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Preface 

Electromagnetic theory is beautiful ! When looked at from the relativistic 
point of view where electric and magnetic fields are really different aspects 
of the same physical quantity, it exhibits an aesthetically pleasing structure 
which has served as a model for much of modem theoretical physics. Un- 
fortunately this beauty has been all but buried as most textbooks have 
treated electricity, magnetism, Coulomb’s law, and Faraday’s law as almost 
completely independent subjects with the ground work always supplied by 
means of empirical or historical example. Occasionally a chapter is devoted 
to the relativistic coalescence of the various aspects of electromagnetism 
but use is rarely made of the requirement of Lorentz invariance in deriving 
the fundamental laws. 

Our point of view here is quite different. Basically we have two purposes 
in mind-one is to exhibit the essential unity of electromagnetism in its 
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viii PREFACE 

natural, relativistic framework and the other is to show how powerful the 
constraint of relativistic invariance is. To these ends we shall show that all 
electromagnetism follows from electrostatics and the requirement that our 
laws be the simplest ones allowable under the relativistic constraint. The 
hope is that the student will make use of these new insights in thinking about 
theories that are as yet undeveloped and that the model we set here will be 
generally useful in other areas of physics. 

A word about units. Unfortunately one of the results of the completely 
disconnected way in which electricity and magnetism have been taught in 
the past has been the growing acceptance of the mks over the cgs system of 
units. We have no special preference for centimeters over meters or of 
grams over kilograms. We do, however, require a system wherein the 
electric field E and the magnetic field B are in the same units. Using the mks 
system, as it is presently constituted, for electromagnetic theory is akin to 
using a meterstick to measure along an East-West line and a yardstick to 
measure along a North-South line. To measure E and B in different units 
is completely antithetical to the entire notion of relativistic invariance. 
Accordingly we will make use of the cgs (gaussian) system of units ex- 
clusively. Conversion to practical units where necessary can be carried 
out with no difficulty. 

The author would like to express his most profound appreciation 
to Miss Margaret Hazard for her patient and careful typing of the text. 

MELVIN SCHWARTZ 
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I 
Mathematical Review 
and Survey of Some New 
Mathematical Ideas 

It would be delightful if we could start right out doing physics without the 
need for a mathematical introduction. Unfortunately though, this would 
make much of our work immeasurably more laborious. Mathematics is 
much more than a language for dealing with the physical world. It is a 
source of models and abstractions which will enable us to obtain amazing 
new insights into the way in which nature operates. Indeed, the beauty 
and elegance of the physical laws themselves are only apparent when 
expressed in the appropriate mathematical framework. 
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2 MATHEMATICAL REVIEW 

We shall try to cover a fair bit of the mathematics we will need in this 
introductory chapter. Several subjects are, however, best treated within 
the context of our physical development and will be covered later. It is 
assumed that the reader has a working familiarity with elementary calculus, 
three-dimensional vectors, and the complex number system. All other 
subjects will be developed as we go along. 

1-1 VECTORS IN THREE DIMENSIONS; 
A REVIEW OF ELEMENTARY NOTIONS 

We begin by reviewing what we have already learned about three-dimensional 
vectors. As we remember from our elementary physics, there are a large 
number of quantities that need three components for their specification. 
Position is, of course, the simplest of these quantities. Others include 
velocity and acceleration. Even though we rarely defined what was meant 
by a vector in mathematically rigorous terms, we were able to develop a 
certain fluency in dealing with them. For example, we learned to add two 
vectors by adding their components. That is, if r l  = (xl,yl,zl) and r, = 
(x,,y,,z,) are two vectors, then 

r1 + rz = (x1 + x2, Y ,  + Y,, z1 + -4 

ar, = (axl,aYl,azl) 

If a is a number, then 

We also found it convenient to represent a vector by means of an arrow 
whose magnitude was equal to the vector magnitude and whose direction 
was the vector direction. Doing this permitted us to add two vectors by 
placing the “tail” of one at the “head” of the other as in Fig. 1-1. We also 
learned how to obtain a so-called scalar quantity by carrying out a type 
of multiplication with two vectors. If rl  = (xl,yl,zl) and r2 = (x,,y,,z,) 
are two vectors, then rl r2 is defined by the equation 

rl ‘ rz  = XlXZ + Y l Y ,  + z1zz 
It was also shown that rl . r, could be obtained by evaluating Ir, I Ir,lcosO,,, 
where lrll and Ir,l are, respectively, the magnitudes of rl and r, and O,, 

Fig. 1-1 The addition of two vectors can 
be accomplished by placing the “tail” of 
one at the “head” of the other. 
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is the angle between them. Another so-called vector was obtained by taking 
the cross product of rI  and r2. That is, 

rl  x r2 = ( Y l Z 2  - Y 2 Z l . Z l X Z  - Z Z X 1 ,  X I Y 2  - Y l X , )  

We shall have much more to say about the true nature of this beast very 
shortly. At the moment we just recall that it appears in some respects to 
be a vector whose magnitude is equal to lrll lr21 sin 012 and whose direction, 
at right angles to both rl and r2, is given by a so-called right-hand rule in 
going from rl  to r2. If we look from the head toward the tail of rl x r2, 
we would see the shortest rotation from rl to r2 to be in the counterclockwise 
direction. 

Unfortunately, we shall have to relearn much of the above within a 
more abstract framework if we are to make any progress beyond this 
point. We shall have to go back to our basic notions and see if we can 
define what we mean by vector in a more suitable, less intuitive manner. 
Only by doing so will we be prepared to say clearly which combinations of 
three numbers are vectors and which are not. We will also be able to define 
scalar in a reasonable way and will then see our way clear to an under- 
standing of higher-rank tensors. 

1-2 THE TRANSFORMATION PROPERTIES OF VECTORS 
UNDER SPATIAL ROTATION 

To open the way for a more rigorous definition of vector, we proceed a bit 
further with our old intuitive notions. Let us consider a so-called position 
vector, that is, a vector from the origin of our coordinate system to the point 
(x,y,z) .  If we draw a unit vector along each of the three axes as shown in 
Fig. 1-2 and call them t,j, and k, respectively, we can write r = xi + yj^ + zk 
Now, we ask, what if we were to rotate our coordinate system to a new 
set of axes x’, y‘, and z’ with a new set of unit vectors ?, f ,  and kf? How 
would r be expressed now? We answer this question very simply by expressing 
i, j, and h in terms of the new unit vectors ?, p, and k’. (This is possible 
- -  

I 

Fig. 1-2 The vector r can be expressed as 
r = .G + y i  + rk where i, 3, and k are 
unit vectors along the x, y. z axes. 
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because any three-dimensional vector whatsoever can be expressed either 
in terms of 1,3, and k or in terms of ?, p, and k’.) We write 

1 = all? + + ~31P 

3 = a,,? + uZ2j’ + ~ 3 2 k ’  

k = a132 + ~ 2 3 P  + ~ 3 3 i c ’  

A 

(1-2-1) 

We note the obvious fact that 
- 1  I -  . .I 

A -  

i - i ’  = all  I - J  = azl i . k ’ =  a31 

j . i ’  = a12 1.j’ = aZ2 j - k  = a32 
A -  t -  - A  

A -  

= a13 k . j ’  = aZ3 k.P = a33 

This, of course, permits us immediately to express the unit vectors ?, r, and 
k’ in terms of 1,j, and k, viz., 

? = a111 + ~ 1 2 j  + ~ 1 3 L  

= a211 + a 2 2 3  + ~ 2 3 k  

P = a311 + ~ 3 2 j  + ~ 3 3 i r  

( 1-2-2) 

We realize that not all the nine quantities aij can be chosen indepen- 
dently. After all, only three angles are necessary to specify the rotation 
of one coordinate system into another. We expect then to have six equations 
linking the coefficients. We obtain these equations by requiring that ?, 3’. 
and &‘ form an orthogonal set of unit vectors. 

(1 -2-3) 

Now to return to our original vector r. We can write r in terms of its compo- 
nents in either of two ways: 

r = xi + yj + zk or r = x’? + y ’ t  + z%’ 

Making use of Eqs. (1-2-1), we find immediately that 

( 1-2-4) 
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detaij = 

a l l  a12 u13 

aZ1 aZ2 a23 

O31 a32 a33 
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We can represent the above operation symbolically by writing 

r‘ = ar (1 -2-8) 

(In the future, a boldface sans serif symbol, such as a, will mean that the 
symbol is a matrix and not a number.) 

Suppose now that we wish to undertake two successive transforma- 
tions, the first characterized by a and the second by another matrix b. 
If we begin with the triplet r, then the first transformation leads to the 
triplet r’ and the second to the triplet r”. That is, 

r’ = ar 
r” = br’ 

Alternatively, we might have gone directly from the unprimed to the double- 
primed coordinate system by means of a transformation c. 

r” = cr 

Writing out these transformations in detail will show that we could determine 
all the elements of c directly from a and b by means of the simple set of 
equations 

c11 = b11a11 + b12a21 + bl3% 

c12 = b 1 1 a 1 2  + b 1 2 a 2 2  + b13a32  

or, in general, 

~ i j  = bilaij + biza2j + b i 3 ~ 3 j  

We abbreviate this in the customary way by writing 
3 

( 1-2-9) 

Thus the element cij can be obtained by taking the “scalar product,” so to 
speak, of the ith row in b with thejth column in a. 

The operation which we have defined above in Eq. (1-2-9) is called the 
product of two matrices a and b and can be represented by the expression 
c = ba. Matrix multiplication, unlike the multiplication of two numbers, 
is not in general commutative, as the reader can very easily convince himself. 
That is to say the product ab is not in general equal to the product ba. 
Multiplication is, however, associative. This means that we can in general 
write, for three transformations a, b, and c, 

a(bc) = (ab)c ( 1-2-10) 

To complete our picture we should point out that one of the possible 
transformations is the identity transformation which leaves the coordinate 
system unchanged. We write this matrix as 1 with the observation that 
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(1-2-11) 

Returning back to Eqs. (1-2-1) and (1-2-2), we see that for every transforma- 
tion a there is also an inverse transformation a- '  such that 

aa-1 = a- 'a  = 1 (1 -2-1 2) 

The inverse transformation is just given by the transposed matrix. That is 
to say 

(1 -2-1 3) 

(For those whose mathematical sophistication is just a bit above average, 
we might point out that the set of all transformations defined above con- 
stitute what is known in the trade as a group. The detailed properties of 
groups play an important role in the development of much of quantum 
mechanics and should be studied at the earliest possible moment by those 
who intend to extend their horizons in physics beyond the classical domain.) 

We can now think in terms of the complete set of all transformations 
from one orthogonal coordinate system to another, including within our 
set both rotations (det a = + 1) and reflections (det a = - 1). The definition 
of scalar, vector, and various other entities is now best done in terms of this 
set of transformations. 

Let us begin with what is intuitively the simplest of these entities, the 
scalar. Imagine that we are given a set of explicit instructions for determining 
some number. We follow these instructions scrupulously, coming up with a 
value for the number. We can now rotate our coordinate system or change 
its handedness (by means of the transformation a). If the same set of rules 
for determining the number leads to the same result in the new system, 
regardless of the choice of rotation or reflection, then the number is a scalar. 

Obviously there are innumerable trivial examples of scalars that we 
can readily cite. The number of cents in the dollar or the number of fingers 
on your hand have nothing to do with the coordinate system and hence are 
ips0 facto scalars. Much less trivial, though, are numbers that are derived 
by means of rules which concern coordinates themselves. Let us take a 
simple example. 

Suppose the rule tells us to take the x coordinate of a point, square it, 
add to that the square of the y coordinate of the same point, and add to 
the sum the square of the z coordinate of the point. We would have then a 
number equal to x2 + y 2  + z2. If we transform to a new system and follow 
the same prescription in the new system, we come up with x" + y'' + z". 
Unless we knew the Pythagorean theorem we would have no a priori 
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expectation that the same rule applied in these different systems would give 
us the same result. Indeed it does because we have just determined the 
square of the distance from our point to the origin, and that quantity does 
not depend on the rotational orientation or the handedness of our system. 
Clearly then the number xz + y 2  + z2 is a scalar. 

Let us try a more difficult example now. Consider two points whose 
coordinates in one system are ( x l , y l , z l )  and (x2,y2,z2). We can form the 
expression x l x z  + yly, + z l z z  and evaluate it in this coordinate system. 
We can now transform coordinates and evaluate the same expression in 
the new system, obtaining x;x; + y;y; + z ;z ; .  Again we have no a priori 
expectation that the two numbers will come out to be the same. Making 
use of Eqs. (1-2-4) and (1-2-3), the reader can easily convince himself that 
this is, however, the case-the numbers are the same and so the expression 
x l x z  + yly2 + z l z z  is a scalar. (The result is not entirely unanticipated 
for we remember that this expression is the scalar product of rl and rz 
and can also be written as Ir, I Ir,l cos 0. The latter formula does not depend 
on the coordinate system.) 

There is a great temptation now to let every “constant” of nature, 
like charge and mass, be labeled a scalar. In fact we must be exceedingly 
careful since an attribute like charge is defined operationally in terms of 
forces by external fields, and we must investigate the behavior of the entire 
system under both rotation and reflection before we can conclude that the 
attribute is a scalar. We shall have more to say about this very shortly. 

We go on now to the definition of another important entity, the 
pseudoscalar. The pseudoscalar differs from the scalar in only one important 
respect. The sign of the number we obtain by following our prescription 
in a left-handed coordinate system is opposite to that we obtain in a right- 
handed system. For pure rotations, scalars and pseudoscalars behave 
identically. 

To find an example of a pseudoscalar is not difficult at all. Let us take 
three points in space which in one coordinate system have the components 
( x l , y l , z l ) ,  (xz ,yz , zz ) ,  and (x3,y3,z3).  We can construct a determinant D 
out of these nine numbers : 

= x1(y2z3 - y3z2) f y1(z2x3 - z 3 x 2 )  + zl(x2y3 - x3y2) 

(1 -2- 14) 

(It is quite clear that D is equal to rl . (rz x r3) and has magnitude equal 
to the volume of the parallelopiped determined by r l ,  r2, and r3.) If we 
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change coordinates by means of a pure rotation with det a = + 1, we 
find that D as evaluated in the new system for the same three points is 
unchanged. On the other hand, if we change from a right-handed to a left- 
handed system, D changes sign. (Take the simplest such transformation 
corresponding to x' = -x ,  y' = -y, and z' = -2  and substitute above. 
Then rotate to any other left-handed system.) 

So far we have been dealing with prescriptions whereby we come up 
with single numbers. However, we have already discovered some entities 
which require three components for their specification, like the coordinates 
of a point. This brings us then to another class of mathematical objects 
which we shall call the polar vector. 

Imagine that we have a prescription for calculating a triplet and 
obtain ( ~ 1 , ~ 2 , ~ 3 )  as the result of following this prescription. Consider 
next that we transform to a new coordinate system by means of the trans- 
formation a and then apply the same prescription as before. We would 
obtain a new triplet (vi,vi,v;). These triplets are the components of a 
polar vector v if and only if, for any choice of a, we have 

v; = allvl  + aI2v2 + a13v3 
0; = a21v1 + aZ2v2 + aZ3v3 
v j  = a3101 + ~ 3 2 ~ 2  + a33u3 

(1 -2-1 5) 

Obviously the three coordinates of a point (x,y,z) constitute a polar vector. 
So do the three components of velocity and acceleration. Using the notation 
we have developed earlier, we can write 

v' = av 

An important characteristic of a polar vector is the fact that v changes 
sign under the pure inversion represented by 

Under this transformation, of course, 

v; = -01  

v; = -v2 

v; = - u 3  

(1-2-16) 

(1 -2-17) 

On the other hand, we can imagine a triplet of numbers which behaves 
exactly like a polar vector under rotation but does not change sign under 
inversion. Such an entity comes under the classification of axial vector. 
To construct such a triplet we need only take the vector product of two 
polar vectors v and w : 
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u = v x w  
= [(u2w3 - 'v3w2)9 (u3w1 - u1w3)9 (u1w2 - v2w1)1 (1 -2- 18) 

Under an inversion, 

v'= - v  w'= -w but U' = +U (1 -2- 19) 

We shall shortly discuss more complex mathematical entities with 
more than three components. For the moment though, let us pause and see 
if we can understand the physical importance of what we have done. 

One of our underlying physical principles is that there is no preferred 
direction or handedness' to the universe. This means that the basic laws 
of nature cannot depend on the coordinate system we choose to use for 
their formulation. Now basic physical laws are written down as equations. 
If the two sides of an equation do not have the same transformation proper- 
ties then the form of the equation will depend on the coordinate system we 
chose, thereby violating our principle. For example, suppose our equation 
sets a scalar quantity equal to a pseudoscalar quantity. If we reverse the 
handedness of our system, one side of the equation would change sign and 
the other would not, leading to an obvious change in the appearance of the 
physical law. To avoid these problems we shall agree never to write down a 
basic equation in classical physics where the two sides do not behave 
identically under transformation. That means that we will always equate 
scalars with scalars, polar vectors with polar vectors, axial vectors with 
axial vectors, and so forth. In this way, if an equation is true in one co- 
ordinate system then the identical equation will be true in any system 
related to it by rotations or inversions. 

We should emphasize that in all the above we are only talking about 
those equations which describe the fundamental physical laws. In applying 
the physical laws to any specific situation, we will usually find that there is a 
preferred coordinate system to use and hence what we have said above 
would not necessarily hold true. For example, if we were studying the tra- 
jectory followed by a baseball near the earth's surface we would naturally 
choose one of our coordinate axes in the upward direction. On the other 
hand, when we write down a general set of laws governing the behavior 
of magnetic and electric fields (Maxwell's equations), we will certainly 
insist that no preference be given to any coordinate system or to a particular 
handedness of our system. 

The type of reasoning we have just described plays a particularly 
important role in electromagnetism, and we would like to take the liberty 
of drawing on some illustrations here even though we have not developed 

'This belief has been shaken in recent years by the discovery of panty violation and the violation 
of time-reversal invariance in the weak interactions. Nevertheless it is still true to the best 
of our knowledge in classical electromagnetic theory. 
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the subject yet. (Hopefully the student taking this course has already studied 
some elementary physics before.) The first discovery we will make in electro- 
statics is Coulomb's law, where we will find that the force by one charge 
on another is proportional to the product of the charges and inversely 
proportional to the distance between them. Looking ahead to Eq. (2-1-1), 
we shall write 

F,, = force by charge 1 on charge 2 

Now, at the moment we do not know whether charge is a scalar or a pseudo- 
scalar. Regardless of what it is though, the product of two charges q1q2 
is a scalar. Hence the right side of the equation is a polar vector. This in 
turn means that force is a polar vector. Since force is equal to mass times 
acceleration, we next conclude that mass is a scalar (under these three- 
dimensional transformations). 

What about charge itself though? Whenever we see an elementary 
force in electromagnetism it is always proportional to the product of charges. 
Hence, there is no way of determining whether charge is a scalar or pseudo- 
scalar quantity. Since it makes no difference, we will assume it to be a scalar. 
This implies immediately that electric field E is a polar 
just equal to force per unit charge. 

exerts a force on a charge q given by 
How about magnetic field? As we shall learn, a 

vector since it 

magnetic field 

is 

B 

V 

C 
F = ~ - x B  

where c is the velocity of light. This tells us that B is an axial vector. 
In Chap. 3 we will discuss an experiment to search for magnetic 

monopoles. These, if they exist, are elementary magnetic charges which 
are acted upon by a magnetic field in the same way as ordinary electric 
charges are acted upon by an electric field. We would have then, for a 
magnetic charge qm, a force given by 

F m  = q m B  
Since B is an axial vector, we conclude that 4,. is a pseudoscalar quantity. 
Obviously, if we had begun by choosing electric charge to be a pseudo- 
scalar, then we would now come out with magnetic charge as a scalar. 

We can apply the principles we have discussed above in another 
manner to help us in determining the physical laws themselves. Suppose 
we have determined that a part of our physical law states that a partic- 
ular component of a given polar (or axial) vector v is equal to the same 
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component of another polar (or axial) vector w. We can choose our x 
axis along the direction in which the components are known to be equal 
and then summarize our knowledge by the statement that v, = w, in this 
coordinate system. If we further know that there is no preferred system 
for the laws we are uncovering, then we can deduce that v y  = w,, and v, = w, 
also. In other words, v = w in all systems. We shall make extensive use of 
this procedure when we introduce magnetism in Chap. 3. The only difference 
will be that we will be working in the four-dimensional world of special 
relativity. It is at that point that the full beauty of the notions we have 
developed here will become apparent. 

1-3 DIFFERENTIATION OF VECTORS WITH RESPECT TO TIME 
AND POSITION; THE "DEL" OPERATOR (V) AS A VECTOR 

Since we know how to add and subtract vectors, we know how to differentiate 
them. If r( t )  = (x(t),y(t),z(t)) is a position vector of a moving particle, 
then we have 

dr(t) - lim r(t + Ar) - r(t) -- 
dt At+O At 

(1-3-1) 

But 

r(t + Ar) - r(t) = [x(t  + Ar) - x(t),  
y(t + At)  - y(t), z(t + At)  - ~ ( t ) ]  

and hence 

dx dy dz 
(1 -3-2) 

dr dt dt dt 

We define dr/dt to be the velocity vector v(t) of our particle. Similarly we 
can define acceleration by 

(1-3-3) 

We note immediately that both v(t) and a(t) are vectors.' This is so because 
the variable t is independent of the orientation of our coordinate system and 
can be kept constant as we carry out a rotation. If instead of t  we had used x,  
the triplet created would not have been a vector at all. 

Before we can treat derivatives with respect to the coordinates x, y ,  z ,  
we must learn about partial differentiation, a trivial extension of ordinary 
differentiation. Letfbe a function of the three variables x, y ,  z. The partial 

'In the future we shall not differentiate between polar and axial vectors unless it is specifically 
important to do so. We shall call them both vectors. 
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derivative off with respect to any of these variables is defined to be the 
ordinary derivative if we keep the other two variables fixed. Thus we have, 
for example, 

(1-3-4) 

Suppose now we start from some point (x,y,z)  and move to a new, nearby 
position (x + Ax, y + Ay, z + Az). How much does f change? The answer 
is simple if we carry out our motion in three steps. First, we move from x 
to x + dx and the function changes by an amount (aflax) Ax. Then we 
move in the y direction by an amount Ay. The function now changes by 
an amount (afldy)Ay. Last, we move in the z direction by an amount 
Az. The function changes by an additional amount (afldz) Az. (It is assumed 
in all this that Ax, Ay, and Az are sufficiently small so that the derivatives 
do not vary significantly enough over this interval to affect these approxima- 
tions.) 

Before we add these changes together let us, in the customary manner, 
replace the A’s by ds, signifying that we are dealing with infinitesimal dis- 
placements. We have then for the total change i n 8  

af af 
ax aY a Z  

df = c d x  + - d y  + -dz  (1-3-3 

Now the triplet (dx,dy,dz) is surely a vector, and the change in f as we go 
from one place to another is surely a scalar (it does not depend on the 
orientation of our coordinate system). The right side of Eq. (1-3-5) looks 
like the scalar product of the triplet (afllaz, afllay, lafllaz) and the vector 
(dx,dy,dz). We expect then that the triplet (aflax, aflay, aflaz) is a vector, 
and we can demonstrate this explicitly. [This triplet is called the gradient 
off or Vf (“delf’).] 

To do so we must learn how to transform from one set of variables 
(x,y,z)  to another (x‘,y’,z’). Let us for convenience choose the displacement 
which led to df in such a way that only x‘ isxhanged and not y‘ or z‘. If we 
divide Eq. (1-3-5) by dx’ on both sides, we have 

(1 -3-6) 

Similarly, if we allow our displacements to be dy’ and dz‘, we would obtain 
the equations 

(1-3-7) aj- aj- ax aj- ay aj- a Z  

a y  ax ay’ ay ay’ a Z  a y  
-- - - - + - - + - -  

(1 -3-8) 
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Going back to Eqs. (1-2-4), we find 

(1-3-9) 

Substituting back into (1-3-6) to (1-3-8), we obtain appropriate transforma- 
tion equations for Vfi 

(1 -3- 10) 

Hence the gradient off does indeed transform as a vector under rotation. 
The interesting thing, though, is that the transformation properties we are 
interested in do not concern f at all. They only concern the triplet of dg- 
ferentiaf operafors V = (a/ax,a/ay,a/az). Although V really means nothing 
unless something appears on its right, it nevertheless has all the character- 
istics of a polar vector under both rotation or inversion. 

In any case let us see what the gradient is like “physically.” We see 
from Eq. (1-3-5) that the function f changes by an amount Vf - dr if we 
undergo a displacement dr. Thus Vf points along the direction in which f 
changes most rapidly. Its mzgnitude is the rate of change off with respect 
to distance along that direction. 

We shall have much more to do with our “del” operator as we proceed 
to develop a number of other mathematical and physical concepts. 

1-4 THE NOTION OF FLUX; DIVERGENCE 
OF A VECTOR FIELD; GAUSS’ THEOREM 

As we examine the world around us we find numerous instances where we 
need to speak of vector fields, that is, vector functions of position defined 
for all points within a given volume. The velocity or momentum density of 
fluids, electric and magnetic fields, and gravitational forces are examples 
that we come across quite readily. In each of these cases we will often make 
use of a very simple notion-the flux of the vector field v(x,y,z) through an 
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imaginary infinitesimal bit of area dA with normal vector n. We first define 
it mathematically. 

Flux through dA in direction of A = v - A dA 

The reason for calling this quantityflux is reasonably clear. As we see from 
Fig. 1-3, if v is the velocity of a fluid of uniform density, then the flux is 
just the volume of fluid that passes through the surface AA in 1 sec. 

Needless to say, we can now proceed to integrate the flux over a finite 
area A.  We have then 

Flux of v through A in direction of A = v . A dA (1 -4-1) J1, 
We now prove a simple but powerful theorem which relates the net outward- 
going flux of v through a closed surface to the space derivatives of v within 
the surface. This theorem will be of particular value to us in our study of 
electrostatics. We begin by taking the infinitesimal volume bounded by 
the range of coordinates x to x + dx, y to y + dy, z to z + dz, and shown 
in Fig. 1-4. 

Let wall 1 be the wall parallel to the x y  plane through the point (x,y,z). 
Let wall 2 be the wall parallel to the x y  plane through the point 

Let wall 3 be the wall parallel to the yz  plane through the point (x,y,z). 
(x + dx, y + dy, z + dz). 

Fig. 1-3 The flux through dA of the vector field v is just v . A dA. If v is the 
velocity of a fluid of uniform density, then v . B dA is just the volume of fluid 
passing through AA in 1 sec. 

B v  
2 

dA 

-Volume passing through AA in 1 sec 
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Wall 2 i 
Wall 4 

&--- - Wall 3 
* I  

( 5 Y J )  

Fig. 1-4 We calculate the outward-going 
flux of the vector field v from the infinites- 

Wall 1 

x imal volume shown here. 

Let wall 4 be the wall parallel to the yz plane through the point 

Let wall 5 be the wall parallel to the xz plane through the point (x,y,z). 
Let wall 6 be the wall parallel to the xz plane through the point 

The area of wall 1 is dx dy. The outward-going normal to wall 1 is 

The area of wall 2 is dx dy. The outward-going normal to wall 2 is 

The area of wall 3 is dy dz. The outward-going normal to wall 3 is 

The area of wall 4 is dy dz. The outward-going normal to wall 4 is 

The area of wall 5 is dx dz. The outward-going normal to wall 5 is 

The area of wall 6 is dxdz. The outward-going normal to wall 6 is 

The outward-going flux through wall 1 is -v(l) - k dx dy. 
The outward-going flux through wall 2 is v(2) . k dx dy. 
The net outward-going flux through walls 1 and 2 is then 

(Net flux), +, = [v(2) - v(1)] . k dx dy 

(x + dx, y + dy, z + dz). 

(x  + dx, y + dy, z + dz). 

- k. 

+ ic. 

- I .  

+i. 
A 

-j. 

+1. 

= - U A 1 ) l  dxdy 

Similarly 

(Net flux),, = ($$ dx dy dz 
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and 

(Net flux), + = r?) dy dx dz 

Noting that the volume of dV is dx dy dz, we have 

( 1-4-2) 

We note now that the term (av,./ax + au,,/dy + av,/az) is just V - V ;  that is, 
it is the scalar product of the “del” operator and the vector function v. 
Just like any scalar product of two vectors it must be invariant under rota- 
tion. This scalar product V . v is generally called the divergence of v. 

As we see from Eq. (1-4-2) the divergence of a vector function of space 
is a measure of the extent to which there are local sources (or sinks) present, 
that is, the extent to which there is a net flux out of (or into) a region. 

We can extend this very simply to a finite volume V enclosed by a 
surface S.  The volume can be broken into infinitesimal bits dV. Let us 
sum together the flux leaving all bits. The flux leaving one volume bit will 
either pass through S or enter another volume bit. Hence we have the 
result 

Sum of all flux leaving all volume bits = flux leaving through S 

In mathematical terms we can write 

(V * V) dV = (v - A) dA 
volume V surfscc S 

bounding V 
s (1 -4-3) 

This result, known as Gauss’ theorem, will turn out to be tremendously 
useful as we proceed with our development of electromagnetic theory. 

Returning to Eq. (1-4-2), let us make use of it to derive a differential 
equation for the flow of a fluid. In this case, v is the velocity of the fluid 
at a given point. Let p be the density of fluid. The flux of mass out of the 
infinitesimal volume dVis just V - pv dV. The amount of mass in the volume 
is just p dV. Conservation of mass then tells us that 

aP 
at 

v * pv + - = 0 ( 1-4-4) 
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This equation will also be encountered later when we discuss charge con- 
servation and will play a rather important role in our relativistic develop- 
ment of electromagnetism. 

1-5 THE CURL OF A VECTOR FUNCTION 
OF SPACE; STOKES' THEOREM 

We have come across the notion of a line integral in the past, when we 
covered work and energy in our elementary mechanics course. At that time 
we learned that the bit of work dW done by a force F on a given point object 
undergoing a displacement dl is just F dl. If we wish to determine the 
work done in going from point A to point B along a given path, then we 
divide our path into infinitesimal bits and add together the contributions 
from each of the bits. That is, 

W = JI F 
dl 

Sometimes the path from A to B would be irrelevant; for any A or B the 
work done would be independent of the path taken between them. In that 
case we called the force conservative and observed that the line integral 
of F - dl around any closed loop would then be zero; that is, $F - dl = 0 
for a conservative force. 

We now broaden our horizons a bit and consider the integral around 
a closed loop of the function v - dl where v(x,y,z) is a vector function of 
space and dl is an element of the loop. We propose to prove a very important 
theorem about this integral, relating it mathematically to a surface integral 
over any surface bounded by our closed loop. To begin with, though, we 
examine a simple rectangular path in the xy plane with sides that are of 
length dx and dy, respectively. We choose the direction of the path as 
shown in Fig. 1-5 and number the legs of the rectangle as indicated. Along 
1% (I) ,  

v * dl = [ ~ ( l )  * t] dx 
= ~ ~ ( 1 )  dx 

v * dl = ~ ~ ( 2 )  dy 

v * dl = - ~ , ( 3 )  d~ 

Along leg (2), 

Along leg (3), 

Along leg (4), 

Adding these together, we have 
v dl = -~,(4) dy 

v * dl = [uX(l) - ~, (3) ]  dx + [~,(2) - ~,(4)] dy 
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Y 

x , ~  + dY ,;~X,Y+& 

d, 5 y  x + d x , y  
@ 

Fig. 1-5 We carry out the 
“line integral” of v .  dl around 
an infinitesimal loop in thc xy 
plane. 

but 

av, 
aY 
av 
ax 

~ ~ ( 3 )  - ~ ~ ( 1 )  = -dy  

~ ~ ( 2 )  - ~ ~ ( 4 )  = Y d x  

Hence 

(1-5- 1) f infinitesimal 
loop 

Now the left side of the equation is an invariant under rotation. (Is it a 
scalar or a pseudoscalar?) Hence we must rewrite the right side so that it 
also is an invariant under rotation. 

@ - 2) = (VX v), 

dxdy  = dA 

Let A be a unit vector normal to dA ..I the direction given by a right-hand 
rule. That is, A points in the direction of the thumb if the fingers are along 
the direction of the path of integration. Then 

v . d l = ( V x v ) - A d A  f infinitesimal 
loop 

(1 -5-2) 
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The right-hand side is now in the form where it clearly exhibits the same 
invariance properties as the left-hand side. Hence we can now rotate our 
coordinate system arbitrarily, and the equation will still be true. It is thus 
true in general regardless of the orientation of the bit of area relative to the 
x, y, z axes. 

We now examine the situation of a finite loop C shown in Fig. 1-6. 
We begin by choosing a direction in which we are to go around the loop. 
We then cover the loop with a surface S and establish a normal to each point 
on S in accordance with the same right-hand rule we used earlier. We now 
break up S into infinitesimal loops as shown. Clearly 

f v . d l = p J  v . d l  
infinitesimal 
loop c, 

= c (V x Vi) * Ai dA, 
i 

The sum at the right is converted to an integral, and we have Stokes’ theorem 

f. .dl  = \ (V x v) * A dA 
surface bounded 
by C 

(1 -5-3) 

We observe then that V x v is a measure of the extent to which v “curls” 
about, giving a nonzero line integral around a loop. If F is a conservative 

Fig. 1-6 
tangular loops C,. 

An arbitrary loop C is broken into a set of infinitesimal rec- 
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force, then we must have 

F - dl = 0 for any closed path f 

e, 6, 
J j .  v x V)dV= 0 

Hence 
V x F = 0 for a conservative force 

It is important to note here that the choice of surface was arbitrary. Let 
S ,  and S, be two surfaces, each bounded by C. Since either surface is 
satisfactory, we can write 

V x v * A d A =  V x v - A d A  

If we let V be the volume enclosed by the two surfaces, we conclude from 
Gauss' theorem that 

Hence we may expect that V V x v = 0 for any vector function v. The 
reader may verify this result explicitly. 

1-6 TENSORS OF THE SECOND RANK 

We now go a bit beyond the notion of a vector to introduce a new type 
of mathematical object, a tensor of the second rank. We have seen that a 
vector is best defined in terms of its transformation properties under a 
rotation. The same type of definition will be given here. However, before 
that, let us play about a bit with a simple example. 

Consider the set of nine numbers that are obtained by multiplying 
the three components of the vector (u1,uz,u3) by three components of the 
vector (wl,w2,w3). We can list these nine numbers conveniently in the form 
of a matrix which we call T. 

u l w l  01w2 u1w3 i u3wl "jW2 03w3 1 T = U,W; U ~ W ,  v2w3 

If we had used a different coordinate system, our two vectors would, of 
course, have had components (u;,u;,u;) and (w;,w;,w;) and we would 
have come up with a listing 

0;w; 0;w; 0;w; 

0;w; 0;w; 0;w; 
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Now, we might ask, 
The answer is trivial 
u’s and w’s into u”s 

how is an element of T related to an element of T? 
since we already know precisely how to transform the 
and w”s [see Eq. (1-2-4)]. 

3 

3 

wj = ajmwm 
m= 1 

Hence we can obtain the element viwi by simple multiplication of the two 
relevant sums. 

3 3  

O i W j  = c (aikajm)(vkwm) (1-6-1) 
k = l  m = l  

Alternatively, we can go the other way by the transformation 

(1 -6-2) 

We have then a clear-cut way in which the nine elements in the matrix 
T can be written in terms of the nine elements in the matrix T and vice 
versa. Each element in one is a s u m  of coefficients times the elements of 
the other. The coefficients themselves only depend upon the rotation matrix 
a between the two coordinate systems. 

We now define a tensor of the second rank as an array of nine objects 
which transforms in the same manner as the elements uiwj under rotation. 
Thus we have, for any tensor T, 

( 1-6-3) 

Incidentally, having learned to multiply matrices [see Eq. (1-2-7)], we can 
rewrite Eq. (1-6-3) in a simple form. 

T = aTa-’ ( 1-6-4) 

where a-’ is the inverse rotation matrix. We remember that 

aij - l  = aji ( 1-6-5) 

To get a better feeling for what a tensor actually is in physical terms, 
let us prove a simple mathematical theorem. We will show that the product 
of a second-rank tensor T and a vector v transforms as a vector. To do this, 
let us first write down the product Tv as it appears in both the primed and 
the unprimed coordinate systems. We will call the components of these 
products wj  and wj, respectively. 

wj = c l& 
i 

(1 -6-6) 
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w’. = c Tji~: (1-6-7) 

What we would like to show, of course, is that the three numbers wj in Eq. 
(1-6-6) transform into the three numbers in Eq. (1-6-7) precisely as would 
the three components of a vector. 

To prove this theorem, let us just make use of the fundamental trans- 
formation properties of T and v. 

qi = c akjali TLl 

ui = c amivk 
kl 

m 

(1 -6-8) 

We substitute these expressions back into Eq. (1-6-6), obtaining thereby 

wj = c a k j a l i a m i T ~ l v ~  
i,k,l ,m 

(1-6-9) 

To evaluate this expression, we sum over i first. We recall Eq. (1-2-3), 
which can be written in simplified notation as 

c aliami = 8I.m (1 -6- 10) 
i 

where Sl,m, called the Kronecker S, is zero when m is unequal to 1 and 1 
when m is equal to 1. Substituting Eq. (1-6-10) back into Eq. (1-6-9), we 
obtain 

We next sum over m and observe that only the terms with m = I remain. 

Finally, summing over I and making use of Eq. (1-6-7), we have 

wj = Ca,jw;, (1-6-1 1) 
k 

This is exactly the transformation property we require of a vector. Hence 
we have proven our theorem. 

We now have some insight into what a tensor really is. It is a linear 
relationship between two vectors of the form given by Eq. (1-6-6). Whenever 
we encounter a situation in physics where two vectors depend linearly on 
one another but point in different directions, the relationship between them 
will be tensorial in nature. For example, the stress and strain in material 
are linearly related when the material behaves elastically, yet they do not 
necessarily point in the same direction. The relationship between them is 
called the stress tensor. 

To add two tensors we just add the individual components. This 
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permits us to make a very simple decomposition of any tensor T into 
symmetric and antisymmetric parts. Let 

where 
T = A + S  (1-6-12) 

i?. - T.. 
A , . =  I’ ’ I  = - Aji (1 -6-13) 

2 

(1-6- 14) 

The tensor A has only three components, and the tensor S has six compo- 
nents. This decomposition would be pointless were it not for the fact that 
A remains antisymmetric and S remains symmetric as we rotate. 

Aij = 

Slj = c aikajlSkl = 

aikaj,Ak, = - c aikaj,Aik = -Aji 

+ c aikajlslk = +Sji  

(1 -6-1 5) 
k l  k l  

(1 -6- 16) 
kl k l  

Let us take a look at the three components of Ai j  in terms of their trans- 
formation properties under rotation. 

A 12 transforms as (ol w 2  - v2 w l )  
A transforms as (u l  w3 - vg w l )  
A , ,  transforms as ( ~ 2 ~ 3  - ~ 3 ~ 2 )  

Thus the triplet (A,,,  -A13,A12) transforms like the vector product of 
two vectors. A vector product is simply an antisymmetric tensor of the 
second rank. 

1-7 DlAGONALlZlNG A SECOND-RANK SYMMETRIC TENSOR 

An interesting and important property of a symmetric tensor S is the fact 
that it can be “diagonalized.” This means that we can rotate to a coordinate 
system given by a triplet of orthogonal unit vectors ?, t, and k’ within 
which S‘ has only three diagonal elements, namely, those Slj for which 
i = j .  All off-diagonal elements are equal to zero in this coordinate system. 
We will show explicitly that this is so by finding the vectors ?, r, and k‘ in 
terms of the initial base vectors i, 3, and k and then rotating to the new 
system. 

Before doing this, though, let us assume the result to be true and write 
out the tensor S;j as we expect it to appear : 

(1-7-1) 
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s,, - I s12 sl 3 

s,, s,, - 1 s,, 
s1 3 s23 s33 - 

We notice immediately that S’? = I,?, S$’ = I$ ,  and S‘k’ = 13k’. This 
gives us a clue as to how to proceed, starting out with the tensor S and its 
six components. We will search for unit vectors which satisfy the equation 

SA = IA (1 -7-2) 

Hopefully we will find three such vectors which will be orthogonal and which 
we can then identify as ?, r, and %. 

Let us write out Eq. (1 -7-2) explicitly : 

= 0 (1-7-5) 

(1-7-3) 

Expanding the above equation, we find three equations for n,, ny, and n,: 

( S , ,  - I)n, + Sl2nY + S13nz = 0 

S12n, + (S2 ,  - I)ny + S23nz = 0 

S13nx + S,3ny + (5’33 - I)n,  = 0 

(1 -7-4) 

SA, = I ,A,  

SA2 = &A, 

SA3 = I3A3 

(1 -7-6) 

We take the scalar product of the first equation with A, and of the second 
equation with A, and then subtract the second equation from the first. 
This leads to 

A,. SA, - A, SA2 = ( I ,  - &)A,  A, (1-7-7) 
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Because of the symmetry of S we see immediately that A, SA, = A, *SA,. 
Hence we conclude that 

(A, - A2)Al A, = 0 (1-7-8) 

Since A, # A,, this equation implies that A, and A, are orthogonal. The 
same proof now demonstrates that A, is also orthogonal to both A, and 
A,. Hence if A,, A,, and A3 are all different, we can identify them with r', r, and k' and arrange the correspondence so as to make up a right-handed 
coordinate system. 

The three constants A,, A,, and A3 are called the eigenvalues of Eq. 
(1-7-2) and the corresponding solutions are the eigenvectors A,, A,, and A,. 
We might ask what happens, for example, if I, = A,. It is easy to demonstrate 
then (see Prob. 1-10) that any vector normal to A, is an eigenvector [solution 
to Eq. (1-7-2)] with eigenvalue A,. Thus we can always choose two orthogonal 
ones which we can call A, and A,, respectively, thereby completing our 
coordinate system. 

We shall come back to the subject of tensors when we find them useful 
in electromagnetism. Suffice it to say at this point that the electric and 
magnetic fields which we have always thought of as vectors will turn out 
to be parts of a four-dimensional tensor of the second rank. 

PROBLEMS 

1-1. Demonstrate the following vector identities. 
(a) A x (B x C) = (A-C)B - (A.B)C 
(b) A - ( B  x C) = (A x B ) * C  

( d ) V . u A = u V . A + A . V u  
(e) V x uA= uV x A + Vu x A 

(g) V x (V x A) = V(V . A) - V2A 

(c) vuv = uvv + vvu 

y ) V . ( A x B ) = B . V  x A - A ' V  x B 

a2A a2A a2A 
whereV'A = - + ~ + - ax2 ay2 a Z 2  

(h) V(A.B) = A x (V x B) + (A .V)B + B x (V x A) + (B.V)A 
( i )  V x (A X B) = (B ' V)A - ( A .  V)B + A(V B) - B(V * A) 

I -2. Show explicitly that 
V . (V x v) = 0 
V x Vf = 0 

Prove that if C is a closed curve, S is the surface bounded by C, and rp is any 
function of space, then 

for any vector function v 
for any function f 

1-3. 
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1-4. 

1-5. 

1-6. 

1-7. 

1-8. 

1-9. 

1-10. 

Show that the magnitude of a - (b x c) is equal to the volume of the parallelo- 
piped determined by a, b, and c. 

Let r be a vector from the origin to the point (x,y,z), and let r’ be a vector from 
the origin to the point (x ’J ’ ,~ ’ ) .  Evaluate the following expressions in terms of 
r and r‘. 

(c) v*- for r + r’ 
)r - r‘) 

r - r‘ 
( d )  v x ~ 

Ir - r’13 
for r # r’ 

Prove the following vector identity for a volume V enclosed by a surface S. 

JvV x v d V =  L A  x v d A  

where v is any vector function of space. (Hint: Examine the components of this 
equation and use Gauss’ theorem.) 

The trace of a second-rank tensor is the sum of all of its diagonal elements. 
That is, 

T r T =  c T~ 

Show that Tr T is invariant under rotation. 

Show that the sum of squares of all the elements of a second-rank tensor is 
invariant under rotation. 

If S and T are two second-rank tensors, show that 1 Sij zj is an invariant under 
rotation. 

In diagonalizing a symmetric tensor S, we find that two of the eigenvalues 
(A, and A*) are equal but the third ( A 3 )  is different. Show that uny vector which 
is normal to A3 is then an eigenvector of S with eigenvalue equal to A,. 

3 

k = l  

iJ 



2 
Principles of Electrostatics 

2-1 INTRODUCTION; COULOMB‘S LAW 

Our study of electromagnetism begins very simply with Coulomb’s law. 
In the chapters ahead as we examine the beautiful structure of Maxwell’s 
equations, we must try to remember that it all began as a law of force govern- 
ing the interaction of two charged particles. It will be amazing to see how 
much ground we can cover on this one tank of fuel. 

As we all know, there is an attribute which exists in matter and which 
we have come to call electric charge. Some objects may have positive charge 
and some negative. Once a standard charge sign has been chosen, all other 
charges can be classified in sign by whether they are attracted to or repelled 
by the standard charge. Having done this, we observe that all pairs of 
charges with like sign repel one another and all pairs with unlike sign 
attract one another. This pseudosexual rule can be codified quantitatively 
m 
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by observing that the force of one charge on another is proportional in 
magnitude to the product of the charges and inversely proportional to the 
square of their separation. We then write down Coulomb’s law. 

F,, = force by charge 1 on charge 2 

(2-1 - 1) 

Of course we must set up a system of units, and we do so in the most natural 
way possible. We let distance be measured in centimeters and force in 
dynes. Equation (2-1-1) then serves to define the unit of charge, which we 
call the esu (electrostatic unit). Thus two equal charges, each of one electro- 
static unit, will pull (or push) on each other with a force of one dyne if 
they are set one centimeter apart. 

If we have a number of charges around, then the force on each by all 
the others can be obtained by simply adding the individual forces vectorially. 
If q,, q,, . . . , q, are a set of charges at positions r,, r,, . . . , r,, respectively, 
then the force on qi is 

(2-1-2) 

We now introduce the notion of electric field. Having set our charges 
q,, qz, . . . , q, into their positions r,, . . . , r,, we can place a very small 
charge at position r = (x,y,z). We then measure the force per unit charge on 
q in the limit as q approaches zero. (The limiting procedure is carried out 
to avoid disturbing the other charges.) The result is the electric field E at 
( X , Y  , 4. 

force on q at (x,y,z) 
E(x,y,z) = lim (2-1-3) 

q-0 4 

We have considered Coulomb’s law and defined E for a system of 
point charges. There are no point charges in nature; we shall have to deal 
with charge distributions over finite volumes. Hence we introduce the 
notion of charge density. We define the function p(x,y,z) to be the charge 
per unit volume at any point (x,y,z). Changing the sum in Eq. (2-1-2) to an 
integral and making use of our definition of electric field, we have then 

(2-1-4) 

To develop a feeling for what we are doing in our integral, it is convenient 
to refer to Fig. 2-1. We consider a charged object located in space and a 
point given by the vector r at which we wish to evaluate the electric field. 
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/ Fig. 2-1 We obtain the field at 
r by summing the contributions 
of cach element dV'. 

We break our volume up into little pieces dV' and let the vector r' go from 
the origin to dV'. The charge of dV' is just p(r')dV. The field at r due to 
this bit of charge is just 

Equation (2-1-4) is obtained by adding all the contributions together. 
As we perform the integration, r is, of course, kept fixed. 

2-2 THE DIVERGENCE OF E; GAUSS' LAW 

The inverse square law governing the rate at which electric field drops off 
as a function of distance from its source has an immediate and important 
consequence. In a charge-free region the divergence of E is zero, and hence 
within such a region the flux of E into (or out of) any enclosed volume is 
zero. As we shall see, the flux of E out of any enclosed volume is just pro- 
portional to the total charge contained within the volume. This result, 
which is called Gauss' law, provides an exceedingly powerful tool for the 
calculation of electric field in a case of high symmetry. We shall make 
considerable use of it. 

