ii" (Tn+J, Yn+J) - Ii" (Tn, Yn» + (Ii" (Tn, Yn) - a) 

+11 (b(Tn+J,Yn+J)-b) .6.W~.6.-1IATn)12) ~ KS 

E (IE (! (Yn+I - Yn)2 - b2 1ATn) r') 
= E (IE ((b(Tn• Yn) .6.W~)2 .6.-1 - b21ATft) 12) + O(S) ~ K S. 

Solutions of Exercises for Chapter 16 

Exercise 16.2.1 We apply the Ito formula (3.4.6) to the function 

with Xc from (16.2.7) and ac from (16.2.8). With (16.2.11) and (16.2.3) this yields 

1£ (t.Xc) St = u(O,x) ao 

d 2 

1",,,"( -)i"( -) 8 (-) +"2 L.J b·J z, X" b·J z, X" S" 8x"ax i 1£ z, X" 
i,~=l 

+ tb"'; (z,Xz) di (z,Xz) 9" a!" 1£ (z,X,,) } dz 
"=1 

+ ~ it {tb"'; (z,X,,) 9" a=" 1£ (z,X,,) + 8,,1£ (z,X,,) di (z,X.,) } dWt 

= u(0,x)90. 

Exercise 16.2.2 It follows from (4.4.6) that 

Also from (16.2.11) we have d1(t, y) = -2b, so from (4.4.6) again we get 

X: = x' exp ((2a + 3b') (t - s) + 2b (We - W.») 

and 
9 t = aoexp (-2b2 (t - s) - 2b (We - W.»). 
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This mea.ns 

g (X~,,,) eT/eO = (X~'r eT/eO 
= x2 exp ((2a + b2 ) T) = u(O,x) = E (g (XO,,,)). 

Exercise 16.3.1 From (16.3.15) it follows that 

( F(e) ) 
Var Dopt(e) 

Exercise 16.3.2 From (16.3.24) and (16.3.12) we obtain 

with 

where 

so 

D ( .) - J2 (Ti - Ti-1)(T - Ti) (V) 
1,"._I,:EN X, - lr T (T exp 

- Ti-1 

V V· -1 
= (T 

2 (T - Ti-d (Ti - Ti-d (T - Ti) 

V· - [(T - Ti) + (Ti - Ti-t)] (T - T;) (Xi - xi-1 - a (Ti - Ti_t)2 

- [(T - Ti) + (Ti - Ti-d] (Ti - Ti-1) (XN - Xi - a (T - Ti»2 

+ (Ti - Ti-d (T - Ti) ( {XN - Xi - a (T - Ti)} 

+ {Xi - Xi-1 - a (Ti - Ti-d}) 

[(T - Ti-1) Xi - (T - Ti) Xi-1 - (Ti - Ti-1) XN)2 

V [ T-Ti Ti- Ti_1]2[ (T-Ti)(Ti- Ti_d]-l = Xi - Xi -1 - X N 211 ..l,.;... ____ .:..w.~--..:..-:...!.. 
T- Ti-1 T- Ti-1 T- Ti-1 
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Thus we have a Gaussian density with respect to Xi with the asserted mean (16.3.25) 
and variance (16.3.26). 

Solutions of Exercises for Chapter 17 

Exercise 17.1.2 The function u satisfies 1£(T, x) = 1 = f( x), 

a1£( t, x) { 2 a 1 a} 
at = u(t, x) 2x (1 + a)2 -"2 + 1 + a 

and 
.:..82-=u....l,;(t..!...:, x:....t.) (t) { 2 (1 - a)2 1 - a} =u ,X x +--

8X2 (1 + a)2 1 + a 



586 SOLUTIONS OF EXERCISES 

where a = exp(2(T - t», from which it follows that 

au 1 a2 u 1 2 
at + '2 az2 - '2 z = o. 

Exercise 17.1.6 With Y,. = (Y,!, ... , Y,.m) and LO = ! + t E;;'=l 8.J~z, we have 

Exercise 17.1.7 Extrapolate the scheme from Exercise 17.1.6 with the order 6.0 
weak extrapolation method (15.3.3). 