We wish then to evaluate V . E explicitly. Nothing could be simpler. 
Using Eq. (2-1-4), we obtain 

We can next interchange the order of differentiation and integration. To 
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convince himself that this is a legitimate procedure, the student should 
carry out the same procedure with differences and sums. The difference 
between two sums of a set of terms is equal to the sum of the differences. 
We have then 

(2-2-1) 

Since p is not a function of the variables x, y, z with respect to which 
we are differentiating, we can rewrite this as 

(2-2-2) 

But 

V . (r - r’) 
r - r‘ 1 1 

Ir - r’I3 
V .  

Ir - r‘I3 

Evaluating the various terms in the above expression, we have 

3(r - r‘) 
Ir - r‘I5 

= -  
1 

Ir - r‘I3 
V 

V . ( r  - r’) = V . r  = 3 

and hence 

= o  - 3  3 + - r - r‘ V .  - 
Ir - r’I3 Ir - r’I3 Ir - r’I3 

We thus conclude that V . E is zero in any charge-free region, as long as r’ 
can never equal r. We need only consider then the integral over an infini- 
tesimal sphere about the point r = r’: 

d V  r - r‘ 
Ir - r‘j3 

V . E(r) = 

We can remove p(r’) from the integral since it does not vary much over the 
immediate neighborhood of r. We evaluate it at r. 

dV 
r - r’ 

V E(r) = p(r) 

about r 

Now differentiating (r - r’)/lr - rq3 with respect to x, y ,  or z is equivalent 
to differentiating with respect to -x’, -y’, and -z‘. That is to say, 
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where 

This gives us the result 

d V  
r - r‘ 

V . E(r) = -p(r) 

about r 

f r - r‘ a 
d V  J sphere ’’* I r  - r’i3 

V . E(r) = -p(r) 

about r 

By Gauss’ theorem [Eq. (1-4-3)] we convert this to a surface integral. 

. .  JIydoCy m V . E(r) = +p(r) dA ’ 
r - r’ 
(r - r’l 

f r - r‘ _ .  
of sphere 
about r 

The integral on the right is just equal to 4a. Thus we have 

V * E(r) = 4np(r) (2-2-3) 

This result is one of the four basic equations of Maxwell and lies at 
the foundation of electrostatics. It says, in effect, that electric field can 
only have a net flux into or out of a region if there is charge within the 
region. We use this to derive Gauss’ law by integrating over a volume V. 

V . E(r) dV = 471 Jv p(r) dV (2-2-4) 

The left side of Eq. (2-2-4) can be transformed into a surface integral 
by means of Gauss’ theorem. 

The right side of Eq. (2-2-4) is just 471 times the total charge Q within the 
volume. We have then Is E - A dA = 4aQ (2-2-5) 

In other words, the total flux of electric field out of any given volume 
is just equal to 41c times the charge within the volume. 

Gauss’ law greatly facilitates the determination of electric field in 
situations characterized by high symmetry. We illustrate its application by 
calculating the field everywhere due to a spherically symmetrical, uniform 



2-3 A FEW WORDS ABOUT MATERIALS; CONDUCTORS 33 

charge distribution of radius R and total charge Q. For convenience we 
set the origin of our coordinate system at the center of the sphere, as shown 
in Fig. 2-2, and let r be the distance from the origin to the point at which 
we wish to determine the field. Obviously, by symmetry, the field must be 
radial in direction with magnitude only dependent upon r. We set an 
imaginary spherical surface at radius r and observe that the total flux of 
E out of the volume enclosed by this surface is just 47cr2E(r). If r < R 
then the charge within the surface is just Qr3/R3.  We have then 

Qr 

Q 
r2  

E(r -= R )  = - 
R3 

E(r 2 R) = - 
(2-2-6) 

2-3 A FEW WORDS ABOUT MATERIALS; CONDUCTORS 

At this point we must say a few words about the electrical nature of materials. 
Later, in Chap. 10, we will try to give a more detailed and extensive picture 
of what actually goes on at the microscopic level. For now we will be rather 
brief and somewhat incomplete. 

As we all know, matter is constituted of positively charged heavy 
nuclei surrounded by negatively charged light electrons. The scale of 
physical dimensions of macroscopic bodies is determined by the natural 
radius of an electron cloud about the nucleus, about lo-* cm. Hence 
about electrons are typically packed into a cubic centimeter of solid 
material and provide the bonds which keep it together. The outermost 

Y 

Fig. 2-2 We use Gauss’ law to 
determine the electric field every- 
where due to a uniform spheri- 
cal charge distribution of radius 

f 
Z R. 
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electrons in each atom are relatively easy to move about and can act as 
charge carriers in conductors. 

Now, to get some physical feeling for the strength of electrostatics, 
we should point out that if every electron were removed from each of two 
1-gram pith balls and they were placed 1 cm apart, the force of repulsion 
between them would be about lo2’ dynes or about lozo tons! A more 
relevant illustration (suggested to the author by Prof. D. A. Bromley) is 
the fact that if all the electrons were removed from one-tenth of a cubic 
millimeter of the material on the nose cone of an Apollo rocket in some 
unspecified manner and brought down to the pad, the attraction between 
these electrons and the remaining positive charges on the nose cone would 
be sufficient to anchor the rocket firmly in place despite full thrust from the 
first stage. Remarkable indeed! We see thus that the fraction of available 
electrons which are involved when we charge or discharge an object is 
infinitesimal. 

Some materials have the property that all their electron clouds are 
quite strongly bound to the individual positive nuclei. In this case the applica- 
tion of a reasonable local electric field within the material serves only to 
stretch the bonds between electrons and individual nuclei and not to break 
them. As we shall learn shortly, the material is then polarized but no real 
current flows. Such materials are called dielectrics. 

Within some materials, called conductors, the application of an electric 
field causes the outermost electrons about each nucleus to move relatively 
freely from atom to atom and to continue moving as long as any field 
remains within the conductor. If our conductor is isolated, then the moving 
charge will pile up somewhere until it just neutralizes the applied field 
within the conductor. At that point no further charge will flow. (There is 
a tacit assumption here that the momentum picked up by the electrons 
as they accelerate can be ignored. This assumption is valid because each 
electron can only accelerate for a very short time before colliding with an 
atom.) 

The fact that the electric field within a conductor is zero in static 
equilibrium permits us to deduce that the charge density is zero within the 
conductor [see Eq. (2-2-3)]. Hence whatever charge has piled up must be 
on the surface of the conductor. 

Let us apply some of what we have just learned to the solution of a 
simple problem. We have two concentric conducting spheres, as shown 
in Fig. 2-3. The inner sphere has inner radius a and outer radius b. The 
outer sphere has inner radius c and outer radius d. We place a charge Ql 
on the inner sphere and a charge Q2 on the outer sphere. We would like to 
know how the charge is distributed and what the value of electric field is 
at every point in space. We let a,, a,,, a,, and a, be the unknown surface 
charge densities per unit area on the surfaces with radii a, b, c, and d, 
respectively. 
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a b c  d 

Fig. 2-3 Two concentric conducting spheres 
have charges Q, and Q2 placed on them. We 
wish to evaluate the surface charge densities and 
electric fields. 

Again symmetry tells us that the electric field must be in a radial 
direction and its magnitude can only depend on the radius from the center, 
r. The imaginary gaussian surfaces through which we evaluate the flux of 
E are, of course, spheres at various radii. We see immediately that E = 0 
for 0 5 r S a since there is no charge within the inner sphere. For a 5 r 5 b, 
we are within the conducting material, and so E = 0. Hence there can be 
no charge density on the inner surface of the inner conductor (a,, = 0). 
All of Q, must appear on surface b, and we conclude that 

Qi ab = - 4nb2 

Between the two spheres we have 

4nQ1 QI E(b 5 r 5 c) = 7 = - 
47tr r 2  

Inasmuch as there is no field within the second conductor (c 5 r 5 d) 
the total charge on the inner surface of the outer conductor must be - Q,. 
Hence 

-Qi  
0, = - 

4nc2 

Finally the remaining charge on the outer conductor appears on its outer 
surface, leading to the result that 

Q2 + Qi 

4nd2 0 d  = 

The field outside the second conductor is thus 

QI + Q 2  

r2  E(r 2 d )  = 
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2-4 THE CONSERVATIVE NATURE OF ELECTROSTATICS; POTENTIAL 

We will now demonstrate that the electrostatic force is conservative. That 
is to say, the work done by it as we take a charged object from one point to 
another is independent of the path taken between the two points. (Another 
example of a conservative force is gravitation.) Alternatively, the work done 
by this force as we go around a closed loop is zero. The proof is very simple 
and rests upon an application of Stokes’ theorem, viz., 

f E . d l =  [V x E-Ad4 

Thus we need only show that V x E = 0. Using Eq. (2-1-4), we have 

dV‘ 
r - r‘ 

Ir - r’l3 
space 

(2-4-1) 

But 

V x (r - r’) 
x (r - r’) + r - r‘ 1 

v x  = v  
Ir - r’I3 Ir - r’I3 Ir - r‘I3 

Now V x (r - r’) = V x r = 0. Also, V(l/ lr  - rq3) is the same direction 
as r - r‘, and hence 

x (r - r‘) = 0 
1 

Ir - r‘I3 
V 

We conclude that V x E = 0, at least as long as r is not equal to r’ at any 
point in our integral. To cope with the contribution from the neighborhood 
where r = r’, we again convert our volume integral into a surface integral. 

dV 
r - r‘ 1 p(r‘) v x Ir - r‘13 

V x E =  
small 
sphere 
&out r 

We can take p(r’) out of the integral and evaluate it at r, leaving us with the 
equation 

dV 
r - r‘ s sphere v x  I r  - r ’ i 3  V x E = p(r) 

about r 

dV 
r - r‘ s sphere v x  I r  - r ’ i 3  V x E = p(r) 

about r 

Now, for any vector function v, we have the general identity 

io,V x v d V  = 1 A x v d A  
surface 

(2-4-2) 

(This identity is easily proven by examining its components and using 
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Gauss’ theorem.) Changing V to -V‘  and using (2-4-2), we convert our 
expression for V x E to a surface integral. 

dA’ 
r - r‘ 

Ir - rfl3 
V x E = -p(r) j A’x  

surfacc 
of sphere 

(2-4-3) 

about I 

The right side of (2-4-3) is zero since the normal A’ is just parallel to r - r‘. 
Hence, for the case of electrostatics, 

V X E = O  (2-4-4) 

We conclude that E is conservative. The integral E . dl between two 
points is independent of path. 

We can now choose an arbitrary reference point and evaluate J E . dl 
from any point r to this reference point. It is conventional to take the refer- 
ence point at infinity in the case of electrostatics. We define the function 
cp(r), called the potential function, by the equation 

(2-4-5) Lo m . dl  
cp(d = 

If we evaluate the potential function cp at two points A and B, then the 
work done by E per unit charge moved from A to B (if all other charges 
are kept fixed) is just cp(A) - cp(B). Letting point A be given by r and 
point B by r + Ar, we have 

cp(A) - cp(B) = cp(r) - cp(r + Ar) = E . Ar 

But 

cp(r + Ar) - cp(r) = Vcp . Ar 

Since Ar is arbitrary, we conclude that 

V q  = -E (2-4-6) 

To summarize, the conservative nature of electrostatics permits us to 
set up a potential function cp(r) defined for every point in space such that 
the gradient of cp is equal to the negative of the electric field. The power of 
this observation will become apparent when we discover that it is often 
easier to determine cp than it is to determine E directly. 

Let us evaluate the potential function at a distance r from a point 
charge q. 

r 
(2-4-7) 

If we have a distribution of charge p(r’), we sum the contributions to the 
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potential and obtain 

(2-4-8) 

In the case of a conductor the absence of any internal electric field 
ensures that it is an equipotential. We might return then to the problem of 
the two concentric spheres with charges Ql and Q,, respectively (see Fig. 
2-3), and evaluate the potentials on these spheres. The potential on the inner 
sphere is obtained by integrating from radius b outward. 

rc P m  

p(b) = J E(v)dr + J E(r) dr 
b d 

The potential on the outer sphere is just q(d) = (Q1 + Qz)/d.  
We now make a very simple application of what we have just learned 

to demonstrate that the electric field at the surface of a conductor is per- 
pendicular to the surface. Figure 2-4 shows a portion of that surface and 
the path for which we wish to evaluate $E - dl. The legs of the path which 
cross the surface are assumed to be of infinitesimal and negligible length. 

Path of integration for 
evaluating )E dl 

Fig. 2-4 We evaluate f E i dl for the path shown at 
the surface of a conductor. In order that the integral 
be equal to zero we must have no tangential electric 
field just outside the conducting surface. 
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Since there is no field inside the conductor, we conclude that the contribu- 
tion to the leg outside the conductor must be zero. Hence there is no tangen- 
tial component of electric field at the conducting surface. 

We can use Gauss’ law to obtain the magnitude of E at the surface 
of a conductor with surface charge density = 6. We enclose the surface, 
as shown in Fig. 2-5a, within a flat thin box of negligible thickness and area 
AA and evaluate the flux out of the box. 

Flux = (E)(AA) = 4naAA 

Hence the field at the surface of a conductor is 

E = 4n0 

E =  2xa 

A+ 
(2-4-9) 

Fig. 2-5 (a) We evaluate the field at a con- 
ducting surface in terms of u, the charge density 
per unit area. (b)  A little section of the surface 
charge considered all by itself would give rise 
to a field of 2xu on either side of it. 
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If we now have a good look at our little area AA, we see that the 
surface charge on it (a), if considered all by itself, would give rise to a field 
of 2x0 pointing in on one side of it and 2x0 pointing out on the other side 
(see Fig. 2-56). That means that all the rest of the conductor must give rise 
to a field 2na pointing out, just at the surface. On the inside of the surface 
this field from the rest of the conductor cancels the ingoing 2na from the 
little segment AA. On the outside of the surface the field from the rest of the 
conductor augments the field from the segment AA to give us the result of 

Knowing how much of the field is contributed by the local surface 
charge a and how much is contributed by the rest of the conductor permits 
us to calculate the force on the little bit of surface area AA. We just multiply 
the local charge (aAA) by the field due to the remaining charges (2na) 
and find 

Eq. (2-4-9). 

F = 2xa2AA (2-4-10) 

In other words, the surface of a conductor feels an outwa.rd-going pressure 
given by 

P = 2na2 (2-4-1 1) 

Let us apply what we have just learned to a very simple problem. 
We will calculate the force between two charged conducting plates, each 
of area A and separated by a distance d (see Fig. 2-6). We will assume the 

Fig. 2-6 Two conducting plates of area A are separated 
by a distance d as shown. A charge Q, is placed on one 
and a charge Q2 on the other. We would like to find 

1 the total force that one plats exerts on the other. 
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lateral dimensions of each plate to be large compared with d and the thick- 
ness to be small compared with d. We will also assume a charge Q ,  on the 
first plate and a charge Q 2  on the second plate. 

Referring to Fig. 2-6, we have taken the charge densities on the four 
relevant surfaces to be ala, b i b ,  a2,, and a 2 6 ,  respectively. Of course, their 
values are subject to the constraint that 

(2-4- 12) 

We can next calculate the fields in each conductor in terms of ala, bib,  

a2,, b 2 b  and then set these fields equal to zero. Each sheet of charge makes 
its contribution of 2na with a sign which depends on whether it is to the 
left or right of the region of interest: 

Einconductor 1 = 2na,, - 27w1b - 2n02, - 2 x 0 , ~  = 0 

E in conductor 2 = 2na1, + 2n01b + 2na2, - 2na2, = 0 
(2-4- 13) 

We can solve the four equations above for the four unknowns, and we 
obtain 

(2-4- 14) 

To evaluate the force on each plate we make use of Eq. (2-4-11). 
We will take as positive a force to the right and as negative a force to the 
left. 

F1 = force on plate 1 = -2nulO2A + 2nalh2A 

F, = force on plate 2 = - 2 n 0 , , ~ A  + 2naZb2A 

-- 2nQiQZ - 
A 

(2-4- 15) 

(2-4- 1 6 )  

Just as we expected, we find the forces to be equal and opposite. The mag- 
nitude of the force, to the approximation used here, does not depend on d. 
Obviously, when d becomes large and of the same order as the transverse 
dimensions of the plates, this approximation will no longer hold. 
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Incidentally, the electric field between the plates is given by 4 x 0 , ~  or 
-471CJ2,. 

(2-4- 17) - 24Qi  - Q 2 )  

A Ebetwrrn platus - 

We will return to this rather simple example again as we develop more 
sophisticated techniques for evaluating the forces on collections of charges. 
In the meantime, we go on to a detailed study of techniques for determining 
the potential function cp. 

2-5 
FUNCTIONS; BOUNDARY CONDITIONS AND UNIQUENESS 

As we have already pointed out, finding the potential p(r) is a convenient 
way of determining the field. The fundamental differential equation obeyed 
by the function cp can be obtained from Eq. (2-2-3) by substituting -Vcp 
for E. 

SOME IMPORTANT THEOREMS ABOUT POTENTIAL 

(2-5-1) 

(The operator V2 = a2/ax2 + a2/ay2 + a2/az2 is called the Laplacian.) 
We will now demonstrate a remarkable set of theorems which relate to the 
uniqueness of our solutions for cp subject to Eq. (2-5-1) and appropriate 
boundary conditions. 

As the first step along the way, we prove a simple lemma called the 
mean value theorem. The theorem states that in a charge-free region the 
average value of potential on the surface of any hypothetical sphere is equal 
to the value of the potential at the center of the sphere. 

Let our spherical surface have radius a. Let @be the average potential 
on the surface. Then we have 

(2-5-2) 

where dsz is the element of solid angle subtended by dA. Differentiating 
@ with respect to a, we obtain 

Substituting back again for uQ, we rewrite Eq. (2-5-3) as 

dG 1 f 

(2-5-3) 

Since V2cp = 0 in a charge-free region, we have d@/da = 0, and hence @ 
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does not depend on the radius of the sphere. Thus we have proven our 
theorem. 

(2-5-5) 

There is an obvious byproduct of this theorem, called Earnshaw's theorem, 
which states that cp cannot have a local maximum or minimum in a charge- 
free region. The proof of this theorem requires only that we take a small 
sphere about our presumed maximum or minimum. The potential on the 
surface of the sphere will presumably always be less than (or more than) 
its value at the center, violating the mean value theorem. 

We shall note here that the two theorems we have just proved relate 
to any function f(x,y,z) which satisfies the equation V2f = 0. We will make 
use of this fact in our further work. 

We next examine a situation in which we have a set of N conductors 
held at potentials cpl, cp2, . . . , c p N .  In addition we have a charge density 
p(r) specified for all points outside the conductors. We will show that 
there is one and only one solution to the differential equation (2-5-1) which 
goes to zero at infinity and which is equal to the appropriate potential on 
each of the N conductors. 

One solution to the problem is, of course, given by Eq. (2-4-8), where 
we take care to integrate over the surface charge distributions on all the 
conductors. That this is the only solution is not so obvious. 

Let cpa(r) and cpb(r) be two solutions which satisfy the boundary 
conditions and the differential equation (2-5-1). Then, letting f = cpa - (Pb, 

we have 

v2f = v2pa - v 2 q b  = -4xp + 4xp = 0 

Therefore f has no minima or maxima anywhere. Since f is zero on the 
surface of every conductor and also at 00, it must be zero everywhere. 
Thus cp,, = (Pb and our theorem is proved. 

Instead of fixing the potentials at each conductor, we might set each 
total charge to a definite value. Thus the N conductors would have charges 
Q , ,  Q 2 , .  . . , QN, respectively. In addition the charge density outside the 
conductors is again taken as p(r). We will demonstrate that the solution 
for cp which satisfies Eq. (2-5-1) and leads to the appropriate values of Qi 
is unique. This is a very powerful result since it implies that the charge Qi 
will arrange itself in a unique way on the ith conductor. Again the proof 
is carried forth by first assuming that cpo and (Pb are both solutions to our 
problem and then examining f = cp,, - (Pb. 

We remember that the field at the surface of a conductor is just equal 
to 4nd .  Hence we have 

L . L  

(2-5-6) 
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If both cp,, and cpb satisfy Eq. (2-5-6), then f satisfies the equation 

l i V f . f i d A i  = 0 (2-5-7) 

Just as before, V2f = 0 outside the conductor and f = 0 at 00. Again 
Earnshaw’s theorem requires that f have no maximum or minimum outside 
the conductor. 

Suppose for a moment that f is not zero on every conductor. Then there 
is one conductor for whichfis either the most negative or the most positive. 
Since no minimum or maximum can exist outside the conductors, this 
particular conductor must be an absolute extremum. Hence V f - h  must 
have the same positive or negative sign at all points on the surface and 
Eq. (2-5-7) would be contradicted. We conclude that f must be zero on all 
the conductors. Again this leads us to the result that f = 0 everywhere. 

Now, of what use are these uniqueness theorems anyway? The answer 
i s  very simple. There are many general techniques for solving Eq. (2-5-1) 
subject to specific and complete boundary conditions. Once a solution 
has been found which satisfies the complete set of boundary conditions, 
our job is done. We need to look no further; we have the only possible 
solution to the physical problem at hand. Furthermore, if by a bit of clever- 
ness we can see the answer quickly, all the more power to us. 

To see the possibilities inherent in this approach let us solve a problem 
which would seem well nigh impossible if handled in a routine way. We 
place a large sheet of conductor on the yz plane and ground it (cp = 0 for 
the conductor). We then bring a charge q to the point x = a, along the x 
axis (see Fig. 2-7). We would like to find the field at all points with x 2 0, 
and we would like to know how much force is exerted on the charge. 

Fig. 2-7 
a from a grounded plane. 

A charge q is placed at a distance 
x = o  
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What exactly are the requirements that must be met by cp in the region 
x 2 O? First, V2cp must be zero everywhere except at the charge itself. 
Second, cp = 0 at x = 0 and at x = co. 

Suppose we were to examine an entirely different problem, where the 
conducting sheet was removed and replaced by a charge - q  on the x axis 
at the point x = -a .  This problem would be simple to solve. But the most 
obvious fact about the new problem is that the potential cp is zero at x = 0 
and corresponds to the same charge distribution for x > 0 as we had 
previously. Hence it is exactly the potential we seek. The field in the region 
x 2 0 is then also the same for the two problems. Finally we conclude 
that the force on a charge q at a distance a from a grounded plane is just 
q2/4a2 toward the plane. This technique for finding cp is called the method 
of images. 

We will very shortly come back to potential theory and develop some 
techniques for determining potentials. In the meantime, though, we go 
back to charge distributions and the nature of matter to investigate the 
notion of electric dipole moment and polarization. 

2-6 ELECTRIC DIPOLE MOMENT; POLARIZATION; DISPLACEMENT FIELD 

Most matter is electrically neutral but with the property that an applied 
electric field can cause some polarization. This can happen in one of two 
ways. If the atoms are basically symmetrical, then they can be unbalanced 
or polarized to the extent that the applied electric field can compete with the 
atomic fields. Alternatively, the molecules themselves may be constructed 
in such a way that they are not electrically symmetrical. In that case, if the 
molecules are free to rotate, as in a liquid, they can be “lined up” by the 
applied field. The extent of alignment will then depend upon the temperature 
because the molecules are continually being depolarized by collisions. 
Figure 2-8 illustrates these two types of behavior. 

In any case, we deal with the field-distribution characteristic of the 
electric dipole. Let us begin by examining the field due to two equal and 
opposite point charges set a small distance I apart. We draw a vector 1 
from the negative to the positive charge, as shown in Fig. 2-9, and let r 
be the vector from the negative charge to the point P at which we wish to 
evaluate the field. We let r’ be the vector from + q  to P. We will assume 
throughout that 111 << r and hence that terms of the order of I2/rZ can be 
ignored. Clearly, we can now write 

cp(r) = q - - - (:. :) (2-6-1) 

Now 
r ’ = r - I  (2-6-2) 
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Symmetrical Asymmetrical 
atoms dipoles 

-Q+ 
No field 

Applied field I a- 
E 

Fig. 2-8 The application of an electric field will polarize matter by either polarizing the 
molecular charge distributions or aligning the permanent molecular dipoles. 

and hence 

r' = Jr2 + P - 2r - I 

Ignoring terms of order p/r2 ,  we rewrite Eq. (2-6-3) as 

Substituting back into Eq. (2-6-1) and remembering that 

we find 

(2-6-3) 

(2-6-4) 

(2-6-5) 

We now define a new vector p which we call the dipole moment of this system. 

Q = fd (2-6-6) 
We finally have then 

1 
r cp(r) = - p - V -  (2-6-7) 
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Fig. 2-9 We wish to evaluate 
the field due to two closely spaced, 
equal, and opposite charges. 

The important thing to note here is that the potential drops off as 
l/r2, and hence the field drops off as l/r3. It is interesting to examine the 
field distributions qualitatively. We note first that cp = 0 for all points in 
the equatorial plane about p (such that p . r = 0). Above this plane, in 
the direction of p, cp is positive. Below this plane cp is negative. Hence, in 
the equatorial plane the gradient of cp must be in the direction of p and 
the direction of E must be opposite to p. Just along the line containing p 
we find the field in the same direction as p. A picture of this field distribution 
is shown in Fig. 2-10. 

We next examine the more realistic problem of a spatially confined 
charge distribution given by p(r') such that the net charge of the distribu- 
tion is zero. An example of this is, of course, the atomic system. We are 

Fig. 2-10 The field distribution due to an electric dipole p. 
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again interested in the field at a distance from the charge distribution which 
is large compared with its size. We shall show that to first approximation 
this field looks like a dipole field. 

The charge distribution is shown in Fig. 2-11. The potential cp(r) at 
position r is given by Eq. (2-4-8): 

To first approximation, noting Eq. (2-6-4), we have 

r‘ . r 1 
Ir - r’l r 

(2-6-8) 

(2-6-9) 

Substituting back in Eq. (2-6-8), we have 

cp(r> = - p(r’) dV‘ + 1 p(r’)r’ dV‘ (2-6-10) 

Remembering that the net charge is zero, we remove the first term on the 
right of Eq. (2-6-10), leaving us with the old result for a simple dipole: 

charge charye ‘s distribution distribution 

1 
q(r) = - p . V -  

r 
where 

P = J  p(r’)r’ dV‘ 
chargu 
distribution 

(2-6-1 1) 

We see that any “neutral” charge distribution can be represented, to first 
approximation, by a dipole whose dipole moment is given by Eq. (2-6-1 1). 
That this integral reduces to Eq. (2-6-6) in the case of two equal and opposite 
point charges is obvious. 

Fig. 2-11 We integrate over a 
charge distribution with no net 
charge to find the dipole field at 
large distances. 
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Now, if we look into a bit of matter, we see immense numbers of these 
little dipoles, and it becomes necessary to talk about dipole moment per 
unit volume. We define the vector field P(r)  such that for a little bit of volume 
d V  at position r the dipole moment dp will be given by 

dp = P d Y  (2-6-12) 

We now wish to find the potential q ( r )  which results from a distribu- 
tion offree charge pF(r) and dipole moment per unit volume P(r). By free 
charge we mean the charge which is not paired off as part of a dipole. Using 
Eqs. (2-4-8) and (2-6-7), we write 

T ,-, 
space space 

(2-6-1 3) 

Remembering again that 

1 1 v - =  - V ' -  
Ir - r'I Ir - r'l 

we have 

- 6. " 'P(r') dV' (2-6-14) Ir - r'l 
spnce 

The second term on the right-hand side of Eq. (2-6-14) can be transformed 
into a surface integral at infinity. Since P = 0 at infinity, we can write 

spnce at m 

Hence we write 

(2-6- 15) 

(2-6- 16) 

where 

p p =  - V . P  (2-6-17) 

We conclude that the entire effect of polarization can be taken into account 
by introducing a polarization charge equal to - V  . P and calculating as 
though this were a real charge. 
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We can now go back to our basic differential equation for E, Eq. (2-2-3), 
and separate p into its two parts. 

V * E = 4ap 

= 4a(PF + P P )  

= 48@F - v ’ P) (2-6-18) 

Rearranging terms, we have 

V . (E + 4aP) = 4ap, (2-6-19) 

We define a new vector field D everywhere in space by the equation 

D = E + 4aP (2-6-20) 

Substituting back into Eq. (2-6- 19), we obtain the appropriate Maxwell 
equation in the presence of matter. 

V . D = 4zpF (2-6-2 1) 

We conclude then that the free charge density pF can be regarded as a local 
source of D in the same way as the total charge density p can be regarded 
as a source of E. That is where the similarity ends, however. Specifying the 
total charge density everywhere determines E completely by means of 
Eq. (2-1-4). Specifying pF does not determine D completely. For example, 
a block of permanently polarized material with no free charge can certainly 
give rise to an electric field near it. Hence we would have a D field in the 
complete absence of any pF. The magnitude of D would depend on the 
magnitude and distribution of P. 

Returning to Eq. (2-6-20), we note that there is often a linear relation- 
ship between the electric field at a given point and the polarization at that 
point. We can then write 

P = xE (2-6-22) 

where x, called the electric susceptibility, is in general a second-rank tensor. 
In the simple-minded case where x is just a number, it is usual to write 

D = EE (2-6-23) 

where 6, called the dielectric constant, is given by 

& = 1 + 4ax (2-6-24) 

We can establish some very simple rules governing the behavior of 
the E and D fields at the boundary between two regions of differing di- 
electric constant. We assume that no free charge is present at the boundary. 
Figure 2-12 shows a portion of such a boundary between regions I and 11, 
respectively. 
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I 

\ 
\ 

\ 

\ interface between two dielectrics. 
Fig. 2-12 We determine the behavior of E and D at the 

I 

I 

We first place a flat thin volume across the boundary and apply 
Gauss’ theorem. Since there is no free charge within the volume, the flux 
of D out of the volume is zero. The normal components of D on either side 
of the boundary are thus equal. 

DI A = D,, * A (2-6-25) 

We then take a path of integration shown and evaluate the line integral 
J E . dl around the path. Since it must be equal to zero, we conclude that 
the tangential components of E must be the same on either side of the 
boundary. 

Efnng = E . 8  (2-6-26) 

These rules will make it possible to calculate the direction and magnitudes 
of E,, and DII from the direction and magnitudes of El and D, if we are given 
the two dielectric constants. 

2-7 THE ENERGY OF A CHARGE DISTRIBUTION 

We will now determine the energy of an electrostatic charge distribution. 
In doing so, we will at first ignore the energy corresponding to the forma- 
tion of the dielectrics themselves but evaluate only the energy which is 
added to the system through the introduction of the free charge. The energy 
of the system will be considered to be zero when all free charge has been 
removed to infinity and only the dielectrics and conductors are left in 
position. All polarizations will be assumed proportional to the applied 
fields. 
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Let us take p F  and cp to be theJinal distributions of free charge and 
potential, respectively, after our system has been completely set up. If 
we had somehow decided to place a factor of a as much charge everywhere, 
then our potential would be changed by the same factor a. That is to say, 
if the charge distribution p F  leads to the potential distribution cp, then the 
charge distribution ap, would lead to the potential distribution acp. (We 
must repeat that this depends upon the assumed linearity of the dielectrics.) 

Now let us bring in the charge from infinity, a little bit at a time. 
That is, let a go from 0 to 1, in infinitesimal steps. As we go from a to a + da, 
we have 

dU = increase in energy 

= il, t a ( P ) ( P F  da) dV 
spnce 

(2-7-1) 

since acp is the potential to which the additional bit of charge p,dadV 
is brought. The final energy is then 

= Iol a da ill ' P P F  dV 
space 

(2-7-2) 

If we have conductors present, then cp is a constant within their boundaries 
and we have 

1 
P F ( P  dV + -2- C QiVi 

cond 
cond 

(2-7-3) 

where Qi is the charge of the ith conductor. 

that V . D = 4ap,. Hence, going back to Eq. (2-7-2), we can write 
We can rewrite U in a somewhat different form. Let us remember 

space spnce 

space 

spnce 

(2-7-4) 
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where S ,  is a surface at infinity. But D goes down as l/r2 and rp goes down 
as l/r. Hence 6. cpD-AdA -+ 0 a s r  -+ co 

We are then left with 

(2-7-5) 
spnca 

At this point we might ask what the expression for energy would 
look like if we really knew what was going on in the material and chose to 
include the energy of formation of the dielectric into our tally. We would 
then have no need to introduce D at all but would use only the total charge 
density p and the electric field E. The energy of the system would then be 
written simply as 

or 

(2-7-6) 

(2-7-7) 

In general, Eq. (2-7-6) will give a smaller value for the energy than Eq. 
(2-7-5) because D is usually larger than E. This is because the dielectric 
itself has a net negative energy corresponding to the binding of negative 
and positive charges. 

We now apply these results to a very simple example. We will calculate 
the energy stored in a parallel-plate capacitor, with no dielectric present, 
and then make use of this to determine the force between the plates (see 
Fig. 2-13). We assume a charge of + Q on one plate and - Q on the other. 

Fig. 2-13 We calculate the energy stored 
in a parallel-plate capacitor. We again find 
the force between capacitor plates but this 

I -Q time by considering the change in energy as c > we reduce I while keeping Q constant. 
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The area of the plates is A and their separation is 1. By our first method 
we have 

U = y z Q i ( ~ i = - Q A v  1 1 
2 

where Acp is the potential difference between the plates. 

4xQl 
A 

A q  = El = 4x01 = - 

Hence 

(2-7-8) 
2nQ21 u=- 

A 

By our second method 

1 
871 U = - Ez (volume between plates) = 

We note that the stored energy decreases as the separation between plates 
decreases. Since all the stored energy is in the gap, this tells us that the 
force between plates is 

dU - 2nQ2 F =  --=- 
dl A (2-7-9) 

with the minus sign indicating that the force tends to decrease 1. This is 
in agreement with the result obtained earlier [see Eq. (2-4-15)]. If our 
plates were attached to a battery (Acp constant), the situation would be 
somewhat different. The energy between the plates would be 

Here the energy stored between the plates increases as the gap decreases. 
Indeed, the change in electrostatic energy for a given small displacement 
is equal and opposite to that given by Eq. (2-7-9). Obviously the total energy 
stored in the system must still decrease as before, when I is decreased (since 
the force is just as attractive as before). Thus the battery runs down by an 
amount equal to twice the mechanical work done by the fields. 

2-8 THE GENERAL THEORY OF CAPACITANCE 

We will investigate the notion of capacitance in a rather general way, 
beginning with one or two conductors but then extending ourselves to an 
indefinite number of conductors. This will give us a tremendous amount of 
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insight into the linear nature of electromagnetism in addition to providing 
powerful techniques for the solution of specific problems. 

We start with one of the most important of all principles in physics 
and one which we will encounter many times when we deal with quantum- 
mechanical systems. This is the superposition principle. Within the present 
context the principle states that if a charge distribution pa leads to a potential 
distribution q, and a charge distribution pB leads to a potential distribution 
qB, then the charge distribution pa + pB will lead to the potential distribu- 
tion qA + c p B .  (We must be careful here to use the entire charge density 
if we want to be rigorously correct. Otherwise nonlinearities in the dielectric 
will lead us into difficulty.) We need only go back to Eq. (2-4-8) to see that 
this principle is obviously true. The value of this principle will become 
apparent in cases where the solutions to V 2 q a  = -47cpa and VzqB = 
-4npB are easier to come by than the solution to V 2 q  = -47c(p,, + ps). 
We will then solve for qa and qB and add these solutions together to obtain 
9. 

Let us consider first the case of only one conductor in space and 
nothing else (no other charge). If we place an amount of charge Q,  on the 
conductor, its potential will rise to some value q,. An amount of charge 
aQo would lead to a potential aq,. Clearly then there is a proportionality 
between the charge on the conductor and its potential which we can express 
as 

Q = C ~ c o n d  (2-8-1) 

The proportionality constant C is defined to be the capacitance of a single 
conductor. In the case of a conducting sphere of radius R, where the poten- 
tial is just given by 

(2-8-2) 

we see that the capacitance is just R. 
It is amusing at this point to calculate the capacitance of the earth. 

Its radius is roughly 6500 km or 6.5 x 10” cm. This is not a very large 
number. Indeed, converting to “practical” units, we would find it to be 
equal to only about 700 microfarads. Alternatively, we can observe that 
if we removed the electrons from only a gram or so of material, we could 
raise the potential of the earth by 140 million volts. This in turn would lead 
to an electric field at the surface of about 0.2 volt/cm. Clearly then the 
positive and negative charges on the earth are very well balanced indeed, 
and it takes rather little to disturb this balance. That is why the flood of 
charged particles coming from a solar flare plays such havoc with radio 
communications on earth. 

We next consider the case of two conductors where one has charge 



56 PRINCIPLES OF ELECTROSTATICS 

+ Q  and the other has charge - Q  (see Fig. 2-14). Let cp, be the potential 
on conductor 1 and cp2 be the potential on conductor 2. If we multiply Q 
by a constant factor, then both cpl and cp2 will be multiplied by the same 
factor. Hence cpl -- cp2 is proportional to Q ;  that is, Q = C(q, - q2). 
The proportionality constant C is the capacitance of a two-conductor 
system. 

It is clear that the linearity of electrostatics permits us to specify 
important electrostatic properties of conductors which are quite indepen- 
dent of their charges cr potentials but depend only on the geometry of the 
system. We generalize now to a system of N conductors and no extraneous 
charge. Let the charges on the conductors be Q,, Q2, Q3, . . . , Qi, . . . , 
QN. The potentials will then be cp,, cpz, . . . , cpi,. . . , c p N .  We seek a way 
of specifying Q,, . . . , QN in terms of q,, . . . , c p N ,  dependent only upon 
the geometry of the situation. 

We begin by solving a subsidiary problem. Let us ground all conductors 
except the first one. That is, let pi = 0 for i # 1 .  For this first subsidiary 
problem we will have a charge Q,(l) on the ith conductor. If every charge 
were to be multiplied by a factor u, then every potential would be multiplied 
by the same factor u.  All those for i # 1 would, of course, remain zero. 
The potential on the first conductor would become equal to acp,. Hence 
we can write 

-Q 

(2-8-3) 

Fig. 2-14 Two conductors, one with 
charge +Q and one with charge -Q. 
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We now solve a second subsidiary problem. We ground all conductors but 
the second and set the second to ' p 2 .  We have then 

(2-8-4) 

It is clear that we can go on like this and solve a total of N such subsidiary 
problems. 

We now recall the superposition principle. If we add together the 
solutions to subsidiary problems 1 to N ,  we will have the solution to the 
problem where each conductor i is raised to its appropriate potential ' p i .  

Thus 

Q I  = Ciic~i  + C 1 2 ~ 2  + ' .  + C ~ N C P N  
or 

(2-8-5) 

The numbers Cij (called coefficients of capacitance) tell us what we want to 
know about the geometry of the situation. 

In physical terms then, if we can determine the full set of Cij for any 
given conductor configuration, we will be prepared to determine immediately 
the full set of charges Q l ,  . . . , QN from the given set of potentials (pl,  

. . . , ( p N .  Of course, if we are given the charges Q , ,  . . . , QN, we can 
determine the potentials by means of N simultaneous equations. We now 
wish to prove that Cij = Cji. To do this, we will first prove a more powerful 
theorem. 

Green's Reciprocity Theorem. Let charges Q, ,  Q2,  . . . , QN correspond 
to potentials 'p,: ( p 2 ,  . . . , ( p N .  Let charges Q ; ,  Q;,  . . . , Q; correspond to 
potentials cp;, (pz, . . . , (pi;. Then 

C (pie; = VrQi 
i I 

Proof: We first note that 

Qi  = js, gi(ri) dAi 

(2-8-6) 

(2-8-7) 

(2-8-8) 
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Using Eq. (2-4-8), we derive 

= constant depending only on i (2-8-9) 

We have then 

(2-8- 10) 

(2-8-1 1) 

But cpf is independent of ri as long as ri is at a point on the conductor. Hence 
we can bring it into the integral 

r 

and 

Also, similarly 

(2-8- 12) 

(2-8-1 3) 

(2-8-14) 

We can now interchange the dummy indices i and j as well as the primed and 
unprimed variables. We see then that the two expressions are identical. Thus 

N N 

C ViQi' = V f Q i  (2-8-1 5) 
i= 1 i =  1 

To prove that Cij = Cji, we take as our two cases: 

1. Starred case : Let 

cpj' = cpo all other 'pi = 0 

Then 

Q f  = C..cp 
I J  0 

2. Unstarred case: Let 

cpi = cpo all'other cpj = 0 
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Then 
Q .  = C.. 

J JlPo 
Green’s reciprocity theorem then tells us 

1 QkP; = QjPj’ = QjPo = CjiPO’ = C Q;P, = Qi’Pi = CijPO’ 
k 

Hence 
c.. V = c.. JI (2-8- 16) 

We observe one of the physical consequences of this statement in 
the case of two conductors. If conductor 1 is placed at potential cpo and 
conductor 2 is grounded, a certain charge Q,  will be induced on the latter. 
If, on the other hand, conductor 2 is placed at potential q0 and conductor 1 
is grounded, the same charge Q,  will now appear on conductor 1. 

It is instructive to calculate explicitly that this is so in the case of two 
concentric conducting spherical shells, one of radius a and the other of 
radius b (a < b). 

Situation 1. Inner sphere a is at potential q0. Outer sphere b is at 
potential 0. Let Qa = charge on inner conductor. Then we calculate the 
potential on the inner conductor in the usual manner : 

Solving for Qa, we have 

ab 
b - a  Qa = - PO 

Since E = 0 outside the outer sphere, we must have Qb = -Qa and 
thus 

ab 
Qb = a-b PO (2-8- 17) 

Situation 2. Inner sphere a is grounded. Outer sphere b is at potential 
p0. The potential at r = a is equal to 0. This means that we can write 

6 - a  
Q a T  + PO = 0 

ab 
Qa = PO (2-8-18) 

Thus Qb (situation 1) = Qa (situation 2). 
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As we mentioned earlier, we could solve the set of N equations (2-8-5) 
and obtain the cp’s in terms of the Q’s. We would then obtain the set of 
equations 

N 
cpi = 1 P. .Q .  V J (2-8-19) 

j =  1 

where the pij’s are called the potential coefficients. We can again make use of 
Green’s reciprocity theorem to prove that Pij = Pji. 

1. Unstarred case: Let 

Q j  = Qo all other Qi = 0 

Then 

Vi = P i j Q o  

2. Starred case: Let 

Q,: = Qo all other Q; = 0 

Then 
cp: = P..Q 

J J I  0 

Substituting into (2-8-15), we have 

C Qk’P; = QjV; = PjiQo2 
k 

C Q ; v ~  = QlVi = p i jQo2  
k 

and hence 

p . .  IJ = p.. J l  (2-8-20) 

The physical content of this statement is quite remarkable. Imagine that 
we have a set of conductors. If we put a charge QA on the fourth one, for 
example, and no charge on any of the others, we will produce a certain 
potential pB on the seventh one (for example). If the same charge Q A  were 
put on the seventh one instead (all others uncharged), the potential on the 
fourth one would now be cpB.  Thus there is a profound, reciprocal relation- 
ship among the charges and potentials on all the conductors. 

Making use of Eq. (2-7-3), we have for the energy of a set of charged 
conductors 

(2-8-21) 
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(2-8-22) 

We can prove a rather nice theorem now. Let SUQ be the change in 
electrostatic energy of the system if the conductors are slightly displaced 
while the charges are held constant. Let SU, be the change in electrostatic 
energy of the system of conductors if their displacement is the same as 
before, while the potentials are held constant. Then we will prove that 
SUQ = -Su,. 

First we treat the constant-potential case: 

(2-8-23) 
1 
2 = - 1 (SCij)qiqj 

since qi, qj remained fixed. To treat the case of fixed charge, we note that 
in this case 

(2-8-24) 

Now for the fixed-charge case 

1 + - C Cijcpi(Sqj) (2-8-25) 
2 i j  

We first interchange the dummy indices i a n d j  in the last term on the right 
side of Eq. (2-8-25). We then remember that Cij = Cji.  Thus the last two 
terms on the right side of Eq. (2-8-25) are equal, and we can write 

(2-8-26) 
1 SuQ = 1 C (8Cij)qiqj + 1 Cij(dqj)qi 

i , j  i j  

Using Eq. (2-8-24), we have 

1 
(2-8-27) SuQ = 1 C (8Cij)qiqj - 1 (8Cij)qjVi 

i j  i , j  
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6uQ = 6uq - 26uq = -6uq (2-8-28) 

Our theorem is proved. 
The physical consequences of this theorem are quite interesting. 

Imagine that we have a given arrangement of conductors with charges and 
potential on them. If the conductors are isolated and unconnected to the 
outside world, then the charges will remain fixed in any displacement. If 
6 U, is positive, then we must do mechanical work of magnitude 6 UQ against 
the electrostatic forces to perform the displacement. Now if, on the other 
hand, the conductors were connected to a set of batteries which maintained 
the potentials fixed, the change in electrostatic energy for the same displace- 
ment would be SU,. Since the forces are the same as before, depending only 
upon the charges and positions of the conductors, the mechanical work 
that we do to carry out the displacement is exactly the same as before (SUP). 
Since a positive SU, implies an equal negative SU,, we must be putting an 
amount of energy 26UQ into the battery when we perform the displacement. 

An example of this was discussed earlier in the case of a parallel- 
plate capacitor (see page 54). 

2-9 CYLINDRICAL AND SPHERICAL COORDINATES 

As we have already surmised, much of our study of electrostatics must be 
devoted to the development of techniques for the solution of Laplace’s 
equation (2-5-1) subject to appropriate boundary conditions. In general 
these boundary conditions will include the specification of either the total 
charge or the potential on each conductor. The potential at infinity will 
be assumed to be zero. 

We will soon see that only a limited number of problems can be 
solved in closed form or in terms of a simple power series. These are, in 
general, problems that exhibit a great deal of symmetry about a point or 
a line and hence call naturally for the use of cylindrical or spherical co- 
ordinates. Accordingly we begin by developing the important differential 
forms (gradient, curl, and divergence) in these coordinate systems. 

The cylindrical coordinate system, illustrated in Fig. 2-1 5 ,  makes 
use of the three variables r, 8, z to specify the location of a point in space. 
The coordinate r is just the distance from the point to the z axis. The angle 8 
is the projected azimuthal angle as measured from the x axis and z is, of 
course, identical to the usual z coordinate. The coordinates (r,O,z) and the 
old coordinates (x,y,z) are related through the transformation equations 

r = J =  or x =  r cose  

tan 8 = y/x or y = r s ine  
(2-9-1) 

z = z  
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It is convenient to set up three unit vectors P, 8, and k at a p in f 
interest. The unit vector P is drawn in the direction of increasing r, and the 
unit vector 8 is drawn in the direction of increasing 8, and naturally the 
vector k is drawn in the direction of increasing z. The three form an orthog- 
onal coordinate system with P x 8 = k. 

We note immediately that the new triad of unit vectors can be related 
to the old triad I, i, and 1; through the transformations 

P = cos et + sin e i  
8 = -s inet  + cosej  

or 

or 

t = cos e P - sin e 8 
j = sinof + c o s e 8  

& = 1 ;  (2-9-2) 

Proceeding first to find an expression for Vrp in this coordinate system, 
we write, using Eq. (2-9-2), 
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= (z cos o + - sin o P + - cos o - -sin o e 
acp aY ) ( 2  acp ax . 1- 

acp - 
aZ + - k (2-9-3) 

We remember though that acplax and acp/ay can be rewritten as 

acp acp ar a9 ae acp az  
ax ar ax ae ax aZ ax 

acp ar acp ae acp aZ 
ay ar ay ae ay az ay 

-= - -  + - - + - -  

_ -  acp - - -+ - -+ - -  

Using Eq. (2-9-l), we find that 

a0 -sin 0 
=- 

ar 
- =  cose - ax ax r 

a Z  a Z  

ax ay 
- -  - 0  _ -  - 

If we substitute these results back into Eq. (2-9-3), we finally have 

(2-9-4) 

(2-9-5) 

(2-9-6) 

The identical result can be obtained immediately if we think of the 
meaning of Vcp in physical terms. The three components of Vcp are the 
rates of change of cp with respect to distance in the three mutually perpendicu- 
lar directions given by P, 8, and k. Going along P first, we noted that the 
rate of change of cp with respect to distance in that direction is just acplar. 
Going along 8, we see that a differential distance in this direction is just 
r do. Hence the rate of change of cp with respect to distance in the 0 direction 

is given by - -. Finally, the rate of change of cp with respect to distance 

in the z direction is acplaz. Equation (2-9-6) is then confirmed directly. 
We next consider the divergence of a vector function F as expressed 

in cylindrical coordinates. We could begin with Cartesian coordinates and 
convert all derivatives appropriately. It is more elegant, however, to just 
calculate the flux out of a small volume element dV and set the result equal 
to V . F dV. As our volume element dV,  we choose that which is bounded 
by the coordinates r and r + dr, 0 and 0 + do, z and z + dz, as shown in 

1 acp 
r ae 
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Fig. 2-16. We indicate the bounding surfaces of  dV by the numbers @ to @. 
Surface @ is at radius r and is bounded by 6, 6 + d6, z, and z + dz. 
Surface 0 is at radius r + dr and is bounded by 6, 6 + do, z, and 

Surface 0 is at height z and is bounded by r ,  r + dr, 6, and 6 + d6. 
Surface @ is at height z + dz and is  bounded by r,  r + dr, 6, and 

Surface @ is at angle 6 and is bounded by z ,  z + dz, r ,  and r + dr. 
Surface @is at angle 6 + d6 and is  bounded by z ,  z + dz, r,  and r + dr. 
The areas of the various surfaces are 

z + dz. 

6 + d6. 

d A g  = rd6dz  

d A g  = (r + dr)dOdz 

Flux out through 0 = - F,( l ) r  dB dz 
Flux out through Q = +4(2) ( r  + &)do dz 
Flux out through @ = -F,(3)r  dr dB 
Flux out through @ = +F,(4)r dr dB 
Flux out through @ = -F,(S)dr dz 
Flux out through @ = +F,(6)dr dz 

d A g  = d A ,  = rdrde  

d A B  = d A B  = drdz 

The fluxes out of the volume are then 

(2-9-7) 

(2-9-8) 

Fig. 2-16 We wish to find the 
flux out of an infinitesimal vol- 
ume dV shown above. 
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Remembering that 

84 
a Z  

e(4) - 4(3) = -dz 

a& 
ae &(6) - &(5) = -dB 

we have (ignoring all terms which are the product of four differentials) 

aFr Fr aFz 
ar r az Net flux out = - r dr de dz + - r dr de dz + - r dr de dz 

+ - - r dr d6 dz (2-9-9) (: 2) 
The volume dV is just r dr de dz. We can then rewrite Eq. (2-9-9) into the 
form 

The divergence of F is thus given by 

i a  1 aFo aF, 
r ar r ae az V . F  = - -(rFr) + - - + - 

(2-9-10) 

(2-9-1 1) 

Inserting our expression for Vrp [Eq. (2-9-6)] into the above, we find that the 
laplacian is given by 

(2-9-12) 

We next find the three components of V x F in cylindrical coordinates. 
To do so we make use of Stokes’ theorem and evaluate the line integral of 
F . dl around three infinitesimal loops, one perpendicular to P, one per- 
pendicular to 8, and one perpendicular to k. We take a loop perpendicular 
to P first, bounded by the coordinates 8, B + do, z ,  and z + dz. We have 
then, applying Stokes’ theorem, 

P .  (V x F) rdedz  = [FB(z) - Fo(z + dz)] r d e  

+ [F2(e + do) - F,(e)] dz 
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Hence 
1 aF, ah 
r a8 az 

(V x F)*f = - - - - (2-9-13) 

For a loop perpendicular to 0 and bounded by r ,  r + dr, z ,  and z + dz, 
we have 

8 .  (V x F) dr dz = [F,(r) - Fz(r + dr)] dz 

+ [F,(z + dz)  - F'(z)] dr 

Hence 
- aFr aFz (v x ~ ) . e = - - - -  

a2 aZ (2-9-14) 

Finally we take a loop perpendicular to k .  We have then 

(V x F. k)r dr de = [F,(B) - Fr(B + do)] dr 

+ F,(r + dr)(r + dr) d0 - F,(r)r d8 

Thus 
a4 F, 1 a8 (V x F*k)=-+--- - ar r r a0 (2-9- 15) 

Combining Eqs. (2-9-13) to (2-9-15), we have 

+ ra: - + - 7 - - f. - 2)- k (2-9-16) 

We shall return very shortly and make use of cylindrical coordinates 
for the solution of specific problems. In the meantime we turn to the spherical 
coordinate system shown in Fig. 2-17. 

The spherical coordinates of a point are its distance from the origin r 
and its polar and azimuthal angles 0 and $. (Note: We use $ to denote 
azimuthal angle to avoid confusion with the potential function cp.) The 
transformation equations relating x, y ,  and z to r, 8, and II/ are given by 

x = r sin 0 cos $ 
y = r sin 0 sin Ic/ 
z = r cos 0 

(2-9-17) 
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Fig. 2-17 In the spherical coordinate system a point is designated by its 
distance from the origin r ,  its polar angle 0, and its azimuthal angle $. 

or 

r = Jx’ + y 2  + z2 

cos 0 = 
Jx’ + y‘ + zz 

(2-9-18) 

X 
cOs* = Jm 

Again we set up an orthogonal coordinate system at the point of interest. 
The unit vector P points in the direction of increasing r .  The unit vectors 
6 and $ point, respectively, in the directions of increasing 0 and Ic/. As can 
be seen from Fig. 2-17, f x 6 = $. 

Using the same arguments as before, we evaluate Vcp by determining 
the rate of change of cp with respect to distance along each of the three 
mutually perpendicular unit vectors. The rate of change of cp with respect 
to distance along f is just dcp/ar. The rate of change of cp with respect to 
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1 acp 
r a0 

distance along the 9 direction is - -. The rate of change of q with respect 

1 a(P to distance in the $ direction is - - Hence we have 
r sin 0 

(2-9- 19) 

Using precisely the same techniques as we used in dealing with cylindrical 
coordinates, we can evaluate V . F, V x F, and V2q.  We obtain 

aF* (2-9-20) 
i a  l a  1 

V . F = - - (r2F,)  + - - (sin 8 F,) + - - 
r2 ar r sin 0 80 r sin 0 a$ 

a2' (2-9-22) +--- 
r2 sin2 e ai+b2 

1 

We now proceed to make some use of all this newly acquired knowledge. 

2-10 SOLVING LAPLACE'S EQUATION IN CARTESIAN COORDINATES 

Now that we have learned to express Laplace's equation in three useful 
coordinate systems (Cartesian, cylindrical, and spherical), we might give a 
bit of thought to the problem of solving the equation. In general we will 
find ourselves with an infinitude of possible solutions, and we will have 
to refer to the specific boundary conditions at hand to find the correct 
combination. What we hope to do is to make our procedure orderly, 
remembering always that only one solution of Laplace's equation can 
satisfy the complete set of boundary conditions. 

We start with the simplest system, Cartesian coordinates. The pro- 
cedure we follow here will be a quite general one and will be justified more 
thoroughly after we have worked with it some. We will search for solutions 
to V 2 q  = 0 of the form 

c P ( X , Y J )  = -%4 Ygl)Z(Z) (2-10-1) 

Inserting this product form into Laplace's equation, we obtain, after 
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dividing through by cp(x,y,z), 

1 dx 1 d2Y 1 8 2  
-- + - - + - - = o  
X dx2 Y dy2 Z dz2 

(2-10-2) 

Since the three variables x, y ,  and z are all independent, the three parts 
to Eq. (2-10-2) must all be constants. That is, 

-- d2x - U Z X  
dx2 

d2Y - = p2y 
dYZ 

-- - yzz d2 Z 
dz2 

provided that 

uz + pz + y2 = 0 

(Needless to say, a, p, and y cannot all be real.) We have then 

X =  Aleux + Ble-ax  
Y = A ,  eSY + B2 e -By  
Z = A3eYz + B3 eFyZ 

(2-10-3) 

(2- 10-4) 

(2-10-5) 

The possible solutions of the form given by Eq. (2-10-1) are thus innumer- 
able-every choice of A,, B , ,  A , ,  B,, A , ,  and B3 will do. In addition we 
can choose u, p, and y as we like provided that they satisfy the simple con- 
straint given by Eq. (2-10-4). What are we to do next? The answer is best 
given by solving a specific problem in which we apply a set of boundary 
conditions to determine cp completely. 

We consider a box made up of six plane sheets as shown in Fig. 2-18. 
The planes at x = 0, y = 0, z = 0, x = a, and y = 6 are grounded (cp = 0). 
The plane at z = c has a potential distribution on it given by cpo(x,y). We 
wish to know the potential everywhere within the box. 

We begin by inserting the boundary condition at x = 0 into Eq. 
(2-10-5). Since cp(x = 0) must vanish for ally and z, we must have 

X(0) = A ,  + Bl = 0 (2- 10-6) 

Similarly, making use of the boundary conditions at y = z = 0, we can 
write 

A ,  + B, = 0 
A3 + B3 = 0 

(2- 10-7) 
(2- 10-8) 

If we now go to the wall at x = a, we find 

Aleao + B l e - M  = 0 (2- 10-9) 
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Fig. 2-18 We solve for the 
potential on the inside of a box, 
all the walls of which are 
grounded except for one. That 
wall at z = c has a potential 
distribution on it given by 
cpO(X,Y).  

In order that Eqs. (2-10-9) and (2-10-6) both hold we must have 

or 

For Eq. (2-10-10) to be true, we must have 

eaa = e-aa 

e'aa = 1 

nin 
a 

a = -  

(2-10-10) 

(2-10-1 1) 

where n is an integer. Combining what we learned and remembering that 
eiO - e - i O  

sin (3 = 
2i 

(2- 10- 12) 

-- - .- we can conclude that 

nnx 
X(x) K sin- a 

Similarly 

m=Y Y(y) a sin- b 

(2- 10- 13) 

(2- 10- 14) 

where m is also an integer. For every choice of integers m and n we have 
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then a possible solution 

nnx . mny . 
cp,,(x,y,z) = An,m sin __ sin __ sinh Y ~ , ~ , z  

a b 
where 

ln2n2 m2n2 

(2-  10- 15) 

(2-1 0-1 6) 

We are now ready to insert the final boundary condition at z = c. 
We have then 

nn mn m 

cp(x,y,c) = cp,(x,y) = (~",msi~hYn,,*c)sin-x sin-y (2-10-17) 

Our job now seems to be reduced to finding the set of coefficients 
An,m. But, do such a set of coefficients exist? At this point we must state 
without proof the fundamental theorem of Fourier analysis.' Any function 
of x defined over the interval from x = 0 to x = a can be expressed as a 
linear combination of terms of the form sin(nnx/a). That is, for any 
f(x) there exist a set of numbers B, such that 

n , m =  1 a b .  

nn 
n =  I a 

m 

f(x) = C B,, sin - x 

over the interval from 0 to a. In the case of two dimensions x and y ,  any 
function f(x,y) defined over the interval 0 5 x 5 a and 0 5 y 5 b can 
be represented as a double Fourier series : 

nn mn co 

f (x,y)  = 1 Bn,m sin a x sin - y 
n , m =  1 b 

(2-10-1 8) 

Returning to Eq. (2-10-17), we find the coefficients A,,,, by a standard 

procedure. We multiply each side by sin - x sin - y where both k and I 

are integers. We then integrate over both x and y .  Remembering that 

kn I7l 

a b 

nn kn a 

a 2 

In b 
b 2 

1; sin a x sin - x dx = - d,, 

lob sin y sin - y dy = - d,, 
(2- 10- 19) 

we have 
nn mn 

dy cp,(x,y) sin - x sin --y (2-10-20) 
4 

= ab sinh y n , m ~  ji dx lob a b 
'For further explanation see Chap. 6 
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We are thus in a position to evaluate the coefficients An,,, explicitly, and 
we have solved our problem. 

Let us go back now and say a few words about the key step in our 
procedure for solving Laplace’s equation. We searched for solutions in 
the form of products of functions of the independent variables. We then 
noted that at least in the solution of one simple boundary-value problem 
we could write our answer in terms of a sum over these solutions. The 
remarkable fact is that any solution to Laplace’s equation can be expressed 
as a sum over such product functions and that is why we have lost no 
generality by proceeding in this manner. We will always look for these 
product-function solutions and then spend our time determining the 
coefficients from the boundary conditions. 

2-11 SOLVING LAPLACE’S EQUATION IN CYLINDRICAL COORDINATES 

As we pointed out earlier, most simple potential problems with a great deal 
of symmetry can be handled best by means of cylindrical or spherical co- 
ordinates. In this section we consider the solution of Laplace’s equation 
in cylindrical coordinates subject to appropriate boundary conditions. 
Making use of Eq. (2-9-12), we write 

(2-11-1) 

For simplicity let us begin by limiting our discussion to cases where cp does 
not depend on z. That is to say, d 2 q / 4 z 2  = 0. We look again for product 
solutions. In this case they have the form 

cp(r,O) = R ( W ( 0 )  (2-1 1-2) 

Our equation becomes 

R d 2 e  

Let us multiply by r2 and divide by R e .  We have then 

(2-1 1-3) 

Note that the right side of the equation depends only on 0 and the left side 
only on r.  Since the two are independent variables, the two sides must 
separately be equal to a constant, which we write as k2 .  We have then 

d 2 0  
= - k 2 8  (2-1 1-4) 
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and 

d dR 
r -  r -  

dr ( d r )  = k2R 
(2-1 1-5) 

Consider first the case where k # 0. The first equation then has as a solution 

8 = Ak COS k0 4- Bk Sin k0 (2-1 1-6) 

In the event that k = 0, we have 

0 = A ,  + a0 (2-1 1-7) 

Solutions corresponding to imaginary k,  that is, negative k2 ,  cannot be 
single valued as we increase 0 by 27~. Hence they are excluded. In fact the 
requirement of single valuedness implies that A ,  = Bk = 0 unless k is an 
integer. It also implies that a = 0. Hence we can write in general 

0 = A ,  cos n0 + B, sin n0 where n = 0, 1,2, . . . (2- 1 1-8) 

To find R(r) we first expand in a power series: 
m 

R(r) = c CmP 
m = - m  

(2-1 1-9) 

Substituting back into our differential equation (with k = n # 0), we find 

(2- 1 1 - 10) 

Hence 

c Cm(m2 - n2)rm = O (2-11-11) 

In order that this be zero, we must have each and every term zero, since 
no power of r can be expressed in terms of any other powers of r. Hence 
either 

c, = 0 

or 

m2 = n2 and m = kn 

In the event that n = 0, we have 

dR 
dr 

r -  = p 

R = p l n r  + y (2-1 1-12) 



2-11 SOLVING LAPLACES EOUATION IN CYLINDRICAL COORDINATES 75 

Finally then we can combine all our constants and write the general solution 
as 

m m m 

cp(r,8) = Anr"cosn8 + 1 B,r" sin n8 + 1 C,,r-" cos n8 
n= 1 n =  1 n =  1 

m 
I 

+ 1 D,r-" sin n8 + Co In r + Do (2-11-13) 
n =  1 

where all the constants are arbitrary. 
We now apply this to the solution of a simple problem. Let us examine 

the case of an infinitely long, conducting, uncharged cylinder in an electric 
field which approaches uniformity at large distances from the cylinder. 
The field is taken to be perpendicular to the axis of the cylinder. The radius 
of the cylinder is a (see Fig. 2-19). For large x we have cp = -Eox (we 
obviously must remove the restriction cp = 0 at infinity if we want a constant 
electric field at infinity). 

cp(1arge x) = - Eor cos 8 (2-1 1-14) 

The condition that the cylinder be uncharged yields 

charge I =  = o  
unit length 

- dA = - joz' dB 
(2-1 1-15) 

We expect, by the symmetry inherent in the situation, to find that cp = 0 
on the cylinder. Let us assume this to be true and see where we get. Since 
at large r we must have cp + -Eorcos8, we can set [see Eq. (2-11-13)] 

A, = 0 
B,, = 0 

forn # 1 
for all n 

A1 = -Eo 
(2-1 1-16) 

Fig. 2-19 An infinitely long; 
conducting cylinder is placed in 

----------cX a uniform field. 
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Now at r = a, cp = 0. Hence 
m 

-E,a cos 0 + 1 Cna-" cos n0 
n =  1 

m 

+ Dna-" sin n8 + C, In a + Do = 0 for all 8 (2-11-17) 

Since all functions cos n0 are linearly independent, we have immediately 
n =  1 

D, = 0 for all n 

Cn = 0 forn # 1 
-E,a + C,a-' = 0 

C,=O D o = O  

Thus 

(2-11-18) 

(2-1 1-19) 
C ,  = Eoa2 

We have then 

cp = E, (; - r )  cos 8 

We can calculate the surface charge everywhere : 

EO = -  - + 1  C O S ~ = - C O S ~  
Eo(a2  4n a' ) 2n 

The charge per unit length is 

(2-1 1-20) 

(2-1 1-21) 

(2-1 1-22) 

This completes our solution. 

tion of z independence. We search for solutions of the form 
We now return to Laplace's equation (2-1 1-1) and remove the restric- 

cp(r, e ,z)  = R(r)e(e)Z(z) (2,11-23) 

Substituting, dividing through by cp, and multiplying by r2, we rewrite 
Eq. (2-11-1) as 

r2 d2Z 1 d 2 8  
R dr Z dz2 8 do2 

(2-1 1-24) 

Again we realize that the two sides of Eq. (2-1 1-24) must be set equal to a 
constant. Referring back to Eqs. (2-11-4) to (2-114,  we have once more 
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8 = A,  cos n6' + B, sin n6' (2-11-25) 

where n is an integer. Inserting this back into Eq. (2-11-24), we obtain 

1 d dR n2 1 d z z  
Z dz2 

- _  
rR d r ( r % ) -  f = 

(2-1 1-26) 

We next find the possible solutions for Z by requiring that both sides 
of Eq. (2-11-26) be equal to a constant which we set equal to -a2. We 
have then 

The solutions for nonzero values of a are just 

Za(z) = C,@' + Due-"' 

(2-1 1-27) 

(2-1 1-28) 

In the event that a = 0, the solution to Eq. (2-1 1-27) becomes 

Z ~ ( Z )  = Co + D ~ Z  (2- 1 1-29) 

Finally we must find the solution for Ru,,(r) corresponding to a particular 
choice of n and a. Our differential equation is 

(2-1 1-30) 

It is convenient at this point to let u = ar for the case where a # 0. We 
then divide Eq. (2-1 1-30) by m2 and obtain the standard form for Bessel's 
equation : 

- 1 d - ( u ~ )  dRa,, + (1 - $jRu,,  = 0 
u du 

The solutions to this equation are best expressed as a power series in u. 
As usual there are two linearly independent solutions, J,(u) and N,(u). 
The first of these, J,(u), is called a Bessel function of the first kind and is 
defined as 

(2-11-31) 

The function N,(u) is often called a Neumann function and is defined as 

7 l  

k = O  k! (t)2k (n  - k - I)! 

(2-1 1-32) 
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Needless to say the use of a digital computer is strongly recommended 
when dealing with either of these functions. In any case, the general solution 
to the radial equation is 

where Ea,n and &,n are arbitrary constants. 

those for the differential equation (2-1 1-5). 
In the event that a = 0 the two solutions for R0,Jr) are the same as 

Finally, if n is also equal to zero, we recall that 

Ro,&) = Eo,o + Fo,o In r (2-1 1-35) 

Again the values of the various coefficients will be determined by 
boundary conditions. Quite often we will find that only specific and discrete 
values of a will permit us to fit our boundary conditions and the first part 
of our effort will be devoted to finding these values. We will then make use 
of completeness and orthogonality to determine the actual values of the 
coefficients themselves. 

The detailed solution of problems of this sort is somewhat beyond the 
scope of this book. The reader is referred to innumerable treatises on classical 
potential theory or to more advanced texts in the field of electromagnetism.' 

2-12 THE SOLUTION TO LAPLACE'S EQUATION 
IN SPHERICAL COORDINATES 

Perhaps the most useful of all coordinate systems in the study of electro- 
statics, particularly at the microscopic level, is that of the spherical co- 
ordinates. We will limit ourselves to physical situations with complete 
rotational symmetry about the z axis (axial symmetry). The extension to 
nonsymmetric situations is straightforward and is left to the reader in 
consultation with more advanced textbooks. 

Before proceeding with Laplace's equation, it is convenient to make 
a change of variable. We let p = cos 6 and have thus 

a a a p  a 
a6 - ae a p  aP 

= -sin 6-  _ - - -  (2- 12- 1) 

Substituting back into Laplace's equation (remembering that there is no 
$ dependence), we have 

(2-12-2) 

We search for a product solution of the form 

'See, for example, J. D. Jackson, "Classical Electrodynamics," p. 75, Wiley, New York, 1962. 
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cp = F(r)P(A (2-12-3) 

Substituting Eq. (2-12-3) into Eq. (2-12-2), we obtain in the same manner 
as before 

(2-.12-4) 

Let us begin by examining the radial equation. In most problems 
that we are likely to encounter cp will be finite at all points except perhaps at 
r = 0 and r = co. The reason for allowing cp to possibly diverge at r = 0 
is that the region about r = 0 may be excluded from the problem. For ex- 
ample, if we are dealing with a conducting sphere of radius a, we are only 
interested in cp for r > a. The reason for allowing cp to possibly diverge as 
r + co is to permit the inclusion of cases like a constant electric field out 
to large distances. Since at all other points cp is finite, we can expand F(r) 
in a power series, allowing all possible negative and positive powers of r .  

W 

F(r) = 1 Amrm (2- 12-5) 
m =  - w 

If we now substitute this power series back into the right side of Eq. (2-12-4), 
we find that 

W W 

g ( r 2 $ )  = 
Amm(m + l ) rm = kF = C Amkrm (2-12-6) 

m = - m  m = - m  

In order that this equality holds for all r,  it must hold for each and every 
coefficient of a given power of r. Hence 

m(m + 1) = k (2- 12-7) 

We conclude then that k can take on only specific and discrete values, 
namely, those which can be obtained through the product of m and m + 1 
where m is an integer. The values of k which are possible are all positive, 
as can be determined from inspection. 

For each value of k that permits a solution, there are two values of m 
which correspond to that k .  We list some of these in order in Eq. (2-12-8). 

k Possible m F(r) 

0 0, - 1  Fo(r) = A ,  + E 0 F 1  

2 1, - 2  Fl (r )  = A , r  + E,r- '  

6 2, - 3  F2(r) = A , r Z  + E , r - 3  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
n(n + 1) n, -(n + 1) F,(r) = A,? + E,r-'"''' 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(2-1 2-8) 
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Of course, for each value of k (or n) that is possible, we have a corresponding 
equation for P(p). The solution to this equation will be called Pn(p). Our 
final solution for cp will then be 

(2- 12-9) 

We now proceed to find Pn(p),  by means of the differential equation 

d[(l - ..,$I + n(n + l)Pn = 0 
4 

(2- 12- 10) 

As usual we will expand P,(p) in a power series. This time, since we want 
Pn(p) to remain finite for all p between 0 and 1, we take only positive integral 
powers of p. 

m 

We evaluate the first term on the left side of Eq. (2-12-10). 

The first sum on the right side of Eq. (2-12-12) can be rewritten slightly 
if we note that the first two terms are zero. 

1 AJ(1 - 1)p1-2 = c '4n,11(1 - 1)pI-Z 
I = O  1=2  

m 

= c 4 , 1 + 2 ( ~  + 2x1 + 1 w  (2-12-1 3) 
I = O  

We can now enter all this information into Eq. (2-12-10), coming up with a 
relationship among the various coefficients : 

m c [An,I+2(l + 2)(1 + 1) - -4n,11(1 + 1) + An,& + l)]pl = 0 
I = O  

(2-1 2- 14) 

As we have done many times before, we set each coefficient of a given 
power of p equal to zero. We then have 

(2-1 2-15) 

This equation, known as a recursion relation, is extremely powerful! It 
relates any given coefficient to the one two places further down the line. 
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Thus, if the first two are known, then the entire series is known. (This 
technique is a very commonly used one for the solution of differential 
equations in terms of power series. The reader might try the method on the 
harmonic equation d2x/d t2  = - k'x.) 

To develop our functions P,(p) we first consider the case where n is 
even. We notice immediately that if I is odd, there is no value of 1 for which 
l(1 + 1) - n(n + 1) is equal to zero. Hence, if one odd term exists, then all 
odd terms exist. As we take I larger and larger, the ratio An,l + 2/A,,l approaches 
unity. We are clearly in for trouble then at  p = 1 because our series diverges 
at that point. There is one and only one solution to our dilemma, to set 
A,,,equal to zero, in which case all odd terms disappear. As far as even 1 
is concerned, there is no problem. When we come to the term where 1 is 
equal to n, the ratio An, l+2/An, l  becomes equal to zero. Thus A,,,+2 = 0 
and the series terminates, alljurther terms vanishing. 

We conclude then that if n is even, then P,(p) contains only even 
powers of p. Only terms from po to p" are present. 

On the other hand, if n is odd, we can apply the identical argument to 
exclude even powers of p. Again the highest power of p in the series is p". 
The series runs from p1 to p". 

It is useful to find the first few solutions for P,(p). Since any solution 
can be multiplied by an arbitrary constant and still satisfy the same differen- 
tial equation, we must choose some normalization. The usual convention 
requires that 

P,(1) = 1 (2- 12- 16) 

Obviously, for this normalization, 

P"(-l) = (-1>" (2- 12- 17) 

The functions P,(p) are called Legendre polynomials. Since Po(p) is a con- 
stant, our normalization requires that 

PO(d = 1 (2-12-18) 

Next we note that Pl (p) is proportional to p. By our convention then, 
we have 

Pl(PL) = cc (2- 12- 19) 

To obtain P2(p) we must first make use of Eq. (2-12-15) to obtain 
A2,2/A2,0. 

- - 3  A- A22 -6 
A2.0 2 

(2- 12-20) 
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Choosing A2,0 according to our normalization, we have 

Going on to P3(p) ,  we first find that 

-- A 3 . 3  3 
4 1  3 

- 

Fixing A3,i by convention, we have 

(2- 12-2 1) 

(2- 12-22) 

(2-12-23) 

We could proceed in this manner ad infinitum to find all the functions P,(p). 
It is more convenient, however, to make use of Rodrigues’ formula 

(2-12-24) 

We then note that the most general solution to Laplace’s equation in the 
case of axial symmetry can be written as 

(2-12-25) 

Again our basic problem will be the determination of the coefficients. 
This can be done through matching boundary conditions at a complete 
set of boundaries to a charge-free region. (These conditions can consist of 
the specification of either the potential at the boundary or of the normal 
component of electric field at the boundary.) Alternatively, we may be given 
a charge distribution and asked to find the potential outside of the dis- 
tribution. In the next two sections we will discuss some specific methods 
of handling these problems. 

Before we conclude this section we should note that one of the remark- 
able facts about the functions Pn(p) is that they form a complete and 
orthogonal set over the range - 1 S p 2 1. That, is to say, any function of 
p can be expressed as a series in P,,(p) and no one of the Pn(p) can be expressed 
entirely in terms of the others. 

We note first that 

f 1  ~n(P)Pm(P)& = 0 if n # m (2-12-26) 

We also note that 

(2- 12-27) 
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The fact that the Legendre polynomials form a complete set permits 
us to write, for any function f ( p )  that is finite in the range - 1 =< p 5 1 ,  

(2-12-28) 

We now multiply both sides of Eq. (2-12-28) by P,(p) and integrate from 
p =  - l t o p =  + 1 :  

1 1 1- f ( p )  Prn(p) dp = c j An pn Prn (p )  dp 
n - 1  

2 
=--- 

2m + 1 Am 

Hence 

(2-12-29) 

Obviously, were we to choosej(p) to be P, (p ) ,  then A ,  would be zero unless 
n = m. Our Pn(p) thus form an orthogonal set in the sense that no one can 
be expressed in terms of any of the others. 

2-13 SOLVING BOUNDARY-VALUE PROBLEMS IN 
SPHERICAL COORDINATES WITH AZIMUTHAL SYMMETRY 

We now develop some of the techniques for evaluating the coefficients in 
Eq. (2-1 2-25), the general solution to the azimuthally symmetrical Laplace 
equation. In particular, we will assume here that the potential or its deriva- 
tive normal to the surface is specified at each and every boundary of our 
charge-free region, and we will then force the potential to fit. We will find 
that the set of coefficients will then be completely determined. 

Our discussion is best done in terms of a set of specific problems, 
each of which has some widespread applicability. The extension to other 
classes of problems will be straightforward for the reader once he has 
grasped the general principles. 

We begin by specifying the potential cp(a,6) over a spherical surface 
of radius a (see Fig. 2-20). We will assume that no other charges are present 
anywhere and that the potential at infinity is zero. We are interested in 
knowing the potential everywhere, both inside and outside the sphere. 

Since the potential at infinity is zero, the outside potential can be 
written as 

(2-1 3-1) 
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Fig. 2-20 The potential cp(a,O) (or its 
derivative with respect to r )  is specified at 
the spherical boundary r = a. It is as- 
sumed that no other charge is present and 
that cp(00) = 0. We would like to know 
the potential cp(r,O) everywhere, both out- 
side and within the sphere. 

This potential must be equal to cp(a,0) at r = a, leading to the observation 
that 

Multiplying both sides by Pm(cos 0) and integrating with respect to cos 0 
from cos 0 = - 1 to cos 0 = + 1 [see Eq. (2-12-29)], we have 

(2-13-3) 
(2m + I)d"+'  Bmou' = 1- cp(a,O)Pm(cos 0) d cos 0 

2 

We have thus found the potential cp(r,0) outside the sphere. Inside the sphere 
we must have Bn = 0 or else our solution will diverge at r = 0. We have 
then 

m 

cp,(r,B) = 1 A,i"r"P,(cos 0) 
n = O  

(2-1 3-4) 

Again we are told what the potential cp(r,0) is at r = a. Substitution of 
r = a into Eq. (2-13-4) yields 

m 

cp(a,6) = c A,i"a"P,(cos 0) 
n = O  

The coefficients are thus given by 

(2-13-5) 

(2-1 3-6) 
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Note incidentally that the continuity of cp across our surface at r = a 
implies 

(2- 13-7) 

Now that we have such a powerful result, let us try it on the simplest 
physical situation and see if it works. We will take cp(a,6) to be a constant, 
namely, cpo. In that case we know from experience that the potential inside 
should be constant (this is like a conducting spherical shell) and the potential 
outside should be 

U 
cpw = 'Po 7 (2-13-8) 

Let us see if we come up with the same answers with our general method. 
We have 

1 
q(a,8)Pm(cos 6) d cos 8 = 'po Pm(cos 8) d cos 6 

= cpo 1- Po(cos 6)Pm(cos 6) d cos 6 

s: 1 

1 

s- 1 

Thus 

AO"' = cp0 

Amin = 0 form # 0 

B O O U '  = avo 

BmoU1 = 0 form # 0 

We finally obtain, as expected, 

241, i f m  = 0 = i  0 i f m f O  
(2-13-9) 

(2-1 3-10) 

(2-1 3-1 1) 

Vin(r9'3 = 410 

As we said earlier, we could specify the normal derivative of the 
potential at the surface (r  = a) and use that to obtain the coefficients 
B Y  or Anin. Since in general the derivative of cp with respect to r is not 
continuous at the surface (there being some charge at the surface), we 
must use (dqout/dr)r=a to determine the B,,O"' coefficients or (dcp,,/dr),,, to 
determine the Amin coefficients. Once we have determined either of these 
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sets, the other can be determined by requiring that cp be continuous. That 
is to say, q i n ( a , e )  = cpout(a,e). 

For example, we can write 

(2- 1 3- 1 2) 

This would yield the equation for BmoUt: 

The continuity condition expressed in Eq. (2-13-7) would then tells us Ami": 

. B,"" A,'" = - 
a 2 m +  1 (2- 1 3- 14) 

Alternatively we might have specified (dqin/dr)r=a, obtained the coefficients 
Ami", and then applied Eq. (2-13-14) to get Bmout. 

Let us now attempt a slightly more difficult problem. Let the potentials 
be specified on each of two concentric spheres at radii a and 6, respectively. 
We would like to find the potential between the spheres. We begin by 
writing down the potentials at a and b : 

(2-1 3-1 5) 

From Eq. (2-13-15) we determine the linear combination Amam + Bm/am+l 
for arbitrary m : 

We obtain another equation for A ,  and B, from Eq. (2-13-16): 

cp(b,O)P,(cos 0) d cos 8 (2-13-18) 

Using both Eqs. (2-13-17) and (2-13-18), we can find the A ,  and the B, 
coefficients, completing the solution to our problem. 

We next consider the problem of a spherical grounded conducting 
ball of radius a that is placed in a "constant" field. (Obviously, after the ball 
is introduced the field is no longer constant near the ball.) We assume that 
the potential is given by 

&,8) r -Eor cos 8 (2- 1 3- 19) 
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at large distances from the ball. At r = a, the potential is taken to be zero. 
Now referring back to our general solution, Eq. (2-12-25), we can im- 
mediately set all A,  except for A ,  equal to zero. A ,  is of course equal to 
- Eo. 

A ,  = -E 0 

A,  = 0 forn # 1 
(2-1 3-20) 

At r = a, we have 
m 

rp(a,0) = 0 = - Eoa cos 0 + P,(cos 0) (2-13-21) 
,=O 

In order that this hold for all 0, we must set the coefficient of each and every 
Legendre polynomial equal to zero. Hence 

8, = Eoa3 

B, = 0 forn # 1 

We finally have then 

(2-1 3-22) 

(2-13-23) 

The (normal) electric field at the surface is given by - (&p /dr ) ,= , .  

En = -(:) = 3E0 cos 0 
r = a  

The surface charge density is 

En 3EoCOS9 
4n 4n 

a = - =  

(2-13-24) 

(2-13-25) 

The total charge is zero, as might be expected. 
Finally, we consider what would happen if the conducting sphere we 

have just considered were to be replaced by a dielectric sphere of uniform 
dielectric constant E .  The absence of free charge ensures that V . D = 0 
within the sphere. But V . D = EV . E = -&V2rp in the case where E is a 
constant. Hence rp satisfies Laplace's equation within the dielectric as well 
as outside of it. Only at the surface of the dielectric is VZq not equal to zero. 

We will allow rpl(r,O) to be the solution within the dielectric and 
rp"(r,rp) to be the solution outside. Our boundary conditions are as follows : 

1. rp"+ -EorcosOasr+  00. 

2. The potential is continuous at the boundary of the dielectric. That is, 

3. The potential is finite at r = 0. 
rpya,o) = rpya,e). 
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4. The normal component of the displacement field D is continuous at the 
boundary. Thus 

= 

The continuity of the tangential component of E at the boundary is of 
course assured by boundary condition 2. 

Expressing both cp'(r,0) and cp"(r,0) in conventional form, we have 

n = l  ', 
Applying boundary condition 

A," = -Eo 

An1'= 0 forn # 1 

Applying boundary condition 

B, I = 0 for all n 

n = O  

cp"(r,0) = c W (A,,"r" + ,)Pn(cos Bl' 0) 

1 tells us that 

3 forces us to write 

Using the remaining coefficients, we next apply condition 2. 

We deduce from this that 

B," 
A,'a = -Eoa + 7 

A,"an = a"+' 
a 

B;' 
for n # 1 

Finally, we apply condition 4. 

(2-1 3-26) 

(2-1 3-27) 

(2-13-28) 

(2-13-2d) 

(2- 13-29) 

(2-1 3-30) 

(2- 13-3 1) 

E c A,'na"- 'Pn(cos 0) = - E,  cos 0 
n = O  

W 

- 1 (n :n:F1l P,(cos 0) (2-13-32) 
n = O  

We deduce, as before, that 

2B," 
a3 

&A,' = - E ,  - - (2-1 3-33) 
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(2-1 3-34) 

Equation (2-13-31) implies that A,,' and B,," have the same sign, for n # 1 .  
On the other hand, Eq. (2-13-34) implies that they have opposite signs for 
n # 1 .  We conclude that 

A,,' = B,," = 0 for n # 1 (2-1 3-35) 

Finally, combining Eqs. (2-13-30) and (2-13-33), we have 

E - 1  
B," = - Eoa3 

E + 2  

We can now write down the solution for cpl and cp" everywhere: 

3E0r cos 0 
E + 2  

cp'(r,O) = - 

cp"(r,O) = -Eor cos 0 + cos 0 

(2-13-36) 

(2-13-37) 

(2-13-38) 

A glance at Eq. (2-13-37) tells us that the field within the dielectric is a 
constant in the z direction and is equal to 

E + 2  
E(inside) = ~ Eok (3-13-39) 

In the event that E = 1 (no dielectric) this reduces as expected to E,k. 
The field outside the dielectric is clearly composed of the original constant 
field Eok and a field which has a characteristic dipole distribution with 
dipole moment of 

E - 1  

E + 2  
p = -  E0a3k (2- 13-40) 

We might check to see if the dipole moment we obtain this way agrees 
with what we expect from integrating the dipole moment per unit volume 
P over the sphere. Inside the dielectric we have 

D - E  p = -  
47c 

(2- 13-41) 
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Inasmuch as the dipole moment per unit volume is constant, we can obtain 
the total dipole moment through multiplying P by the volume of the sphere. 

p = P(4na3) 

E - 1  
E - k 2  

=- E0a3k as before 
.~ 

This completes our study of spherical boundary conditions. We will 
next learn how to determine the all-important coefficients A,  and B, in the 
event that the charge distribution is completely known. 

2-14 THE MULTIPOLE EXPANSION OF AN AZIMUTHALLY 
SYMMETRICAL CHARGE DISTRIBUTION 

Suppose a distribution of charge in space were limited in physical extent 
and azimuthally symmetrical and we wanted to find the potential it produced 
in some charge-free region. Presumably the potential could be written in 
the form given by Eq. (2-12-25) and our only job would be to find the co- 
efficients A,  and B,. We will now develop a beautiful and general method 
for determining these coefficients and incidentally gain a great deal of 
insight into the types of fields produced by various charge configurations. 

We need to distinguish two cases, that where the charge is all at a 
smaller radius than the point at which we wish to determine cp and that 
where the charge is all at a larger radius than that point. Obviously the 
solution to any problem can be broken into a sum of these two types of 
solutions, and hence we lose no generality by treating only these situations. 

We consider the first of these cases. Let r‘ and 0‘ be the coordinates 
referring to the charge distribution (see Fig. 2-21) and let r and 6 be the 
coordinates at which we wish to evaluate the potential cp. (We assume that 
r’ 5 r at all times.) In order that cp -, 0 as r + co we must require that 
A ,  = 0 for all n. Hence 

(2-14-1) 

Our job is then to determine the coefficients B, in terms of properties of 
the charge distribution. We recall our old expression for cp. 

(2-14-2) 

The trick is, of course, to express l/lr - r’l in a power series and then 
evaluate the set of individual terms. We remember that as long as x < 1, 
we can write 

(2-14-3) 
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Now 

1 -- - 1 
Ir - r’\ Jr’ + r” - 2r 9 r’ 

1 

Fig. 2-21 We consider the potential at a 
point (r,@ produced by an azimuthally 
symmetrical charge distribution p(r’,W), 
where r’ c r. 

(2- 14-4) 

Expanding by means of Eq. (2-14-3) and grouping terms with the same 
power of r‘lr together, we have 

1 1 re r’ 3(r - r’)’ - r”r’ 
-=-[l Ir - r‘l r +T+ r 2r4 

+ . . ] (2-14-5) 
5(r. r’)3 - 3(r - r’)r’’r’ 

2r6 + 
Our next step is to put Eq. (2-14-5) into a somewhat more pliable 

form. We first note that 

r = (r sin 6 cos $$ + (r sin e sin $)j + (r cos e)ic (2-14-6) 

r’ = (r’ sin 13’ cos $’$ + (r‘ sin 8’ sin $’$ + (r’ cos 0’)k (2-14-7) 

Hence, in complete generality, l/lr - r’l is a function of r, r‘, 8, O’, #, and 
$’.‘The fact that we are dealing with an azimuthally symmetrical charge 
distribution, however, permits us to evaluate the integral in Eq. (2-14-2) 
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at $ = 0 and apply the result at any value of $. Therefore, we need only 
consider Eq. (2-14-5) at $ = 0. Inserting this into the above we find 

r - r’ = rr’(sin 8 sin 8’ cos $’ + cos 8 cos 8’) (2- 14-8) 

(r - r’)’ = r’r’’(sin’ 8 sin’ 0’ cos’ $’ + cosz 8 60s’ 8’ 

+ 2 sin 8 sin 8’ cos 8 cos 8’ cos $’) (2-14-9) 

( r e  r’)3 = r3r”(sin3 8 sin3 8’ C O S ~  $’ + C O S ~  8 C O S ~  8’ 

+ 3 sin’ 8 sin’ 8’ cos 8 cos 8’ cos’ $’ 

+ 3 sin 6 sin 8’ cos’ 6 cos2 8’ cos $‘) (2-14-10) 

and so forth. 
Before proceeding, we again note that p has no $‘ dependence. Hence 

we can carry out the integration of Eq. (2-14-2) over $’ first. This is equiva- 
lent to replacing the various powers of cos $’ above by their average values 
before integration. The average values are 

(COS $‘) = o ( C O S ~  $0 = 4 ( C O S ~  $’) = o (2-14-1 1) 

This leads to the following results when we average the various powers 
of r - r’ over $’: 

(r r’)av = rr’ cos 8 cos 8’ 
((re rr)Z)JV = r2rt2(cos2 8 cos’ 8’ + + sin’ 8 sin’ 8’) (2- 14- 12) 

((r - r’)3)nv = r3rJ3(cos3 8 C O S ~  8’ + 3 sin2 8 sin2 8’ cos 6 cos 8’) 

Finally, to average Eq. (2-14-5) over $‘, we need 
and observe that 

to combine terms 

(2- 14- 13) 

Needless to say we can conjecture what the nth term in this series 
will be, and hence we write down immediately for Eq. (2-14-5) averaged 
over $‘: 
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If we now finally insert this result into the integral for cp(r,8) [Eq. (2-14-2)], 
we find 

p(r’,fI’)(r’)”P,,(cos I”) dV‘ (2-14-6) s charge 

m P,,(COS e) 
cp(r8) =nzo p s ,  

distribution 

We conclude that the coefficients B,, of Eq. (2-14-1) are given by 

Bn = 1 p(r’,I”)(r’)”P,,(cos 0’) dV‘ (2- 14- 1 7) 
charge 
distribution 

The terms B,, are called the 2”-pole moments of the distribution. For example, 

1 p(r‘,0’) dV‘ 
charge 
distribution 

total charge (or monopole moment) 

s charge 

(2- 14-1 8) 

p(r‘,W)z’ d V  = dipole moment (2- 14- 19) 
distribution 

p(r’,0’)(r’)2Pz(cos I”) dV‘ 
charge 
dislribution 

(2-14-20) 

s 
quadrupole moment 

Let us return to the beginning again and ask what cp(r,8) would be 
like if the charge distribution were all at radius larger than r. (That is to 
say, r‘ > r for all possible r’.) The expansion for cp(r,O) that we must use 
now, in order that cp not diverge at r = 0, is 

cp(r,8) = C A,,~“P,,(COS 0) (2-14-21) 

Equation (2-14-2) would still be appropriate for finding cp, but the expansion 
of l/lr - r’I must now be in a power series in r/r‘. Obviously everything 
we have done so far in expanding l/lr - r’l would be valid if we just inter- 
changed r and r‘. Returning to Eq. (2-14-15) we now rewrite it as 
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We conclude then that 

distribution 

(2- 14-23) 

Amusingly enough, we can now find the potential even within the 
azimuthally symmetrical charge distribution itself, even though that is 
obviously not a charge-free region. We take the point (r,6) at which we wish 
to find cp and break the charge distribution into two parts, that with r' 5 r 
and that with r' 2 r. We add the two contributions together and lo and 
behold-we have cp. In general then, in a case of azimuthal symmetry, 

d V  
m p(r',6')Pn(cos 6') 

n=O 

P 1 

+ r - n - l  J p(r',6')(r')"Pn(cos 6') dV' P,(COS 6) (2-14-24) 
r' < r 

Let us try out this magnificent formula on a uniformly charged sphere of 
radius R (see page 33 and Fig. 2-2). The charge density p is a constant in 
this case and can be taken out of the integral. Equation (2-14-24) becomes 

[remembering that 
1 

Pn(cos 6') d cos 6' = 0 unless n = O] J- 1 
R 

(p(r,O) = 4ap 1 r' dr' + Ji (r')* dr' 

(2-14-25) 

A simple calculation using the fields we previously determined from Gauss' 
law will verify that Eq. (2-14-25) is right. 

The really interesting applications of the development we have just 
carried out are in the field of atomic physics. As we shall see in the next 
section, careful calculation of the energy levels in atomic systems will 
permit us to determine important constants relating to the nuclear shape. 
In any case we are now prepared to deal in a systematic manner with any 
azimuthally symmetrical charge distribution. 

2-15 THE INTERACTION ENERGY OF TWO NONOVERLAPPING 
AZIMUTHALLY SYMMETRIC CHARGE DISTRIBUTIONS; 
DETERMINATION OF NUCLEAR SHAPE 

We will make use of what we have just learned to calculate the interaction 
energy of two nonoverlapping azimuthally symmetrical charge distributions. 
As we will see, this will have an immediate consequence in showing us how 
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to determine the various multipole moments of the nucleus and hence will 
provide exceedingly valuable information about nuclear structure. 

We must first explain precisely what we mean by interaction energy. 
If we go back to Eq. (2-7-7) we recall that the total energy of any distribution 
of charge can be written as 

(2-15-1) 

Suppose that our charge distribution p can be broken into two distinct 
distributions p1 and p z .  As an example of this we can take the atomic system 
where the nuclear charge distribution might be taken as p1 and the electron 
charge distribution might be taken as p z .  In any case, we have 

P(r) = P l ( r )  + PzW (2-15-2) 

Now each of these charge distributions is responsible for a portion 
of the potential at any given position. We can write 

where 

and 

(2- 15-4) 

(2-15-5) 

Thus we see that the total energy as evaluated through the integral 
Eq. (2-15-1) can be broken into four parts. 

1 1 
+ -7j- Ill Pl(r)(P2(r) dV + -7j- l,, Pz(r)cpl(r) dV (2-15-6) 

spacc spnce 

The first two terms in the total energy are just the self-energies of the 
two individual charge distributions. The third and fourth terms constitute 
the interaction energy. Now we can easily see that the third and fourth 
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terms are equal: 

(2- 15-7) 

(2-1 5-8) 

Now, if the two distributions are azimuthally symmetrical about a common 
axis and arranged in such a way that p2 is always outside p1 (as in an atom), 
then our expression for the interaction energy can be written in a very simple 
way. We have for cpl, 

(2-15-9) 

where B,(') is the 2"-pole moment of the inner distribution p l .  Substituting 
into Eq. (2-15-8), we obtain 

where, as usual, 

(2- 15-1 0) 

(2-15-1 1) 
space 

In the event that our charge distribution is an atomic system the part 
corresponding to the electrons is generally well known. Hence the A,(') 
coefficients in the above expansion can be found. In addition to this there 
are basic limitations set on the possible values of n as the result of fundamen- 
tal quantum-mechanical theorems. For example, the requirement that the 
laws of physics not change when we reverse the direction of flow of time 
in our equations implies that n cannot be odd. Furthermore, the maximum 
value of n is related to the total angular momentum of the system. Only 
total angular momentum values of [ d m ) h ] / 2 7 t  are allowed for a 
physical system, where 1 is an integer or half-integer and h is Planck's 
constant. The maximum value of n that we can have represented in a multi- 
pole expansion of the charge distribution may be shown on the basis of 
these fundamental theorems to be equal to 21. Hence by knowing the spin 
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of the nucleus we can determine how many moments can possibly exist. 
Since the charge is known, the first unknown moment in Eq. (2-15-10) is 
the quadrupole moment. A measurement of this term will now tell us 
whether the nucleus is “pancake” shaped or “cigar” shaped. A pancake- 
shaped nucleus will have negative quadrupole moment and a cigar-shaped 
nucleus will have positive quadrupole moment. Of course, a sphere has no 
quadrupole moment. 