Exercise 17.3.1 We note that {S02 + {sn 2 = 1 for t ~ o. Then it follows from 
the Ito formula that 

<Pt = <Po + 1t [-s!s~ (a - (a (S;)2 + b (S~)2)) 

+ s;s~ (b - (a (S!)2 + b (S~)2)) ] dz 

+ 1t [( -<TS~) (-s~) + <TS;s!J dW" 

= <Po + 1t (b - a)s!s~ dz + 1t <T dW" 

1 it it <Po + '2(b - a) 0 sin (2<P .. ) dz + <T 0 dW .... 
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Horsthemke & Lefever (1984) and Smith & Gardiner (1988). Nemantic Liquid 
Crystals: Horsthemke & Lefever (1984). Ivanov & Shvec (1979) simulated 
collisions in plasmas. 
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Lambert (1973), Bjorck & Dahlquist (1974), Butcher (1987), Hairer, N~rsett 
& Wanner (1987), Hairer & Wanner (1991) and Stoer & Bulirsch (1993) are 
a selection of textbooks on numerical methods for ordinary differential equa
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sample paths on digital computers. These methods are particularly well suited 
to parallel computers. See Petersen (1987, 1988, 1994a), Anderson (1990), 
Entacher, Uhl & Wegenkittl (1998) and Hausenblas (1999b). 
Clements & Anderson (1973), Wright (1974), Fahrmeir (1976), Clark & Came
ron (1980), Riimelin (1982) and others show that not all heuristic time discrete 
approximations converge in a useful sense. Consequently a careful and sys
tematic investigation of different methods is needed. Surveys or books that 
provide a more systematic treatment of this area can be found in Gard (1988), 
Milstein (1988a), Pardoux & Talay (1985), Kloeden & Platen (1989), Bouleau 
& Lepingle (1993), Kloeden, Platen & Schurz (1997), Janicki & Weron (1994), 
Talay (1995) and Platen (1999). 
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ler approximation are contained for instance in Billingsley (1968), Grigelionis 
& Mikulevicius (1981), Platen & Rebolledo (1985), Jacod & Shiryaev (1987) 
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include Franklin (1965), Janssen (1984a, 1984b) , Clark & Cameron (1980), 
Kanagawa, (1988, 1989, 1995, 1996, 1997), Kaneko & Nakao (1988), Golec & 
Ladde (1989), Ikeda & Watanabe (1989), Mackevicius (1994), Bally & Talay 
(1995, 1996a, 1996b), Gelbrich (1995), Cambanis & Hu (1996), Kohatsu-Higa 
& Ogawa (1997), Chan & Stramer (1998) and Jacod & Protter (1998). Goros
tiza (1980) and Newton (1990) investigated approximations with random time 
steps jumping only from threshold to threshold. See Tudor & Tudor (1983), 
Yen (1988, 1992) and Tudor (1992) for extensions to multi-parameter SDEs. 
Tudor & Tudor (1987), Tudor (1989) and Mao (1991) have also approximated 
stochastic delay equations. In Ma, Protter & Yong (1994), Douglas, Ma & 
Protter (1996) and Chevance (1997) numerical approximations for forward
backward SDEs have been studied. 
9.2 Simulation studies for special examples of SDEs can be found for instance 
in Pardoux & Talay (1985), Liske & Platen (1987), Newton (1991), Klauder 
& Petersen (1985a) or Kloeden, Platen & Schurz (1992). 
9.3 Higher order time discrete strong approximations of Ito diffusions have 
been proposed and investigated for instance by Franklin (1965), Shinozuka 
(1971), Kohler & Boyce (1974), Rao, Borwanker & Ramkrishna (1974), Dsag
nidse & Tschitashvili (1975), Harris (1976), Glorennec (1977), Kloeden & 
Pearson (1977), Clark (1978), Nikitin & Razevig (1978), Helfand (1979), 
Platen (1980a), Razevig (1980), Greenside & Helfand (1981), Casasus (1982), 
Clark (1982), Guo (1982), Talay (1982a, 1982b, 1982c, 1983), Drummond, Du
ane & Horgan (1983), Casasus (1984), Guo (1984), Janssen (1984a, 1984b), 
Shimizu & Kawachi (1984), Tetzlaff & Zschiesche (1984), Unny (1984), Clark 
(1985), Averina & Artemiev (1986), Drummond, Hoch & Horgan (1986), Ko-
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zlov &. Petryakov (1986), Greiner, Strittmatter &. Honerkamp (1987), Liske 
&. Platen (1987), Platen (1987), Milstein (1987), Shkurko (1987), ROmisch &. 
Wakolbinger (1987), Averina &. Artemiev (1988), Milstein (1988b), Golec &. 
Ladde (1989), Feng (1990), Nakazawa (1990), Bensoussan, Glowinski &. Ras