2-16 THE ELECTROSTATIC STRESS TENSOR 

In all our discussions of the methods for determining electric field and the 
energies associated with these fields we have paid very little attention to the 
forces exerted on charges and charge distributions. We will remedy this 
shortcoming now by showing in detail how the force on a distribution of 
charge can be calculated in either of two ways. We can carry out a volume 
integral over the charge distribution itself in which we multiply the charge 
within any infinitesimal volume dV by the field at that point. Alternatively, 
we will discover a method of converting our volume integral into a surface 
integral in which only the fields on a surface enclosing the distribution of 
interest need be known. 

We begin, of course, with the force on the infinitesimal bit of charge 
in the volume dV. If p is the charge density in the volume and E is the 
electric field there, then 

dF = p E d V  (2-1 6-1) 

Integrating, we find for the total force on a given volume V of charge 

F = JvpEdV (2-1 6-2) 

Let us apply this to a very simple problem. Consider a uniform sphere of 
charge of radius R and total charge Q (see Fig. 2-22). We would like to find 
the total force exerted by any one hemisphere of the sphere on the opposite 
hemisphere. For convenience we have set up our z axis as shown and evaluate 

Fie. 2-22 A charge Q is spread uniformly over the volume 
of a sphere of radius R. We would like to find the force which 
thc lower hemisphere exerts on the upper hemisphere. 
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the force on the upper hemisphere by the lower hemisphere. Obviously 
only the z component of this force will remain after integration: 

F, = 1 pE,dV 
upper 
hemisphere 

(2-16-3) 

We recall from Eq. (2-2-6) that E(r < R )  = Qr/R3.  Hence 

(2- 16-4) Qr E, = - cos e 
R3 

where 0 is the usual polar angle. The charge density p is just equal to 
Q / $ c R 3 .  Substituting into Eq. (2-16-3), we obtain 

F , = -  3Q2 cos 8 sin 8 dtl joR r3 dr 
2R6 j: 
3 Q2 (2-16-5) 

So far we have added nothing new to our knowledge; we could have 
carried out this calculation 50 pages ago. We will now show that Eq. (2-16-2) 
can be converted into a surface integral where only a knowledge of the 
electric field on the surface is necessary. We recall that p = (1/4n)V . E. 
Substituting into Eq. (2-16-2), we have 

F = - E(V*E)dV 
411 ' J  v 

(2- 16-6) 

We next subdivide Eq. (2-16-6) into its components and make use of a simple 
vector identity and Gauss' theorem: 

F = -!- 4n [ jv E,(V . E)i dV + Iv Ey(V . E); dV + E,(V . E)k dV]  

[V . (E,E) - E .  V E X ] ?  dV + 
= -% 411 

[V * (E,E) - E . VE,] k d V  

E(E-A)dA - (2- 16-7) 

The surface S, as usual, encloses the volume V. To evaluate the second 
integral on the right-hand side of Eq. (2-16-7), we use the vector identity 

V(E-E) = 2(E. V)E + 2E x (V x E) 
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Since V x E = 0, we can rewrite Eq. (2-16-6) into the form 

(2- 16-8) 

We can now convert the second term into a surface integral by means of 
one of our standard identities. This leads to the result 

E ( E - A )  - -A dA 
F = '6[ 471 E 2  2 1 (2-16-9) 

A good look at the integrand of Eq. (2-16-9) will convince us that it can 
be written as the product of a tensor T and the vector A .  We write 

L 

where 

1 T = -  
4n 

E2 
2 Ex2 - - Ex EY 

E2 
ExEy E - - 

y 2  

We conclude then that 

F = TA dA 

(2- 16- 10) 

(2-16-1 1) 

(2- 16- 12) 

The tensor T is called the electrostatic stress tensor. As we see from Eq. 
(2-16-12), we can obtain the force on a given volume by integrating the 
product of the stress tensor and a unit normal over the surface bounding the 
volume. We will illustrate this technique by referring back to the problem 
we have just solved and again try to find the force on the upper hemisphere 
in Fig. 2-22. 

The surface we choose is arbitrary as long as it encloses the entire 
upper hemisphere and no other charge. There are two natural choices for S.  
One is the complete xy plane and the other is the actual bounding surface 
of the hemisphere itself. We will only use one of these, the complete xy 
plane, and leave the other to the reader as an exercise. 

On the xy plane, E, = 0 and A = -k. Hence, on this plane, 

1 TA = - E 2 k  
8n 
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Using dA = 27cr dr in Eq. (2-16-9), we obtain 

E2r dr 

= a joR R”dr Q2 r3 + aj: -dr  Q2 

r3 

(2-1 6-1 3) 

Needless to say, this result is identical to the one we obtained earlier by 
more conventional means. 

The utility of this stress-tensor technique will be most apparent in a 
situation where we know the electric fields surrounding a charged object 
but do not know the distribution of charge itself. By evaluating the stress 
tensor on a surrounding surface, we will indeed never have to determine this 
charge distribution if we want to know the force acting on it and nothing else. 

PROBLEMS 

2-1. A charge q is brought to a distance d from the center of a grounded (cp = 0), 
conducting sphere of radius R (see figure). 
(a) Show that the potential at all points outside the sphere can be obtained by 

replacing it with an “equivalent” point charge at some place on the line 
between its center and q. (The equivalent charge need not have a magnitude 
of -4.) 

(b) What is the charge per unit area of the sphere as a function of the polar 

(c) What is the total charge of the sphere? 
(d) How much force is exerted by the charge q on the sphere? 
(e) Suppose the sphere in the above problem were uncharged, rather than at 

zero potential. What would the answers to parts (b) and (c) become? 

A slab of dielectric of thickness f, length L, and width W is inserted between 
two plates of the same length and width with separation d. The plates are con- 
nected to a battery, with a potential difference V. Find the force on the dielectric 
when it has been inserted a distance y. 

angle O? 

2-2. 
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I 

Side view 

2-3. 

2-4. 

2-5. 

Top view 

Find the energy stored in a uniform, spherical charge distribution of radius R 
and total charge Q. 
A charge Q is deposited on a spherical conductor of radius R. What is the energy 
of the distribution? 

Two long, concentric conducting cylinders have radii a and b, respectively, 
and are each of length 1. The space between them is filled with material having 
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dielectric constant E .  If the potential difference between the cylinders is V,  
find the total energy stored in the fields between them. 

Consider the plane interface between a region with dielectric constant E = 1.3 
and a region with dielectric constant 1.6. The electric field in the first region is 
at 45" to the surface. What is the direction of the electric field in the second 
region? 

2-6. 

I 
L = 1.3 

I1 
c = 1.6 

2-7. A spherical conductor of radius a is surrounded (as shown) by a concentric 
dielectric with dielectric constant E, inner radius b, and outer radius c. These 
are in turn surrounded by a conducting shell of radius d. If a charge +Q is 
placed on the inner conductor and - Q on the outer conductor, find the electric 
field E and the potential cp at all points between the conductors. 

2-8. A dielectric separates two conducting plates. The area of the plates is A and the 
separation between them is t. The dielectric constant varies linearly as 

E = E ~ + ~ X  f o r O s x s t  

A charge + Q is placed on one plate and - Q on the other. 
(a) Find D between the plates. 
(b) Find P everywhere between the plates. 
(c) Find E everywhere. 
(d) What is the potential difference between the plates? 
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A 

2-9. The space between two concentric conducting spherical shells is half-filled with 
material of dielectric constant E ,  as shown. The radii of the shells are a and b, 
respectively. A charge Q is placed on the inner sphere and a charge -Q is 
placed on the outer sphere. Find the fields E, D, and P at all points between 
the conductors. 

b 

a 

2-1 0. Find the six independent coefficients of capacitance for three concentric spherical 
conducting shells, having radii a, b, and c, respectively (a < b < c). Choose 
two sets of values for cp., qb, cp, and show explicitly that Green’s reciprocity 
theorem works. 

2-11. A charge Q is brought from infinity to the neighborhood of an isolated un- 
charged conductor. The fields due to the induced charge distribution on the 
conductor do an amount of work Won Q as it is brought in. We now “freeze” 
the surface charge in place on the conductor and remove Q back to infinity. 
How much energy is stored in the remaining electric field distribution? 

2-12. Consider an atomic system which consists of a proton at the center of a uniform 
negative spherical charge distribution of radius R = 0.5 x cm. The total 
system is uncharged. A field E is now applied to the system causing it to become 
polarized. 
(a) Calculate the induced dipole moment. 
(6) Calculate the amount of work that the applied field has done in moving the 

proton from the center of the charge distribution to its new position. 
(c) Calculate the amount of field energy that would be present in a volume of 
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4zR3 having constant field E within it. How does this compare with the 
answer to (b)? 

2-13. A conducting spherical shell of radius R is cut into three segments, as shown, 
extending, respectively, from 8 = 0 to 8 = 60", from 8 = 60" to 0 = 120°, 

I 

and from 8 = 120" to 8 = 180". They are insulated from one another. The 
uppermost and lowermost segments are grounded (cp = 0) and the central 
segment is held at potential cpo. 
(a) Find the first four terms in a multipole expansion of the potential for r > R.  
(b) What is the total charge on the sphere? 
(c) What is the quadrupole moment of the charge distribution on the sphere? 
(d)  What is the potential at the center of the sphere? 

2-14. Making use of the stress tensor, demonstrate that the force per unit area on the 
surface of a conductor is 2na2 where u is the surface charge per unit area. 

2-15. Demonstrate that the capacitance of any conductor is always smaller than or 
equal to the capacitance of a conductor which can completely surround it. 

2-16. A flat circular disk of radius R has a charge Q distributed uniformly over its 
area. Show that the potential cp at point (r,B) where r > R is given by 

R 

2-17. A charge Q is distributed uniformly along a line coincident with the z axis from 
z = - a  to z = +a. Show that the potential at a point (r$) where r 2 a is 
given by 



3 
Electromagnetism and Its 
Relation to Relativity 

3-1 INTRODUCTION; THE MICHELSON-MORLEY EXPERIMENT 

We begin our study of electromagnetism in a highly unorthodox way- 
by deriving much of it from electrostatics, from the special theory of 
relativity, and from the underlying hope that the laws of physics, when 
looked at properly, are elegantly simple in their formulation. This is quite 
antithetical to the usual notion that physics is an empirical science and 
should be presented that way. The beauty of physics lies in the extent to 
which seemingly complex and unrelated phenomena can be explained and 
correlated through a high level of abstraction by a set of laws which are 
usually amazing in their simplicity. In the history of this abstraction, no 
triumph has been more spectacular than electromagnetic theory. 

105 
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To develop electromagnetism in its most beautiful form we must 
begin with the special theory of relativity. (Historically, of course, the 
roles of electromagnetism and relativity were reversed, and relativity was 
derived to explain the fact that Maxwell’s equations were not invariant 
under a galilean transformation.) We will first describe the Michelson- 
Morley experiment, which played a rather crucial role in the path to 
relativity. 

At the turn of the century, one of the more intriguing problems for 
the experimental physicist was a measurement of the velocity of the “ether,” 
that is, the medium which carried light. As we all know, the velocity of 
sound varies depending upon our velocity relative to the air. If v, is the 
velocity of sound in still air and V is our velocity relative to the air, then 
we observe a velocity v: for the sound given by 

v; = v, - v (3-1-1) 

Presumably, it was argued, light also has a fixed velocity relative to some 
medium which permeates all space, and if we find the velocity of that 
medium relative to the earth, we will be able to calculate the velocity of 
light in any direction as seen by our earthbound observer. To this end, 
Michelson and Morley designed an ingenious experiment which was to 
revolutionize the entire concept of space and time. 

There were already some indications of trouble before Michelson 
and Morley came along. Historically all the basic laws of electromagnetism 
were already understood by that time and had been formulated by Maxwell 
in terms of his elegant set of equations. As we shall see, these equations 
embodied all electrostatics and magnetostatics as well as the possibility of 
producing electromagnetic radiation by accelerating charges. Now Max- 
well’s equations contain a constant c which plays two vital roles. On the 
one hand, it is the ratio between the electrostatic unit of charge and the 
electromagnetic unit of charge. In other words the magnetic field produced 
by a moving charge will depend on the ratio of its velocity to c as will the 
force felt by a charge moving in a magnetic field. On the other hand, c is 
also the velocity with which electromagnetic radiation will propagate. If 
indeed there were an ether, then the form of Maxwell’s equations would 
change from reference frame to reference frame. In the reference frame of 
the ether itself the velocity of radiation could be considered a constant 
independent of direction. In any other frame of reference the velocity of 
light would depend on direction. Would that mean that the force between 
current loops would then depend on their orientation relative to the ether 
flow? Nothing in Maxwell’s equations allows for this possibility at all, 
and they would obviously need extensive modification and correction. 
Notwithstanding these problems it was still considered of the utmost 
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importance to make a direct measurement of the velocity of the ether 
relative to the earth. This Michelson and Morley set out to do.' 

Inasmuch as the ether has no problem in passing through matter 
(it could not be removed from an evacuated container) and would hence 
not be dragged along by the earth, one would anticipate a variation in the 
velocity of light on the earth's surface as the earth traveled about the sun. 
The velocity of the earth relative-to the sun is about times the velocity 
of light in ether, and hence variations of this order were anticipated in the 
relative velocity of earth and ether over the course of a year. 

An idealized sketch of the apparatus is shown in Fig. 3-1. It is assumed 
that the ether is moving to the right along the positive x axis with velocity V. 
A light beam, initially traveling in the positive x direction, strikes a half- 
silvered mirror A inclined at 45" to the x axis. Half the light continues 
through to a mirror B at a distance L, and back again. The other half 
reflects into the positive y direction at mirror A, goes on to mirror D at a 
distance L,, and then returns to A. The returning beams from both B 
and D recombine to produce beams going in the negative x and y directions. 

[Now in practice the observer looking into A from either the negative 
x or negative y direction will see an interference pattern, as light which has 
passed through a given path on one arm meets light which has passed 
through a corresponding path on the other arm. Optical paths are made to 
vary somewhat from the "ideal" to produce a series of "fringes" as the 
observer looks into A. We will continue to assume, though, for the sake of 

i i  "Ether" velocity V 
! ILD 
i t  

I ----- ---g--- -+- ---- r - ---- 4 Incoming light 

B 

i 
4 
I 

Fig. 3-1 

'The author takes no responsibility for the correctness of the historical exposition. Not having 
studied the history he has imagined what it must have been like and has arranged it to suit. 

An idealized sketch of the Michelson-Morley apparatus. 
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argument, that all beams are perfect, parallel beams traveling either 2LB 
‘or 2LD as they go through excursions (A -+ B -+ A) or (A -+ D -+ A).] 

Let us calculate the time for the paths A + B -+ A and A -+ D -+ A 
in the classical manner, by imagining ourselves moving with the ether. 
We now see the light moving with velocity c, and our calculation requires 
only that we know how far the light must travel. 

We see the light beam heading toward B, but we see B coming to 
meet it with velocity V. Hence 

L, - Vt,,, 
c fn-r ,  = 

Similarly 

Hence 

and 

(3-1 -2) 

(3-1-3) 

(3-  1 -4) 

As we watch the light path A -+ D -+ A, it appears as in Fig. 3.2. The 
distance the light must travel is 2 , /LD2  + V t,,,D,,2/4, and hence the 
time it takes must then be 

2 

path 

of A 
Fig. 3-2 
D to A as seen from the “ether.” 

The path of the light from A to 
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Thus 

(3-1-5) 

If we were now to adjust L, and LD for maximum constructive interference, 
we would have 

where 1 is the wavelength of the light. Without loss of generality we can 
set n = 0 if L, and LD are about equal. We have then 

(3- 1-6) 

We can now turn the apparatus through 90" so that the ether is moving along 
LD. The interference should change, of course, as we carry out this rotation. 
We have obviously arranged it, according to Eq. (3-1-6), so as to have 
LD slightly longer than L,. After rotation, however, this relationship will 
no longer do, in general, for maximum constructive interference. 

We can investigate the sensitivity of our apparatus by asking how 
long the arms must be in order that maximum constructive interference 
changes to maximum destructive interference as we rotate. We assume that 
V is equal to the velocity of the earth, namely, 10-4c. In our rotated system 
the times are now given by 

(3- 1-7) 

and [making use of Eq. (3-1-6)] 

2L. 

(3-1-8) 2LD = -  
C 

Hence, letting the difference between these times be equal to half the wave- 
length divided by c, we have 

"( 1 -+- A 
c 1 - VZ/cZ 2c 

This leads to the result 

(3- 1-9) 
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If we now take V = 10-4c and = 4 x lO-’cm, we find that L, must 
be 10 meters long. This would be a formidable piece of hardware if it were 
built according to our model above. In practice the length is achieved by 
means of a long series of reflections, but the basic principle is unchanged. 
In any case, the observer watches the interference fringes carefully as 
the apparatus is rotated and looks for a shift in the pattern. 

Can you imagine the excitement that Michelson and Morley felt 
when they observed no change at all in the interference pattern as they 
rotated the apparatus? The immediate explanation that probably occurred 
to them was that at this particular season the earth and the ether must be 
moving together. So they would have to wait 6 months to really be sure! 
It was probably a very difficult 6-month wait, but, needless to say, no change 
in the interference pattern was ever seen. Out of this experiment grew one 
of mankind’s most beautiful ideas: Einstein’s special theory of relativity. 

3-2 THE LORENTZ TRANSFORMATION 

Of course, there were many attempts at finding alternative solutions to the 
predicament posed by the Michelson-Morley experiment, but we will, in 
keeping with Einstein, take the very simplest. We shall assume that the 
velocity of light is a constant of nature and that observers in all frames of 
reference moving with constant velocity with respect to one another measure 
the same constant. This immediately explains the Michelson-Morley experi- 
ment and leads us directly to the Lorentz transformation for converting 
the coordinates (x,y,z, t)  of an event in one frame C to the coordinates 
(x’,y’,z’,t’) of the same event in an equivalent frame C’. Equivalent frames 
will be taken to mean frames which move at constant velocity relative to 
each other. 

To begin our derivation of the Lorentz transformation, let us assume 
that system C’ is moving with velocity V along the x axis of system Z (see 
Fig. 3-3a). Let us further assume that the x‘ axis lies superimposed along 
the x axis and that the y’ and z’ axes are parallel, respectively, to the y 
and z axes. Both clocks ( t  and t’) will be set at zero when the origins of X 
and C‘ coincide. 

We next show by trivial argument that y’ = y and z’ = z .  Let us take 
two absolutely identical twins and stand one along the y axis and the other 
along the y’ axis and have the twins approach each other. Now, for the 
sake of argument, let us assume that twin John in the C system believes his 
brother Jim to be shorter. Then, since we assume neither system to be 
preferred, Jim must think that John is shorter. As they collide we have a 
most remarkable set of circumstances- John sees Jim’s head plow into his 
own belly as he feels his own head plow into Jim’s belly. Quite absurd! ! 
There is only one sensible solution, each still sees the other as being of the 
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y y ’  

z 2’ 

(a) 

Fig. 3-3 (a) The coordinate system Z’ moves with velocity V 
along the x axis of the Z coordinate system. John is riding along 
in the Z system while Jim is in the Z‘ system. 

same height as himself. That is, dimensions transverse to the direction of 
motion are unaltered in a Lorentz transformation. 

Now we come to the matter of clocks. We would like to examine how 
each of our twins sees the other’s clock in relation to his own. Since the 
velocity of light c is a fundamental constant of nature, the “ideal” clock, 
so to speak, is a perfect stick of length L with a mirror at each end and a 
bit of light beam bouncing back and forth. Let each twin align his clock 
along the y (or y’) axis. Each twin sees his own light beam take a time 
T = 2L/c for the complete cycle. Meanwhile he sees the other twin’s light 
take an amount of time tother. Of course, tolhcr is larger than z, since the 
light must travel along further (see Fig. 3-3b). The path of the other light is 

Consequently 

and, solving for tolher, 

2L z 
(3-2-1) 



112 ELECTROMAGNETISM AND ITS RELATION TO RELATIVITY 

/ 
(4 

Fig. 3-3 (cont'd) (b) Path taken by Jim's light beam as seen by John. 

Thus each sees the other's clock moving more slowly, by a factor of 

1 

JT=-Pp 
Having developed a means of comparing clocks in two equivalent 

coordinate systems, we now attempt a comparison of lengths along the 
direction of relative motion. Let John, in the C system, lay his standard 
clock, of length L as he sees it, along the x axis. We presuppose now that 
Jim in the C' system measures the length of the rod as L', and we wish to 
relate L' to L. John (C) believes that the light takes a time t = 2L/c for a 
complete cycle, and, as we have already determined, Jim thinks it takes 
longer, namely, 2 L l c J m .  Now let us visualize the entire process 
as seen by Jim (Y)  (see Fig. 3-3c). He sees the transit of light to the right 
as taking an amount of time tk .  At the same time he sees the end of the rod 
moving toward the light beam with a velocity V, and hence the distance 
covered by the light beam in going from left to right ( A  to B') is just L' - Vrk. 
The light having traveled at a velocity c has thus taken a time t i  = 
(L' - Vtk)/c, yielding 

L' 
t i  = 

c(l + V/c) 
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Fig. 3-3 (cont’d) (c) The Z system as viewed by an observer in the 
Z’ system. L‘ is the apparent length of Z’s clock. The path indicated is 
followed by Z’s light beam in the course of one cycle. 

Similarly we would find the time from B’ to A’ as 

L‘ 
t;. = 

c(1 - V/c)  

Using our information about clocks, we have 

2L‘ 1 - 2 L  1 
t;. + t i  = - 

c JC-Pp - -F 1 - vz/c2 

yielding 

L = / < L  

(3-2-2) 

(3-2-3) 

We thus come to the following conclusion. Each observer determines 
distances along the direction of relative motion to be foreshortened in the 
other coordinate system. Jim thinks that John is abnormally thin in one direc- 
tion, and Jim, of course, thinks the same about John. 

Having learned how to compare meter sticks and clocks, we are now 
ready to derive the full Lorentz transformation. Let us say that an event 
occurs at position x and at time t in the C system. The observer in the C’ 
system reasons as follows: 

1. When both clocks were at zero, then the point x would appear to him as 
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2. During the time interval t' (before the event occurs as seen by C'), 
the C system moves in the negative x' direction by an amount Vr'. 

3. Hence we conclude that 

x' = J G x  - Vr' 

Solving for x, we have 

x' + Vt' 
x=Jm 

By symmetry we can also say 

x - vt x' = 
J F P p  

Combining these equations, we have 

t' + (V/c2)x' 

r - (V/c2)x 
J l 7 q F  

( =  JC-Pp 

t' = 

(3-2-4) 

(3-2-5) 

(3-2-6) 

(3-2-7) 

To make our notation simple, we define the symbols p and y by 

V 
p = -  (3-2-8) 

C 

(3-2-9) 

Let us now set down the matrix 

0 0 ipy 

L = [  0 1  0 '1 wherei=, / - l  (3-2- 10) 

- iPy 0 0 y 

We will call the element in the pth row and vth column Lpv.  If we now 
write 

x 1 = x  x g = z  

x2 = y x4 = ict (3-2-1 1) 
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then the Lorentz transformation can simply be written as 
A 

(3-2- 12) 

We note immediately the formal similarity with equations in three-dimen- 
sional space. For example, the analog of Eq. (1-2-3) is 

4 c L p J p ,  = a,, (3-2- 13) 
v =  1 

In terms of our four-dimensional notation, the old rotation matrix a 
(see page s) is now written as R : 

all a12 a13 

R =  [::: a23 i] 
a32 a33 

0 1  

(3-2-14) 

A pure rotation in three-dimensional space would then be expressed as 

(3-2- 15) 

Now R and L are both subsets of the set of all four-dimensional rotations 
(called the Jmentz group). If we wish to find the Lorentz transformation 
between two coordinate systems whose relative motion is along some 
direction other than the x axis, we can apply the succession of rotation, 
Lorentz transformation, and inverse rotation to achieve our ends. 

The set of four quantities (xl,x2,x3,x4) is a four-vector in this four- 
dimensional space. As we anticipate, its length remains invariant under 
any Lorentz transformation : 

XZ + + 2 2  - C 2 p  = $2 + y’2 + f 2  - &’Z (3-2-16) 

All sets of four quantities which transform as (x1,x2,x3,x4) under this 
group of transformations will be called four-vectors. Scalar products 
of four-vectors are made in the same way as before. If u and w are four- 
vectors, then the scalar product is 

4 

p =  1 
uw = c UpWp (3-2-17) 

For convenience we will also adopt the convention that Greek subscripts 
(p,v,etc.) refer always to the numbers 1, 2, 3, 4, while Latin subscripts 
(ij,k,etc.) refer only to the numbers 1, 2, 3. 
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The definition of a tensor of the second rank in four dimensions is 
quite analogous to that in three dimensions. The 16 elements transform 
like the set of component products of two four-vectors. There is nothing 
analogous to the vector product in four dimensions, since, as we have seen, 
the vector product is a special tensor of the second rank in three dimensions. 
We shall have more to say about this shortly. 

In any case, we have now developed enough formal machinery to 
enable us to transform the position and time of an event as seen by one 
observer into the position and time of the same event as seen by an equiva- 
lent observer. We can now take a look at the mechanics of a moving particle 
and see how the dynamical quantities which characterize its behavior can 
be transformed as we go from one to another of these coordinate systems. 

We begin with the simplest dynamical quantity, its velocity, which 
we call u in the I: system and u‘ in the I:’ system. As usual, Z’ moves with 
velocity V along the positive x axis. We have 

, dx’ dx - V d t  
= - =  

dt‘ dt - (V/C’) dx 

u, - V 
1 - Vu,/c2 

- - 

1 U Y  

y 1 - U,V/C’ 
u’ = - 

1 UZ 

y 1 - u,v/c2 
u’ = - 

(3-2-18) 

(3-2- 19) 

(3-2-20) 

The most interesting of these velocity transformation formulae is 
Eq. (3-2-18) relating u, and u:. In the old days, before we heard of relativity, 
we would have simply let u: = u, - V. Thus if a particle was moving along 
the negative x axis with velocity u, = -2c and the c’ system was moving 
along the positive x axis with velocity $c, we would naturally expect the 
X’ observer to see the particle moving with velocity 1 .5~ .  It stands to reason! 
Now we say, instead, that u: = - 1.5c/(l + A) = (-24/25)c. Very odd 
indeed. In fact, try as we may, as long as lux[ < c and I VI < c we can never 
have Iu:l greater than c. 

We next consider the component of momentum of the particle that is 
transverse to the direction of relative motion of the two coordinate systems. 
This component must be invariant under Lorentz transformation from one 
of these systems to the other. Physically, this is easiest to understand by 
placing oneself first in one frame and then accelerating to the other frame. 
As we accelerate we see fictitious forces causing a change in momentum 
in the x (or x’ )  direction but never in the y or z directions. (We could not 
even know how to define the y or z directions on the basis of the relative 
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velocity of the two coordinate systems above.) Making use of this require- 
ment, and freeing ourself of the notion that mass is an invariant scalar quan- 
tity under a Lorentz transformation, we have 

mu, = m'u; (3-2-2 1 )  

Inserting our previous result from Eq. (3-2-19), we have 

(3-2-22) 

The expression on the right can be simplified as follows. We first calculate 
1 - u"/c2 by inserting the expression 

UIZ = 24:' + 24;' + u:2 

- (u, - v ) z  + u,2(1 - V Z / C 2 )  + u,2(l - V Z / C Z )  

(1 - u, V/C2)2 
- 

Simplifying and combining terms yields 

u'2 
C2 (1 - U , V / C 2 ) 2  

(1 - u2/c2)(1 - V Z / C Z )  I - - =  

or 

(3-2-23) 

We will find this expression quite useful. Returning to Eq. (3-2-22), we can 
now write 

(3-2-24) 

We see thus that the expression m J m  is an invariant constant 
under a Lorentz transformation. We will call it mo, the value it has when 
u = 0. We have then 

(3-2-25) 

The quantity mo is referred to as the rest mass of the object. Having found 
the way to transform m as we go from one system to another, we are now 
ready for the x component of momentum. As usual we write 

p i  = m'ui 

(3-2-26) 



118 ELECTROMAGNETISM AND ITS RELATION TO REUTIVITY 

But, using Eq. (3-2-23) again, we obtain 

(3-2-27) 

Putting all of what we have learned together, we finally come up with the 
equations 

P; = Py 

P: = Pz 
(3-2-28) 

m’c = y mc - -px ( 3 
Lo and behold, the set of four entities @,, py, pz, imc> transforms as a four- 
vector under a Lorentz transformation! 

We now make a most remarkable discovery-that momentum con- 
servation¶ if it is to be independent of coordinate system, implies energy 
conservation. Imagine a collision between particles 0 and 0 giving rise 
to particles 0 and @. Momentum conservation tells us that 

P1 + Pz = P3 + P4 (3-2-29) 

Let us form the four-vectorp, + pz - p3 - p4: 

Pi + Pz - P3 - P4 = [Pi + Pz - P3 - P4, i(mi + mz - m3 - M J C ]  

= [0, i(m, + m2 - m3 - m&] (3-2-30) 

If the first three components are to remain zero for any Lorentz transforma- 
tion, then the fourth component must also be zero. Hence 

m, + mz = m3 + m4 (3-2-3 1) 

To bring this equation into correspondence with classical physics we note 
that for small u 

moc2 + &mou2 (3-2-32) 

This is then equal, for small u, to a constant plus the kinetic energy of the 
mass. We then define the energy of our mass as mcZ and observe that energy 
conservation is a direct consequence of momentum conservation. 
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We can derive a very useful relationship between energy and momen- 
tum by making use of Eq. (3-2-25). We let mcz be denoted by the symbol E 
and recall that 

Hence 

mO2c4 
1 - u2/c2 

E2 = = p2c2 + mO2c4 (3-2-33) 

Another equally useful expression relates the velocity u to the ratio of 
pc and E. Making use of Eqs. (3-2-25) and (3-2-33), we can easily obtain 

p = - = -  PC 
c E  

(3-2-34) 

Before we leave the subject of relativistic kinematics, we will say a 
few words about a system of units which plays a predominant role in dealing 
with atomic, nuclear, and subnuclear phenomena. This system is based on 
the electron volt as a unit of energy. The volt is a unit of potential difference 
in the mks system and can be related to our unit of potential difference, 
the statvolt, by the equation 

1 statvolt = 10-8c volts (3-2-35) 

where c is the velocity of light in centimeters per second (lO-’c is about 
300). The electron volt (eV) is then the amount of energy which corre- 
sponds to moving a charge equal to the charge of an electron (or proton) 
through a potential difference of 1 volt. Since the charge of the electron, e 
is equal to 4.8 x lo-’’ esu, we have 

4.8 x lo-’’ 
300 

ergs = 1.6 x 10-”ergs 1 eV = (3-2-36) 

Next we introduce the units of momentum and mass which go with 
the electron volt in common usage. Both are obtained from our energy 
units by allowing c to equal 1 in our kinematic equations. The unit of 
momentum is called the eV/c and the unit of mass is called the eV/cZ. The 
rest mass of a particle whose rest energy is moc2 eV is thus m,  eV/c2. (In 
Table 3-1 we list the rest masses of some of the more important elementary 
particles.) The momentum (in eV/c) of a particle whose mass and energy 
are known is obtained from Eq. (3-2-33): 
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where E is in eV and m, is in eVjc'. The velocity of a particle is given by Eq. 
(3-2-34): 

P'P (3-2-37) E 

where p is in eVlc and E is in eV. Although this system of units will seem 
odd to the student at first, he will soon become accustomed to the great 
advantage of not having to carry around c's everywhere. 

Let us illustrate the methods discussed above by calculating the velocity 
of a proton which has acquired a kinetic energy of 500 MeV (a MeV is 
lo6 eV). Referring to Table 3-1 we see that the mass of a proton is 938 
MeVlc'. Hence its rest energy is 938 MeV. Adding this to the kinetic energy, 
we obtain 

E = 938 MeV + 500 MeV = 1438 MeV 

We next find the momentum p .  

p = J(1438)' - (938)' = 1090 MeV/c 

Finally we determine the velocity of the proton relative to the speed of light : 

p = - = - -  p 1090, 
- 0.758 

E 1438 

TABLE 3-1 
elementary particles? 

Tabulation of the masses of some 

Particle Symbol Mass (in MeV/c2) 

Electron 
Muon 
Charged pion 
Neutral pion 
Charged kaon 
Neutral kaon 
Eta 
Proton 
Neutron 
Lambda 
Sigma plus 
Sigma zero 
Sigma minus 
Xi zero 
Xi minus 
Omega minus 

e' 
P* 
n* 
no 
K* 
K O  

9" 
P 
n 
A" 
z+ 
Z" 
z-  
co 
I -- I 
n- 

0.51 1006 & 0.000002 
105.659 f 0.002 
139.578 f 0.013 
134.974 & 0.013 
493.82 0.11 
497.76 & 0.16 
548.8 & 0.6 
938.256 0.005 
939.550 f 0.005 

11 15.57 & 0.07 
1189.43 f 0.17 
1192.55 0.1 1 
1197.42 f 0.09 
1314.7 & 0.7 
1321.25 f 0.18 
1672.4 f 0.6 

?From compilation of Prof. A. Rosenfeld. 



3-3 CHARGE DENSITY AND CURRENT DENSITY 121 

3-3 CHARGE DENSITY AND CURRENT DENSITY AS 
COMPONENTS OF A FOUR-VECTOR 

We remember from elementary physics that current is somehow related 
to the movement of charge. In this section we will put this notion on a 
quantitative basis and then show that current density and charge density 
are closely related as components of a four-vector. This is not altogether 
surprising for we anticipate that stationary charge density as seen from one 
reference frame will appear to be moving in another reference frame. 

It is simplest to begin with a collection of discrete charges which are 
sufficiently closely spaced so as to be effectively a continuum. We will assume 
that the charge q i  has a velocity vi ,  and we then define the current density j 
at a given point by the equation 

1 qivi 
j,,, = lim I 

A r - 0  AT 
(3-3-1) 

where AT is a small volume element about the point of interest. (We have 
attached the subscript esu to indicate that the current density so defined 
is in electrostatic units.) Of course the charge density in this case is defined 
as before : 

(3-3-2) 

This definition of current density is quite in keeping with our intuition. 
If we want to determine the charge per unit time flowing past a bit of surface 
dA in the direction of the normal vector A, we just evaluate j,,, - A dA. 
The flux of j out of a given volume is just the charge leaving it per unit time. 

Rate at which charge is leaving A V = J j,,, * a d~ (3-3-3) 

We now make a most important empirical observation. The total 
charge that a given object carries is an invariant with respect to a Lorentz 
transformation. Were this not the case we would have a very insane world 
indeed. As we heated a bit of matter, the average electron velocity would 
increase quite differently from the average nuclear velocity. Hence, if the 
negative charges of the electrons just canceled the positive nuclear charges 
at one temperature, they would not do  so at  all temperatures. The body 
would then change its overall apparent charge with changing temperature, 
and, remembering the basic strength of the electrostatic force (see page 34), 
disastrous consequences would follow. Fortunately, when the laws of 
physics were first set down, this problem was averted through the Lorentz 

surface 
of AV 
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invariance of total charge. (As we have seen, this invariance does not hold 
true for the total mass of an object. Its mass does increase as it speeds up. 
However, because the net gravitational force on matter is not the resultant 
of a delicate balance of opposites as it is in the case of electrostatics, the 
consequences are negligible.) 

We now ask how j,,, and p transform under a Lorentz transformation. 
Since not all our charges are necessarily moving with the identical velocities, 
we must break our charge and current distribution into subdistributions. 
Each of these subdistributions will consist of all charges that do have more 
or less identical velocities. We can treat each of these subdistributions 
independently as we go from one frame of reference to another and add 
them together at the end. 

For the typical case we have j,,, = pv where v is the velocity of the 
subdistribution. We transform into the system C’ moving with velocity v, 
in which case 

j’ = 0 
(3-3-4) 

p’ = po = charge density in rest frame of subdistribution 

When we transform back to the original system E, all distances along the 
transformation direction are compressed by the factor Jv, and, 
in order that the total charge remain constant, the charge density must 
increase by the factor l / J m .  Hence in the C system we have 

Po 
= JT- 

Since j,,, = pv in this system, we also have 

(3-3-5) 

(3-3-6) 

We notice that these equations are completely identical in velocity depen- 
dence with the previously derived equations for mass and momentum: 

mnv 

But the four quantities p x ,  p y ,  p z ,  and imc transform as a four-vector under 
Lorentz transformation. The conclusion is clear. The four quantities 
jx(csu), jP(,,,), jz(usu), ipc must transform as a four-vector. 

At this point it is convenient to make a change in our units. We intro- 
duce the so-called gaussian units, wherein p is expressed in electrostatic 
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units as before but j is expressed in electromagnetic units. The definition of 
the electromagnetic unit is 

J W  
Jcmu = - 

C 
(3-3-7) 

We shall no longer carry the subscript emu or esu but tacitly assume that 
j = j,,,. The four quantities j,, j,, j,, and ip constitute our new four-vector. 

Consider now how we would express conservation of charge within a 
given coordinate system. The rate of change of charge in a volume is equal 
to the charge entering the volume per unit time. Using Gauss' law, we can 
write this as 

(3-3-8) 

Note then that the left side of the equation is just the scalar product of the 
two four-vectors [ (d/dx, d/dy, d/dz,  l/ic(d/dt)] and (jx, jy,  j,, ip) and is thus 
invariant under Lorentz transformation. If the conservation of charge 
holds in one coordinate system, it will hold in any equivalent system! 

3-4 THERE MUST BE A "MAGNETIC FIELD"! (THE REQUIREMENT 
OF LORENTZ INVARIANCE IMPLIES A VECTOR POTENTIAL) 

Until now our study of relativity has been largely limited to kinematics. 
That is to say, we have learned how to transform some of the variables that 
describe a dynamical system from one coordinate system to another, but 
we have not discussed at all the laws of physics which govern the behavior 
of these variables. We will now begin to do so with a very simple assumption. 
We will assume that the force on a charged particle in its own rest frame is 
given by the electric field as the particle sees it. Furthermore, we will assume 
that if the charge and current distributions that it sees in its own rest frame 
are not changing with time, then the electric field it sees will be determined, 
just as in the case of simple electrostatics, by Eq. (2-1-4). 

The consequences of these innocent-sounding assumptions are abso- 
lutely fantastic. We will now show that the electric field cannot provide a 
complete description of the long-range forces resulting from charges and 
currents, but that there must in addition be other field quantities at each 
point in space which exert a velocity-dependent force on a moving charged 
particle. Thus we will deduce that there must be a magnetic type of force. 
Later we shall see how to express this force in terms of magnetic field. 

We begin with an exceedingly simple problem. We consider an in- 
finitely long cylindrical region of radius R which carries a constant current 
density j but no charge density ( p  = 0). We can achieve this by having an 
equal density of positive and negative charges moving in opposite directions. 
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-5 

A charge q is now projected with velocity v parallel to the current, at a 
distance r from its axis. We wish to find the force exerted on the charge 
(see Fig. 3-4). 

We first note that nothing we have done in electrostatics would seem 
to indicate that there should be any force whatsoever on the charge q. 
Any force we discover now will be new. Of course, we anticipate from 
previous experience that there should be a “magnetic” force on q, but 
as we will now show, this state of affairs is completely deducible from 
electrostatics and the Lorentz transformation. 

We begin by doing the obvious, jumping to a system in which the 
charge is at rest. In this system C’ moving with velocity v with respect to 
the laboratory C, we see the current density j’ and the charge density p’ 
given by 

t R  

r 

j ;  = j :  = j,, = j ,  = 0 

ip’ = -iflyj, 

That is to say, we see a negative charge density for r 5 R equal to 

(3-4-1) 

(3-4-2) 

The electric field set up at the radius r is radial in direction and is just (from 
Gauss’ law) 

27cR’p’ 
r E,’= + ___ 

If we let I = 7cRZjx = total current, we have 

g = - 21v 
CJ‘ r 

(3-4-3) 

(3-4-4) 
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Now, the force on our charge q is just qE: in this system. But this force is 
also equal to dpJdz in the C' system where z is the particle's proper time 
and pi  is its transverse momentum. Hence 

dp;= - 21vq 

dz cJ- r 

Going back to C, we note that 

dP; = dPy 
and 

dz 
dt = JV 

Substituting back, we find the force on q in the laboratory. 

(3-4-5) 

(3-4-6) 

(3-4-7) 

As we see, this is just equal to what we would have predicted from magneto- 
statics, as we learned it in elementary physics. We would have said 

U 21 
F Y = - q - B  and B = -  

C r 

So we have made a major discovery. A charged particle moving in 
the proximity of a current distribution has a force acting on it, even though 
there is no other charge density present! Unfortunately though, life is not 
quite so elementary, for if we try to project the charge q in the y direction 
(toward the axis of the current distribution), we run into trouble with our 
simple reasoning. If we jumped on board our particle, we would see no 
apparent change in the current density and we would see no charge density 
at all. This is because the current j is now transverse to our velocity of trans- 
formation and there is no longitudinal current or charge density in the 
laboratory. What do we do now? Do we conclude that the charge q will 
now have no force on it? Of course not! We have gone outside the area of 
validity of electrostatics because we now see a current distribution which is 
changing with time. It is approaching us with velocity -v ,  and we have no 
right to expect that electrostatics will give us the full answer. So we must now 
go back and think out our whole problem from scratch. 

To feel our way, let us recall the equation relating potential to charge 
distribution: V2q = -4np.  It is clear that this equation is not properly 
invariant under a Lorentz transformation. To make it so, the operator V2 
has to be replaced by something which transforms as a scalar in four- 
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dimensional space. Obviously we want 

(3-4-8) 

The symbol on the right, called the D'Alembertian, reduces to the laplacian 
V2 in the event that there is no time dependence to cp and has the right invari- 
ance under Lorentz transformation. The proper equation for cp is then 

Ocp = -471p (3-4-9) 
Since p is the fourth component of a four-vector, cp must also be so. Hence 
we must have three other components A,, A,, and A ,  such that the set 
of objects (A,, A,, A,, icp) is a four-vector and 

OA, = -471jx 

D A Y =  -4 njy 
U A , =  -4 715, ' 

(3-4-10) 

(3-4-1 1) 

(3-4- 12) 

In the event that j and p are not time dependent, we can rewrite these equa- 
tions in integral form just as in electrostatics. 

Xr') dV' 
A =  6. 

(3-4-13) 

(3-4-14) 
space 

In summary then, the laws of electrostatics must be generalized by intro- 
ducing a four-vector potential A, corresponding to the four-vector current 
j, such that 

(3-4-1 5 )  

This equation represents our first breakthrough in understanding 
how to generalize from electrostatics. We see that one component of poten- 
tial is inadequate but that we must have four components in order that our 
old equations for electrostatics not be limited to one particular coordinate 
system. The Eqs. (3-4-15) have the property that if they hold for one system 
they will hold for all systems and reduce properly to the equation of electro- 
statics in the event that there is no time dependence in any given system. 

3-5 THE ELECTRIC AND MAGNETIC FIELDS AS ELEMENTS 
OF A SECOND-RANK TENSOR 

Our next step is to find the fields that exist at each point in space in terms 
of the four components of vector potential. Again we use what we have 
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learned in electrostatics to point the way for us. We recall that in the absence 
of time dependence we have E = - V q ,  which we can rewrite as 

(3-5-1) 

It is clear then that the three components of electric field are really elements 
of a second-rank tensor in our four-dimensional space. Our job is now 
reduced to finding the complete tensor. 

So far everything we have done has been entirely deductive, making 
use only of Coulomb’s law, conservation of charge under Lorentz trans- 
formation, and the requirement of Lorentz invariance for our physical laws. 
We have now come to the end of this deductive path. At this point when the 
laws were being written, God had to make a decision. In general there are 
16 components to a second-rank tensor in four dimensions. However, 
in analogy to three dimensions we can make a major simplification by 
choosing the completely antisymmetric tensor to represent our field quan- 
tities. Then we would have only 6 independent components instead of the 
possible 16. Under Lorentz transformation the tensor would remain anti- 
symmetric and we would never have need for more than six independent 
components. Appreciating this and having a deep aversion to useless 
complication, God naturally chose’ the antisymmetric tensor as His medium 
of expression. We define this tensor 4” as follows: 

(3-5-2) 

‘It has been pointed out to the author by Prof. D. Dorfan that God was actually quite con- 
strained in His choice of the second-rank tensor. The demonstration that the tensor we are 
looking for (which we shall call F) must be totally antisymmetric goes as follows. We first 
observe that in the instantaneous rest frame of a particle of charge q the force on it must be 
equal to qE where E is the electric field it sees. The force is also equal to the rate of change 
of the particle’s momentum p in this frame of reference. Hence we have, making use of 
Eq. (3-5-1), 

dP, - - 4  . Fj4 f o r j  = 1 ,  2, 3 
dr I 

( 3 -5 - la )  

Of course, anything we do for 1, 2, and 3 we also want to do for 4. Thus we must write 

dP, - 4  
_ -  dr - F,,, for p = I, 2, 3, 4 (3-5-lb) 

Next we observe that the momentum four-vector in the particle’s instantaneous rest frame is 
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Writing out the terms explicitly, we have 

(3-5-3) 

where A is the three-vector (Ax,Ay ,Az) .  Notice now the remarkable fact 
that under a pure rotation the tensor F breaks into a polar vector and an 
axial vector. The components (F23,  - F13,F1,) are really the three compo- 
nents of V x A and transform as an axial vector. The three components 

(F14,F24,F34) are clearly equivalent to i , which is a polar 

vector. Hence in any given coordinate system it would appear as though 
there were two independent vectorial fields at each point in space. Only 

P,, = (O,O,O,im,c) 

Thus Eq. (3-5-16) can be rewritten in the form 

dpu - ' p,,F,, 
d r  m,c,=, 

(3-5- 1 C) 

(3-5-14 

Both sides of Eq. (3-5-14 now have the appearance of components of a vector. We next take 
the scalar product of this vector with the vector 2p: 

We observe that the left side of the equation can be rewritten as 

We thus have 
4 4  c c P"F,,P, = 0 

" = I  , = I  

(3-5-le) 

(3-5-Ifi 

The left side of Eq. (3-5-1.0 is a scalar. Hence the equation is true in any coordinate system 
which can be related to our instantaneous rest system by means of a Lorentz transformation. 
It is now left to the student to prove that if Eq. (3-5-If) is to be true for any choice of system 
then F must be antisymmetric. 
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F‘ = 

when we transform between them do the two fields become mixed together. 
In any case, let us return to Eq. (3-5-3) and make some important 

observations. The first of these is that V q  and - - are inseparable! 

Component by component they always occur together, and so a particle 
must experience their combination as though it were one type of force. 
Inasmuch as we identified -Vrp as E in the case of electrostatics, we now 
write 

1 aA 
at 

r 

- I 0 Y(B2 - PEJ -Y@, + PEJ - iE, 

-m - PE,) 0 Bx -ME, - PBJ 

?(By + BE,) - Bx 0 - iY(Ez + PB,) 

iE, iY(Ey - PBZ) wz + PB,) 0 

1 aA E =  - V p - - -  
at 

(3-5-4) 

(This result embodies all of Faraday’s famous law and is even more general. 
Its importance will become apparent in due course.) 

We now make a definition. We define the magnetic field B as 

B - V x A  (3-5-5) 

We have then 

0 +Bz -By -iE, 

-B, 0 +B, -iEy 
F =  

0 +Bz -By -iE, 

-B, 0 +B, -iEy 
F =  (3-5-6) 

Before we actually see how this magnetic field acts on a moving 
charge, we should examine in detail the behavior of the components of 
F as we go from one coordinate system to another through a Lorentz 
transformation. We will assume as usual that C’ is moving along the positive 
x axis of C with velocity V.  As usual we have 

(3-5-7) 

where P = V / c  and y = l / d m .  
(3-5-8) 
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We first observe that the component of either E or B along the direc- 
tion of relative motion remains unchanged. This component is called the 
longitudinal component and in the present case is the component along the 
x direction. 

Bi = B, 

Ei = Ex 
(3-5-9) 

As far as the transverse components of E are concerned, we note that 

V 
E; = yEy - Y - B, 

C 

(3-5-10) Y = yEy + - (V x B)y 
C 

Y Ei = YE, + - (V  x B), 
C 

Hence we can write in general, for the component of E transverse to the 
relative motion of C and C', 

However, since (Vjc) x B has no longitudinal component, we can simplify 
this to 

E; = Y[,, + (f x B)] 

Similarly we have 

(3=5- 1 1.) 

(3-5-12) 

We can now easily find the force on a moving charge q moving with 
velocity V in the presence of electric and magnetic fields. We need merely 
transform to the rest system of the particle, set the force on the particle in 
this system equal to qE' = dp'/d7, and then go back to the original system, 
transforming dp'/d7 as we change. (7 as we remember is time as measured 
in the particle's rest system.) We have for the transverse components 

(3-5- 13) 

But p ;  = p T ,  since the transverse components of p are unchanged by a 
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Lorentz transformation. 

131 

Also, from time dilation we have t = 77. Hence 

x B  (3-5-14) 

Turning to the longitudinal component of E, we have 

or 

(3-5-15) 

But, making use of the Lorentz transformation and remembering that C' 
is the rest system of the particle, we have 

P L  = YPi  + PYmoc 

Therefore dp, = y dpi and hence 

- =  dpL qE, 
dt 

(3-5- 16) 

Combining this with our previous result for the transverse components of 
the force, we have 

V 3 = F = qE + q-  x B 
dt C 

(3-5-17) 

This rather fundamental equation tells us precisely how electric and 
magnetic fields act on a moving charged particle. We can now, in principle, 
solve any dynamics problem involving the interaction of charged particles 
and currents if we can only find a procedure for determining these fields. 
We already know how to determine E from a static charge distribution. 
We also know how to evaluate A(r) if there is no time dependence to our 
currents, and as a result we know implicitly how to determine the magnetic 
fields which derive from static currents. In the chapters ahead we shall 
develop explicitly many of the techniques for determining the fields as a 
function of time and space. Before doing so, however, we must derive 
Maxwell's equations in all their beauty. 

3-6 MAXWELL'S EQUATIONS 

Our derivation of Maxwell's equations will again make use of the require- 
ment of Lorentz invariance. We will begin with the old electrostatic equation 
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V . E = 4np and ask what we must do in order that it hold in all systems. 
This will lead immediately to an equation relating the magnetic field B 
to the current density j. 

Let us first write V E = 4np in relativistic notation. Remembering 
that F44 = 0, we can rewrite V . E as 

aE, aEy aE, 
ax ay aZ V . E = - + - + -  

= i aF,, = -i4nj4 
p = l  ax, 

(3-6-1) 

But, we recall from Eqs. (1-6-6) to (1-6-11) that the product of a 
second-rank tensor and a vector transforms as a vector. Hence V . E, 
as expected, is the fourth component of a vector, and we can now insist that 
Eq. (3-6-1) be generalized to the other components: 

Let us develop this explicitly for the first three components: 

aBz aBy 1 aE, 
ay az at 

+ - + - - = -4nj - -  

aB* aB, 1 aE 
ax aZ at 
+---+-A= -41tj 

Y 

Combining all three equations, we have 

I aE 
1. V x B = - - + 4  X i  c at 

The fourth component, to repeat, gave us 

2. V . E  = 4np 

(3-6-2) 

(3-6-3) 

(3-6-4) 

(3-6-5) 

Since B = V x A and the divergence of any curl is zero (see page 21), we 
have 

3. V . B = O  (3-6-6) 
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1 aA And finally, from E = - V q  - - -, we have 
at 

1 aA V x E = - - V W  - 
C at 

Inverting the order of differentiation, we get 

1 aB 
4. V x E = - - - 

c at 
(3-6-7) 

These then are the famous Maxwell equations. Note that the first 
and second of these are completely equivalent to but not nearly as aestheti- 
cally pleasing as Eq. (3-6-2). We would like to put the last two Maxwell 
equations in an equally beautiful form, but first we must introduce the so- 
called completely antisymmetrical tensor of the fourth rank, E ~ , , ~ , ,  defined 
as follows : 

E p v l p  - 0  - 

EpvAp = 1 

E p v l p  = - 1 

if any two indices are equal 

if p,v , i ,  and p are all different and can be obtained 
from 1,2,3, and 4 by an even number of transpositions 
if p , v , i ,  and p are all different and can be obtained 
from 1,2,3, and 4 by an odd number of transpositions 

We shall make use of two properties of E ~ ~ , , ,  the demonstration of which 
we will leave to the reader. 

1. The components of E,,~, ,  transform into themselves under Lorentz 
transformation. 

2. The sum E,,~, ,  B,, transforms as an element of a second-rank tensor 

under Lorentz transformation if B,, is an element of a second-rank 
tensor. Making use of this, we define the tensor G by the equation 

&1234 = 

.l.P 

where FA, is an element of our field tensor. 

The tensor G is antisymmetric and has elements 

(3-6-8) 
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G23 = 3i(E2314F14 + &234l  F41) 

= iF14 

= -iF13 

= iF,, 

G24 = 3i(E2413F13 + &2431F31) 

G34 = fi(E3412F12 + &3421F21) 

Summarizing, we have 

G =  

0 E, - E y  iBx 

-E,  0 EX iBy 

E, -Ex 0 iB, 
-iBx -iB, -iB, 0 

Now, since B = V x A, we can write 

(3-6-9) 

For this to prevail in any coordinate system, we must have 

c 3 = o for all v (3-6-10) 
ax, 

1 8B 
c at 

When we set v = 1,2,3, we just come up with V x E = - - -. Hence 

the four Maxwell equations can be rewritten as 

(3-6-1 1) 

From the purely aesthetic point of view there is something wrong 
with these equations. Whereas the electric field can have a static source, 
namely, p, the magnetic field cannot. Wouldn’t it be nice if somehow there 
were magnetic monopoles possible in nature so that the two equations would 
be “symmetric”? Suppose for a moment that such objects did exist. We 
could then define a so-called magnetic charge density p‘”) and a corresponding 
magnetic current density jcm). (The magnetic current density would actually 
be an axial three-vector field.) There would be a corresponding potential 
four-vector A?) of which the first three components would form an axial 
three-vector. Finally, we would rewrite the second Eq. (3-6-1 1) as 

(3-6-12) - 471j;m) 
fl=l ax, 
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Fig. 3-5 A current of mag- 
netic monopoles is circulating 
around a closed loop as shown. 
We evaluate f E .  dl around the 
curve C which links the mono- 
pole current. 

Now the possibility that magnetic monopoles exist has actually 
excited wide interest for another reason. It was pointed out by Prof. P. A. M. 
Dirac that their existence would explain the quantization of charge in a 
natural way.' This being the case a considerable amount of effort has been 
devoted to finding these monopoles. The efforts have been of two different 
sorts. 

1. The fact that monopoles would be strongly acted upon by magnetic 
fields has been exploited by a number of experiments which have tried 
to pull them out of matter or out of the cosmic radiation by means 
of such fields. 
Before we describe the second type of experiment we must put Eq. 
(3-6-12) into more convenient form. If we let Y = 1,2, and 3, we obtain 

2. 

(3-6-13) 

Let us next imagine that we have a steady continuous current of mono- 
poles circulating around a closed loop as shown in Fig. 3-5. Nothing is 
changing with time, and so we are justified in removing the time- 
dependent term on the right side of Eq. (3-6-13). If the total magnetic 
"charge" in the loop is Q"") and the time it takes for a given monopole 
to make it around is T, then the monopole current in the loop is just 

[The factor c is required because our four-vector is (ix(m),jy(m),jzjz(m), ip'")). 
That is, p(m)  and jcm) are measured in different units in complete analogy 
with p and j (see page 123).] 

Let us next integrate E . dl around an imaginary closed curve C 

'For a review of this subject in reasonably simple terms the reader is referred to an article by 

2See, for example, E. M. Purcell, G.  B. Collins, T. Fujii, J. Hornbostel, and F. Turkot, Phys. 

J. Schwinger in Science, 165: 757 (Aug. 22, 1969). 

Rev., 129: 2326 (1963). 
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linking the loop. Using Stokes’ theorem, we convert the line integral 
into a surface integral over the area bounded by C. 

f C E . d l  = l A V  x E - B d A  

= 4n j ( m )  . dA 

= 4 7 1 p  

(3-6-14) 

If a loop of wire were thus allowed to link the monopole current loop, 
then Eq. (3-6-14) would ensure that a current would flow in the loop. 
Indeed, it would be as though a battery with a potential difference of 
47cQ(”‘)/cT statvolts were placed in the wire loop. 

This brings us then to the description of an actual experiment carried 
out by Prof. L. W. Alvarez’ and collaborators at the University of California 
Lawrence Radiation Laboratory. They were interested in determining 
whether any monopoles might be trapped in pieces of moon rock brought 
back by the astronauts. After all, the moon’s surface is being continuously 
bombarded by cosmic rays, and an occasional one might be a monopole. 
A small bottle of moon rock was placed on a track, as shown in Fig. 3-6, 
and made to go around and around with a time for 1 revolution of about 4 
sec. Linking the track was a superconducting niobium coil with 1200 
turns of wire. (A superconducting coil has no measurable resistance.) If 
there were a monopole trapped in the rock, then the electric current through 
the superconducting loop would change as a function of time. The rate of 
change of electric current will depend on the line integral of Eq. (3-6-14) 
as well as on the inductance of the coil, a property which we will discuss in 
due time. Suffice it to say that no monopole has yet been seen. We will return 
to this experiment in Sec. 5-1, after we have developed some more formal 
machinery, in order that we may be able to assess its true sensitivity. We 
will see at that time that it is capable of detecting the smallest quantum of 
magnetic charge consistent with Dirac’s theory. 

In any case, since no monopoles have as yet been seen, we will continue 
to write Maxwell’s equations in the conventional form given by Eq. (3-6-1 1). 
Perhaps at some future time we will have need to change them. 

We have now completed the foundation of our electromagnetic 
edifice. In the chapters ahead we will undertake an examination of the 
incredible richness of Maxwell’s equations, culminating in the discovery that 

‘L.  W. Alvarez et al., Science, 167 (3917):701-703 (1970). 
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accelerating charges must radiate light. At no point should we lose sight 
though of the very simple assumptions that have gone into our derivation 
of this theory. Basically all we have used are Coulomb's law, the requirement 
of relativistic invariance, and a passion for simplicity and elegance. Remark- 
able indeed! 

PROBLEMS 

3-1. 

3-2. 

3-3. 

3-4. 

A neutral pion decays in about sec into two photons (y rays). Neutral 
pions can be produced in the laboratory by stopping negative pions in hydrogen 
and allowing them to be captured into atomic orbits about individual protons. 
When they reach the ground state of the atom, the negative pions are captured 
and the system undergoes the reaction 

x- + p --t K O  + n 
(a) Ignoring the binding energy of the K- in the atom before its capture, find the 

(b) What is the kinetic energy of the emerging neutron? 
(c) How far does the x' travel in the laboratory if it lives for a time of 10-"sec 

( d )  What is the observed spectrum of gamma rays emerging from the hydrogen 

An antiproton @) can be produced by firing energetic protons at other protons 
which are stationary in the laboratory. The reaction which takes place is 

P + P + P + P + P + P  
Find the threshold for this reaction. That is, find the energy of the least-energetic 
incoming proton that can initiate the reaction. 

A A' particle lives for a time of 2.4 x lo-" sec in its own frame of reference. 
How far does it travel in the laboratory if it is moving with velocity OSc, 0 . 9 ~  
0.99c? 

An electron traveling in a straight line along the x axis moves by a stationary 
observer as shown. The observer is located on the z axis with coordinates 

velocity of the no emerging from the reaction. 

as measured in its own rest system? 

target? 
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3-5. 

3-6. 

3-7. 

3-8. 

3-9. 

3-10. 

3-1 1. 

Electron 

(O,O, 1). Find and graph the z component of electric field seen by the observer 
for each of the following electron velocities: 0.6c, b.8c, 0.9c, 0.99~. 

Show that the components of E~~~~ when transformed under a Lorentz trans- 
formation remain unaltered. 

Show that if B is a second-rank tensor then E~~~~ BI,  is an element of a second- 
rank tensor. 

Show that E2 - B2 and B E are each invariant under Lorentz transformation. 

Let E and B be normal to each other and let ]El < IBI. Find the velocity v 
of a system within which E = 0. 

Consider a classical electron in a circular 6rbit of radius R about a proton. 
What is the magnetic field seen by an observer whose velocity coincides instan- 
taneously with that of the electron? 

Show that if we alter both A and cp by the transformation 

A = A + V $  

LP 

where II/ is any function of space and time, then the electric and magnetic fields 
are unaltered. This transformation is called a gauge transformation. 

Consider a single magnetic monopole with unit magnetic “charge” traveling in 
a straight line down the x axis. An observer stationed at coordinate (0,0,1) 
on the z axis will observe a pulse of electric field as the monopole goes by. 
(a) Plot the magnitude of the y component of this field as a function of time 

for each of the following choices of monopole velocity: 0 = 0.6, 0 = 0.8, 
p = 0.9, j = 0.99. 

(b) Plot the x and z components of the electric field for the same set of velocities. 



4 
Time- Independent 
Current Distributions; 
Mag netostatics 

In this chapter we will develop a variety of techniques for determining the 
magnetic field B which arises as the result of a time-independent current 
distribution. We will then consider the dynamics of a moving charged 
particle or a current loop within this field with a number of interesting and 
practical results. 

Basically there are three different ways in which we might approach 
the question of determining B as a function of position in space. We might 
attempt to find the vector potential A first, making use of either the differen- 

139 
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tial equations (3-4-10) to (3-4-12) or the integral equation (3-4-14). We 
would then find B by determining V x A. Alternatively we might begin 
with Eq. (3-4-14) in its general form, take its curl, and come up with a 
generally useful integral for B directly. Finally we might see if there are 
any simple integrals for B which might be useful in cases of high symmetry. 
As we shall see, each of these techniques is quite analogous to a corre- 
sponding technique that we have learned in electrostatics. Before we begin 
on this path, however, it is useful to say just a few words about the behavior 
of currents in typical conductors. We will develop the approximation known 
as Ohm’s law. 

4-1 AN ELEMENTARY DERIVATION OF OHM‘S LAW 

In most metals there is about one electron per atom that is relatively free 
to move about, being subject only to macroscopic electric fields and scattering 
on the individual lattice sites. The average velocity of an electron (6) is 
of the order of 10’ cmjsec and, inasmuch as the typical mean free path is 
of the order of cm, there is very little change in the velocity due to 
any reasonable applied field in the time between collisions. Let ,I be the 
mean free path. Then the time between collisions is At = Lju. The average 
drift velocity gained in this time interval due to an applied field E is 

(4- 1 - 1) 

After a collision it is assumed that the velocity of the electron is randomized 
in direction, and so the average induced current density is 

Ne2 E i  
2m6c 

j = -  emu 

where N is the number of “free” electrons per cubic centimeter. We write 
this vectorially as 

j = oE (4- 1-2) 

where 

(4- 1-3) 

is called the conductivity. (In actuality the drift speed is some 10 orders of 
magnitude lower than 6. Hence the simple approximation we made, that 
At = i/ii, is quite reasonable.) 

This simple proportionality between the applied field and the current 
density is called Ohm’s law. It is most often applied to the case of a given 
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piece of conductor of area A and length I .  In that situation we see that the 
total current is I = j A  and the potential difference Acp across the conductor 
is given by El. Ohm's law then says that 

Hence 

(4- 1-4) 

where R is called the resistance. 
We can calculate the work done per unit time on the current j by the 

field E. The work done per unit time on a charge q is just F ' v  = q E  - v .  
Hence the work done on the current per unit volume per unit time is just 

dW 
dt 
- -  - 1 qivi . E  = j,,, - E = cj  - E 

In the event that j = aE, we can write 

(4-1-5) 

_ -  - caE2 
dW 
dt 

(4-1-6) 

We should comment at this point that the system of units we are using 
here for R and a is such as to have the current always measured in abamperes 
and the potential in statvolts. The unit of resistance is thus the statvolt per 
abampere. Most texts when dealing with resistance will stay entirely with 
either esu or emu units. We have chosen to ignore that convention for the 
sake of overall consistency. Inasmuch as most resistors are labeled in ohms 
anyway, we need only know that 

1 statvolt/abampere = 29.98 ohms 

4-2 FINDING THE MAGNETIC FIELD THROUGH THE VECTOR POTENTIAL 

Finding the vector potential A in magnetostatics is quite analogous with 
finding the potential cp in electrostatics. We can either carry out the integral 

space 

or we can search for the unique solutions to V'A, = -47rji subject to the 
appropriate boundary conditions. These methods will be most simply 
applied if we can make a direct analogy to an electrostatic problem that we 
solve easily and then adapt the solution appropriately. We will illustrate 
by application to two simple examples. 
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The first problem we solve is to find the magnetic field everywhere 
due to an infinite cylindrical uniform current distribution of radius R 
(see Fig. 4-1). We take the origin of our coordinate system on the axis of the 
cylinder and let the direction of current flow be along the z coordinate axis. 
The current density within the cylinder is j. 

The analogous problem is, of course, that of a uniform cylindrical 
charge distribution. We remember, making use of Gauss’ law, that the 
electric field due to such a distribution is radial and has a magnitude Er 
at a distance r from the axis given by 

for r < R 

for r > R 
(4-2-1) 

If we try to calculate the potential in the usual way by integrating out to 
infinity, we will come up with an infinite result because we are using an 
infinite cylinder. Since in the end it will be the fields and not the potentials 
that interest us, let us renormalize so as to have cp = 0 at i’ = 0. We have 
then 

Fig. 4-1 
uniform current density. 

We find the field around a cylinder of 
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This yields 

[ -npr2 for r  < R 
(4-2-2) 

Now back to the magnetostatic problem that really interests us. 
Since there is only a z component to the current, we have A,  = A,  = 0. 
We also have 

Our analogy tells us that 

[ -njr2 for r  < R 
(4-2-3) 

Finally, we remember how to take the curl in cylindrical coordinates [see 
Eq. (2-9-16)]. We have in this case 

Thus 

[ 2njr 8 for r < R 

- 8  for r  > R 
= 1 2njR2 

r 

(4-2-4) 

(4-2-5) 

As we shall soon see, this result could have been obtained much more 
rapidly through more sophisticated means (Ampere’s law). Nevertheless 
it does serve as a useful first example. 

As our second example we consider an infinite sheet of current having 
a thickness t and a constant current density. We set our coordinate system 
up with the x axis perpendicular to the sheet and the z axis along the current 
(see Fig. 4-2). The current density is then j = j k  where k is a unit vector 
in the z direction. 

Again the vector potential is given by 

(4-2-6) 

The corresponding electrostatic problem would be a sheet with uniform 
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Fig. 4-2 
current density j and thickness 1. 

We find the field due to an infinite sheet of uniform 

charge density p, and we would have had 

(4-2-7) 

We solve the electrostatic problem by means of Gauss' law, obtaining 

t 
271pti forx 2 - 2 

t t 
for - - I x S - 

2 -  2 47cpxi 

t 
-2npti forx < - - I 2 

If we set cp = 0 at x = 0, we have 

t 
2nptx forx 2 - 

2 

cp = {  -2npxZ 
t t 

for - - < x 5 - 
2 '  2 

(4-2-8) 

(4-2-9) 

t 
for x 5 - - 

2 2 + 2nptx 
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Hence, by complete analogy, we can write down A for our original problem: 

t t 
A = -2njx2k for - - < x 5 - 

2 =  2 

t 
2 

Finally, taking the curl of A, we have 

t 
for x 2 - 

2 
2 4  

t t B = 4njxj for - - < x 5 - 
2 =  2 I 

(4-2- 10) 

(4-2-1 1 )  

where 5 is the unit vector in the y direction (not to be confused with current 
density). 

As a rule we will find the techniques of this section to be of marginal 
utility because it will normally be no harder to calculate the field directly 
than it will be to go through the vector potential. Furthermore, there is no 
situation analogous to a set of conductors with fixed potentials to determine 
our boundary conditions. Nevertheless, when all else fails, this method 
may provide a path to the solution we seek. 

4-3 THE BIOT-SAVART LAW 

Making use of our expression for A(r), Eq. (3-4-14), we can proceed directly 
to find a general expression for B(r). 

B(r) = V x A(r) 

j(r') dV' 
= i. spsce 

j@') dv 
= 6. Ir - r'I 
- 

space 

dV 
j(r') x (r - r') 

(4-3-1) 
space 
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This result is called the Biot-Savart law. It is a simple prescription for 
finding the magnetic field B at any point r by integrating over the current 
distribution. 

We often deal with situations where the actual current distribution 
within a wire itself is not important and can be averaged over. This situation 
occurs when the thickness of the wire is small compared with our distance 
from it. In these cases we can integrate over the cross-sectional area of the 
wire and replace the volume integral in Eq. (4-3-1) by a line integral along 
the wire. We have then 

Zdl’ x (r - r’) 
B(r) = (4-3-2) 

wire 

It is very tempting at this point to say that the little bit of wire dl’ 
gives rise to a magnetic field dB(r) given by 

Zdl’ x (r - r’) 
Ir - r‘I3 

dB(r) = (413-3) 

If we then used Eq. (3-5-17) to find the force exerted by dB on a charge q 
at position r and moving with velocity V, we would find 

ZqV dl’ x (r - r’) dF = ~ 

C Ir - r‘I3 
(4-3-4) 

The problem, as can be plainly seen, is that this force violates Newton’s 
third law. It is not directed along a line joining the current element dl’ 
with the charge q. 

It is not possible for us to completely resolve this dilemma at this 
point in our course. We can however point out one serious problem. We 
are not entitled to write down Eq. (4-3-3) at all, since doing so presupposes 
that we can calculate the effect of a segment of wire as though the remainder 
of the wire did not exist. But if the remainder of the wire did not exist, then 
the current flowing in the segment would cause charge to pile up at its 
two ends and we would no longer be dealing with a magnetostatic problem. 
Now we can in principle break a current loop up in this way, and the charge 
pileups at the ends of the segments would just cancel when they were put 
back together to reform the loop. Hence, if we knew how to deal with the 
physically realistic case of a current segment with charging ends, we would 
be out of the woods. This knowledge will come in our next chapter. 

In any case, let us return to Eq. (4-3-2), which is perfectly correct as 
long as our integration covers the entire current distribution. We will apply 
it to find the magnetic field along the axis of a circular current loop of 
radius R carrying current I .  Referring to Fig. 4-3, we place the origin of our 
coordinate system at the center of the loop. We set the x axis normal to the 
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Fig. 4-3 
current loop. By symmetry the field can have no y or z components. 

We wish to find the magnetic field along the axis of a circular 

loop so that when we look in the positive x direction the current appears 
to be going clockwise. We see immediately that only the x component of 
the field can exist after we have integrated over the loop, and it will be given 
by 

2nI . 
= -  s1n3 e 

R 
(4-3-5) 

Making use of this result, we can find the magnetic field along the 
axis of a solenoid having N turns per centimeter with each carrying a current 
I.  We choose a point along the axis at which we want to evaluate the field 
and let €I1 be the half-angle subtended by one end and 8, be the half-angle 
subtended by the other end (see Fig. 4-4). The segment of the solenoid 
lying between 8 and 8 + dtl has a length 

dx = - de 
sinZ e 

Hence the contribution to B is given by 

2nNI dx 
R 

dB = ___ sin3 8 = 27cNI sin 8 d8 

Fig. 4-4 
current I. 

A long solenoid of radius R, having N turns per centimeter, each turn carrying 

X 
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Integrating from O1 to 02,  we have 

B = ~XNI(COS 81 - cos 02) (4-3-6) 

We see then that the field at the center of a very long solenoid is approxi- 
mately 4nNI. The field at one end of the same solenoid is approximately 
2nNI. 

Before we go on, we should get some feeling for magnitudes. The 
unit in which magnetic field is expressed is the gauss. Currents are measured 
in abamperes, and the only conversion factor we need to remember here 
is that 10 amperes = 1 abampere. Now, to take a reasonable example, 
we might choose N to be 10 turns per centimeter and I to be 1 abampere 
(10 amperes). In that case, the field in the middle of a long solenoid would 
be about 120 gauss. The largest fields that can be easily reached with normal 
electromagnets are in the range of 20,000 to 30,000 gauss. Superconducting 
and pulsed magnets can attain fields in the range of 100,000 to 200,000 gauss. 
Fields as high as lo6 gauss have only rarely been achieved, in small volumes 
and with pulsed magnets. We shall shortly learn that the energy density of 
magnetic field is given by (1/8n)B2,  setting a rather clear limit on the field 
magnitudes that are attainable. 

For comparison, we might have a look at electric fields which are 
also measured in gauss. (Remember that electric and magnetic fields are 
measured in the same units.) A useful conversion factor to remember is 
that 1 gauss = 300 volts/cm. The largest practical electric fields, in the 
neighborhood of lo3 gauss, are thus considerably lower than the largest 
practical magnetic fields. 

4-4 AMPERE‘S LAW 

When we are faced with a situation which has a high degree of symmetry, 
it is convenient to make use of Ampere’s law for determining the magnitude 
of the magnetic field. 

We begin with the magnetostatic equation 

V x B = 4nj (4-4-1) 

Making use of Stokes’ theorem, we can now evaluate the line integral of 
B around a closed curve : 

(4-4-2) 

The normal vector A is chosen to point in the direction given by a right-hand 
rule as applied to C (see page 19). Inserting Eq. (4-4-1) into Eq. (4-4-2) 
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yields 

fcB.d l  = 4 x 1  j - A d A  
surface 
bounded 
by C 

= 4a(current passing through surface bounded by C) (4-4-3) 

We can now return to the problem we treated earlier, the uniform 
infinite, cylindrical current distribution (see Fig. 4-1). Once we decide 
that the field must be in the 8 direction (by using the Biot-Savart law, for 
example), we can let C be a circle of radius r about the axis of the cylinder 
and apply Eq. (4-4-3) to determine the magnitude of B. We have 

B . dl = 2nrB f 
Hence, for r 5 R,  we write 

2nrB = (4nj](nr2) 

and 

B = 2njr 

For r 2 R,  we have 

27crB = (4nj](nR2) 

and 
2njR2 

r 
B = -  

These results are identical with what was found earlier 

(4-4-4) 

(4-4-5) 

[see Eq. (4-2-5)]. 

4-5 B AS THE GRADIENT OF A POTENTIAL FUNCTION 

Under certain circumstances it is possible to express B as the gradient of a 
potential function qm. These circumstances require that the current distri- 
bution be in the form of closed loops and that the point at which the field 
is to be evaluated be in a current-free region. We shall derive an expression 
for qm explicitly for one simple current loop. In the event that there are 
many such loops to consider, the fields we obtain in this manner can be 
summed together. 

Referring to Fig. 4-5a, we shall assume a current I in the loop C‘ 
and place an imaginary surface S’ over the loop with normal vector A’ 
directed as shown. The vector r’ refers then to a point on the loop and the 
vector r to the position at which we wish to evaluate B. The vector potential 
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at r is 

dl' 
A(r) = I f, 

Fig. 4-5 
a current loop. 

(a) Finding the ficld at r due to 

(4-5-1) 

At this point we make use of a simple mathematical identity. For any 
function f we can write 

f f d l  = (A x V'dA (4-5-2) 
surface 
bounded 
by C 

Takingf= l/lr - r'l, we have 

dA ' 

Taking the curl of A to find B, we obtain 

But V'(l/lr - r'l) = -V(l//r - r'l) and hence 

B(r) = - I l s , V  x (A' x V--- Ir - r'I )dA' 

(4-5-3) 

(4-5-4) 

We next make use of two rather simple vector identities to develop Eq. 
(4-5-4). 
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V x (A x B) = A(V . B) - B(V . A) + (B . V)A - (A V)B (4-5-5) 

V(A * B) = ( A .  V)B + (B . V)A + A x (V x B) + B x (V x A) 

(4-5-6) 

In these identities, the expression (A . V)B means 

a 

aB aB 8B 
= A , - + A - + A A , -  

ax y ay aZ (4-5-7) 

We first apply Eq. (4-5-5) to the integrand of Eq. (4-5-4). Remembering 
that A' does not depend on r, we obtain 

(4-5-8) 

Since r' # r (we are interested in the field in a current-free region), we can 
set V2(1/lr - r'l) = 0, leaving us with 

Applying Eq. (4-5-6), we obtain 

Inserting this back into Eq. (4-5-4), we finally obtain an expression for 
B(r) : 

r 1 

(4-5- 10) 

Now we let dn' be the solid angle subtended by dA' with respect 
to the position r. We will choose dn' as positive if A' - (r - r') is positive 
and negative if A' - (r - r') is negative. In that case we can see that 

dA ' 
A' - (r - r') 

(r  - r'I3 
dn'= (4-5-1 1) 

Hence we have proven our point. 
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B(r) = - V q m  (4-5- 12) 

where 

q m  = ICY (4-5-1 3) 

and R' is the solid angle subtended by the surface S' with respect to r. 
Let us make use of this result to recalculate the magnetic field along 

the axis of a circular current loop. Referring back to Fig. 4-3, we note that 
the solid angle is just 

R' = 2n sin OdO 

= 2n(1 + cos 6) (4-5-14) 
r 

The gradient of R' is in the negative x direction, and hence B is in the 
positive x direction. We have then 

a 
ax B, = -~TCI-COS 0 

a X 
= 2nI- 

ax ,,/- 
2nIR2 

(x2 + R2)* 
- - (4-5-15) 

Needless to say, this is the same result as we obtained earlier [see Eq. 

The general results we have just obtained are particularly useful 
if we wish to find the magnetic field at a long distance from a small flat 
current loop of area A and current I .  We have then (see Fig. 4-56) 

(4-3-5)]. 

r 
r qm Z IAA '3 (4-5-16) 

Fig. 4-5 (cont'd) (b) We find the mag- 
netic field at large distances from a small 
flat current loop of area A carrying current 
I .  The origin of our coordinate system is 
taken at the approximate center of the 
loop. 
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We define the magnetic moment of the loop as 

m = ZAa (4-5-17) 

We then obtain the following simple approximation for cp,. 

(4-5-18) 
cp = m . T = - m . V -  r 1 
m r r 

We can compare this with the expression we obtained for the electric poten- 
tial of an electric dipole [see Eq. (2-6-7)] : 

The similarity of these expressions leads us to conclude that the magnetic 
field distribution at large distances from a magnetic dipole is identical to 
the electric field distribution at large distances from an electric dipole. We 
need merely substitute m for p and B for E to obtain the corresponding 
results. 

4-6 MAGNETIZATION (M) AND THE H FIELD 

As we know, matter on the atomic level is made up of relatively stationary 
nuclei surrounded by electrons in various orbits. We shall discuss the 
electromagnetic properties of matter in much more detail in Chap. 10. 
In the meantime, though, we point out that there are three mechanisms 
whereby matter may acquire a macroscopic magnetic-moment distribution. 
(By macroscopic we mean averaged over a large number of atoms. This 
distribution is characterized by the magnetic moment per unit volume M, 
called the magnetization.) The three mechanisms are as follows : 

The electrons’ orbits or their intrinsic angular momenta may be arranged 
so as to give rise to a net magnetic moment within each atomic system. 
In general, thermal agitation will tend to randomize the directions of 
these moments, and only when an external field is applied so as to 
counteract this randomization do we have any macroscopic magnetiza- 
tion. Materials which behave in this way are called paramagnetic. 
We shall soon learn that a changing magnetic field within a conductor 
induces currents which oppose this change. This phenomenon is called 
diamagnetism. The application of a magnetic field to a diamagnetic 
medium will induce currents within the atomic systems, and these in 
turn will lead to a macroscopic magnetic-moment density opposite in 
direction to the applied field. 
Iron has two rather remarkable atomic properties that have far-reaching 
consequences with respect to its macroscopic magnetic behavior. First, 
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4 of the 26 electrons in an isolated atom of iron have their intrinsic 
angular momenta lined up. Second, within solid iron, there are very 
strong quantum-mechanical forces tending to make the intrinsic 
angular momenta of neighboring atoms line up. This results in domains 
of macroscopic size having net magnetizations corresponding to about 
two aligned electron moments per atom on the average. Applying a 
magnetic field causes those domains which are aligned in the same direc- 
tion as the field to grow until the iron finally reaches a saturated state 
of magnetization. Typically, saturation occurs at fields in the neighbor- 
hood of 10,000 to 20,000 gauss. Needless to say, removal of the applied 
field does not lead to complete randomization of the domains. The 
residual magnetization can be quite large, as in the case of special 
permanent magnetic alloys, or it can be quite small, as in the case of 
soft iron. These phenomena are characteristic of ferromagnetism. 
Although iron is the best known of the ferromagnetic materials, it is 
not the only one; cobalt and nickel also exhibit the same properties. 

In any case, all three mechanisms we have just described lead to a 
magnetization or magnetic moment per unit volume within materials. We 
now examine in detail how a magnetization distribution M(r') leads to a 
magnetic field distribution B(r). 

To begin with we must first find an expression for the vector potential 
at position r resulting from a dipole m at position r'. To do so, we replace 
m by a tiny flat current loop and make use of Eq. (4-5-3). We change 
V ( l / / r  - r'l) to - V ( l / l r  - r'1)and remove theintegral sign. Remembering 
that (ZdA)A = m, we obtain 

1 
A(r) = -m x V- 

Ir - r'I 
(4-6-1) 

Next we consider the vector potential A(r) arising from the magnetiza- 
tion M(r'). The little volume dV' has a magnetic moment M(r') dV'. Hence 
we write 

r 1 
M(r') x V ' ~  ' d V  

= JaII Ir - r'I 
spscc 

V' x M(r') 
Ir - r'l d V  (4-6-2) 

Ir - r'l 
space space 
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We next make use of a simple theorem, the proof of which is left to 
the reader, to convert the first of these integrals to more convenient form. 
In general, for any vector function of space W(r), we can write 

V x W(r) dV = A x W(r)dA (4-6-3) 
surfacu Il ” of v 

Applying this theorem and observing that M = 0 at infinity, we note that 

space nt m 

Thus we have 

dV 
V‘ x M(r‘) 

A(r) = (4-6-5) 
space 

Comparing this with our usual equation for A in terms of current 
density, we note that a magnetization distribution M can be replaced entirely 
by an equivalent current distribution j, where 

j , = V x M  (4-6-6) 

In general, all current distributions can be considered as consisting 
of two parts-that part which is unassociated with the magnetization and 
which we shall call jF (free current) and that part which can be used to 
replace the magnetization distribution (j,). We write our basic equation 
for B as follows : 

V x B = 4nj = 4nj, + 4n(V x M) (4-6-7) 

Rewriting Eq. (4-6-7), we obtain 

V x (B - 4nM) = 4njF (4-6-8) 

We now define a new vector field H at each point in space as follows: 

H B - 4nM (4-6-9) 

We see then that H obeys the same differential equation with respect to the 
free currents as B obeys with respect to all the currents. That is, 

V x H = 4nj, (4-6- 10) 

We can, of course, rewrite Ampere’s law as 

jF - A dA (4-6-1 1) s surface 
f H * dl = 47t 

boundud 
by C 
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Again, we must issue a caveat. The fact that H and j, are related by the 
same differential equation as B and j does not mean that we calculate H 
from j, in the same way as we calculated B from j. There is, for example, 
no equivalent to the Biot-Savart law to make use of in calculating H. Indeed, 
we can have H with no j, at all-witness the case of a permanent bar magnet. 

At this point we must interject a small bit of philosophy. It is customary 
to call B the magnetic induction and H the magnetic field strength. We 
reject this custom inasmuch as B is the truly fundamental field and H is a 
subsidiary artifact. We shall call B the magnetic field and leave the reader 
to deal with H as he pleases. 

Returning to Eq. (4-6-9), we note that in many materials there is a 
proportionality between H and M expressed as M = XH where x is called 
the magnetic susceptibility. We can then write, letting p = 1 + 4 n ~ ,  

B = pH (4-6- 12) 

The constant p is called the magnetic permeability. 
As we have seen, we can calculate B everywhere by replacing M with 

its equivalent current distribution V x M. However, we often find our- 
selves with a discontinuity in M at the interface between two materials, 
and it is useful to derive an expression for the equivalent surface current 
density at the discontinuity. We define what we mean by surface current 
density in a manner analogous to our definition of volume current density j. 
If a set of charges qi are moving on the surface within an area AA and with 
velocity vi, then the surface current density k is given by 

Qivi k = lim - 
A A - 0  AA 

(4-6- 13) 

We now examine the interface between a region (I) with magnetization 
M, and a region (11) with magnetization M,, (see Fig. 4-6). We place a gauss- 

Fig. 4-6 
dary between two magnetized media. 

We find the equivalent surface current at the boun- 
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ian surface of negligible thickness and area AA across the boundary and 
then evaluate k, AA. 

(4-6- 14) 

Remembering the theorem of Eq. (4-6-3), we can write 

k , A A =  V x MdV Ll 
= A x (MI1 - M J A A  

Hence we conclude 

k M  = A X (MI1 - MI) (4-6- 15) 

where the normal A goes from region I to region 11. 
We learned in our last section that it is possible to find a potential 

function qm such that B = - Vqmr provided that we could divide the current 
distribution into loops and we stayed clear of the region within which the 
current was flowing. We will now see how a distribution of magnetization 
M leads to such a potential function. Moreover, we will see that if we use H 
rather than B then we will not be excluded from a region where the magnetiza- 
tion is not zero. We assume for the purpose of the present calculation that 
the free current is zero. The fields which the free currents produce can be 
added in separately. 

The basic differential equations when jF = 0 are just 

V X H = O  

V . B  = 0 
(4-6- 16) 

The first of these equations permits us immediately to define a function 
qH at each point in space such that 

q H ( m ) = O  and H =  -Vq, 

The function is obviously the line integral of H from the point in question 
to infinity. 

q,(P) = lp* H . dl 

The second equation can be rewitten as 

V . B = V . (H + 4xM) 

= -VzqH + 4nV. M 

= o  

(4-6-17) 
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Hence we conclude that qH satisfies the Poisson equation 

where 

p m =  - V . M  (4-6- 19) 

We now recall the uniqueness theorems we learned in electrostatics. 
There is one and only one solution to Eq. (4-6-18) that goes to zero at 
infinity. Hence by analogy to electrostatics we can write 

(4-6-20) 

Thus we can replace a distribution of magnetization M by an equivalent 
“charge” distribution equal to - V  * M. We can then use this charge dis- 
tribution to calculate H in precisely the same way as a normal charge 
distribution would be used to calculate E. 

In the event that we have a surface of discontinuity between two 
regions of different M, we need to calculate the equivalent surface “charge” 
density om. Referring back to Fig. 4-6, and making use of Gauss’ theorem, 
we find 

o m  AA = iol Pm d v  

= -iol (V . M) dV 

= -A. (MI1 - MI) AA 

Thus 

am = -A * (MI, - MI) (4-6-21) 

where A points from region I to region 11. 
Before we apply these results, we will note the general boundary 

conditions for the behavior of B and H in crossing the interface between 
two regions of different magnetization. We assume no free current at the 
interface, and hence we have V x H = 0 and V .  B = 0. By complete 
analogy with electrostatics (see page 50), we conclude that the normal 
component of B and the tangential component of H are continuous at the 
boundary. 

We will illustrate these methods for finding the fields arising from a 
magnetization distribution by considering two rather simple examples. 

As our first example we take a sphere of radius R and uniform mag- 
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netization M. We would like to find B and H for all points in space, both 
within and outside the sphere. For convenience we set our coordinate system 
up with its origin at the center of the sphere and its z axis pointing along 
M. We let the coordinates r' and 8' refer to a point within the sphere. The 
coordinates rand 8 will refer then to the point at which we wish to determine 
the fields (see Fig. 4-7). 

A cursory glance at our problem indicates that the simplest way to 
proceed would have us replace M by its equivalent charge distribution. 
We would then be able to make use of the techniques we learned in electro- 
statics for determining the potential in the event of cylindrical symmetry by 
means of a multipole expansion. The equivalent charge distribution is all 
on the surface and has magnitude given by 

a,,, = M . A  = ~ c o s  e' (4-6-22) 

Fig. 4-7 The magnetic field due to a uniform spherical distribution of 
magnetization M. Outside the sphere, B and H are equal and appear to 
come from a perfect dipole of magnitude $nR3M. Within the sphere 
B = 8nM/3 and H = -4nM/3 as shown. /.--- 
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The “potential” qH at points outside the sphere is given by 

om(B’)RnPn(cos 0’) dA’ (4-6-23) s surface 

PJCOS 0) 
q H ( r  2 R, = 1 r n + l  

n = O  

Remembering that dA‘ = 2nR2 d cos B‘, letting p’ = cos 6 ,  and making 
use of Eq. (4-6-22), we obtain 

Applying the orthogonality condition for the Legendre polynomials, 
we obtain 

cos 8 
q H ( r  2 R )  = $nR3M--- 

r 2  
(4-6-24) 

We conclude then that a sphere of uniform magnetization produces a pure 
dipole field outside itself. The fields outside the sphere are given by 

H(r 2 R)  = B(r 2 R) = -VqH(r 2 R )  

4nR3M 
3r3 

- -- (2 cos 6 P + sin B 8) (4-6-25) 

Within the sphere, making use of Eqs. (2-14-21) and (2-14-23), we find 

q H ( r  5 R) = $nMr cos 6 = $nMz (4-6-26) 

Hence the H field is a constant within the sphere: 

H(r 5 R)  = - V q H  = -$nM (4-6-27) 

The B field inside is also constant and is given by 

87L 
3 

B(r 5 R )  = H(r S R)  + 4nM = -M (4-6-28) 

It is interesting to check the boundary conditions on B and H. At the surface, 
the tangential H fields and the normal B field are continuous, viz., 

H,(in) = (H - 8)e 
= (JKM sin 018 
= H,(out) (4-6-29) 
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and 

&(in) = B(in) * P 

= B"(0Ut) (4-6-30) 

We next consider a cylindrical bar magnet with uniform magnetization 
M throughout. We assume M to be parallel to the axis of the cylinder. 
As we have seen, the entire bar magnet can be replaced by a solenoid of 
current with surface current density given by k, = M x A [see Eq. (4-6-15)]. 
The magnetic field along the axis of the bar magnet can thus be obtained 
directly from Eq. (4-3-6) if we replace NI by Ik,l. We have then 

B(point on axis) = 4nM(cos 8, - cos 8,) (4-6-3 1) 

where and 8,, as before, are the half-angles subtended by the two ends 
at the point of interest. 

To obtain a qualitative feeling for the directions and magnitudes of 
B and H at other points both within or outside the magnet, we replace it 
with its equivalent charge distribution. Referring to Fig. 4-8, we see that the 
H field is opposite in direction from the B field within the magnet and is 
continuous everywhere except at the ends of the magnet. The B field is 
discontinuous on the circumference of the magnet but is continuous at 
the ends. The fact that B approaches 4nM in the center as the magnet 
becomes longer is now apparent because of the weakening of the H field at 
that point. Needless to say, a detailed quantitative analysis of the fields, 
while not difficult, is a bit messy and will not be attempted here. 

Fig. 4-8 A bar magnet with uniform magnetization gives rise to the H 
field shown in (a) and the B field shown in (b). 
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4-7 THE ENERGY OF A STATIC CURRENT DISTRIBUTION; 
FORCE AND TORQUE ON A MAGNETIC DIPOLE 

As we have seen, a static current distribution j leads directly to a vector 
potential, which in turn gives rise to a magnetic field B. Naturally there is 
an energy that is associated with this current distribution or with the resultant 
fields, and, as we anticipate, this energy will be quite analogous to the electro- 
static energy we found for a static charge distribution. 

In evaluating the magnetostatic energy of a current distribution, we 
will ignore the electric field which is needed to keep the current flowing 
and whose energy we can already determine by means of Eq. (2-7-4) or Eq. 
(2-7-6). We consider then that a current density distribution j(r) leads to a 
vector-potential distribution A(r). Were we to multiply our current density 
at each point in space by the numerical factor a, then the vector potential at 
each point in space would be multiplied by the same factor a. Consider 
now that we begin with a given value of a and increase it by da. Assume also 
that we carry out this increase in a time dt. While we are changing from a A  
to (a + da)A, we are creating an electric field everywhere in space equal to 

- @)A [see Eq. (3-5-4)]. The work being done on these charges by 

the electric field per unit time is [see Eq. (4-1-5)] 

space 

(4-7-1) 
space 

Since these forces are acting to prevent us from building up the current, 
the internal energy is being increased as we do build it up. The total mag- 
netostatic internal energy of our final current distribution is thus 

b 

U, = Iol c( da ll1 j - A dV 
space 

=ill, j . A d V  
space 

(4-7-2) 

The current density above includes everything, magnetization as well as 
free current. Accordingly, we can replace j by (1/4n)(V x B). We obtain 
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then 

1 
UB = ~ l , ,  (V x B ) . A d V  

space 

1 

=-  1 i. B2dV 
(B x A) .AdA + 

8~ urfoce 
at ca space 

Since B goes to zero at least as fast as l /r2 and A goes to zero at least as 
fast as l /r,  the first integral goes to zero at infinity. We are then left with 

u, = - SBZdV 
8n (4-7-3) 

In the event that the magnetization M is proportional to B, we can 
calculate directly the work we need to do to set up a distribution of free 
current jF. The total vector potential A will now be proportional to jF, 
and the energy UF would be given by 

Applying Maxwell's equations then leads us to the result 

(4-7-4) 

(4-7-5) 

Returning to Eq. (4-7-2), we can express the total energy of a static 
current distribution in slightly different form. We remember that 

space 

Hence 

(4-7-6) 

311 
space 
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It is interesting to consider the situation where our current distributions 
can be broken into N current loops. In that case Eq. (4-7-2) can be rewritten 
as 

(4-7-7) 

where Zi is the current in the ith loop Ci. Using Stokes’ theorem, we can 
change the line integrals into surface integrals. 

We define the magnetic flux Oi through the ith loop by the equation 

Oi = li B - Ai dAi 

(4-7-8) 

(4-7-9) 

Because V B = 0, the choice of surface over which to carry out this integral 
is arbitrary, as long as the surface is bounded by Ci. The energy is thus given 

(4-7-10) 

The flux through the ith loop has a contribution to it arising from the 
current in each of the other loops as well as from the ith loop itself. The 
contribution to the flux through the ith loop by the current in the j th loop 
is clearly proportional to that current. Thus we can write 

N 

Oi = c LijZj 
j =  I 

(4-7-1 1) 

The constants of proportionality L,, are called the coefficients of inductance. 
In particular the coefficient Lii is often called the self-inductance of the ith 
loop. 