canu (1992), Feng, Lei &. Qian (1992), Artemiev (1993b), Kloeden, Platen &. 
Schurz (1993), Saito &. Mitsui (1993a), Petersen (1994b), Torok (1994), Ogawa 
(1995), Gelbrich &. Rachev (1996), Grecksch & Wadewitz (1996), Newton 
(1996), Saito &. Mitsui (1996), Schurz (1996b), Yannios &. Kloeden (1996), 
Artemiev &. Averina (1997), Denk &. Schiiffer (1997), Abukhaled &. Allen 
(1998) and Schein &. Denk (1998). 
Strong approximations for Ito processes with jumps can be found in Dsagnidse 
&. Tschitashvili (1975), Wright (1980), Platen (1982a, 1984), Maghsoodi &. 
Harris (1987) and Maghsoodi (1994, 1998). 
More generally, discrete time strong and weak approximation of solutions 
of SDEs that represent semimartingales was studied, e.g., by Marcus (1978, 
1981), Platen &. Rebolledo (1985), Protter (1985), Jacod &. Shiryaev (1987), 
Mackevicius (1987), Bally (1989a), Bally (1989b), Bally (1990), Gyongy (1991), 
Kurtz &. Protter (1991a) and Kurtz & Protter (1991b). Special emphasis on 
semimartingale SDEs driven by Levy processes, including a-stable processes, 
was given in the book by Janicki &. Weron (1994), and in papers by Kohatsu
Higa &. Protter (1994), Janicki (1996), Janicki, Michna &. Weron (1996), Prot
ter & Talay (1997) and '!Udor &. '!Udor (1997). 
The construction of stochastic numerical schemes through symbolic manipu
lation and related questions were considered, for instance, in Valkeila (1991), 
Kloeden, Platen &. Wright (1992), Kendall (1993), Kloeden &. Scott (1993), 
Steele &. Stine (1993), Cyganowski (1995, 1996), Xu (1995) and Cyganowski, 
Kloeden &. Pohl (1998). 
9.4 Weak approximations of higher order are proposed and investigated for 
instance in Fahrmeir (1974), Milstein (1978, 1985, 1988a) , Helfand (1979), 
Platen (1980b, 1984, 1987), ROmisch (1983), Artemiev (1984, 1985), Glady
shev &. Milstein (1984), Talay (1984, 1986, 1987, 1990), Kanagawa (1985, 
1989), Klauder &. Petersen (1985a, 1985b), Pardoux & Talay (1985), Ventzel, 
Gladyshev &. Milstein (1985), A verina & Artemiev (1986), Haworth &. Pope 
(1986), Mikulevicius &. Platen (1991), Chang (1987), Petersen (1987, 1990), 
ROmisch &. Wakolbinger (1987), Gelbrich (1989), Greenside &. Helfand (1981), 
Wagner (1989a, 1989b), Talay &. '!Ubaro (1990), Kloeden &. Platen (1991b), 
Kloeden, Platen &. Hofmann (1992), Kannan &. Wu (1993), Hofmann (1994), 
Hofmann &. Platen (1994, 1996), Mackevicius (1994), Komori &. Mitsui (1995), 
Bally &. Talay (19900, 1996b), Kohatsu-Higa &. Ogawa (1997) and Milstein &. 
Tretjakov (1997). 
Platen (1984) and Mikulevicius & Platen (1988) considered the case of an 
SDE with jump component. Approximations to first exit times of diffusion 
processes from a region were considered, for instance, by Platen (1983, 1985) 
and Abukhaled & Allen (1998). Related to this are numerical methods for 
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SDEs with reflection or boundary conditions. These were studied, for instance, 
by Gerardi, Marchetti & Rosa (1984), Lepingle (1993, 1995), Slominski (1994), 
Asmussen, Glynn & Pitman (1995), Petterson (1995) and Hausenblas (1999b). 
9.5 For the case of discontinuous coefficients see Janssen (1984a). The defi
nitions follow Platen (1984) and Mikulevicius & Platen (1991). 
9.6 See 9.3. 
9.1 See 9.4. 
9.8 Implicit schemes or different concepts of numerical stability have been 
suggested and studied in a variety of papers, including Talay (1982b, 1984), 
Klauder & Petersen (1985a), Pardoux & Talay (1985), Milstein (1988a, 1995a), 
Smith & Gardiner (1988), McNeil & Craig (1988), Artemiev & Shkurko (1991), 
Drummond & Mortimer (1991), Kloeden & Platen (1992), Hernandez & Spigler 
(1992, 1993), Artemiev (1993a, 1993b, 1994), Saito & Mitsui (1993b), Hof
mann & Platen (1994), Milstein & Platen (1994), Hofmann (1995), Komori 
& Mitsui (1995), Hofmann & Platen (1996), Saito & Mitsui (1996), Schurz 
(1996a, 1996c), Ryashko & Schurz (1997), Burrage (1998), Fischer & Platen 
(1998), Higham (1998), Milstein, Platen & Schurz (1998) and Petersen (1998). 

Chapter 10: Strong Taylor Approximations 
10.1 See 5.2 and 5.3 
10.2 See 9.1. The proof of Theorem 10.2.2 follows Platen (1981a). 
10.3 The scheme originates from Milstein (1974). Clark & Cameron (1980) 
showed that one needs in the non-commutative case the double Ito integrals to 
obtain first strong order as described in the example. Doss (1977), Sussmann 
(1978), Yamato (1979) and Talay (1982c, 1983) studied a similar question. 
10.4 & 10.5 See Wagner & Platen (1978), Platen (1981a, 1984), Milstein 
(1988a) and Kloeden & Platen (1992). 
10.6 The proof of the theorem can be found in Platen (1981a, 1984). 
10.1 The result is due to the authors. 
10.8 The lemma is contained in Platen (1981a). 

Chapter 11: Explicit Strong Approximations 
11.1 Clements & Anderson (1973) and Wright (1974) showed by computa
tional experiments that not all stochastic generalizations of well established 
numerical methods as Runga-Kutta schemes converge to the desired solution. 
Riimelin (1982) investigated systematically Runge-Kutta type schemes for 
stochastic differential equations with strong order 1.0. The schemes (1.3), 
(1.5), (1.7), (1.9) and (1.11) are contained in Platen (1984). A slightly more 
complicated version of the scheme (1.11) can be also found in Gard (1988). 
Further Runge-Kutta type methods were proposed and studied in Artemiev 
(1993a, 1993b), Saito & Mitsui (1993b), Burrage & Platen (1994), Komori, 
Saito & Mitsui (1994), Komori & Mitsui (1995), Saito & Mitsui (1996), Bur
rage & Burrage (1996, 1997), Burrage, Burrage & Belward (1997), Komori, 
Mitsui & Sugiura (1997) and Burrage (1998). 
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11.2 The proposed schemes (2.1), (2.7), (2.10), (2.13), (2.16) and (2.19) are 
mentioned in Platen (1984) or due to the authors. The method (2.20) is due 
to Chang (1987). 
11.3 The scheme (3.2) was also proposed by Chang (1987). Its generalization 
(3.3) is due to the authors. 
11.4 (4.8) is due to Lepingle & Ribemont (1991). A 1.5 strong order two 
step method for the case of additiv~ noise can be found in Milstein (1988a). 
The schemes (4.4), (4.5), (4.6) and (4.7) can be found in Kloeden & Platen 
(1992). 
11.5 The proof of Theorem 11.5.1 was given in Platen (1984). 

Chapter 12: Implicit Strong Approximations 
12.1 Implicit schemes were already mentioned under 9.8. The described 
implicit Euler and Milstein schemes are straight forward implicit counterparts 
of their explicit versions and were mentioned in Talay (1982a) or Milstein 
(1988a). In Milstein (1988a) an implicit 1.5 strong order scheme for additive 
noise can be found. The other implicit order 1.5 strong schemes are described 
in Kloeden & Platen (1992). 
12.3 The schemes are mainly proposed in Kloeden & Platen (1992). An 
implicit 1.5 strong method of Runge-Kutta type for additive noise is also 
gi ven in Milstein (1988a). 
12.4 The implicit tw~step schemes are due to the authors. 
12.5 A-stability for SDEs was discussed, for instance, by Milstein (1988a), 
Hernandez & Spigler (1993), Petersen (1990) or Kloeden & Platen (1992). The 
last paper also defines stiff stochastic differential equations. 