We notice a remarkable formal resemblance between the equations 
we are developing now and the ones we developed earlier for a set of charged 
conductors. We continue the analogy by proving that L, = Lji. To find 
the coefficient Lij we allow a current Z to flow in thejth coil and evaluate 
the flux through the ith coil. We then divide the flux by Z. 

A . dl, 
= f f i  
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But 
I dlj 

A = fCj 

Hence 

(4-7-12) 

Obviously Lij = Lji. Thus if a current I in the ith loop gives rise to a flux 
@ through the j th  loop, then the same current I in thejth loop will give rise 
to the flux @through the ith loop. 

1 ”  

The energy of our system can now be written as 

(4-7-1 3) U B  = - c 1 Lij&Ij 
2 i = l  j = 1  

Back in our study of electrostatics we learned that a displacement of a 
set of conductors keeping the potential constant led to a change in energy 
which was equal and opposite to that obtained from the same displacement 
with the charges kept fixed. We now prove the “equivalent” theorem in 
magnetostatics. Let (6UB), be the change in energy of our system of current 
loops if we displace them, keeping the currents constant. Let (6UB), be the 
change in energy if we displace the loops, keeping the flux constant. Then 
(6uB), = - (6uB)I .  

The proof proceeds precisely as before. 
1 

( 6 u B ) I  = -C SLijIiIj 
2 i.j 

On the other hand, 

1 
= - c 6Lij&Ij + c Lij&SIj 

2 i , j  i . j  

But 
= c LijIj and 6mi = c 6LijIj + c Lij61j = 0 

j j j 

Hence 

(4-7-14) 
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This result will be exceedingly useful in permitting us to evaluate the 
forces and torques on current loops (or magnetic dipoles) by the method of 
virtual work. In this method we imagine carrying out very small displacements 
of the system. For each displacement we can evaluate the amount by which 
the system’s energy will be changed. If we take care to see that the only 
forces (or torques) which act during the displacement are those that we wish 
to evaluate, then we can determine them by equating the work that they 
do to the change in energy of the system. 

Before we can apply this method to our current loops, we must firs! 
decide what, if anything, to keep constant in our displacement. To do this 
we will have to go a bit ahead of ourselves and make use of a result that 
we will derive in the next chapter, but which we are not altogether unfamiliar 
with. If a coil is displaced in such a way that the flux through it changes, 
then the integral of E . dl around the loop will not be zero within the reference 
frame of the loop while this change is taking place. (This, we remember, is 
how dynamos work.) Since there is a current in the loop, this electric field 
will do a certain amount of work on the system in addition to the work 
being done by the forces we are trying to evaluate. If, on the other hand, 
we carry out the displacement while keeping the flux through the loop 
constant, then the only forces doing work are the forces of interest and we 
need not concern ourselves with any other work on the system. Hence the 
quantity which is relevant in determining the forces and torques on our 
loops is (6 UB)@. (In the analogous electrostatic situation the relevant energy 
change for determining the forces on conductors was 6 U,, corresponding 
to a displacement in which the charges were kept fixed.) 

We apply this technique to find the torque and the force on a magnetic 
dipole with dipole moment p in an external magnetic field. For convenience 
we will assume that the external field is provided by one current loop C,. 
Needless to say, the result will be generalized to any applied field whatsoever. 
We approximate the dipole by a small current loop C2 with area AA2 
and current I2 such that jt = ( I2  AA2)A2 (see Fig. 4-9). 

Making use of Eq. (4-7-13), we have 

(4-7- 15) 

Now, in the displacement we are going to make (either translating or 
rotating the dipole), the self-inductance of C,  or C2 will not be changed. 
We want to evaluate (6UB),, but it is much easier to evaluate (6UB), and 
then take its negative. Hence we obtain 

= 6 p - J  B, . A 2  dA) I,Z2 
1, SI 

(4-7- 16) 
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Fig. 4-9 The field produced by 
C ,  causes a torque and a force to 
act on the dipole represented by 
c,. 

where B, is the field at C, due to C,. Inasmuch as the loop C, is of infinitesi- 
mal size, we can remove the integral sign with the result that 

(4-7- 17) 

(4-7- 18) 

We are now ready to find the torque on the dipole. To do so we make a 
rotational displacement of the dipole in various directions (keeping the flux 
through it constant) and note the change in energy. The drop in energy 
for a given angular displacement 68 is greatest if we turn p toward B,. 
Hence the torque acts to turn p in that direction. The magnitude of the 
torque is given by 

IZ160 = -@(B, A,) = +& sin 8 68 

We have then 

z = p x B ,  (4-7- 19) 

Next we can evaluate the force on the dipole. We move the dipole 
around, keeping the direction of A, fixed, and observe the change in energy. 
The force is in the direction in which the energy is decreasing most rapidly. 
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Thus 
F = pV(B, * a,) 

= (P  . V)BI (4-7-20) 

Even though we have derived these expressions for an external field resulting 
from one external loop, they are completely general. We can add the external 
field due to any number of loops together; Eqs. (4-7-19) and (4-7-20) will 
still hold. 

4-8 THE MOTION OF A CHARGED PARTICLE 
IN A CONSTANT MAGNETIC FIELD 

Quite a while ago we discovered that a charged particle moving in a magnetic 
field experiences a force on it at right angles to its velocity [see Eq. (3-5-17)]. 
We will now take a closer look at this force and make use of it to calculate 
the orbit of the particle in a variety of interesting cases. 

We begin with the very simplest, a constant field B = Bok, and assume 
that an observer sitting in the laboratory sees the charge as having mass m. 
(Needless to say, m = m,/,/-where uois the velocity of the charge.) 
Inasmuch as the field does no work on the charge, its velocity and hence its 
mass remain constant. 

Let r = xi  + yj^ + zi t  be the position vector of the charged particle. 
Then, applying Eq. (3-5-17), we have 

d2r  qB, dr - qB, d y ,  dx 
dt2 - mc dt x k = =(&, - $) 

Separating the equation into component parts, we obtain 

d 2 x  dY 1. - -  
dt2 - @' dt 

dx 
-w0 dt d2Y - 2.  - - 

dt2 

(4-8-1) 

(4-8-2) 

d2z  
3. - = o  

dt2 

where wo = qB,/mc. The number oo is often called the cyclotron frequency. 
The third equation yields 

2 = uozt  + Zo (4-8-3) 

The second equation can be integrated once and then inserted into the first 
equation : 

dY - = --wax + const 
dt (4-8-4) 
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With no loss of generality, we can choose the origin of our coordinate 
system so as to set the constant equal to zero. Then 

- d2x 
- --02x 

and 

x = R cos (mot + 6) 

(4-8-5) 

(4-8-6) 

Substituting back into Eq. (4-8-4) and integrating for y ,  we get 

y = -R sin (w,t + 6) (4-8-7) 

The equations for x and y correspond to a circular path with a positive 
particle moving clockwise as seen from the positive z direction. The path 
in three dimensions is, of course, a helix. The radius of the helix can be 
determined from differentiating x with respect to time: 

dx 
dt 

- _  - -Rw,  cos (w,t + 6) 

Hence the maximum value of dxldt is Rw,. If the particle speed is u,, we have 

R2mO2 + uOz2 = uO2 

or 

If uoz = 0, then 

(4-8-8) 

(4-8-9) 

It is useful to put Eq. (4-8-9) into a numerical form corresponding to 
the situation where the charge q is that of an electron and its momentum is 
given in eV/c (see Sec. 3-2). We first observe that p ,c  = BE where both p o  
and E are expressed in standard cgs units [see Eq. (3-2-34)]. This changes 
Eq. (4-8-9) into the form 

(4-8- 10) 

We next recall that the energy in electron volts of a particle having momen- 
tum expressed in eV/c and mass expressed in eV/c2 is just 

4 V )  = JPt"/C) + m&eV/c') (4-8-1 1) 
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Next we obtain its energy in ergs by multiplying with the conversion factor 
e/299.8 [where 299.8 = lo-' (velocity of light in cm/sec)]. 

Finally, inserting Eq. (4-8-12) into Eq. (4-8-10) and remembering from Eq. 
(3-2-37) that + m&eV/c2) = p(L.V/c), we obtain 

eP(ov/c) 
299.8 qBo 

R =  (4-8-1 3) 

If q = e,  then we have the particularly simple result corresponding to an 
electron or proton (or any other particle with one quantum of charge). 

(4-8-14) 

4-9 THE MOTION OF A CHARGED PARTICLE 
IN CROSSED ELECTRIC AND MAGNETIC FIELDS 

The solutions to orbit problems involving both electric and magnetic fields 
are often expedited through the judicious use of the Lorentz transformation. 
We will illustrate this point by examining in some detail the behavior of a 
moving charged particle in the case where both the electric and magnetic 
fields are constant in space and time and at right angles to one another. We 
choose our coordinate system, as shown in Fig. 4-10, so as to have 

B = Bok E = Eoj (4-9-1) 

Obviously, to solve the problem completely, we will have to specify both 
the initial position ro and the initial velocity v, of the particle. To simplify 
matters somewhat, we will let vo lie along the x axis; generalizing to arbitrary 
vo is straightforward and is left to the reader. 

Y 

lEY 
Fig. 4-10 To find the orbit of a particle in crossed electric 
and magnetic fields we transform to a system in which one 
of the fields is zero. 
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Now, it is not difficult to solve the problem in our given coordinate 
system. The differential equations must be treated carefully, inasmuch as 
m is no longer a constant of the motion as it is when no electric field is acting. 
We write 

dmv 4v -- - q E + - x B  
dt C 

= q(Eo - - Bo -)j dx + - 4Bo - dYt 
c dt c dt 

(4-9-2) 

However, rather than solving these equations in a straightforward manner, 
we will use a bit of “trickery” which will serve to simplify the problem 
enormously. 

Let us jump onto a coordinate system C’ which is moving with velocity 
V = Vi along the positive x axis ( V  is not in general the same as uox and 
is not to be confused with it). In Z’ we have 

E = y  E , - - B ,  j ( 3- 
B = y ( B o  - V Eo)k  

(4-9-3) 

where 

1 
y=Jm 

Now it is clear that if Eo # B, then there is some V for which either E 
or B is zero. To be specific, if Eo < B, and V = (E,/Bo)c, then E = 0. 
If B, < E, and V = (Bo/Eo)c, then B’ = 0. In either case the problem 
becomes much simpler in the new system with the indicated choice of V. 
We will solve the problem for the case where E, < B,; the alternative case 
we leave to the reader. 

In our new system we have only a magnetic field 

B ’ =  y( BoZ B, - Eoz )k = B’k 
(4-9-4) 

The particle moves in a simple circle, at constant speed and hence with con- 
stant mass. The initial velocity is (making use of the velocity transformation 
equation) 

(4-9-5) 
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The mass of the particle in this system is just 

(4-9-6) 

where m, is its rest mass. The frequency of rotation in this system is 

The radius of the circle is, of course, 
, 

R'=UO" 
0; 

and the equation of the orbit is given by 

x' = R sinoh!' 

y' = R'cosw;t' - R 

(4-9-7) 

(4-9-8) 

(Remember that R' and 06 are just numbers calculated according to the 
above equations. We assume that x' = y' = 0 at t' = 0.) 

To go back to our original system we just slibstitute for x', y', t' 
according to the Lorentz transformation : 

x' = y(x - Vt)  

Y' = Y 

This will give us the precise, relativistically correct orbits in the C system. 
In the circumstance that uox just happens to be equal to V,  we have 

t& = 0, and hence the particle is initially stationary in the C' frame. Since 
there is no electric field in the C' frame, the particle remains stationary. 
It thus continues to move with velocity uoxi in the C system, experiencing 
no net force. (Of course we expect this inasmuch as qE = -qv/c x B at 
this point.) 

4-10 LARMOR PRECESSION IN A MAGNETIC FIELD 

We have already learned that a magnetic dipole with moment p in an 
external field B has a torque on it given by z = p x B [see Eq. (4-7-19)]. 
Being basically the result of circulating charge, this magnetic moment is 
often accompanied by angular momentum L along the same axis as p. 
In this case, as we shall see, the magnetic-moment vector will precess about 
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the direction of applied field with what is known as the Larmor frequency 
WL.  

We will illustrate this process by considering a classical electron in an 
orbit about a nucleus. Let us begin by turning off the applied field and 
determining the magnetic moment corresponding to the orbit, considering 
it as a current loop. If e is the charge of the electron (e is a negative number) 
then the current is just 

4?su e Zumu = - = - x (number of turns per second) 
c c  

We let A be the area of the orbit. We then recall from Kepler’s law that the 
rate at which area is swept out per unit time is a constant and is equal to 
L/2m where L is the angular momentum of the electron and m is its mass. 
Hence. 

e l  
c period 

2 dA/dt 
c A  

remu = - - 

- 

eL  
2mcA 

=- 

Remembering that the magnetic moment is equal to the current times the 
area, we conclude that 

eL 
I ( = -  

2mc 

We have then 

L x B  dL e 
dt 2mc 

.t-=---=- 

If we let the vector oL be defined by 

eB 
O L E  -- 

2mc 

we conclude that 

- W , X L  dL 
dt 
_ -  

(4- 10- 1) 

(4-1 0-2) 

(4-10-3) 

This is the kinematical equation for the precession of the vector L about 
oL with angular frequency oL. 
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[In the case of a “spinning” elementary particle the relationship 
between L and p is replaced by the more general one : 

eL 
I c = g =  (4- 10-4) 

The proportionality constant g is called the gyromagnetic ratio. For the 
electron, g is very close to 2.1 

4-11 A METHOD OF MEASURING g - 2  

The measurement of the gyromagnetic ratio of the electron or the muon 
has had considerable significance in formulating and testing the modern 
quantum theory of electrodynamics. Both these particles appear to have no 
important interactions with matter except through electromagnetism, and 
hence it is possible to calculate g quite accurately, making use of theories 
that have been developed in the last 25 years. In either case, g turns out 
to be equal to 2 + 6 where 6 is a very small positive correction of the order 
of A. Needless to say, accurate measurements of g - 2 have been essential 
in determining the validity of the theory. So far there has been no significant 
discrepancy. As a means of illustrating the power of the relativistic techniques 
we have developed so far, we will describe in detail the first experiment’ 
to determine the value of g - 2 for the muon. 

We should begin by saying a few words about the muons themselves. 
Muons do not occur naturally in matter. They are the predominant compo- 
nent of the cosmic radiation at sea level, being the decay products of un- 
stable pions and K mesons produced at high altitude, but they only live 
for about 2 psec on the average in their own reference frame and then decay 
into electrons and neutrinos. Hence, to do experiments with them, one must 
begin by producing pions, preferably at an accelerator, and then allow these 
pions to decay. Now, in 1956 it was discovered’ that pion decay does not 
conserve parity. (In simple terms, observing a pion decay in a mirror would 
not lead to the same set of physical laws as observing it directly.) In fact, 
negative muons are emitted with their angular momenta pointing along 
their directions of motion. Positive muons are emitted with their angular 
momenta pointing opposite to their directions of motion. Furthermore, 
if these positive muons were stopped in matter and allowed to decay, the 
direction of this angular momentum (or spin) at the moment of decay 
could be determined by the distribution in directions of the emitted decay 
electrons. 

‘ G .  Charpak et a]., Phys. Rev. Letters, 6:128 (1961); Phys. Rev. Letters, 1: 16 (1962). 
’R. L. Ganvin, L. M. Lederman, and M. Weinrich, Phys. Rev., 105: 1415 (1957). J. L. Friedman 
and V. L. Telegdi, Phys. Rev., 105: 1681 (1957). 
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This result leads quite naturally to a technique for determining g - 2. 
If the polarized muon is introduced into a magnetic field, the direction of its 
angular momentum will precess, as we have just shown. In addition, the 
muon itself will turn through its orbit. After spending a given amount of 
time in the field, the muon can be brought out and the angle between its 
spin and its direction of motion can be measured. As we shall prove, this 
angle is directly proportional to g - 2, and its measurement offers a very 
sensitive and direct test of the validity of our theory of quantum electro- 
dynamics. 

In Fig. 4-1 1 we illustrate the apparatus used in the g - 2 experiment. 
The muons were introduced into a large magnet, slowed down somewhat, 
and then trapped in orbits for awhile. After a number of turns they left 
the magnet, were stopped within a block of material, and their decay dis- 
tribution was measured, yielding the directions of their final polarizations. 

To follow what is going on, it would be most convenient to move along 
with a coordinate system attached to the muon. Inasmuch as the muon's 
own coordinate system is not an inertial system, we might imagine our- 
selves within a bit of difficulty here, but we can get out of it by a very simple 

Fig. 4-11 A detailed drawing of the apparatus used for a measurement of g - 2 of the muon 
[G. Charpak et al., Phys. Rev. Letters, 6 :  128 (1961); Phys. Rev. Letrers, 1 :  16 (1962)l. A muon 
enters the magnet and is passed through a beryllium block for energy degradation. It then 
passes through a large number of orbits until it emerges and is stopped in a target T. The 
numbers refer to scintillation counters that are used to detect either the muon or its decay 
electron. 

3 
2 

I 
Be 4 

6 
6 
J 
7 

C 
7 
7 



176 TIME-INDEPENDENT CURRENT DISTRIBUTIONS; MAGNETOSTATICS 

ruse. We will follow the muon’s progress with a succession of inertial systems, 
each moving with the muon’s speed, and tangential to its orbit at some point. 
We will then relate the observations within one coordinate system to those 
within the next system down the line until the particle finally leaves the field 
altogether. 

We will make the simplifying assumption that the charged particle is 
moving with speed v at right angles to the field and that the motion all takes 
place within one plane. (Needless to say, this assumption is not precisely 
true in reality and a careful analysis of the orbits is necessary.) Subject 
to this assumption, an observer in each of our moving coordinate systems 
sees a magnetic field equal to yB where B is the laboratory field at that point 
and y = l/J-.. 

We begin by examining an infinitesimal portion of the particle’s orbit 
as seen from both the laboratory system C and from the moving system 
C’ which is tangential to the particle’s orbit at this point (see Fig. 4-12). 
In either case the orbit appears to be a segment of arc, but within Z‘ it 
appears much foreshortened and hence of smaller radius than in Z. The 
sagitta of the arc is s as seen in C and s‘ as seen in C’. The chord of the 
arc is d as seen in C and d as seen in Z‘. Obviously s’ = s and d = d/y. 
If dd is the angle of arc as seen by C and do’ is the angle of arc as seen by 

I d 

I I I 

I 

J 
I 

I 
I I 

Fig. 4-12 A segment of the path of a 
particle in a magnctic field as seen by an 
observer in the laboratory (Z) and by an 
observer with the velocity of the particle and 
tangential to its path (Z’). 
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C‘, then 

dt?’ s‘d 
d0 s d  
- = - _  - Y  (4-11-1) 

Now what about the time to go from one end of the segment to the 
other? Since C’ is the particle’s rest frame at the moment, we can write 

dt = dt’ (4- 1 1-2) 

Hence the rate of change of direction as seen by C’ can be related to the 
rate of change of direction as seen by C. 

dt?’ y 2  d0 
dt’ dt 
_ -  -- (4-1 1-3) 

But dOldt is just the cyclotron frequency of the particle, eBImc, where B 
and m are as measured in the laboratory. This leads to 

d0’ y2eB - yeB 
dt‘ ymoc moc 

- (4-1 1-4) 

Next we must find through what angle dq’ the spin has precessed 
during the same time interval dt‘. The magnetic field as seen by C’ is yB, 
and hence the Larmor frequency is 

(4-1 1-5) 

Thus the angle between spin and orbit direction, as seen by C‘, has changed 
from one end of the arc to the other by an amount 

eyB dt! d(q’ - 0’) = (9 - 2)- 
2m0c 

eB dt 
2m0c 

= (9 - 2) ~ (4- 1 1-6) 

We now transform to the moving system which is tangential to the 
next segment of arc (X”). Since the relative velocity of C” and C’ is infinitesi- 
mal, the angle between spin and orbit at any given point on the orbit does 
not change with this transformation. Thus we have 

= (q” - W b c g i n n i n g o f  (4- 1 1-7) 
sucond scgment 

(q’ - @)end of 
first segment 

Following the particle over the second arc, as seen from C”, we come 
up with the same Eq. (4-11-6) for the change in angle between orbit and 
spin direction. We continue this procedure until we leave the magnet. 
Adding together all the changes in angle between spin and direction o f  
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motion, we conclude that 

II/' = angle between direction of muon spin and direction of motion 
upon leaving the magnet, as seen by observer moving with muon 

eB 
2m,c 

= (g - 2) - t (4- 1 1-8) 

where B is the average field experienced by the muon and t is the time spent 
in the magnet. 

Finally, we must bring the muon to rest. The process of stopping 
the muon is equivalent to applying an electric field opposite to its direction 
of motion. An observer riding along with the muon sees the same electric 
field but no magnetic field at all. Consequently, he does not see any change 
in the muon's spin direction during the slowing-down process, and the 
final angle, in the laboratory, between the direction of the muon and the 
direction of its spin is given by Eq. (4-1 1-8). 

The experiment we have just described was the first of a series carried 
out at the CERN laboratory in Geneva during the past 10 years. It is clear 
from an examination of Eq. (4-1 1-8) that a basic limitation on the accuracy 
of the measurement is the finite lifetime of the muon, about 2.2 psec in 
its own reference frame. To make t, the laboratory time, as large as possible, 
one needs to increase the energy of the muon and thus make use of time 
dilation. The most recent experiment' uses muons having a y of 12 and 
hence times of the order of 25 psec. Typical values of I,$' are about 2000". 
To avoid the difficulties of stopping such energetic muons, the experimenters 
actually looked at decays in flight. For a detailed description of the experi- 
ment, the reader should read the article cited in footnote 1. The experimental 
result has come quite close to that predicted by the theory. t$)exp = 116,616 & 31 x 

e2 e4 + 0.7658 ~ + * * 
l r 2 h 2 C 2  

= 116,560 x 

(In the above, e is the charge of the muon and h is Planck's constant divided 
by 2x. The combination of e2/hc, usually denoted by the symbol a, is dimen- 
sionless and goes by the name of fine-structure constant. Its value is about 
&.I 

We should note that the value of g - 2 for the electron has also been 
determined by this method. A long series of experiments have been carried 

' J. Bailey et al., Phys. Rev. Letrers, 28B: 287 (1968). 
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out by Prof. H. R. Crane and collaborators and are described in a recent 
issue of Scientific American.' 

4-12 THE MAGNETIC STRESS TENSOR 

We consider next the methods whereby we can determine the force exerted 
on a distribution of currents by magnetic fields. We will find, in complete 
analogy with electrostatics, that this force can be expressed either in terms 
of a volume integral requiring a knowledge of the current and the field at 
each point in the distribution or in terms of a surface integral in which 
only the field on the surface need be known. We will again find that the 
surface integral will have an integrand which is the product of a stress 
tensor T with the normal to the surface b. 

We begin by going back to our expression for the force exerted on 
an elementary charge q by a magnetic field B [see Eq. (3-5-17)]. 

4 F = - v x B  
C 

For a distribution of current over a volume V,  this becomes 
r 

F = J  ( j x B ) d V  
V 

Remembering that j = (1/4n) V x B, we have 
. r  

F = -  @ x B ) x B d V  
4n ' J  v 

(4- 12- 1) 

(4- 12-2) 

(4- 12-3) 

To convert this into a surface integral we take the components of F in- 
dividually and transform them. For example, 

F, = - t - ( V  x B) x B d V  4n 'I 
= -L J [I x (V x B)] * B dV 
4n 

1 1 aB2 

1 aBx2 aBxBy aB,B, B, (V.  B)  - - - aB']dV 

= q , j - v B - V B x  - - 2 - ax dV 

= 4n j-" [ax + ay + - aZ - 2 ax 

(4-12-4) 

' H. R. Crane, Scientific American, January, 1968, p. 72. 
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We remember first that V . B = 0. We next recall that the first three terms 
can be turned into a surface integral by following the same steps as we 
followed in proving Gauss' theorem. We finally obtain, for the component 
49 

(Bx2n, + BxByny + B,B,n,) dA - 

= &js [(B:n, + BxByny + B,B,n,) - - B2n"] dA (4- 12-5) 
2 

In summary then, for the three components of F we can write 

where 

1 1  

T 
P2 

(4- 12-6) 

(4- 12-7) 

A comparison with Eqs. (2-16-11) and (2-16-12) shows us a deep under- 
lying similarity between electrostatics and magnetostatics. This is not 
altogether surprising though because, as we have learned, if we had begun 
with magnetic monopoles rather than charges, then the roles of B and E 
would have been reversed. When we use the stress tensor to find the force 
on a volume, we pay no heed to the charges and currents in the volume, 
only to the fields on its surface. Hence the electrostatic stress tensor must 
involve E in precisely the same way as the magnetostatic stress tensor 
involves B. 

We will illustrate the use of the magnetostatic stress tensor by means 
of an example. We have a long cylindrical thin-walled tube of radius R 
carrying current Z as shown in Fig. 4-13. The force on the tube acts so as 
to tend to collapse it. To counteract this force we can pressurize the inside 
of the tube with pressure P. We ask then for the value of P needed to precisely 
balance out the magnetostatic force. 

To solve this problem we pass a plane through the axis of the cylinder 
and call it the yz plane. We then calculate the magnetostatic force F exerted 
by the upper half (x 2 0) of a unit length of the tube on the corresponding 
lower half (x 5 0). We do this by integrating the stress tensor over the y z  
plane, remembering that A = 1. We have then on the yz  plane 
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I 

X 

Current I is 
into paper 

We would like to find how much pressure to put on the inside of a tube of Fig. 4-13 
radius R to precisely counteract the magnetostatic force tending to collapse it. 

i" 2 0 0 

0 
- B2 

0 -  
1 

T = - I  47l 2 

- B2 

2 
1 0  0 - 

(4- 12-8) 

(4-1 2-9) 

Integrating over a unit length, we have 

S i n c e B = O f o r - R s y s  R,wefind 
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To find P, we set the magnitude of F equal to 2PR, yielding 
12 

p = 1  
271 R2 (4-1 2- 10) 

We shall come back to the stress tensor shortly when we deal with 
energy and momentum conservation in electromagnetism. At that time we 
will find that the electric and magnetic stress tensors coalesce to form a 
3 x 3 portion of a four-dimensional electromagnetic energy-momentum 
tensor, the other components of which are the energy and momentum density 
contained in the fields. 

PROBLEMS 

4-1. A long straight conductor carries current I. It is in the form of a cylinder of 
radius R with an off-axis cylindrical hole of radius b, as shown. The distance 
between the axis of the cylinder and the axis of the hole is a. Find the magnetic 
field in the hole. 

b 

4-2. Making use of the stress tensor, prove that if the magnetic field is constant at 
all points on a surface surrounding a given object then there is no magnetic 
force acting on the object. 

A circular toroid with rectangular cross section, as shown, is wound on a core 4-3. 
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having permeability p. N turns of wire are used, and a steady current I is put 
through the wire. 
(a) Find the fields H, B, and M at radius r within the toroid. 
(b) Find the vector potential A at the center of the toroid. 

An electromagnetic crane is constructed of a U-shaped steel yoke with 1000 
turns of wire carrying current I ,  as shown. The permeability of the steel is 1000. 
We would like to use it to lift a steel block of dimensions 30 cm x 30 cm x 120 
cm and having the same permeability. 

4-4. 

30 

60 

30 

30 60 30 
3 0  

All dimensions in centimeters 

Estimate the magnitude of I in order that we just be able to lift the block 
as shown (the density of steel can be taken as 8). 

A long straight cylindrical solenoid of radius R is wound with N turns of wire 
per centimeter with each turn carrying current I. Find the pressure exerted on 
the inside of the solenoid at its midpoint. 

It is possible to simulate a portion of the orbit of a charged particle in a magnetic 
field by means of a current-carrying wire under tension. Consider a short segment 
of such a wire under tension T in a magnetic field B. Demonstrate that the 

4-5. 

4-6. 

T 

Orbit of particle of 
charge q with 
momentum p 
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path followed by the wire segment if it carries a current I corresponds to a 
portion of the orbit of a charge q having momentum p .  (If q is positive, the 
direction of its motion along the orbit is opposite to that of the current.) 

Derive an equation relating p and q to I and T. 

4-7. An electromagnet is constructed with poles, as shown below. The field between 
the poles is in the direction indicated and is assumed to be constant at all points 
except at the boundaries where it drops to zero. A parallel beam of particles, 
each with mass rn, velocity v, and charge q, enters the magnet at an angle of 
incidence cp and leaves the exit face with the sane angle, having bent through 
2q. The fringing field of the magnet will cause the beam to be focused in the 
vertical direction. The magnet length is 1. 

Top view 
Front (P 

B 

Find the approximate distance the beam travels, after leaving the magnet, 
before it comes to a vertical focus. 

A block of conductor having height a and thickness b carries a current I, as 
shown. A magnetic field B is applied to the block, as shown. Assume that the 
current is carried by means of N electrons per cubic centimeter. 

Find the potential difference that is developed between the top and ?he 
bottom of the block. How can the sign of this potential difference serve to 
determine the sign of the charge carriers? (The phenomenon described here is 
called the Hall effect.) 

4-8. 
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4-9. Two circular loops, each of radius R and carrying current I ,  are placed parallel 
to the yz plane and centered about the x axis at x = -land x = + I ,  respectively. 
Each produces a field in the +x direction along its axis. 

(a) Find an expression for the field along the x axis. 
(b) Show that the first derivative of B, with respect to x is zero at x = 0. 
(c) For what ratio of I to R is the second derivative of B, with respect to x 

also equal to zero at x = O? 
(d )  Choose R = 50 cm and Z = 10 abamperes. Fix I to conform with the con- 

ditions of part (c) above. Now plot B, as a function of x from x = -20 cm 
to x = +20 cm on the x axis. (The circular loops considered above are 
called Helmholtz coils. They provide a cheap way of producing a fairly 
uniform but small magnetic field over a large volume.) 



5 
The Variation of the 
Electromagnetic Field 
with Time: Faraday's Law, 
Displacement Currents, 
the Retarded Potential 

We enter now on what is undoubtedly the most exciting part of our voyage 
through the world of electromagnetism. While electrostatics and magneto- 
statics are interesting subjects, yielding results which are pretty and even 
surprising at times, they give no hint of the incredible beauty and richness of 
phenomenology that lies in store when we allow our currents and charge 
186 
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densities to change with time. We have already gotten a fleeting glimpse 
of the gold mine when we developed Maxwell's equations and observed 
that an electric field can result from a time-varying vector potential. In this 
chapter we will explore some of the simpler consequences of this observation, 
leaving for our next chapter the crowning prediction-light. 

5-1 FARADAY'S LAW 

We begin by reexamining the important discovery made by Faraday in the 
last century. He observed that it was possible to induce a current in a con- 
ducting loop by changing the flux through it. This effect could be accom- 
plished in one of two ways, by moving the loop itself or by actually varying 
the magnetic field passing through the loop. In the first case, the cause of 
the current flow is the force exerted by the magnetic field on the moving 
charges in the wire. In the second case, the force is the result of a time- 
varying vector potential and its associated electric field. In either case, the 
integrated force per unit charge around the loop is proportional to the rate 
of change of magnetic flux through the loop. This result is known as 
Faraday's law. 

Before proceeding we will define what is meant by electromotive 
force 8. We must begin by choosing a direction around the loop C as 
shown in Fig. 5-1 and defining the normals to a surface covering the loop 
by means of the usual right-hand rule. As we said before, the loop is either 
stationary or moving. The force per unit charge on a charge which is fixed 
with respect to a given point on the loop is 

V 
- = E + - x B  
F 
4 C 

(5-1-1) 

where v is the velocity of the given point on the loop, B is the local magnetic 
field, and E is the local electric field. If we integrate this around the loop, 
we obtain the electromotive force 

B 

(5- 1-2) 

Fig. 5-1 We show that the 
ern1 around a curve C is pro- 
portional to the rate of change 
of flux through C. 
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Needless to say, the electromotive force will tend to make a current flow 
around the loop. In any case, the two portions of the integral above corre- 
spond to the two cases we discussed earlier. The first part, $c E . dl,  is the 
result of the time-varying vector potential. The second part is patently the 
result of the loop’s motion. 

Consider then first the emf which results from varying the fields. 

stationary 

where S is a surface covering the loop. Interchanging the order of differen- 
tiation and bringing the time derivative out of the integral, we obtain 

= - - -  d I V x A - A d A  
c dt 4 W P  

stationary 

due lo changing 
fields 

(5-1-3) 

Next we consider the emf which results from a motion of the loop. 

&due 10 = f f X B ’ dI 
motion 

But 
v x B . d l  = -(v x d l ) . B  

= -(flux through area swept out by dl per unit time as a 
result of its motion) 

Integrating around the loop, we again conclude 

1 d@ 
duc to motion 

&due:o motion = - 7 (x) 
of loop 

We combine this result with Eq. (5-1-3) to conclude in general that 

all sources 
(5-1-4) 
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We can obtain another expression for d by recalling Eq. (4-7-11). 
We had shown that for a set of N loops 

N 

(35, = c LijJj 
j =  1 

and hence 

8, = electromotive force around ith loop 

1 d(35, 
c dt 

- 

1 dJj 
c j = l  ’’ dt 

= - _  c L . . -  (5-1-5) 

This result will be of great importance in the study of ac circuit theory. 
We should offer one rather important comment at this point. Equation 

(5-1-3) relates the emf around a stationary loop to the rate of change of flux 
through the loop. Note though that there need be no magnetic field at all 
at the loop itself. Furthermore, the rate of change of flux is simultaneous 
with the emf. Both these points indicate to us that there is no direct causal 
relationship between changing magnetic field and electromotive force. Both 
are in fact caused by a time-varying vector potential which is the result of a 
time-varying current distribution. Needless to say a change in current 
density at some point must precede a related change in vector potential at 
some other point by enough time to allow for the transit of information 
at the velocity of light. 

To develop some insight into Faraday’s law we will consider several 
examples of its application. The first of these is a situation we are already 
quite familiar with. We have two long coaxial thin-walled conducting tubes 
with radii a and b, respectively (see Fig. 5-2). A current J flows down the 
inner tube and returns on the outer tube. We now allow the current to 

Fig. 5-2 Two coaxial thin-walled cylinders carry a current I as shown. The inner cylinder 
has radius a and the outer cylinder has radius b. We change the current at a rate of dI/dt and 
ask for the electric field distribution as a function of radius. 

I 
I 

a 
b C 

1 cm 
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change at a rate of dI/dt and ask for the electric field distribution as a func- 
tion of radius. 

The simplest way of handling this problem is by finding the vector 
potential everywhere as a function of the current 1. We consider the analo- 
gous electrostatic problem (see Sec. 4-2 for a discussion of this method of 
finding A) where the inner conductor has a charge density per unit length 
of ,I and the outer conductor has a charge density per unit length of -1. 
The potential in this electrostatic problem is 

for a 5 r 5 b 

. = { o  for r 5 b 

We can now write down the vector potential for the problem at hand by 
replacing 1 by I and rp by A,:  

r i -2z1nb 
fora  5 r 5 b 

for r 2 b 

Differentiating with respect to time, we find 

(5- 1 -6) 

(5-1-7) 

Next let us find E,(r) by making use of Eq. (5-1-4) and evaluating @ 
through the indicated curve C. We first use Ampere’s law to determine 
B as a function of r. 

2nrB = 4x1 

The flux through C is now determined by integrating B over the indicated 
area. 
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r CP = [ r d r  = -2Zln- 
b 

(5-1-8) 

To determine d we note that the only contribution to d comes from the 
electric field E,(r) inside the outer conductor. Hence, for the indicated 
path C, 

d = E,(r) (5 -  1-9) 

Combining Eqs. (5-1-8) and (5-1-9), we reproduce Eq. (5-1-7) for Ez(r). 
Incidentally, the self-inductance per unit length of these coaxial 

cylinders can be obtained from Eqs. (5-1-9), (5-1-7), and (5-1-5). We take 
r = a in these equations and find 

d = &(a) = -1n- - (: ;): 
Also 

1 d l  8 = - - L -  
c dt 

Hence 

(5-  1 - 10) 
b 

L = 21n- 

As our second example let us consider a circular loop of conducting 
material placed in a plane perpendicular to an applied magnetic field B, 
(see Fig. 5-3a). The loop has radius b, self-inductance L, and a resistance 
around its circumference equal to R. We now reduce the applied field to 
zero with a linear time dependence: 

U 

B(t) = B, - kt for 0 6 t 6 - BO (5-1-1 1) 
k 

This change in magnetic field gives rise to a current in the loop. We would 
like to determine this current I(t)  as a function of time. 

The total flux through the loop at any time is made up of two con- 
tributions. On the one hand, we have the applied flux, which is equal to 
nb2Bo for t 5 0, nb2(B, - kt) for 0 6 t 5 B,/k, and 0 for t 2 B,/k. 

B~ Fig. 5-3 (a) A loop of radius b having induc- 
tance L and resistance R is placcd normal to a 
magnetic field as shown. The field is reduced to 
zero, leading to a current in the loop. [The 
indicated direction of I ( r )  will be considered the 

- 
1") 

(4 positive direction.] 
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On the other hand, we have the flux which arises from the current in the loop 
itself and which is equal to LZ(t). The total flux is thus equal to 

@(t 5 0) = nb2Bo 

@ 0 5 t 5 - = nb2(B0 - kt)  + LZ(t) ( 3 (5-1 - 12) 

@ t - = LZ(t) ( 3 
Obviously, for t S 0 there is no current flowing. During the time 

interval 0 5 t 5 B,/k, Faraday’s law tell us 

xb2k L dZ 
C c dt 

= - - - -  

Now Ohm’s law tells us (see Sec. 4-1) that 

8 
Z( t )  = - 

R 

Substituting into Eq. (5-1-13), we find 

nb2k + RZ=- 
L dZ 
c dt C 
_ _  

(5- 1-1 3) 

(5 -  1 - 14) 

(5-  1 - 1 5) 

Solving for Z(t) and inserting the condition that Z(0) = 0, we have 

nb2 k BO (I - e-Rc‘/L) for O 5 t 5 - Z( t )  = - 
k Rc (5-1 - 16) 

For l 2 Bo/k, I(t) satisfies the differential equation 

+ R Z = O  
L d l  
c dt 
_ _  

Solving for Z(t) and requiring that Z(t) be continuous at t = B,/k, we obtain 

(5- 1 - 17) 

In Fig. 5-36 we have plotted Z(t) as a function of time for three choices 
of k.  As reasonable parameters we have taken b = 10 cm, R = &=, stat- 
volt/abampere, L = 1000 emu, and Bo = 1000 gauss. 

An interesting point which occurs to us as we examine the three 
curves in Fig. 5-3b is that the area appears to remain constant as we vary k.  
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To check this out we can integrate the expressions in Eqs. (5-1-16) and 
(5-1-17). We find that 

nbZ B, 
Rc 

emu 

(5- 1 - 18) 
nb2Bo 
R esu 

We can thus conclude that the total amount of charge passing any 
given point in the loop as we reduce the applied field to zero is dependent 
only on the initial flux through the loop and on its resistance. That this 
result is completely general for any loop whatsoever at any orientation 
with respect to the applied field is extremely simple to prove. We observe 
again that the flux through an arbitrary loop can be broken into the applied 
flux @,, and the flux due to the loop itself. 

@ = @,, + LZ (5- 1 - 19) 

Fig. 5-3 (cont'd) 
abampere, b = 10 cm, L = 1000 emu, B = 1000 gauss). 

(b) A plot of current versus time for various values of k (R = & statvolt/ 

Time, sec 

(b) 



194 VARIATION OF E AND B WITH TIME 

Hence in general 

1 dQa L dI 
c dt c dt 

(5-1-20) 

Integrating with respect to time, we have 

(5-1-21) 
; j : d I +  R j : I d t =  --!:.ma 1 

C 

If we start with no current and end with no current, then 
we can write 

@,(initial) - Qa(final) 
Rc 

Id t  = (5- 1-22) 

The observations we have just made serve as the basis behind the 
operation of the pip-coil method of magnetic field measurement. By using 
a ballistic galvanometer to integrate current and a coil whose resistance and 
physical dimensions are well known, we can map a magnetic field quite 
accurately. 

Incidentally, we might look to see what happens if the resistance in our 
loop is equal to zero (this happens, of course, in the case of a superconducting 
loop). In that case, using Eq. (5-1-20), we find 

dma LdI - + - = o  
.dt dt 

(5- 1-23) 

Hence the total flux through the loop remains constant : 

ma + LI = const (5-1-24) 

Before we complete this section, we should go back to the Alvarez 
magnetic monopole experiment that we described earlier (see Sec. 3-6) and 
evaluate its sensitivity. We had at that time developed an expression for the 
emf around a loop linking the path of the moon rock if the latter contained 
a monopole charge Q'") [see Eq. (3-6-14)]. We can derive the same expression 
by noting that the total magnetic flux issuing from the monopole is just 
4nQ'"). Hence each time Q'") passes through the loop, it changes the flux 
through it by an amount equal to 4nQ'"). If the time for one pass through 
the loop is equal to T, then 

(5-1-25) 
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We now observe that if the 1oop.contains n turns of superconducting wire 
with inductance L, and the sample passes through the loop N times, then 
the change in current Alcan be obtained by integrating Eq. (5-1-23), leading 
to the result 

4nNnQ'"' 
L 

AI = (5- 1 -26) 

In the actual experiment the coil had 1200 turns of wire and a self- 
inductance of 78 x lo6 emu. The detectors used were sensitive to a current 
change of 1.4 x lo-'' abampere. The magnitude of the basic Dirac mono- 
pole charge is about 68.5 times larger than the electron's charge in esu, 
and hence for N = 400 we would expect AI 2 25 x lo-'' abampere. 
The experiment was thus sufficiently sensitive to easily detect one Dirac 
monopole. Twenty-eight lunar samples were examined with a total mass 
of 8.4 kg. No monopoles were found.' 

5-2 

To derive the energy conservation laws from Maxwell's equations is remark- 
ably simple. We take the scalar product of one equation with E and of 
another with B, viz., 

THE CONSERVATION OF ENERGY; THE POYN'TING VECTOR 

1 aE 
E. (V x B) = -E . -  + 4nj.E 

c at 

Subtracting the lower equation from the upper and using a simple vector 
identity, we have 

i a  
2c at 

-V . (E  x B) = - -(E2 + B 2 )  + 4nj -E 

Multiplying by c/4n and rewriting, we have 

V . ( d E  x B) + z(T) d E2 + B2 + cj .E = 0 

We define the vector S, called the Poynting vector, by 

C 
S = - E x B  

4n 

(5-2-1) 

(5-2-2) 

For a more complete discussion see L. Alvarez. P. Eberhard, R. Ross, and R. Watt, Science, 
167: 701 (1970). 
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Integrating over any volume, we have 

S . A d A  + z\vol(  a E2 8n: + B2 ) d V +  l o l c i . E d V =  0 
surfacr: 

(5-2-3) 
s of vol 

Let us see if we can identify the various terms in this equation. The 
last term we have come across earlier in Eq. (4-1-5). We recall that cj - E 
is just the rate per unit volume per unit time at which mechanical work is 
being done on the charges by means of the electric field. Hence we have 

cj E dV = rate of increase of mechanical energy of charges lo, 
We also recall that (E2 + B2)/8n is the energy density of the electric and 
magnetic fields. The second term in Eq. (5-2-3) is thus the rate at which 
field energy within the volume is increasing. Finally, the first term in Eq. 
(5-2-3) has the appearance of an outgoing flux and must be equal to the 
rate at which energy is leaving the volume per unit time. So everything just 
adds up right if we interpret S as being a vector which points along the 
direction in which energy is flowing and whose magnitude is equal to the 
flux of energy per unit time through a unit area normal to itself. 

As we shall shortly see, Eq. (5-2-3) will be only one of the four energy- 
momentum conservation equations. We also anticipate that energy con- 
servation and momentum conservation can be simply represented by just 
one single four-dimensional equation among proper four-dimensional 
quantities. Thus we shall succeed once again in unifying electromagnetic 
field equations by means of relativity. In the meantime though, we demon- 
strate a very simple application of the above by returning to our old standby, 
the long current-carrying wire (see Fig. 5-4). No fields are changing, and so 

dV = 0 
at 
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We draw an imaginary surface of radius r and length I about the wire, as 
shown. The wire segment enclosed is assumed to have a resistance R.  
To produce a current I ,  we need an electric field parallel to the wire of 
magnitude IRII. The magnetic field at r circulates about the wire and has a 
magnitude equal to 2Z/r. Hence 

c 2Z2R 
411 Ir 

Is1 = - - 

and 

c 212R 
S . f i d A  = - - - 2nd = -12Rc s surface 411 lr 

We see then that the amount of energy entering the 
is just equal to the ohmic dissipation within the wire. 

(5-2-4) 

volume per unit time 

5-3 MOMENTUM CONSERVATION IN ELECTROMAGNETISM 

It would be quite straightforward to derive the momentum conservation 
relations by simple manipulations of Maxwell’s equations. We choose, 
however, to use another approach, illustrating again the enormous power 
inherent in treating the electromagnetic field relativistically. We shall 
rewrite the energy conservation equation we have just obtained in terms of 
our four-dimensional representation. We will then change all subscript 
4s to Is, 2s, and 3s in turn, yielding the three momentum conservation 
equations. Simple inspection of these equations will show that they make 
sense and do indeed lead to the proper results when applied. 

We begin by rewriting the energy conservation equation (5-2-1) in 
slightly different form. 

The expression on the right is the fourth component of a four-vector. 

Hence we anticipate that are four components of a sec- 

ond-rank tensor qv. We have 

- is, - is,, - is, E 2  + B2 
811 T24 = - T34 = - T44 = 

C C TI4 = 7 
(5-3-2) 
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Let us see if we can write these components in terms of the field tensors 
F and G :  

-is, - -i(E x B), 
7-14 = - - 

C 4.n 

- 2  
= -(BzEy - BYEz) 

48 
(5-3-3) 

Now there are two ways in which we can write T14. Referring back to Eqs. 
(3-5-6) and (3-6-9), we find (since F,, = F44 = 0) 

1 
Tld = -(F12F24 4n + F13F34) 

1 4  

Alternatively we could write 

1 
T14 = + G13G34) 

1 4  

(5-3-4) 

(5-3-5) 

Naturally, we expect that the prettiest combination of the above equations, 
namely, the one which is most symmetrical with respect to E and B, will 
match for all the components of Eq. (5-3-2): 

r A  

We can check out the other components against Eq. (5-3-2): 

-Z 
= - (2EzB, - 2E,B,) 

871 

- i  
4n 

= - (E x B),, 

r A  

(5-3-6) 

- i  
4n 

= - (E x B), 
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1 4  

1 
87t = - (Ex2 + Ey2 + Ez2 + BX2 + By2 + Bz2) 

So it seems we have found the tensor we are looking for : 

(5-3-7) 
l 4  
811 p = l  

T p a  = - c (F,,F,, + GppGpa) 

Because both F and G are antisymmetric, T is symmetric: 

Tpa = T a p  (5-3-8) 

The energy conservation equation can now be written as 

(5-3-9) 

If we replace 4 by 1,2, and 3 we should obtain the momentum conservation 
equations 

(5-3-10) 

We now rewrite this result in terms of E, B, and our charges and currents 
and see its physical significance. Let u = 1, for example: 

= (i x B), + pE, (5-3-1 1) 

+ lv [Q x B), + pE,] dV (5-3-12) 

Using Gauss’ theorem, we can change the volume integral on the left into 
a surface integral. This yields 

[(i x B), + pE,] dV (5-3-13) 
+ \V 
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The integrand of the left side of Eq. (5-3-13) looks like the first compo- 
nent of the product of a three-dimensional tensor T and the normal vector 
A. In fact, this portion of the four-dimensional tensor T is nothing more 
than the sum of the electric and magnetic stress tensors we have studied 
earlier (see Secs. 2-16 and 4-12).  