Chapter 13: Selected Applications of Strong Approximations 
13.1 The influence of periodic excitations and noise on Duffing-Van der Pol 
oscillators is investigated by several authors, e.g., Ebeling et al. (1986). The 
stochastic flow on the circle was considered by Carver hill, Chappel & Elwor
thy (1986) and Baxendale (1986). The last author also studied the given 
example of families of stochastic flows on the torus. FUrther references in
cluding isotropic flows can be found in Baxendale & Harris (1986) or Darling 
(1992) and Kloeden, Platen & Schurz (1991). The basic theory on stochastic 
flows and diffeomorphisms is described in Ikeda & Watanabe (1989) or Kunita 
(1984, 1990). See Emery (1989) for stochastic calculus on manifolds. 
13.2 There exists an extensive literature on parametric estimation for stochas
tic differential equations, e.g., Novikov (1972), Taraskin (1974), Brown & 
Hewitt (1975), Balakrishnan (1977), Liptser & Shiryaev (1977, 1978), Lan
ska (1979), Bellach (1983), Kozin (1983), Linkov (1984), Heyde (1989, 1997), 
Kuchler & &1srensen (1989, 1997), S(6rensen (1990), A few authors such as 
Kazimierczyk (1989) and Kloeden et al. (1996) have studied the behaviour of 
estimators numerically. 
13.3 Discrete Approximations for Markov chain filters were extensively con
sidered in Clark (1978, 1982), Newton (1984, 1986b, 1991), The section follows 
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the results of Newton (1984) and Kloeden &; Platen (1992). The proposed or
der 1.5 asymptotically efficient scheme is due to the authors. See also Kloeden, 
Platen &; Schurz (1993), Castell &; Gaines (1996) and Fischer &; Platen (1998). 
13.4 The proposed 1.0 asymptotically efficient schemes are due to Newton 
(1991). 

Chapter 14: Weak Taylor Approximations 
14.1 The Euler scheme appears in Milstein (1978) as a weak scheme. Theorem 
14.1.5 is proved in Mikulevicius &; Platen (1991). 
14.2 The order 2.0 weak Taylor schemes mentioned here were proposed by 
Milstein (1978) and Talay (1984). Talay (1984) proved the second order weak 
convergence for a whole class of schemes. 
14.3 Order 3.0 weak Taylor schemes are given in Platen (1984) and for 
additive noise in Milstein (1988a). 
14.4 The order 4.0 weak Taylor scheme for additive noise is due to the 
authors. 
14.5 In Talay (1984) the assertion of Theorem 14.5.1 was proved for weak 
order 2.0. In Platen (1984) this result was generalized. Theorem 14.5.2 was 
proved in Platen (1984). 
14.6 The first result on extrapolation methods for stochastic differential equa
tions is that of Talay &; Thbaro (1990). They derived an expansion of the lead
ing error coefficients for the Euler scheme. The general representation of the 
leading error coefficients described in Theorem 14.6.1 was proved in Kloeden, 
Platen &; Hofmann (1995). 

Chapter 15: Explicit and Implicit Weak Approximations 
15.1 The class of order 2.0 weak schemes was characterized in Talay (1984). 
The completely derivative free explicit order 2.0 weak schemes (1.1) and (1.3) 
were propOsed in Platen (1984). Milstein (1985, 1988a), describes the scheme 
(1.5) and Talay (1984) proposed the method (1.6) where he used also random 
variables as defined in (14.2.8)-(14.2.10). Weak second and third order Runge
Kutta type schemes have been also proposed, for instance, by Mackevicius 
(1994) and Komori &; Mitsui (1995). 
15.2 The presented schemes are described in Platen (1984). 
15.3 By the use of the Euler approximation Talay &; Thbaro (1990) proved 
the order 2.0 weak extrapolation method (3.1). In Kloeden, Platen &; Hof
mann (1995) the order 4.0 and 6.0 weak extrapolations are described together 
with the proof of Theorem 15.3.4. FUrther results on extrapolation methods 
can be found in Hofmann (1994), Goodlett &; Allen (1994) and Mackevicius 
(1996). Artemiev (1985), Miiller-Gronbach (1996 ), Gaines &; Lyons (1997), 
Mauthner (1998) and Burrage (1998) have derived results on step size control. 
Furthermore, Hofmann (1994), Hofmann, Miiller-Gronbach &; Ritter (1998) 
have considered extrapolation methods with both step size and order control. 
15.4 Some results on implicit weak schemes can be found in Milstein (1985, 
1988a), for the case of additive noise. The schemes (4.12) and (4.13) are due 
to the authors. 
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15.5 Results on predictor-corrector methods can be found in Platen (1995). 
15.6 The remarks on the convergence proofs for explicit and implicit weak 
schemes relate to those in Platen (1984). 