Ez2 + Bz2 - - - - 
2 2  

(5-3-14) 

We generalize Eq. (5-3-13) then by writing down the complete momen- 
tum conservation equation 

( j x B + p E ) d V  (5-3-15) 

The surface integral on the left can be thought of as the total momentum 
flowing into our volume through the surface per unit time. (Alternatively 
one might think of it as being the electromagnetic “force” exerted on our 
volume by the outside world.) The first integral on the right should be just 
equal to the rate of change of the field momentum within the volume. 
This would indicate that Sic2 is the momentum density of the electro- 
magnetic field. Finally the second term on the right is nothing but the 
force on the charges and cvrrents within the volume and is thus equal to 
the rate of change of mechanical momentum within the volume. We have 
thus derived the equation for momentum conservation in the presence of 
electromagnetic fields. 

5-4 ELECTROMAGNETIC MASS 

As a charged particle moves along through space with velocity v, the electro- 
magnetic field it carries along has a momentum which depends upon its 
velocity. Inasmuch as we have learned that Sic2 is the momentum density 
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of the field, we are now in a position to find the total field momentum for 
our moving particle. We shall see that it is proportional to both v and 
1/,,/-/2, in precisely the same manner as the mechanical momentum. 
In the case of mechanical momentum, the constant of proportionality is 
called the mechanical rest mass. Similarly, we will call the constant of pro- 
portionality in evaluating the field momentum the electromagnetic rest mass. 
We shall then see that this is not exactly the same as the electromagnetic 
mass obtained by dividing the total field energy in the particle’s rest system 
by c2. This would be troublesome except for the obvious fact that we have 
left out another force entirely, the force which holds the charge together. In 
any case, there is no way of distinguishing mechanical mass from electro- 
magnetic mass by applying forces to the system. 

To simplify our considerations, we will make use of a specific example- 
a spherically symmetrical charge distribution of radius R moving with 
velocity u along the positive x axis (see Fig. 5-5). The direction of S is as 
shown in Fig. 5-5.  Clearly, only the x component of S/c2  (the momentum 
density) is not averaged out as we carry out an integration over all space. 
So our job consists of evaluating SJc2 everywhere and then integrating 
over all space to find p x  (electromagnetic). 

The simplest way to proceed is to go over to the rest system of the 
particle (C’), calculate T’ in that system, transform T’ back to the labora- 
tory system with velocity -0, examine T14 = - iS,/c, and then integrate 
over space. We first write T’. 

1 
4n 

T’ = ~ 

0 0 
E’2 

2 
- 0 

(5-4-1) 

where E depends only on r‘ .  

on the right with 2. (the transpose of L) where 

y 0 0 -ipy 

To transform to the laboratory, we multiply T’ on the left with L and 

L =  
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Bout flE 

Fig. 5-5 
moving charge. 

We are interested in evaluating the electromagnetic momentum associated with a 

Carrying out the multiplication yields 

iPY T14 = -(E;‘ - E”) 
4n 

and hence 

E; py2c E” sin’ 8’ 
4x 

where cos 8’ = - 
E s, = - 

To evaluate the total field momentum we integrate over all space. 

p,(em) = 7 - ”’‘ (E’)2 sin’ 0’ dV 
4n 1. 

space 

(5-4-2) 

(5-4-3) 

(5-4-4) 

But this is an integral much easier to evaluate in the X’ system. We remember 
that because of the Lorentz contraction, ydV = dV‘. Hence 

space 

= 2n j: (E’)’r’’ dr‘ 1; sin3 8’ d8’ 
4nc 

- - f 1: ( r ) 2 r ‘ 2  dr‘ (5-4-5) 
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But the total electrostatic energy in the particle rest system is given by 

Hence we can write 

4 PY 
= - - u, 3 c  

(5-4-6) 

(5-4-7) 

We would have expected, in the absence of any other forces, to have 
obtained the relationship px(em) = (Py/c) 17,. 

Unfortunately, though, we have left out some factors which must play 
an important role in this problem. There has to be some additional force 
around to hold the charge together! Having omitted this force, which would 
presumably lead to a change in both the internal energy of the system and 
its momentum, we cannot expect to get a completely consistent theory. 
In any case, we have come up with the kind of velocity dependence we were 
looking for, and we are “almost” right in the relationship between rest 
energy and momentum. 

Needless to say, there is no way in which one can experimentally 
separate the portions of the particle’s self-energy which contribute to 
its mass. When we act on a charged particle with an external force of any 
sort, we act on the entire mass regardless of its origin. 

5-5 THE DISPLACEMENT CURRENT 

It is interesting to reexamine Ampere’s law, now that we are permitting the 
charges and currents to be time dependent. We recall that Ampere’s law 
was derived from one of Maxwell’s equations, the one which related the 
curl of B to the current density. Reinserting the time-dependent terms which 
we dropped when we were studying magnetostatics, we have 

1 aE 
V x B = 47cj + - - 

at 
(5-5-1) 

We observe that the effect of dE/at is equivalent to that of an additional 
current density jD given by 

. 1 aE 
J D = - -  

4xc at 

This term is given the name of displacement current density. 
Ampere’s law can now be rewritten in the following form: 

f B . dl = 441 + ID) 

(5-5-2) 

(5-5-3) 
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where 

1, = total displacement current through surface bounded by C 

(5-5-4) 

Needless to say, the total current given by j + j, must be divergence- 
less, or else the sum of Z + Z, would depend upon which surface we chose 
to cover our curve C. Let us check this out. 

1 aE 
V . ( j + j , ) = V . j + - V . -  

471c at 

= 0 (conservation of charge) (5-5-5) 

To observe the application of this new formulation of Ampere's law, 
we make use of the example of a parallel-plate capacitor which is charging 
at a constant rate. We allow the plates to have area A, as shown in Fig. 5-6. 

We wish to evaluate the field along the indicated curve C. Now we have 
two choices for the surface over which we wish to do the current integration. 
We can choose a surface S ,  through the wire, in which case we will get 

f c B * d l  = 4x1 (5-5-6) 

/ 
\ 

\ 

A l  I 
Fig. 5-6 We apply the modi- 
fied Ampere's law to find the 
field around a wire charging a 
capacitor. 
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Alternatively, we can choose a surface S2 through the capacitor. In this 
case we will get 

B * d l = -  --AdA f :J: 
But E A = 4aQ/A and hence 

4a dQ 4n aE 
at A dt A 

A = - - = - - I  _ .  

This leads us again to 

1 4a 
c A  

B . dl = - - cZA = 4aZ 

(5-5-7) 

(5-5-8) 

(5-5-9) 

Thus, at least in this simple-minded case, the application of the modified 
Ampere's law leads to the anticipated result. 

5-6 THE FOUR-VECTOR POTENTIAL AND HOW IT IS MODIFIED NOW 
THAT CURRENTS AND CHARGES ARE CHANGING WITH TIME 

When we were deriving Maxwell's equations in Chap. 3, we found that the 
basic differential equations for A and (p had the form [see Eqs. (3-4-9) to 
(3-4-12)] 

(5-6-1) 

We also wrote down the solutions in the event that there was no time 
dependence [see Eqs. (3-4-13) and (3-4-14)] : 

space 

(5-6-2) 

space 

We will introduce time dependence by a rather intuitive guess and then 
go on to demonstrate that our guess does indeed satisfy Eq. (5-6-1). 

Let us assume that a given current (or charge) at r' contributes to 
the potential at r in the same manner as when there was no time dependence 
but that the information travels from r' to r with a velocity c. Thus the 
bit of current at r' at time t - Ir - r'l/c gives rise to a bit of potential at 
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position r and time t. Adding all contributions from all r’ together, we have 
now 

C 
A(r,t) = 

space 
(5-6-3) 

If these “solutions,” which appear quite plausible on the surface, really 
do satisfy the appropriate differential equations, we will have achieved 
our goal. After this we can find all electric and magnetic fields as a function 
of space and time by means of the relations given in Eqs. (3-5-4) and (3-5-5). 

1 aA(r,t) 
E(r,r) = -Vcp(r,r) - - - 

at 

B(r,t) = V x A(r,t) 

Our first chore then is to demonstrate that cp(r,t) and A(r,t) as we 
have written them are solutions of our differential equations. We tackle 
only cp(r, t) explicitly. That A(r, t) satisfies our equation follows by complete 
analogy. Let us take u = t - Ir - r’l/c. Now we will have need of the 
various derivatives of p : 

ap ap au 
ax au ax 1 -= - -  

(5-6-4) 

(5-6-5) 

(5-6-6) 

Also 
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Now 

1 -(r - r') 
C clr - r') 

vu = - - V l r  - r'I = 

1 V . (r - r') 
Ir - r') 

207 

(5-6-7) 

(5-6-8) 

n 

dV + 2 Vp(r',u). V ~ J Ir - r'l 
1 

+I(..&) p(r',u) dV' (5-6-9) 

But we have already learned how to treat the third integral. 

except when r = r' 
1 v 2 - = 0  

Ir - r'l 

We also know that 

d V  = -4n (see page 32) 
1 i. space v2FT 

Thus we can write 

p(r',u) dV = p(r,t)  V2 ____ dV' s Ir - r'I 
1 

Ir - r'I 

= -4zcp(r,t) 

As far as the other integrals are concerned, we have 

(5-6-10) 

(5-6-1 1) 
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and 

(5-6-12) 1 aP 1 2Vp(r’u) . V ____ = 2 - ~ au Ir - r’I2 Ir - r’l 

Hence the sum of the other integrals is zero, and we are left with 

Our proof is complete. 
In our next chapter we will develop an intuitively appealing technique 

for evaluating this integral which is particularly useful in dealing with the 
field of a moving, small charge. We will then observe how the acceleration 
of a charge gives rise to a remarkable new phenomena, radiation. 

PROBLEMS 

5-1. Show that A and rp as given by Eq. (5-6-3) satisfy the so-called Lorentz con- 
dition, namely, 

5-2. A circular loop of wire having radius b, resistance R, and self-inductance L 
is set with its plane perpendicular to a time-varying magnetic field B(t) = B,  

(a) Develop and solve a differential equation describing the current through 

(b) How much energy is dissipated in the loop per unit time? 

A resonant circuit is constructed by putting a capacitor and an inductor in 
series. The physical dimensions of both the capacitor and the inductor are 
completely known, and no dielectrics or magnetic materials are present in the 

cos W t .  

the loop as a function of time. 

5-3. 

system. The circuit is now observed to resonate at a frequency w. Show how 
the velocity of light c can be determined entirely in terms of the physical dimen- 
sions of the system and the resonant frequency W .  

A transmission line is made up of two long parallel perfect conductors of 
arbitrary cross section. Current flows down one conductor and returns on the 

5-4. 
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other. The conductors are surrounded by vacuum. Show that the inductance 
per unit length L and the capacitance per unit length Care related by the equation 
L C =  1. 

I- 

I -  

5-5. 

5-6. 

[Hint: Make use of the Lore1 z transformation to move wii I some 
velocity v parallel to the conductors. Remember also that L is measured in 
emu and C is measured in esu. If L is measured in esu then L~,,,,C,,, = l/cz.] 

Find the self-inductance per unit length of two coaxial thin-walled tubes, the 
inner one having radius a and the outer one having radius b. 

Two parallel wires, each having radius a, are separated by a distance b. A 
current I goes down one and returns on the other. It is spread uniformly over 
the cross section of each wire. Find the inductance per unit length of the pair 
of wires. 

5-7. An electron travels in a circular orbit of radius R about a fixed proton. A 
magnetic field B, is now applied in the same direction as the electron’s angular 
momentum. Find the change in the orbital magnetic moment of the electron 
as a result of the application of this magnetic field. 

5-8. A charge q is moving in a circular orbit of radius R about the center of a cyiin- 
drically symmetrical magnet, as shown. Assume that the orbit of the charge 
lies in the median plane between the poles of the magnet and hence the only 
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component of magnetic field that it sees is in the z direction. The field is now 
allowed to increase with time. Show that the particle will accelerate without 
any change in radius if the increase in the average field for r 5 R is twice the 
increase in the field at r = R. That is, 

dB(R) dB(R) - = 2- 
dt dt 

where 

B(R) = f loR B(r)r dr 

5-9. A long, uniformly charged nonconducting cylinder of radius a carries a charge 
per unit length of A. It is wound with N turns per centimeter of wire carrying a 
current I .  This current gives rise to a magnetic field which we will consider as 
uniform throughout the cylinder. 
(a) Find the Poynting vector as a function of distance from the axis of the 

cylinder. In which direction does it point? 
(b) The momentum density of the electromagnetic field is given by S/cz. Find 

the angular momentum per unit length of the electromagnetic field about 
the axis of the cylinder. 

(c) The current I is now turned off. This gives rise to an induced electric field 
(by Faraday’s law) which exerts a torque on the cylinder. Find this torque 
per unit length in terms of dI/dt. 

( d )  Integrate the result of part (c)  to obtain the total change in the angular 
momentum per unit length of the cylinder. Compare this result with the 
answer to part (bj. 

5-10. Consider a charge e and a magnetic monopole g situated a distance S apart. 
(a) Calculate the total angular momentum of the electromagnetic field about 

an axis though g and e and show that it is totally independent of S. 
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(b) Set e equal to the magnitude of the electron charge and set the angular 
momentum of the field equal to the intrinsic angular momentum of the 
electron (h/4n). How large is g? 



6 
Let There Be Light ! 

We now approach the high point in our study of electromagnetic theory. 
Although we have discovered many remarkable effects, none compares in 
importance with those in the area we are about to explore. We shall find 
that if we accelerate a charge it will emit radiation. Specifically, it will 
cause electric and magnetic fields to appear which decrease inversely as 
the distance from the charge to the first power. This is totally different in 
quality from what we have been used to, namely, fields which decrease 
inversely as the second power of the distance from their source. Furthermore, 
the new fields will be transverse fields. That is to say, their directions will be 
transverse to a line joining them to the accelerating charges. In addition 
these fields will appear to be moving with velocity c away from the accelerat- 
ing charge. If we were not so familiar with radio waves and the electro- 
magnetic nature of light, this would be an unbelievable discovery. We 
21 2 
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would head right out, as Hertz did, and try to produce these long-range 
electromagnetic disturbances, discovering radio communication in very 
short order. But, although we are somewhat jaded from long exposure to 
these phenomena, it will still be exciting to really understand their origins. 
This we now proceed to do. 

6-1 A NEW WAY OF CALCULATING RETARDED POTENTIALS 
IN AN INTUITIVELY APPEALING MANNER 

As we remember from our last chapter, one way of solving an electro- 
dynamics problem with time-varying currents is to calculate the retarded 
four-vector potential. For example, we would find cp(r,r) by evaluating the 
integral 

C 

Ir - r‘I 
spscc 

To evaluate this integral we must add together the contributions from charges 
at various distances from our position r, always dividing by the distance 
Ir - r’l and always evaluating the charge at an earlier time t‘ = t - 
Ir - r‘l/c. 

To evaluate this integral can be quite a labor. We will develop here 
an intuitively appealing method of performing the integration in physical 
terms and then apply it to find the potentials due to a moving point charge. 

Let us say that we are interested in cp at position r and time t .  Suppose 
at the instant t we started our clock going backward in time, with all the 
moving charges retracing their paths exactly. At exactly the same instant t ,  
let us send a spherical “information-gathering” pulse out with velocity c, 
also moving backward in time (see Fig. 6-1). As the pulse reaches a given 
bit of charge at position r’, it observes the charge as it was at time t - 
Ir - r’l/c. But this is just what we want for our integral, so we count the 
charge, divide by Ir - r’l, and go on. 

r - r’ 

C 

Fig. 6-1 A spherical shell expands with 
velocity c as our clock runs backward in 
time. As we encounter some charge, within 
the thickness d, we add it up and divide by 
Ir - r’l, tht radius of the shell. 
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To see how we proceed more clearly, it is perhaps better to go through 
our motions in a series of discrete steps and add rather than integrate. We 
let our pulse be the spherical shell shown in Fig. 6-1, with a shell thickness 
d. Every time our negative-running clock changes by d/c sec, we advance 
the shell by a distance d (thus the average shell velocity is c). 

Now as we come upon some charge at a distance Ir - r’l from our 
starting point, it appears as it was a time Ir - r’l/c ago. While our shell is 
sitting there, we add together all the charge within its thickness d and divide 
by Ir - r’I (the radius of the shell). We put this number [it is just (pdV)/  
Ir - r’l] into our adding machine and then sit back and relax until the shell 
moves on to its next position. Of course, as the shell moves ahead one 
position, the charges shift too, to the values they had at time r - Ir - r’l/c 
- d/c. We repeat our calculation, add the result into our adding machine, 
and again wait for the shell to proceed. 

Now isn’t this sum just exactly what we want? We are just adding 
together all the p dV at the appropriate earlier time and dividing by the 
distance Ir - r‘l. We use discrete steps, but that is no problem inasmuch 
as the thickness d can be made arbitrarily small, leading ultimately to an 
integral rather than a sum. It would seem then that we have found a new 
technique for evaluating both cp(r,t) and A(r,t)-a technique which, as 
we shall see, is especially useful in dealing with moving discrete charges. 

6-2 
(LIENARD-WIECHERT POTENTIALS) 

THE POTENTIALS OF A SMALL MOVING CHARGE 

We wish to find the potentials at position r and time t due to a small moving 
charge at position r’. By small we mean that we can neglect the variation of 
l/lr - r’I as the imaginary spherical shell we have just described passes 
over our charge. Now we will carry forth our arguments, assuming the 
charge volume to be rectangular in shape and uniform in charge density. 
(Of course, any other charge distribution can be subdivided into such 
elements and their separate contributions can be added together.) If the 
original velocity of the charge at time t’ was v’(t’), we now give it a velocity 
-v’(t’) for the purpose of doing our sum. As can be seen from Fig. 6-2, if 
-v‘(t‘) is in the direction away from r, then our expanding sphere will spend 

---_ 

Fig. 6-2 Theexpanding sphere 
travcls a distance L while still 
overlapping the charge. I /  
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more time overlapping the charge, and hence the contribution to the poten- 
tials will be larger than if the charge were stationary. Conversely, if the 
velocity -v’(t’) will now be toward r, the sphere will spend less time over- 
lapping the charge, and the contribution to the potential will be smaller 
than if the charge were stationary. Referring again to Fig. 6-2, we see that 
our spherical shell travels for a total distance L while still overlapping the 
charge. Hence the potential we obtain is just 

where 1 is the length the charge appears to have. But 

L - _  L - 1  
v’ . (r - r’)/lr - r’l 

- 
c 

Hence 

(6-2-1) 

(6-2-2) 

} = I  v’(t’) . [r - r’(t’)] 
L{l-  clr - r‘I 

This leads us to the result 

(6-2-3) 

where 6’ is a unit vector from r’(f’) to r. 

r - r’(t’) 
Ir - r‘(t‘)l 

$‘= 

Similarly we have for A(r, z), 

(6-2-4) 

(6-2-5) 

By means of these so-called Lienard-Wiechert potentials, we may now 
calculate the electric and magnetic fields due to our small moving charges. 
Although our usual concern will be with situations where u << c, we wiII 
for the moment carry along all orders in u/c so that in the future we can deal 
comfortably with charges that are moving at relativistic velocities. Our 
job then becomes one of differentiating these potentials. That is, 

(6-2-6) 
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6-3 DIFFERENTIATING THE LIENARD-WIECHERT 
POTENTIALS; THE RADIATION FIELD 

We now undertake the rather laborious task of performing the differentia- 
tion called for in Eqs. (6-2-6) and (6-2-7). The difficulty lies in the complex 
implicit dependence of all the primed terms on r and t .  We will prepare 
ourselves with a few preliminary derivatives. 

Ir - r‘I 
t ’ = t - -  (6-3-1) 

C 

Now 

and 

Hence 

1 
at v‘ * e. 

1-- 

- -- at’ 

C 

Similarly 

and hence 

Vt’ = +-?&J v’ . E*l 

(6-3-2) 

(6-3-3) 
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We will also find the following useful : 

V‘ - = - -  8 ( r - r’ ) - - (v’ ir&:(;,i r’) -____ ak’ 
at’ at‘ Ir - r’I Ir - r‘I 

or 

a3 F x (6’ x v’) - -- 
at‘ Ir - r‘l 

We can now evaluate 

(6-3-4) 

a‘ V’ - Ir - r’ l - .  8’ - -. [& x (&‘ x v’)] 
C C 

or 

9 1  C 

which yields 

(6-3-5) 
where 

dv’ 
dt’ 

a‘ = - 

We are now ready to take the gradient of cp 

acp 
at’ 

-vcp = -(vcp)*~co”s, - - Vt’ 

(6-3-6) 
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Combining our terms, we have 

+ 

Next we calculate 

1 a A  I aA at’ 

at at’ at 
_ _ - -  

1 aA a 4v’ 

Hence we have 

or, rewriting slightly, 

V‘ 
q (a‘ - 8’) 

(6-3-8) 
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1 aA Combining - V q  and - - -, we have 
c at 

-g[a' - (a'.I')I'] + qI' x 
E(r,t) = 

c2lr - rtl(1 - y)3 
4(y - ;)(* - 5) 

+- 
(6-3-9) 

Next, we calculate the magnetic field B = V x A: 

V x A = (V x - (6-3-10) 

Now 

(V x A)r'const = 

and 

ga' x I' + 91' x 
x Vt' = 

aA 
at' v' * I' 

-- 
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We finally have then 

(6-3-1 1) 

Examining our expressions for E and B, we note that they each divide 
naturally into two parts-that which is independent of acceleration and 
drops off as l / lr - r’I2 and that which is proportional to the acceleration 
of the charge and drops only as l/lr - r’l. The terms independent of a 
can, as expected, be obtained directly by carrying out a Lorentz transforma- 
tion upon the electric field of a static charge q. The terms proportional to a 
are the ones which interest us now; they are the so-called radiation fields. 
We thus will ignore all terms that are proportional to l/lr - r’I2 in our 
present discussion. 

We first note that both E and B are perpendicular to 6 and to each 
other. This is characteristic of the so-called transverse nature of electro- 
magnetic radiation. The magnitude of E is the same as the magnitude of B- 
a highly desirable result since otherwise we could transform either E or B 
away by an appropriate Lorentz transformation. 

We also note the remarkable fact that this electromagnetic field seems 
to be propagating with time at a velocity c. That is, a given acceleration 
at time t‘ leads to fields at position r and at time t such that Ir - r’l/c = 
t - t’. As t increases, the relevant field appears further and further away 
from where the acceleration was that gave rise to it. 

6-4 ENERGY RADIATION : NONRELATIVISTIC TREATMENT 

To see what happen.s insofar as the flow of energy is concerned, we can 
evaluate the Poynting vector S. 

C C C 
S = - E  x B = - E  x (6’ x E) = -EZ& 

47l 4?l 471 
(6-4-1) 

We will make the nonrelativistic approximation that the velocity 
of our charge is much less than c. This assumption serves to simplify our 
work considerably and is a perfectly valid assumption in all the applications 
we will be considering. 

To evaluate S, we must first have another look at E. We have, for 
v/c << 1, 

(6-4-2) 
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where 

aJ, = a‘ - (a’.&)&’ (6-4-3) 

As we can see, a; is the projected acceleration perpendicular to the line 
of sight 8’. [Intuitively one should think of this as follows. The electric 
field is directly proportional (with proportionality constant - q/c2) to the 
acceleration that we would “see” as we watch the particle. The acceleration 
we see must obviously appear as it was at an earlier time t’. Furthermore, 
its apparent magnitude goes down as I/(r - r’l as we go further and further 
away from the location of the acceleration. Finally, what we would see 
is just the projected acceleration, that part which is at right angles to our 
line of sight. This “intuitive” approach to understanding the radiation 
field due to an accelerating charge will be particularly useful when we begin 
to examine coherent interference effects due to the organized motion of 
large assemblies of such charges.] 

We wish to calculate the total energy radiated per unit time by a charge 
with acceleration a’ at time t‘. Its effect is felt at a distance R away at a 
time R/c later. We draw a sphere of that radius about our charge, as shown 
in Fig. 6-3. The magnitude of the electric field at (R$) is just 

and hence 

(6-4-5) 

\ 
\ 
\ 
\ 
\ 

\ 
I 
I 
I sphere of radius R. 

particle by integrating the flux 
of the Paynting vector around a 
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The total amount of energy which was radiated per unit at time t’ is then 

du q2a” 
(2a sin3 e) de 

- 2 q2a” 
3 c3 

(6-4-6) 

This expression will be encountered quite often in studying the electro- 
magnetic manifestations of particle acceleration and is known as the Larmor 
formula. 

6-5 POLAR lZATl0 N 

One of the immediate consequences of the transverse nature of electro- 
magnetic radiation is the fact that only two polarization states are available 
for each radiation direction. That is, we need to choose only two orthogonal 
unit vectors, at right angles to 6’, and we shall then be able to express our 
electric radiation field entirely in terms of components along these two 
vectors. 

To illustrate then the origin of the various types of optical polarization 
we have learned about in elementary physics, it is useful to examine in 
detail the radiation pattern due to a charge moving in a circle, with u << c. 
In Fig. 6-4 we sketch a coordinate system relative to the center of the circular 
path taken by the charge. 

The charge moves counterclockwise as viewed from the + z  direction. 
As we observe the charge from the various directions, we see the acceleration 

Fig. 6-4 A charged particle moving in a circle gives rise to circularly 
polarized radiation along the axis of its motion and linearly polarized 
radiation at right angles to this axis. In other directions thc “light” is 
elliptically polarized. 

X 



6-6 THE SCATTERING OF RADIATION BY A FREE ELECTRON 223 

vector carrying out its periodic motion with the rotational frequency of the 
particle. From along the + z axis, the acceleration vector always appears to 
have the same length and rotates about in a circle. Hence we have circularly 
polarized light going out along the positive and negative z directions. 

At any given point along the + z  axis, the electric field vector appears 
to rotate in a counterclockwise manner as we look toward the charge. We 
will call this right-hand circularly polarized radiation, since if the right thumb 
points in the direction of propagation (along the +z axis), the fingers 
follow the direction in which E changes with time. We note, of course, 
that if we explore the pattern of E along the +;: axis at a j x e d  time, it looks 
like a left-handed screw. 

Along the negative z axis the electric field has the spatial distribution 
corresponding to a right-handed screw and rotates at any given point in a 
clockwise manner as we look toward the charge. Naturally, this is called 
left-hand circularly polarized radiation. 

In the xy plane the radiation is plane polarized with the electric 
vector always lying in this plane. 

6-6 THE SCATTERING OF RADIATION BY A FREE ELECTRON 

If our radiation field is now incident upon a charge, it will obviously “shake” 
it. That is to say, the electric field will cause the charge to accelerate and this 
in turn will cause the charge itself to radiate. In this way we can say that the 
charge has effectively “scattered” some of the incident radiation. It is 
remarkably simple for us to calculate the fraction of the incident energy 
per square centimeter at the charge that is reradiated in this manner. This 
fraction is called the Thomson cross section when evaluated for an electron 
in the limit that its velocity is considered small compared with c. (The 
term cross section is a natural one to use when asking for the fraction of 
the energy flux per square centimeter that is affected by a particle. We 
imagine that we replace the particle with a disk of a given cross-sectional 
area. If the radiation passes through it, it is affected; otherwise it is not. 
The symbol for cross section is invariably 6.) 

energy radiated by electron per unit time 
magnitude of Poynting vector of incident radiation 

- 
aThomson - 

(6-6-1) 

Now, the acceleration of the electron is just given by 

F eE 
me me 

a = - = -  (6-6-2) 
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and hence the energy radiated by the electron per unit time is just 

du 2e2a2 2 e4E2 
(6-6-3) 

The magnitude of the Poynting vector for the incident radiation is given 
by 

C IS1 = - EZ 
4n 

Thus we have 

(6-6-4) 

(6-6-5) 

where we define ro E classical radius of electron = e2/mec2. Incidentally, 
we note that the classical radius of the electron is of the same order as the 
radius the electron would have if its mass were largely electromagnetic in 
origin (see page 200). 

6-7 MATHEMATICAL SUPPLEMENT: COMPLETENESS 
AND ORTHOGONALITY 

As we become more and more sophisticated in our study of physics, we will 
find increasingly more numerous the occasions when we make use of com- 
plete sets of orthogonal functions. (In fact, when we come to the study of 
quantum mechanics, we will discover that the sets of solutions to given 
boundary-value problems are all this type.) We have already come across 
one such set of functions, the Legendre polynomials P,,(cos e) that we 
studied in electrostatics. Other common examples are the harmonic func- 
tions sin kx and cos kx and the Bessel functions. Let us then explain in 
general terms what we mean by completeness and orthogonality. 

A set of functions gi(x) will be considered complete over a given 
range of x if any reasonable' function f ( x )  defined over this range can be 
expanded as a linear sum : 

m 

(6-7-1) 

The functions will be considered mutually orthogonal over the range xmin g 

'For a precise definition of what we call reasonableness the reader is referred to any standard 
mathematical text covering functional analysis and eigenfunction expansions. All functions 
which we are likely to come across in physics are reasonable. 
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x 5 x,,, if 

rmL'x g:(x)gj(x) dx = 0 for i # j 
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(6-7-2) 
Jxmi, 

where g: is the complex conjugate of gi. 

6-8 MATHEMATICAL SUPPLEMENT: FOURIER 
SERIES AND FOURIER INTEGRAL 

Perhaps the most useful complete set are the harmonic functions sin kx 
and cos kx. We begin by considering only the interval 0 5 x S a over 
which we wish to approximate the function f (x).  Since we do not care about 
f ( x )  outside this interval, we are free to take it periodic with a periodicity 
given by 

f ( x )  = f ( x  k a) 

Thus we need only make use of those values of k which make sin kx and 
cos kx periodic with this same period. Thus 

ka = 2nn where n is an integer 

We have then, for our expansion, 

2nn m 2nn m 

f ( x )  = c A,  sin-x + c Bncos-x 
n = O  a n = O  a (6-8-1) 

That the individual functions are orthogonal can be seen from inspection: 

2nm 
a 

sin $ x  sin -x dx = 0 unless n = m 

2nm 
a J: cos s x  cos -x dx = 0 unless n = m 

2nm 1; sin ?x cos -x dx = 0 for all n, m 
n 

That they form a complete set can only be asserted at this time and not 
proven. For a detailed proof the reader is again referred to the mathematical 
literature. Our problem then becomes simply one of finding the coefficients of 

2nn 2nn 
a a 

sin -x and cos -x. We multiply both sides of our expansion forf(x) 

2nm 
a by sin -x and integrate from 0 to a. 
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2nn 2nm m 2nm 
f ( x )  sin -x dx = 1 An jo sin a x sin -x dx a n=O a 

a 2nn 2nm 
cos -x sin -x dx + n = O  5 Bn jo a a 

We have then 

2nm 
a f(x) sin ---x dx 

Similarly 

2nm 
a 

f ( x )  cos -X dx 

(6-8-2) 

(6-8-3) 

As the range of x over which we wish to consider the functionf(x) becomes 
infinite, our series naturally becomes an integral. We write 

f ( x )  = jo" A(k) sin kx dk + 1: B(k) cos kx dk (6-8-4) 

where A(k) dk is the contribution to our "sum" from the interval between 
k and k + dk. We remember though that 

,ikx + ,-ikx ,ikx - ,-ikx 

and sin kx = 
2 2i 

cos kx = 

Substituting,. we have 

f ( x )  = tJb" [B(k) - iA(k)]eikx dk + [B(k) + iA(k)]e-ik" dk j: 
Both A(k) and B(k) must be real iff(x) is to be real. Let C(k) = 
[B(k) - iA(k)]. Then we have 

1 "  
f ( X )  = ~i;; jo C(k)eikx dk + - jOm C'(k)e-ikx dk 

If we change variables in the second integral, from k to -k, and define 
C( - k )  E C'(k), we can combine our terms to obtain 

f(x) = - jm C(k)eikx dk 6 - m  
(6-8-5) 

To obtain C(k) if we are givenf(x) we proceed in a manner analogous to 
that used to obtain An and B. in the case of Fourier series. We multiply 
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both sides by e-ik'x and integrate over x from - co to co. 
1 

dx f(x)e-ik'X dx = - jm C(k) dk ei(k-k')x 
Jz;t -00 

We now wish to evaluate the integral 

J - Q  a- tm J - a  

e - i ( k  - k' )a)  = lim (ei(k-k')a - 1 
a-m i(k - k') 

2sin(k - k')a 
= lim 

a+m k - K  
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(6-8-6) 

(6-8-7) 

Let us have a look at the function [2 sin(k - k')a]/(k - k') as we let a get 
very large. In Figs. 6-5 and 6-6 we plot the function for a = 1 and a = 10. 
As is apparent, the function becomes more and more peaked at k = k 
as we let a increase. However, the total area in the peak remains constant 
and has a value of about 92a(2n/a) 2n, as can be seen from examining 
the graphs. (The actual area is in fact exactly 271.) Now, as we take a larger 
and larger, we can begin to ignore the functim outside the region k = k', 
inasmuch as it will average to zero in any integral. We define the function 

2 sin(/? - k')a 
2n6(k - k') = lim 

k - k '  
(6 is called the Dirac 6 function.) And we have then, for any integral including 
the peak, 

6(k - k )  dk = 1 

We return then to evaluate 

~ ~ m f ( x ) e i k ' x  dx = - jQ C(k)2n6(k - k')dk 
@ - Q  

= &C(k) 

Fig. 6-5 A graph of the function [2 sin@ - k')a]/(k - k') for a = 1. 

2 

. ' k - k  - 2 n v  2n 
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Hence we have 

C(k') = - lm f(~)e-"'~dx f i  - m  

(6-8-8) 

The functions C(k) andf(x) are called Fourier transforms of each other. 

Fig. 6-6 A graph of the function [2 sin(k - k')a]/(k - k') for a = 10. 
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6-9 THE INTERACTION OF RADIATION WITH A 
CHARGE IN A HARMONIC POTENTIAL 

We consider now in detail the “scattering” of radiation by a charge q in a 
harmonic potential. We will assume that the incident radiation is traveling 
in the + z  direction and is polarized with its electric vector along the x 
direction. This latter assumption involves no loss of generality for, as we 
shall see, it will be possible to superimpose the effects due to a superposition 
of incident radiation. We begin with a very simple incoming plane wave 

Ex = Eo cos(kz - of) where o = kc 

At z = 0, we can write 

We assume the restoring force on the charge to be equal to mooz .  In addition 
we assume a resistive force proportional to the velocity of the charge. 
Hence our differential equation for x, the displacement of the charge from 
its equilibrium position, becomes 

(6-9-2) 

We assume x to have the form x = AdWt + Be-’”‘ and substitute back 
into our differential equation. 

A(-w2 + i y ~  + oOz) - - 
qEo 2m leiat 
B(-wz - i y o  + wo2) - - qEO1e-iot 2m = O 

For this to be true at any time we must have 

(6-9-3) 4EO 
2m(oO2 - o2 - i yo )  

B =  4EO 
2m(oO2 - o2 + iyw) 

A =  

We have then 

4EO eiot + 4EO - iot  X =  
2m(oO2 - o2 + i yo )  2m(oO2 - o2 - iyw) 

ei(ot-q) + , - i ( w t - q )  - 4EO 

- 4Eo 

- 
mJ(wo2 - 02)’ + y z o 2  2 

cos(wt - cp) - 
mJ(wo2 - w2)’ + yzw2 

(6-9-4) 
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where 

Yo tancp = 
o o 2  - w2 

(6-9-5) 

Now, we are not quite finished, since we can add to x any function x’ which 
is a solution to the differential equation 

d2x‘ dx’ 
dt2 dt 
- + y - + oo2x‘ = 0 (6-9-6) 

The sum x + x’ will also be a solution to our original equation. The solution 
for x’ is well known. It is 

x’ = e-(y’2)r ( A sin dz w - - t  + Bcos /::I) oo2 (6-9-7) 

where A and B are arbitrary. Inasmuch as this solution is exponentially 
damped with time constant 2 / y ,  we can effectively ignore it in most cases. 

Now we wish to find the fraction of incident energy per unit area 
which is reradiated or scattered by the bound charge. Again we make 
use of the Larmor formula for the instantaneous rate at which energy is 
radiated. 

2 2  2 q2(d2x/dz2)2 prad = z 4a - _ -  
3 c3 3 c3 

But 

-qEoo2 -- - cos2 ( o t  - cp) 
d2x 
dt2 m,/(oo2 - w2) + y 2 0 2  

Hence 

2 q4EO2o4 cosz ( o t  - cp) 
3 m2c3[(wO2 - 02)2 + y 2 0 2 ]  Prad = - 

(6-9-8) 

(6-9-9) 

(6-9-10) 

The average radiated power [remembering that the average value of 
cos2 (ot - cp) is 41 is just 

The average incident power per unit area is just 

(6-9-1 1) 

c Eo2 
4z 2 

IS1 = - - 
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We have then, remembering that ro = q21mc2, 

R o d  8n 2 o4 
Obscntterinu = - - Iq - Tr0 ( o o 2  - o 2 ) 2  + y2w2 

(6-9-12) 

Now, we might ask, what if the incoming radiation were not just a pure 
harmonic function of one frequency? We would like to make use of the 
power of Fourier analysis to achieve a solution to the problem. Let us 
assume again that our charge is at z = 0 and that the electric field at z = 0 
is in the x direction. Let E,(t) be the field at the charge. Then we can write 

Ex(t) = - 8(o)eiur do (6-9- 13) Jz;t r - m  

We wish to solve the differential equation 

If we let 

G(w)ei"'do 

(6-9-14) 

(6-9- 15) 

then we obtain 

(6-9-16) 

If we wish this equation to be true for any value of t ,  we must have 

9 6 4  
m(oo2 - w2 + iyo) 

G(w) = (6-9- 17) 

We are thus in possession of the Fourier transform of x, which, upon 
integration, yields x directly: 

(6-9- 18) 

To complete our solution we need only differentiate Eq. (6-9-18) twice and 
insert the result into the Larmor formula. 

PROBLEMS 

6-1. Consider a classical electron going in a circular orbit around a proton with an 
initial radius equal to r,. 



232 

6-2. 

6-3. 

6-4. 

6-5. 

6-6. 

6-7. 

LET THERE BE LIGHT! 

(a) Derive an expression for the radius r of the electron as a function of time. 
(b) Calculate the time it would take for the electron to spiral into the proton if 

it started out at a radius of cm. (This is actually typical of the time it 
takes for an electron to go from an excited state to the ground state.) 

A nonrelativistic charged particle is brought to rest from an initial velocity v, 
by means of a constant acceleration a,. That is, 

for t 5 0 

for 0 5 t 5 vo/ao v, = vo - a,t 1: for t 2 vo/ao 

What is the frequency distribution of the radiation seen by an observer at a great 
distance from the particle? 

A relativistic particle is slowed down by means of a constant acceleration a 
directed opposite to its direction of motion. Plot the laboratory intensity per unit 
solid angle of the radiated energy as a function of cos 0 for /? = 0.6, 0.8, and 
0.95. The angle 0 lies between the direction of motion of the particle and the 
direction of radiation in the laboratory. 

Derive expressions for the electromagnetic fields E and B corresponding to a 
point charge moving with constant velocity v by transforming from the rest 
system of the charge into the laboratory frame of reference. Compare your 
results with Eqs. (6-3-9) and (6-3-1 1) as evaluated in the case where a’ = 0. 

Consider a charge on the end of a spring moving according to the differential 
equation 

d2x  dx 
dt 

+ y- + wo2x = 0 

where wo >> y/2. It starts out with some amplitude which then damps to zero 
exponentially. 
(a) Find the frequency spectrum which characterizes the emitted electric and 

magnetic fields. 
(b) Plot the intensity of radiation as a function of frequency in the neighborhood 

of w,. How does the width of the frequency distribution relate to the dis- 
sipation constant y? 

(c) What is the ratio of the mechanical energy stored in the system to the mechani- 
cal energy lost per cycle? (This number is called the Q of the system.) 

Suppose that an oscillating charge is emitting electromagnetic radiation at a 
frequency w,. We turn on a receiver and investigate this radiation for a time period 
T. If we Fourier analyze the intensity of the received radiation, we will find that 
it is largely confined to a frequency range Aw in the vicinity of w,. Carry out 
the Fourier transform of the observed radiation intensity and then estimate Aw. 

A pair of equal and opposite point charges with electric dipole momcnt p rotate 
with angular frequency w about an axis perpendicular to the line joining them. 
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Show that the energy radiated per unit time can be approximated by the expression 

dU 2 p2w4 
dt 3 c3 
_ -  

in the event that the separation is much less than the wavelength of the radiation. 
Compare this with the sum of the energy which would be radiated were the two 
charges traveling separately and independently. 

6-8. Suppose for a moment that magnetic monopoles existed. What are the radiation 
fields that would result from the acceleration of a point magnetic monopole q'"'? 

6-9. A magnetic dipole p is perpendicular to an applied magnetic field and precesses 
about it with frequency w. How much energy is radiated per unit time as a result 
of this precession if the wavelength corresponding to w is much greater than any 
of the physical dimensions of the dipole? [Hint: Make use of the results of 
Probs. 6-7 and 6-8.1 



7 
The Interaction of Radiation 
with Matter 

Having understood the interaction between radiation and a simple charge, 
be it free or be it bound in a harmonic potential, we are ready to take the 
next step and go to an assembly of charges. Inasmuch as matter is made up 
of just such an assembly, we would hope to be able to demonstrate all the 
well-known principles of optics by following the electromagnetic radiation 
in detail. The kinds of questions we will answer are the ones which have 
troubled almost anyone who has studied optics-how does the light get 
turned around in a mirror, and why does the light appear to go “slower” 
in glass than in air? Just as always, our approach will be the physical one 
of saying that currents produce fields which shake charges which produce 
234 
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more fields which shake other charges, ad infinitum. The beauty will lie 
in the rather simple way in which everything will fall together. 

Now the actual situation within material at the microscopic level is 
quite complicated, and in the end we will need the power of quantum 
mechanics to deal with it exactly. There are numerous things we would 
have need to worry about including the absorption and reemission of 
radiation by atoms, the scattering of radiation by “free” electrons, the 
magnetic polarization of the atom, and even the electron spin. Our ap- 
proach will be to solve several simple and idealized examples exactly and 
then develop a formalism so that when we have finally solved the micro- 
scopic problem exactly, we will be able to find the macroscopic properties 
of matter directly. The general expressions that we will derive will have 
far-reaching applicability (even into the realm of elementary particle 
physics), and even the simple models we take will come remarkably close 
to reality. 

7-1 THE ABSORPTION AND REFLECTION OF RADIATION BY AN 
IDEALIZED CONDUCTING SHEET WITH NO MAGNETIZATION 

We begin with the simplest of systems, radiation striking normally onto 
an idealized conducting sheet with conductivity 6. The sheet is assumed to 
have a magnetic permeability of unity; that is, no magnetic dipole moment is 
present anywhere. Our experience tells us that very little, if any, of the 
radiation is transmitted through the sheet. We also know that a large part 
of the radiation may be reflected back into the direction from which it 
came. We would like to understand these results in some detail. 

As before we will assume that the origin of the incoming radiation 
is some accelerating charge a very long distance away. We can then con- 
sider that our incoming wave is a plane wave; the loci of points of equal 
field form planes perpendicular to the direction of propagation. As we 
just learned, we can subdivide the incoming wave into harmonic compo- 
nents and superimpose the results later; this permits us to use a simple 
incoming wave of the form’ 

(7-1-1) 

where o = kc. We will, for convenience, take Ey = B, = 0. 
Now to begin our treatment of the problem, we place a sheet of 

conductor of infinitesimal thickness in the path of the radiation, as shown 

‘Our work will be immeasurably simplified by making use of the exponential in this way. If 
the true incoming wave has the form E,cos(kz - OX), then we need consider only the real 
parts of Eq. (7-1-1) and of all equations for the electromagnetic waves which derive from it. 
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in Fig. 7-1. We choose the thickness S to be much less than 2n/k, the wave- 
length of the radiation, and small enough so that the amount of radiation 
produced by the sheet is infinitesimal when compared with the incoming 
wave. We further assume that the current density induced in the conductor 
at any point is directly proportional to the electric field at that point. 
(Needless to say the proportiopality constant may be frequency dependent. 
However at any given frequency, the assumption of proportionality be- 
tween current density and electric field is a reasonable one.) Hence we 
write, at z = 0, 

(7-1-2) 

We now find the induced vector potential due to j ,  at some point 
on the positive z axis at a distance z to the right of the sheet. (By induced 
we mean not present in the original incoming field but produced through 
the mediation of the current in the conducting sheet.) Using cylindrical 
coordinates, we write 

I 0 2 x  de ~ ; m , d 3 )  c~ eio(f - R / d  
r dr (7-1-3) Axi"d(O,O,z,t)  = 6 0 

R 

Fig. 7-1 A thin sheet of conductor of thickness 6(6 << 2n/k) is placed perpendicular to 
incoming radiation. Its conductivity is u. 

- 

t 

Incoming beam of radiation --__--___ 
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However, r2 + z2 = R2, and, since z is fixed, we can write 

2r dr = 2R dR 
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(7-1-4) 

Substituting back into Eq. (7-1-3), we obtain 
Rmax(0) 

A)d = &EOeior Io2ff d(j e-ikR dR 

- - GaEoeiW' /02ff &(e-ikR,.(0) - e-  ikz)  (7-1-5) 
ik 

Now the term e-ikRmnx(e) varies extremely rapidly with R,,(8), taking on 
every possible phase if R,,(8) varies as much as a wavelength. Hence we 
can ignore this term; it will average out to zero. This leads us to the result 

forz > 0 2n6aEo e- i(kz -or) A)d(~ ,Z)  = ---y--- rk (7-1-6) 

When we began, we chose our z axis arbitrarily, requiring only that it 
lie within our incoming beam of radiation. Hence the result we obtained 
in Eq. (7-1-6) is true for any point that lies a distance z to the right of the 
conducting sheet, provided that it is within the original beam. If we choose 
a point which is outside the original beam of radiation, we would have to 
replace z in Eq. (7-1-5) by Rmi,,(O) and the exponential would average out 
to zero. Hence there is no induced vector potential outside the original beam. 

Now we can have a look at the induced vector potential to the left 
of the conducting sheet (z < 0). The complete symmetry of the situation 
requires that 

Hence we can write 

We now proceed to find the induced electric and magnetic fields. 

(7- 1 -9) 

(We have made use of the fact that k = o/c  in obtaining the above expres- 
sions.) 

Byind(z,f) = (V x Aind),, 
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(7- 1 - 10) 

We should make a number of observations about the induced fields. 
First, going off to the right of the sheet is an induced plane wave propor- 
tional to and exactly 180" out of phase with the incident wave. When added 
to the incident wave, it diminishes its amplitude by a factor 1 - 2x06. 
Obviously, E and B remain mutually perpendicular, and the Poynting 
vector is still in the +z direction. Second, going off to the left of the sheet 
is a reflected plane wave. The electric field in this induced wave at position 
-2 is identical with the electric field in the induced wave at position + z .  
The induced magnetic fields, on the other band, are equal and opposite at 
equal distances to the left and right of the sheet. The Poynting vector 
associated with the reflected plane wave points naturally in the - z direction. 
Finally we note that the amplitudes of the induced fields are independent 
of frequency (provided, of course, that 6 << A = 2n/k). Any frequency 
dependence which we discover when dealing with a thick conducting plate 
must result then from the interference between the fields generated by 
layers at various depths below the surface. 