Chapter 16: Variance Reduced Approximations 
16.1 Variance reduction is a basic technique in Monte-Carlo integration. 
Useful references on variance reduction techniques in a more classical setting 
include Hammersley & Handscomb (1964), Ermakov (1975), Boyle (1977), 
Maltz & Hitzl (1979), Rubinstein (1981), Ermakov & Mikhailov (1982), Ripley 
(1983b), Kalas & Whitlock (1986), Bratley, Fox & Schrage (1987), Chang 
(1987), Wagner (1987a, 1988a, 1988b, 1989a, 1989b), Ross (1990) and Law & 
Kelton (1991). 
16.2 The results presented here are from Milstein (1988a), see also Hofmann, 
Platen & Schweizer (1992). 
16.3 & 16.4 In these sections we follow Wagner (1988a, 1988b, 1989a, 
1989b). Variance reduction using Hermite polynomials was proposed by Chang 
(1987) applying Chorin's Monte-Carlo estimator for Gaussian random vari
ables, see Chorin (1971, 1973a, 1973b) and Maltz & Hitzl (1979). 

Chapter 17: Selected Applications of Weak Approximations 
17.1 In Kac (1949) and Feynman & Hibbs (1965) representations of the 
solutions of the SchrOdinger equation can be found. Chow (1972) describes 
applications for function space integrals to problems in wave propagation in 
random media. Donsker & Kac (1950) already studied functional integrals 
numerically as early as 1950. Fortet (1952) and Gelfand, Frolov & Chentsov 
(1958) continued this direction. Stochastic quadrature formulas are derived in 
Cameron (1951), Vladimirov (1960), Konheim & Miranker (1967), Tatarskii 
(1976), Yanovich (1976), Sabelfeld (1979) and Egorov, Sobolevski & Yanovich 
(1985). Second order approximation formulas were given in Fosdick (1965), 
Fosdick & Jordan (1968). Chorin (1973a) found a surprisingly simple method 
which Blankenship & Baras (1981) and Hald (1987) generalized to wide classes 
of functionals. Gladyshev & Milstein (1984) and Milstein (1988a) proposed the 
scheme (1.19). The approximations (1.14) and (1.15) are due to the authors. 
Example 17.1.1 is due to Milstein (1988a). Dyadkin & Zhykova (1968) and 
Wagner (1987a, 1987b) avoided any bias in the computation of functional 
integrals. Variance reduction is also considered in Fosdick & Jordan (1968), 
Chorin (1973a), Maltz & Hitzl (1979), Kalos (1984), Binder (1985), De Raedt 
& Lagendijk (1985), Ventzel, Gladyshev & Milstein (1985), Kalos & Whitlock 
(1986), Wagner (1988a). Clark (1984, 1985) considered strong approximations 
for stochastic linear integrals. 
Weak approximations on a bounded domain, which relate to the solution of 
a corresponding parabolic partial differential equation, are, for instance, con
structed in Platen (1983), Milstein (1995b, 1995c, 1996, 1997) and Hausen
bIas (1999a). Here stochastic numerical techniques provide access to efficient 
numerical solutions of partial differential equations with difficult boundary 
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conditions. These methods seem to be also applicable in higher dimensions. 
Numerical experiments and numerical schemes for stochastic partial differ
ential equations are discussed by Liske (1985), Elliott & Glowinski (1989), 
Bensoussan, Glowinski & Rascanu (1990), Le Gland (1992), Gaines (1995b), 
Grecksch & Kloeden (1996), Ogorodnikov & Prigarin (1996), Gyongy & Nu
alart (1997), Werner & Drummond (1997) and Allen, Novosel & Zhang (1998). 
Nonlinear diffusion processes that depend on related temporal and spatial par
tial differential equations were approximated by Ogawa (1992, 1994, 1995). 
11.2 The results of this section are due to Talay (1990), see also Talay (1987, 
1991, 1995), Grorud & Talay (1990, 1996) and Arnold & Kloeden (1996). 
11.3 The section presents results on numerical approximations of Lyapunov 
exponents of stochastic differential systems given in Talay (1991) and Grorud 
& Talay (1990). Further references on Lyapunov exponents for linear and 
nonlinear stochastic systems are Arnold (1987, 1998), Arnold & San Martin 
(1986), Arnold & Wihstutz (1986) and Shardlow & Stuart (1999). 
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