Before proceeding, let us have a look at the energy balance within 
the thin sheet. We would like to show that the energy coming in per unit 
time minus the energy leaving per unit time is just equal to the ohmic heating 
of the sheet. Immediately to the right of the sheet we have 

E,(+O,t) = E,'"C(O,t) + E,'"d(+O,f) (7-1-11) 

where +O refers to "0" approached from the right. Using Eq. (7-1-9), 
we find 

E,(+O,f) = Ez'"c(O,t)(l - 2x60) (7- 1 - 12) 

Similarly, using Eq. (7-1-10), we obtain 

B,(+O,f) = B,"(O,f)(l - 2n6a) (7-1 -1 3) 

Combining these results, we derive the Poynting vector just to the right 
of the sheet. 

C 
S,( + O , f )  = - E,'"'(O,f) B,"(O,t) (1 - 4x60 + 4 7 3 6 2 0 2 )  

S,(+O,f) = S,"(O,f)(l - 4x64 

4n 

Ignoring terms of order 6', we have then 
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C 
= - (1 - ~ASCJ)[E,~""(O,~)]~ 4A 
= energy leaving unit area of sheet, to the right, per unit time 

(7- 1 - 14) 
The amount of energy leaving to the left per unit time per unit area is 
proportional to S2 and can thus be ignored. The rate at which energy is 
being delivered to the sheet per unit area is then 

dU 
dt 
- = csa [EXi"C(O,f)]2 (7- 1 - 1 5) 

This is just equal to the rate qf ohmic heating for a volume 6 of material 
[see Eq. (4-1-6)]. 

Now that we know how to find the radiation from an infinitesimally 
thin slice of conducting sheet all of which has the same current density 
j,, we can proceed to the case of a thick conducting plate being irradiated 
normal to one face by a plane wave of frequency a. For convenience we wil! 
first allow the conductor to extend from z = 0 to z = co (see Fig. 7-2). 
As before, the incoming radiation will have the form 

(7- 1 - 16) 

Fig. 7-2 
conducting sheet with conductivity 6. 

Incoming radiation is normally incident upon a scmi-infinite 
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Naturally, we can slice our conductor into an infinitude of individual, 
infinitesimally thick slices and add together each of their contributions. 
A typical such slice, of thickness dz', is shown in Fig. 7-2. We are interested 
in finding the fields at a distance z from the face of the conductor, and our 
typical slice is taken at a distance z' from that face. 

Unfortunately, however, the field which is shaking the charges at z' 
is precisely the field we would like to find. We can no longer make the 
approximation that this is equal to the incoming field. Hence we allow the 
function E,(z,t) to be an unknown. Inasmuch as our incoming plane wave 
has frequency o, we shall assume that 

E,(z,t) = E,(z)eiw' (7- 1 - 1 7) 

Now if our typical slice dz' at z' is to the left of z ( z  2 z'), then its con- 
tribution to the field at z is just given by [see Eq. (7-1-9)] 

dE,'"d(z,t) = - 2716EX(z')e-'[k'Z-Z')-W'I d Z' (7- 1 - 1 8) 

On the other hand, if z' > z, then the contribution of dz' to the field at z is 

dE,'"d(z,t) = -2naE,(z')e'[k('-"')+"'] dz' (7- 1 - 19) 

The totalfield at z is given by a sum of three terms, the incident field, the 
contributions from slices to the left of z,  and the contributions from slices 
to the right of z.  Thus we have 

E,(z)eiw2 = Eoe-ikzeiwt - 2naeiot ji Ex(z')e-ik(z-z') dz' 

E (Zi)e ik(z  - z')dz/ lw - 2naeiw' 

Canceling out eiwr and rewriting slightly, we have the basic integral equation 
for E,(z): 

E,(z) = Eoe-ik' - 2noe-"' 

-2naeikz Irn EX(z')e-ikL' dz' (7- 1-20) 

Similarly, we find the basic integral equation for BJz) by adding together 
the three parts, the incoming plane wave, the contribution from slices to 
the left of z,  and the contribution from slices to the right of z [(see Eq. 
(7- 1 - 1 0)] . 

B,,(z) = EoeWik' - 2 ~ a e - ' ~ '  E,(z')eikz' dz' 

+ 2naeikz E,(z')e- ikz' dz' (7-1 -2 1) 

J: 
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Now we address ourselves to finding the solution to Eqs. (7-1-20) 
and (7-1-21). The simplest way to proceed is to differentiate E,(z) twice 
with respect to z, obtaining a differential equation. 

- 2naikeikz Lrn E,(z')e-ik" dz' 

ca + 211ak2eikz [ Ex(z')e-ikz' dz' + 4naikE,(z) 
J z  

or 

&EX - = ( -k2 + 4mik)EX(z) dz2 
We also note that 

(7-1-22) 

(7-1 -23) 

Differentiating By(z) we will find that it satisfies the same differential equation 
as E,(z). In any case it will be much simpler to just calculate dE,/dz and 
divide by - ik to find By. 

Before proceeding, we will make a slight digression. The sophisticated 
student will observe immediately that we could have obtained these dif- 
ferential equations much more rapidly if we had started with Maxwell's 
equations. We would however have lost all our beautiful insight into the 
origin of the fields in terms of flowing currents. Nevertheless we shall do 
so now if for no other reason than to provide the student with an easily 
remembered way of rapidly obtaining the appropriate coefficients in the 
differential equation. We start with 

1 aE 1 aE V x  B = 4 n j + - - = 4 n a E + - -  
c at c at 

1 aB V x E = - - -  
c at 

Taking the curl of the second equation and remembering that in this case 
V . E = 4np = 0, we have 

V x (V x E) = V(V * E) - V2E 
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(7-1-24) 

If we search for a solution of the form 

Ex(z,t) = EX(z)ei”’ and Ey = E, = 0 
we obtain for our differential equation 

&Ex 4x0 o2 - - ioEx - - Ex 
dz2 c C2 

= (4naik - k2)Ex 

-- 

just as before. Taking the curl of V x B will obtain for us the same equation 
for By. 

We return to the problem at hand, the solution of which is noy 
apparent. In fact there are two possible solutions: 

(7-1-25) 

(7-1-26) 

Our first problem is how do we evaluate ,/-? The answer will 
be immediately apparent if we just write 4zaik - k2 = Jk‘ + ( 4 n t ~ k ) ~  eiQ. 
Then 

Jm = [k4 + ( 4 ~ a k ) ~ ] * e ’ ” ~  (7- 1-27) 

The important thing to note here is that rp/2 is always in the first quadrant, 
and hence ,/-i has a positive real part if IS has any value at all 
other than zero (see Fig. 7-3). The solution given by Eq. (7-1-26) would 
diverge as we approached infinity and hence must be rejected. We are left 
then with 

E,(z) = A exp ( - J i Z Z P z )  (7-1-28) 

i 

Fig. 7-3 
plotted in the complex plane. 

Thc cxpression -k2 + 4nuik 
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We wish to find A to complete our solution to the problem. To do this we 
need only substitute back into our integral equation. 

A exp ( - , f w z )  = Eoe-ikz 

exp [(ik - , / w ) z ' ]  dz' 

[( - ik - , / w ) z ' ]  dz' (7-1-29) 

Carrying out the integrals indicated, we find 

This leads to the result 

(7-1-30) 

(7- 1-3 1) 

We have then for the field within the conductor 

To find By(z, t) we just differentiate Ex with respect to z and divide by - ik. 

J4naik - k2 - ik 
2naik By(z,t) = Jw 

E,, exp ( - , / w z )  eimr (7-1-33) 

Now these expressions look quite hopeless except for the fact that, for most 
metals over a large frequency range, we can ignore k by comparison with 
4no. In that frequency range we have 

e x p [ - i ( m z  - of)] (7-1-34) 

B,,(z,f) E 2 [( 1 - F)  8na - i F] 87ca 

E, exp (-@z) exp [ - i(@z - at)] (7-1-35) 

As the ratio of k to a becomes smaller and smaller (either better conductivity 
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or lower frequency), we can ignore k/2na by comparison with ,/- and 
dk/87Lb by comparison with 1. In that case we can further approximate 
E and B as follows : 

E,(z,t) z Eo exp (-&&z) 

exp[-i(@z - a t  - 

B,,(z,t) 2 2E0 exp ( - m z )  exp [ - i ( m z  - at)] (7-1-37) 

The magnetic field in the conductor thus has a magnitude that is much 
larger than that of the electric field. It also lags the electric field by about 
an eighth of a cycle in the case where k/a << 1. Both fields drop off in 
magnitude as exp (-&&z). The term l/m called the skin depth, 
is the distance within which the fields drop by a factor of e. 

Now to round out our evaluation of the electromagnetic fields in 
this simple example, let us calculate the reflected electric and magnetic 
fields. We make use of our integral equations again and note that 

E,""(z,t) = - 2 x ~ e ~ ( ~ ' + ~ ) A  exp [ -(,/- + ik)z'] dz' r 
- ,/- - ik ei(kz+wr, 

- -"J----- 4xaik - k2 + ik 

We obtain By'c"(z,t) through the equation 

Byluf'(z,t) = - E,""(z,t) 

(7- 1-38) 

(7- 1-39) 

It is interesting to note one other rather important point which is apparent 
from looking at the integral equations for E,(z) and BJz). Both E,(z) 
and B,,(z) are continuous at z = 0. In general the tangential components 
of the electric and magnetic fields are both continuous when going across 
a nonmagnetic boundary. This can be ascertained through an inspection 
of Maxwell's equations, as follows. 

Faraday's law states that 

If we take our curve of integration as shown in Fig. 7-4, the leg 6 can be 
taken arbitrarily small and hence @ can be made arbitrarily small. Thus 
E,(region 1) = E,(region 2). Similarly, unless there is a finite surface 
current within a layer of zero thickness, the equation 

1 aE V x B = 4xj + - - 
at 
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C 

Boundary 
betwcen k media 

Fig. 7-4 The tangential components of E and B are 
continuous across the boundary of our nonmagnetic 
conductor. 

ensures that the tangential component of B is continuous across the 
boundary. Obviously, if we are dealing with a piece of magnetic material, 
this continuity no longer holds because the sharp charge in magnetization 
is equivalent to a finite surface current. 

These boundary conditions along with the solution to the differential 
equation for E and B in the conductor can serve to fix E and B completely 
without having recourse to the integral equation. Before we leave our 
conducting sheets, let us see what happens if we remove the restriction 
that they be of infinite thickness. We begin by treating one sheet of finite 
thickness and then extend our technique to a succession of any number of 
such sheets of varying conductivity. We take our sheet to lie between z = 0 
and z = a (see Fig. 7-5). For some point x within the sheet (0 5 x 5 a), 
we can again express E,(x) in terms of a sum of the incoming field, the 
field contributed by currents on the left, and the field contributed by currents 

Fig. 7-5 
of thickness u and conductivity a. 

Electromagnetic radiation strikes normal to a conducting sheet 

a 
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on the right. The equation is identical to Eq. (7-1-20) except for the faet 
that co is replaced by a. 

E,(z) = E,e-ik' - 2n0e-'~' Ex(z')eikz' dz' 1: 
- 2naeikz [ Ex(z')e-ik" dz' (7-1-40) 

Again Ex(z) satisfies the differential equation dLEx/dz2 = (- k2 + 4noik)E,, 
and again we can write, in general, 

Ex = A e x p ( - J W z )  + B e x p ( + , / W z )  (7-1-41) 

This time, however, we have no right to remove the second solution 
[exp ( J w z ) ]  because we are constrained to the region 0 5 z 5 a. 
If we substitute back into our integral equation, we find A and B by in- 
sisting that the equation hold at any two points z = 0 and z = a, for 
example. (The equation will then automatically hold at all other points in 
the conductor.) We obtain 

A + B = E, - 2na [A exp ( - J w ' z ' )  

+ B exp ( + , / w z ' ) ]  e-ikz' dz' (7-1-42) 

and 

A exp ( -Ja ik- - isTa)  + B exp ( + , / w u )  = E,e-ika 

- 2nae-ika 1; [ A  exp <-,/zGc-P~') 

+ B exp ( + , / w z ' ) ]  eikz' dz' (7-1-43) 
As you can easily see, the solution to the problem, while messy, is 

quite straightforward. There are two independent equations for A and B 
in terms of E,,, a, k, and a. Having found A and B, we can proceed to find 
the reflected and transmitted waves just as before: 

A exp ( - d w z ' ) e i k z '  dz' [I: 
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+ 1; B exp ( + , / w ' z ' ) e i k r '  dz'] (7- 1-45) 

Suppose now that instead of having to deal with only one sheet we had two 
sheets, as shown in Fig. 7-6, the first with conductivity o1 and the second 
with conductivity u2. If we let E,,,(z,t) and E,,,(z,t) be the solutions inside 
the two conductors, respectively, we can write, in general, 

Ex, 1 (z,  t) = Ex, 1 (4eiUt 

= [ A  exp ( - J w z )  

+ B exp (+ J m - z ) ] e i m t  (7-1-46) 

4 . 2  (z,  0 = Ex,z  (z)eirnt 

+ D exp ( + ,/41102 ik - kZz)]eimt (7- 1-47) 

We can write down two integral equations 

E,,,(Z) = E0e-'" - 2aole-ikz 1; Ex,l(z')e+ik" dz' 

- 21101e+ikz [ Ex,l(z')e-ikz' dz' 

rc 
- 211u2eik2 Ex,2(z')e-ik'' dz' (7-1-48) 

b 

EX,,(z) = E0e-"' - 2nale-ikz Ex,l(z')eikz' dz' I 
Fig. 7-6 Electromagnetic radiation strikes normal to two conducting 
sheets. 

--------- Incoming wave * ~ --------- I---- 
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- 27~a,e-'~' [ Ex,2(z')eikz' dz' - 2na2eikZ 

(7-1-49) 

Ifwe insert Eqs. (7-1-46) and (7-1-47) for E,,,(z) and Ex,2(z) into our integrals 
and evaluate Eq. (7-1-48) at z = 0,a and Eq. (7-1-49) at z = c,d, we will 
have four simultaneous equations for A,B,C,P. Thus our solution to 
EJz)  will be complete at least within the conductors. The extension to the 
regions outside of the conductors is trivial and is left to the reader. 

We might add here that any number of parallel conducting sheets can 
be treated in this manner. For N sheets we will need 2N coefficients for the 
solutions, and the N integral equations will give them to us. 

7-2 WE ALLOW THE CONDUCTOR TO HAVE MAGNETIC PERMEABILITY p 

We will now generalize slightly by allowing our conductor to have uniform 
magnetic permeability p. We can of course retrace all our steps and ask 
what a thin sheet of magnetic-moment distribution will yield for A and 
then for E and B. It is simpler however to just make use of Maxwell's 
equations in the same manner as we did on page 241. We now have 

1 aE 
= 4 n ~ E + - -  

-1 aB 
V X E = - -  

at 

at 

Again we search for solutions of the form 

E,(z,t) = Ex(z)eiw' 

Ey = Ex = 0 

We find the differential equation for Ex to be 

d2  Ex 
dz2 
-- - (4napik - pk2)Ex 

(7-2-1) 

(7-2-2) 

(7-2-3) 

(7-2-4) 
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The result is then 

E,(4 = ( exp [Jp(47raik - k')z] 

(7-2-5) 

(7-2-6) 

Let us now find the complete set of solutions for the case of the semi- 
infinite slab of conductor extending from z = 0 to z = co. As before, 
we can reject solution Eq. (7-2-6) as diverging at infinity. This yields 

E,(z,t) = Aexp [ -Jp(47raik - k2)z]  do' for z > 0 (7-2-7) 

The magnetic field By can be obtained from Maxwell's equation : 

(7-2-8) 

Hence 

1 aE, 
By(z,t) = - - __ 

ik az 

AJp(47roik - k z )  
ik 

- - exp [ - J p ( 4 m i k  - k2)z]  eio' 

for z > 0 (7-2-9) 

The incident wave has the form 
,rxinc(z, t )  = E, e-  i (kz - of) 

ByinyZ, t )  = E , ~  - i (kz  - of) 

(7-2-10) 

(7-2-1 1 )  

(7-2-12) 

(7-2-13) 

where D is a constant, to be determined from the boundary conditions. 
Our job is now reduced to finding A and D. We do this by requiring 

that the tangential components of H and E be continuous across the bound- 
ary. This yields 

E , + D = A  

AJp(47raik - k z )  
ikp 

E , - D =  
(7-2-14) 
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The solutions for A and D are 

2ikp Eo 
Jp(4noik - k2) + ikp 

A =  

ikp - Jp(4naik - k2) 
D =  E, ikp + Jp(4naik - k2) 

(7-2- 15) 

(7-2-16) 

Again, it is instructive to look at these solutions in the limit of large 
a. We have then 

2ikp ikp 
E, = d- E, 

no 

The fields in the conductor become 

(7-2-17) 

E,.(z, t )  = d$ E, exp ( - ,,/- z) 

exp[-i(&&z - wt - 

B,,(z,t) = 2pE0 exp (-4-z) exp [ -i(,/%&z - wt)]  (7-2-19) 

We compare with Eqs. (7-1-36) and (7-1-37) to note the approximate effect 
of the permeability p. 

1. The skin depth is decreased by the factor A. 
2. The magnetic field By just inside the conductor’s surface is increased 

by a factor of p. 
3. The electric field just inside the conductors is increased by a factor 

of Js;. 
7-3 THE PHYSICAL ORIGIN OF THE REFRACTIVE INDEX 

We now find ourselves in the beautiful position of having developed a 
machine so powerful that we can just stand back and pile up our profits. 
When we carried out our analysis of the interaction of radiation with a 
conducting sheet we made only one simple assumption, that the current 
densityj,(z) was proportional to the electric field at that point E,.(z). We 
called the proportionality constant cr and identified it with the conductivity 
of the material. However, nothing that we did after that implied that the 
constant had to be real (as it is in the case of free electrons in a conductor) 
or even that it had to be frequency independent. The physical arguments 
which we followed for adding together the effects of all the currents at 
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various values of z would have been the same if cr had been a complex 
number with some frequency dependence. Thus we open up a wide range of 
applicability for the treatment we have just completed. In particular, we 
can deal with all situations where the local induced currents are proportional 
to the applied electric field, provided, of course, that the medium in question 
is sufficiently uniform and dense so that the variation in the number of 
scattering centers within a volume of order A3 (A is the wavelength of the 
radiation) is negligible. (It is the violation of this last proviso that causes 
the sky to be blue. Why?) 

We will now begin with a rather simple model of a dielectric as a 
collection of charges, each of which is trapped within a harmonic oscillator 
potential. Using this model, we will show that the currents which flow are 
indeed proportional to the applied fields. By carrying over the expressions 
we have derived for a conductor, we will discovzr that dielectrics appear 
to have a classical index of refraction, and we will derive an expression for 
this index in terms of the frequency of the incident radiation, the natural 
frequency of the oscillations, and the density of electrons. We will then 
show how it is possible to generalize our results to permit us to treat a 
dielectric exactly, given a description of the microscopic forward-scattering 
amplitude. 

Consider first an individual electron of charge q and mass m in a 
harmonic oscillator potential with spring constant moo2 .  (Its resonant fre- 
quency is wo.) We let the incident radiation on this electron be of the form 

E,(z,t) = Eoe-i(k'-ot) (7-3-1) 

If the electron is at z = 0 and it sees a resistive force equal to mydx/dt, 
then the differential equation describing its motion (see Sec. 6-9) is 

dx 4'0 eiut - + y-  + o02x = - 
d 2 x  
dt2 dt m 

(7- 3-2) 

Letting x = xoeiwt, we find 

xo = 9Eo (7-3-3) 
m(oo2 - o2 + i yo)  

Suppose we now take a thin sheet of material made up of N such 
charges per unit volume. If we subject this sheet to an electric field Ex = 

, then we will induce a current density A- eiot 

= N(:)(io) qEOeiWt 
m(oo2 - o2 + i yo)  

(7-3-4) 
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(The factor c convertsj, into emu.) Hence it appears as though the material 
has an effective conductivity given by 

iNq2k 
m(oo2 - o2 + iyo) Ceff = (7-3-5) 

From here on, we can make direct use of all the machinery we developed 
in Sec. 7-1. Wherever we find an expression involving 6, we can use oCff 
instead. 

Let us return then to the semi-infinite slab of dielectric extending 
from z = 0 to z = 00 (see Fig. 7-2). Again we can take the incoming radia- 
tion to have the form 

E,inyZ,t) = ~ , ~ - i ( k z - o t )  (7-3-6) 

There are two possible solutions for the field in the dielectric. Using Eqs. 
(7-1-25) and (7-1-26) and substituting ceff for 6, we find 

4nq2 k2 N 
m(oo2 - o2 + iyo) 

3 4zq2 k2 N 
m(oo2 - o2 + iyo) 

(7-3-7) 

(7-3-8) 

Simple inspection will show that the radical will have a positive real part, 
and hence Eq. (7-3-8) can be removed as a possible solution. This leaves 
us with 

(7-3-9) E , ( ~ ,  = A ~ -  i(knz - 0 1 )  

where 

4nq2 N 
n =  (7-3-10) 

The quantity n is called the index of refraction. We see that a given phase of 
the plane wave within the dielectric moves with an apparent velocity given by 

C 
"phase = - n 

Going back to Eq. (7-1-31), we find A :  

4 m C f f i k  - k2  - ik 
A = J  Eo 

2ZCeff 
ink - ik 2(n - 1) 

Eo = EO - - 
2ZOCff n2 - 1 

2EO 
n +  1 

=- 

(7-3-1 1) 

(7-3- 12) 
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We have then our final solution for the electric field in the dielectric: 

EX(z,t) = ~ 2Eo , - i (knz-wr)  for z > 0 (7-3-13) 
n + l  

The magnetic field B,,(z,r) can be obtained by differentiating Ex with respect 
to z and dividing by - ik. 

for z > 0 2nE0 e-  i(knz - wt)  B,(z,t) = - 
n +  1 

(7-3-14) 

To obtain the reflected waves we make use of Eqs. (7-1-38) and (7- 1-39): 

ink - ik i ( k z + o f )  

ink + ik Eoe 
E,"fyz,f) = - 

for z < 0 - E e i ( k z + w t )  =- 
l + n  O 

- E & k z + w t )  for < 0 Byr'"(Z,t) = - 0 n + l  

(7-3-15) 

(7-3-16) 

7-4 WHAT HAPPENS WHEN t~ < 1 7  PHASE VELOCITY AND 
GROUP VELOCITY 

We will now have a good hard look at our expression for index of refraction 
and see if we can understand something about the propagation of signals 
within the corresponding medium. To simplify our considerations we will 
set y = 0. This is not a bad approximation for most dielectrics far from 
their resonant frequencies ; a detailed treatment of the behavior of a dielec- 
tric in the vicinity of its resonances is beyond the scope of this book. Under 
this assumption we can write 

(7-4-1) 

Again we remember that our wave travels within this medium as e - i ( k n z - w t ) .  

But what does this mean? Can it be that for n < 1 (which happens whenever 
w > oo) we have a signal traveling faster than c? This would seem to be 
in patent violation of everything we have learned .when we studied relativity. 
Furthermore, it seems absurd, since we never added together anything but 
waves traveling at velocity c. 

The answer of course is very simple. Just because a wave appears to 
travel with velocity greater than c does not mean that information is moving 
with that same velocity. We will illustrate by making use of an elementary 
mechanical example. 
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Let us set out a long row of uncoupled springs as shown in Fig. 7-7. 
Each spring has a mass m hanging on it and has a spring constant equal to 
moo2. (Hence the spring and mass will oscillate naturally at frequency coo.) 
We take the distance between springs to be 62. 

Suppose we now pluck the first mass so as to set it into oscillation. 
A very short time 6t later we pluck the second mass in exactly the same 
way. A time 6t after that we pluck the third mass, and so on until all the 
masses are oscillating. As we watch the springs oscillate, it will look as 
though the peak of the oscillation is moving along with a phase velocity 
equal to 6z/6t. Since 6t can be made arbitrarily small, the phase velocity 
can be made arbitrarily large (see Fig. 7-7). 

So far nothing bothers us at all because no information is being 
transferred from one spring to the next. They are all moving completely 
independently. Suppose we now wanted to transfer information along the 
chain. We would have to link the masses by some means and then we would 
have to give one mass an extra pluck so that it had a bit more energy than 
the others. This extra bit of energy would then be transferred down the 
line, and we would see the various oscillators gain amplitude and then 
lose amplitude again as the information passed through them. Needless 
to say, the velocity with which the peak amplitude moved down the line 
would not in general be the same as the phase velocity. 

From looking at our mechanical model we now can extract the key 
idea. Information is transferred only when energy gets transferred, and 
hence there must somehow be a change in the world wide distribution of 
energy density. As long as we are dealing with nothing but a plane wave 
of fixed frequency extending from -co to +a, there is no such change 
with time. Either we have to turn the light on at some time, in which case 
we would have to track the leading edge of the light beam, or we would 
have to produce fluctuations in the energy density of our beam and watch 
those fluctuations move along. 

Consider first the problem of tracking the leading edge of a light 

Fig. 7-7 We cause a wave to propagate with phase velocity equal to Szpr  by plucking the 
masses sequentially with time interval 6t between plucks (see text). No information is being 
transferred because the masses are all uncoupled. 
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beam that has just been turned on. Initially the individual electrons as 
they were struck by this light beam would exhibit all the transient behavior 
which we have so far blithely ignored. We could solve the problem exactly 
by making our light beam up out of a superposition of different frequencies 
using Fourier analysis techniques. We could then include the transient 
terms and add everything together. Needless to say, the very leading edge 
would not move faster than c.  (In fact, as seems intuitively reasonable, 
it will move with a velocity just equal to c.) In any case, to solve this problem 
exactly is rather tedious and somewhat beyond our scope. 

How about producing fluctuations in the energy density of our electro- 
magnetic wave and watching those fluctuations propagate? We can do 
this rather easily by adding together two waves with frequencies that lie 
very close to one another. We let K = kn and use frequencies w and w + dw 
which correspond, respectively, to K and K + dx. We have then 

E,(z,t) = Eoe-i(K'-"') + ~ ~ ~ - i [ ( K + d ~ ) z - ( w + d ~ ) f ]  

- - , - i ( K Z - w f )  (E0 + E l e - i ( d K z - d w t )  1 (7-4-2) 

As can be readily seen, the energy density corresponding to Ex varies with z 
and has an apparent wavelength equal to 2 n l d ~ .  The peaks in energy also 
move with velocity equal to dwldlc. This velocity is the one we are interested 
in evaluating and is called the group velocity vg. 

d o  
vg = - 

dlc 

cn - - 
4nq2 No,' 

+ m ( 0 2  - o o 2 ) 2  

(7-4-3) 

Inspection shows that vg is always less than c. When o > wo, the 
index n is less than 1 and the denominator is greater than 1. For o < oo, 
the denominator is always greater than the numerator divided by c. In 
the limit that we can ignore o2 compared with wo2, we have 

cn c 
n n  ug = 3 = - = up = phase velocity 

Finally, before we leave these harmonic oscillators, let us see how reasonable 
our expression for index of refraction is. We would not have much use for 
it if it yielded a value of 1000 in the visible when everyone knows that for 
most transparent materials with a density of about 1 gram/cm3 the index 
is about 1.5. 

First we note that oo is typically in the ultraviolet for a material 
like glass. Let us take wo = 2 x 1 O I 6  rad/sec and o = 4 x 1015 rad/sec. 
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Let us take N z Avogadro’s number = 6 x loz3. We know that 

4’ - = (c2) (classical electron radius ro )  
m 

= (9 x 1020)(2.8 x 

We have then 

4n(6 x 1023)(2.5 x lo8) 
4 x 1 0 3 2  

= J55 z 2.3 

Not bad for a crude guess with a crude model. 

7-5 THE INDEX OF REFRACTION IN TERMS OF THE 
FORWARD-SCAlTERING AMPLITUDE 

Unfortunately, the real world is not made up of a collection of simple har- 
monic oscillators, and we would never be able to handle a real problem 
unless we developed some techniques which had broad practical applicabil- 
ity. It turns out to be quite simple to do so. We will assume that the micro- 
scopic problem of the interaction of radiation with a typical atom has been 
solved and show how we can go from there to an expression for the index 
of refraction of macroscopic matter made up of these atoms. 

We will assume that the entire atom is coherent insofar as the fre- 
quencies that interest us are concerned. By this we mean that the atom 
is so much smaller than the wavelength of light that we need not pay any 
attention to its physical dimension. Now if we allow a plane wave of radiation 
to fall upon the atom, it will absorb and reradiate some of it in all directions. 
In particular, some of it will be reradiated in the same direction as the in- 
coming radiation, and in interfering with the latter will lead to the effective 
index of refraction. 

It is clear that our index of refraction should depend then on the 
number of atoms per unit volume, on the frequency of the incident light, 
and on the ratio of the amplitude of the forward-scattered radiation to the 
amplitude of the incoming radiation. To make the connection we will 
resort to a very simple trick. We will replace our atom with a classical 
accelerating charge that leads to exactly the same amplitude of forwardly 
scattered radiation. We will then make use of what we have learned to 
calculate the effective conductivity for an assembly of these classical charges. 
Having done this, we can immediately write down an expression for the 
index of refraction. 
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To begin with, let us define the so-called forward-scattering amplitude 
f(0) for a single atom, as follows. 

amplitude of forwardly emitted radiation 
at point 1 cm directly forward of scatterer 

f(0) = amplitude that incident radiation would have 
at that same point in absence of scatterer 

(It is of course assumed that the incoming radiation and the forwardly 
emitted radiation have the same polarization. We shall shortly learn how 
to deal with the more general case where this assumption is removed.) 
Suppose now that we had an incident plane wave given by 

~ , ( z , t )  = Eoe-'(k'-ot) (7-5-1) 

Imagine now that we place our classical charge at z = 0 and allow it to 
have an acceleration given by 

a, = aOeio' (7-5-2) 

At a distance z in front of the charge we would see a field due to this accelera- 
tion and equal to [see Eq. (6-4-2)] 

- e W t  - zlc) 
E,(due to charge) = 

c2z 
- 4aoe- i (kz -w t )  

- - 
c2z 

The forward-scattering amplitude will then be given by 

- 4ao f(O> = 

(7-5-3) 

(7-5-4) 

In other words, if we know f(O), then we can replace our atom with a charge 
whose acceleration is just given by 

The velocity of the charge is just 

(7-5-5) 

(7-5-6) 

If we make up a macroscopic sheet of these charges with N charges per 
unit volume, we have a current density given by 

(7-5-7) 
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The effective conductivity is then 
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(7-5-8) 

Substituting back into Eq. (7-1-25) we find 

(7- 5 -9) 

This expression relates the index of refraction to the atomic forward- 
scattering amplitude f ( 0 )  and the number of atoms per unit volume, N .  
The expression is exact for wavelengths much larger than atomic dimen- 
sions and permits us to solve the macroscopic problem as soon as we have 
solved the microscopic problem. 

7-6 THE FARADAY EFFECT 

Of the various phenomena of physical optics none is more beautifully 
illustrative of the techniques and ideas we have developed than the Faraday 
effect. Let us apply an external magnetic field to a dielectric and then 
introduce plane-polarized radiation into it along the direction of the magnetic 
field. We will find that the polarization direction will rotate through an angle 
proportional to the distance we penetrate into the medium. The ratio of 
angle turned to distance traversed will depend approximately linearly on 
the magnetic field for reasonable fields. When evaluated for a unit magnetic 
field the ratio is called the Verdet constant. We will find in addition that 
this entire phenomenon can be understood in terms of a difference in the 
index of refraction for left- and right-hand circularly polarized light. 

We begin as usual by considering a rather simple model, an electron 
of charge q and mass m bound in a harmonic oscillator potential. We will 
assume a restoring force equal to -mcoo2r where r is the vector displace- 
ment from the equilibrium position. In addition we will assume an applied 
magnetic field Bk3 in the z direction and incoming radiation of the form 

(7-6-1) 

(We use k l ,  k,, and E13 as the unit vectors in the x, y ,  z directions to avoid 
confusion with other quantities labeled by i, j ,  k.) 

For convenience we will place the center of our harmonic oscillator 
at the origin of our coordinate system. We set the force on the charge 
equal to its mass times its acceleration 

dt2 61 + ~ 6 ,  = -mmW02 (xi$ + y t 2 )  + qEo,eiWfdl 
m(d'x d2y 1 

qB dy qB dx 
c dt c dt 

+ qE0yeiwt62 + ~ -kl - ~ - 62 (7-6-2) 
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Now, rearranging terms and letting 0, = cyclotron frequency = qB/mc, 
we have two equations 

d2x  dY @ o x  eiw' T + wo x - 0,- = - dt m 

Letting x = xOeiW' and y = yoei"", we find 

4Eox (ao' - w2)xo - iwo,yo = - 
m 

4Eoy (wo2 - 0 2 ) y o  + iowcxo = - 
m 

We solve for yo and xo and obtain 

4[(wo2 - w2)Eo, + iw~,Eo,I 
m[(wo2 - w2)2 - w2wc2] 

xo = 

and 

(7-6-3) 

(7-6-4) 

(7 -6- 5) 

(7-6-6) 

(7-6-7) 

(7-6-8) 

We can now proceed in one of two ways. We can calculate the currents 
in the x and y directions in terms of Ex and E,, leading to effective con- 
ductivities (in this case, four numbers), and then put everything together 
as we have before. Alternatively, we can think a bit about the physical 
situation and by being clever come to a conclusion much more rapidly. 
We shall do both inasmuch as cleverness is not always a substitute for 
brute force in the world of real problems. 

First, let us be clever. We ask what would happen if the incident 
radiation were circularly polarized? Certainly the trapped electron has no 
choice but to go in a circle since there is no preferred direction defined in 
the xy plane. The magnetic field then would either push the electron toward 
the center of the circle or pull it away from the center. Thus there would be 
two different radii, depending on whether the light coming in was left-hand 
circularly polarized or right-hand circularly polarized. Reversing the 
direction of the applied field would clearly interchange the radii corre- 
sponding to right- and left-hand circular polarization. 

To test our intuition, we can now solve the problem exactly. Take 
first the case of left-hand circularly polarized light incident, upon the charge. 
As we remember, this means that at a fixed value of z the electric field 
vector appears to be rotating counterclockwise as we look along the + z  
axis. How shall we express Eox and Eoy in order that the total electric field 
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behave in this manner? Very simple. We remember that in the end we will 
be interested in only the real parts of the expressions we obtain for Ex and 
E,. If we let Eoy = iEo,, then we have 

Ex = EOxeiW' and E Y = E ox ei(~r+7r/2) (7-6-9) 

The real parts of Ex and Ey then rotate in the desired direction as a function 
of time. 

Substituting this into our expressions for xo and yo, we have 

4EO.K 
m(oo2 - o2 + ow,) 

4Eoy 
m(oo2 - o2 + wo,) 

xo = 

Y o  = 

(7-6-10) 

(7-6-1 1) 

The charge q just follows the electric field, either in phase or 180" out of 
phase, depending on the sign of q and on the sign of oo2 - o2 + ww,. 

In any case the rotating charge produces its own left-hand circularly 
polarized radiation in the forward direction. The forward-scattering 
amplitude, defined as before, is just 

(7-6-12) - 4  4 
m(Wo2 - w2 + wo,) fa) = 7 (-02) 

If matter were made up of N such harmonic oscillators per unit volume, 
the index of refraction for left-hand circularly polarized light traveling in 
the direction of a magnetic field B would be 

4nNq2 
m(wo2 - oz + ow,) 

nL = J 1 +  (7-6- 13) 

To go from left- to right-hand circularly polarized light is trivial. 
We remember that reversing the handedness of the polarization gave the 
same result as reversing the magnetic field B. Indeed, it is only the direction 
of B which establishes a handedness in the first place. Hence we can obtain 
our result for nR by just letting w, go to -oc. 

nR = (7-6-14) 

(Alternatively we could let Eoy = --iEOx and substitute in the expressions 
for xo and yo.) At this point it is reasonable to note that nR and n, differ 
very little from what they would be with no field. Typically wo is about 
2 x 10l6 rad/sec and w, is 17.6 x lo6 rad/sec for 1 gauss. Inasmuch as 
magnetic fields are not usually more than lo4 to lo5 gauss, we expect o, 
to be no more than 10" to 1OI2 rad/sec. Typical values of w, in the visible, 
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are in the region of 4 x 1015 rad/sec. Hence wo2 is larger than oo, by a 
factor of about lo5 to lo6. We are then entitled to make a linear approxima- 
tion for nL and n R .  

nL z n + (z)o o, 

n2 - 1 ow, 

n2 - 1 oo, 

= n - -  
2n coo2 - o2 

2n oo2 - o2 n R = n + -  

(7-6-1 5) 

(7-6- 16) 

Now that we have shown that right- and left-hand circularly polarized 
light have different indices of refraction, we would like to see what would 
happen if we began with plane-polarized light. As we have seen earlier, 
the essential characteristic of left-hand circularly polarized light propagating 
in the z direction is that the amplitude of the y component is i times the 
amplitude of the x component. Remembering that left-hand circularly 
polarized light propagates with index of refraction nL, we write 

EL(Z,f) = Ae-i(knLZ-Ut)& + i ~ ~ - i ( k n ~ z - o t ) &  2 (7-6- 17) 

where A is an arbitrary constant to be determined to fit given boucdary 
conditions. Similarly 

ER(Z,f) = B e - i ( k n ~ z - O f ) &  1 - &-i(kmzZ-wl)& 2 (7-6- 18) 

We now ask can we superimpose right-hand circularly polarized light 
and left-hand circularly polarized light so as to produce light which is 
linearly polarized in the x direction at z = O? That is to say, we search for 
values of A and B so as to produce a field of the form 

E(0,f) = EOeiotdl (7-6- 19) 

at z = 0. Obviously this can be done by choosing A = B = Eo/2 and 
adding together the two circularly polarized plane waves. We have then 

q z , f )  = E, eiot  [(.- i k n u  + e- ikmzz)&l 
2 (7-6-20) 

e-  iknRz)421 
+ j ( e - i k n ~ z  - 

If we make the approximation 

n R = n + A  

n L = n - A  
(7-6-21) 

then we obtain a simplified expression for E(z,f): 

~ ( ~ , t )  = ~ ~ ~ - i ( k n z - w O  [(cos kAz)bl - (sin kAz)&J (7-6-22) 

The polarization thus rotates from the x direction toward the - y  direction 
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(for positive A), going through an angle kAz in a distance z. The Verdet 
constant is the rate of change of this angle with respect to distance, per 
unit field. 

kA v = -  
B 

(7-6-23) 

For the particular model we have taken, we would have [see Eqs. (7-6-15) 
and (7-6-16)] 

radlcm-gauss v -  4 U2 n Z - l  
mc2 wo2 - w2 2n 

(7-6-24) 

Now, what if we had not been so clever as to see that the natural 
solution to this problem makes use of circularly polarized radiation? 
Is there some way in which we can treat the problem in a “brute force” 
manner which would lead in the end to the “natural” states for a description 
of the system? Fortunately, the answer to this question is affirmative. 
Furthermore, the technique we will develop will be of such broad generality 
that we will be able to make use of it to deal with systems of substantial 
complexity, provided that we can solve the problem on the atomic level. 

Before generalizing, however, let us go back to our solution to xo 
and yo in terms of E,, and Eoy [see Eqs. (7-6-7) and (7-6-8)]. Having found 
x and y ,  we can determine the current densities j ,  and j ,  by differentiating 
with respect to time and multiplying by Ng/c. We have then 

(7-6-26) 
iwNq yOeiot - ikNq’ (wo2 - w2)Eoy - iwwcEo, eio, 

j y  = c m (cooz - w’)’ - w’w,’ 

We notice immediately that these equations have the general form 

(7-6-27) 

Indeed, this form is sufficient to describe the most general linear index of 
refraction problem where transverse fields are propagating only in the z 
direction. Let us proceed to solve this general problem; the solution to 
our specific problem of the Faraday effect will then fall right out. 

Again we make use of integral equations for the case of a semi-infinite 
slab to give us the physical insight we need to derive the differential equa- 
tions. As before, we break up the contributions to the fields Ex and Ey at 
some position z into those arising from the incoming fields, the currents 
to the left of z ,  and the currents to the right of z. The only difference is that 
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both x and y currents can be caused by either x or y fields. We have then, 
canceling out the eiWt term from both sides, 

E,(z) = E o K i k 2  - 2ne-"' Ji [ o X x ~ J z ' )  + uXyE,,(z')]eik'' dz' 

- 27reik2 Lrn [oxxEx(z') + o.xyEy(~')]e-ik'' dz' (7-6-28) 

Ey(z)  = Eoye-ik2 - 2nePik2 lo* [ayxEx(z') + oyyEy(z')]eikz' dz' 

- 2neikz 1; [o,E,(z') + oyyEy(~')]e-ikz'  dz' (7-6-29) 

If we differentiate twice with respect to x, we obtain the coupled differential 
equations 

& E X  7 = Mx,Ex + MxyEy 
dz 

f!?! = My,E, + MyyEy 
dz2 

where 

M,, = -k2  + 4nika,, 

Mxy = 4nikaXy 

My, = 47rik0, 

Myy = - k Z  + 4nikayy 

(7-6-30) 

(7-6-31) 

We note that if we let JI be the state given by JI = Ex&, + E&, then we 
can write 

- -  '* - MJI 
dz2 

where 

(7-6-32) 

( M  is a tensor of the second rank in this two-dimensional space.) 
Let us see if we can find some JI for which M$ = A$ and A is a con- 

stant scalar. That is, we look for a polarization state which goes into itself 
when operated upon by M .  JI is then called an eigenstate and A is its eigen- 
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value. We desire that 

(MXx - A)Ex + MxyEy = 0 

MyxE + (Myy - A)Ey = 0 

This requires that the determinant 

(7-6-33) 

(7-6-34) 

We have then, for A, the equation 

l2 - 4 M x x  + Myy)  + (MxxMyy - Mx,Myx) = 0 (7-6-35) 

There are two solutions for A which we call A +  and A- , respectively. 

Mxx + + +J(MXX - My$ + 4MxyMyx (7-6-36) 
2 -- 

A+#- = 

The two solutions corresponding to ,I+,- are $+,-, given, respectively, by 

Ey - A *  - M x x  

EX M X Y  

- _  

Now $+ obeys the equation 

-- - A+*+ #*+ 
dz2 

(7-6-37) 

(7-6-38) 

(7-6-39) 

t,-(z) = I+-(o) exp (k iJ -1 -z )  (7-6-40) 

Now for any given initial polarization $(O) = Eoxe*, + E0y22, we can 
decompose $(O) into *+(O) and $-(O) components. 

*(O) = A*+(O) + W-(O) (7-6-41) 

At some other value of z , t  we would have then, for waves propagating 
in the +z direction, 

+(z,t) = A++ (0) exp [ - i ( J z l , z  - cot)] 

+ B$- (0) exp [ - i ( n z  - of)] (7-6-42) 

In this way we obtain the solution to the general problem of radiation 
propagating within a medium. Incidentally, the indices of refraction cor- 
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responding to the two values of A are just 

J=K 
k 

n+,- = (7-6-43) 

We now apply this general method to the solution of our model for 
the Faraday effect. We have in that case 

ikNq2 oo’ - o2 
Mx, = Myy = - k2 + 4xik - (7-6-44) 

m (ooz - a’)’ - ozo,Z 

(7-6-45) 

Thus 

4nNk2q2(wo2 - w 2 )  4nNk2q200, 
;.+.- = - k 2  - ___ It- 

m [ ( o o 2  - w2I2 - w 2 w C 2 ]  [ (wo2 - w2)2 - W ~ O ~ ’ ] ~  

The two indices of refraction are 

(7-6-46) 

4nNq2 
n+,- = 1 + 

ll [(ao* - w’) f ww,]rn 

The eigenstate corresponding to A+ has 

(7-6-47) 

- Ey = - Mxx = i (left-hand circular polarization) (7-6-48) 
EX M X Y  

The eigenstate corresponding to A- has 

E A- - M,, 
- Y ,  = - i  (right-hand circular polarization) (7-6-49) 
E X  MXY 

We have thus reproduced our earlier result in this completely general 
manner. 

7-7 WE REMOVE THE REQUIREMENT OF NORMAL INCIDENCE; 
FRESNEL’S EQUATIONS; TOTAL INTERNAL REFLECTION 

We have heretofore concerned ourselves only with situations where radia- 
tion was incident normally onto the interface between the materials. We 
will now remove this restriction and examine in detail what happens when 
the radiation has an angle of incidence equal to ei. The reflected radiation 
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will then hv.e an angle of reflection 8, and the transmitted radiation an 
angle of refraction Or (see Fig. 7-8). 

We first ask how one can write down a plane wave traveling in a direc- 
tion given by a unit vector 6. The plane wave will have two possible 
polarizations given by Sb and dC, where we take 

As usual, we let o be the frequency of the radiation and define k = o / c .  
Then the wavelength is just given by 2nlnk where n is the index of refraction. 
The phase of our plane wave must then change by 2n if we proceed along 
ta by a distance equal to 2xlnk. Hence we can write, in general, 

Fig. 7-8 
refraction n, and n2, respectively. The angle of incidence is Bi. 

Radiation is incident upon an interface between two media, having indices of 

€,(trans) 

€,(trans) 
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We also remember that the magnetic field within a medium is n times 
the electric field and is at right angles to it so that E x B points in the 
propagation direction. The magnetic field corresponding to Eq. (7-7-1) 
is thus 

B(r,t) = -n(Eo,i$ - EOb$) eXp [ - i(nk& r - Ot)] (7-7-2) 

We now return to Fig. 7-8 and set up a coordinate system at some 
point on the interface. We let the z axis represented by unit vector 8, be 
normal to the interface and point from medium n, to medium n,. The 
incident radiation is taken to come from the n, side, and the incident direc- 
tion is taken to lie in the xz plane. On general grounds of symmetry, the 
directions of the reflected and transmitted radiation must also lie in the 
xz plane. 

It is now convenient to rewrite Eqs. (7-7-1) and (7-7-2) in terms of 
one standard coordinate system. We can take Zc to be along the y direction 
for the incident, reflected, and transmitted radiation. Hence we will uni- 
formly set &, = t2. The component of electric field in this direction, which 
was previously called E,,, will now be called EoL, inasmuch as it is per- 
pendicular to the plane of incidence. As far as kb is concerned, we see that 

$(incident) = cos Bi 6, - sin Bi 8, 

Eb(reflected) = -cos 8,2, - sin 8, 6, 

%(transmitted) = cos O f & ,  - sin 8, k3 

The amplitudes of electric field along these directions will be called Eo, , ,  
rather than EOb, to indicate that the field is parallel to the plane of incidence. 

The incident electric and magnetic fields then have the form 

Einc(r, t )  = [EOlinc 1, + E, II inc (cos Oi 4, - sin Oi E13) ]  

Binc(r, t )  = - n, [EOlinC(cos Oi 6, - sin Bi 6,) - E, 

e-  i [ n l k ( z  cos B i  + x sin B i )  - of] 

$3 
e-  i[nlk(z cos O i  +xs inBi ) -o f l  

Similarly, the reflected and transmitted plane waves have the form 

Erufl(r,t) = [ E ,  Yf1 1, - Eollrurl (cos 8, 6, + sin 0, 6,) 

Bref'(r,t) = n,[Eo 

- i[alk(x sinB,-zcosB,)-of] 

(cos 0, 6, + sin 8, t,) + Eollrrrl &,I 
e-i(alk(xsinB,-rcosB,)-or] 

E1r3ns(r,t) = [Eoltmns 1, + EoIItrans (cos 8, - sin 0, &,)I 
e-  i[n*k(z  cos Bt +x sin Bt) - 0f1 

(7-7-3) 

(7-7-4) 

(7-7-5) 

(7-7-6) 

(7-7-7) 
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Btrans(r,r) = -nZ[EOLtrnns (cos 8, 6, - sin 8, 8,)  - EoIItrans S,] 

We are now ready to apply the boundary conditions at the interface. 
We require that the tangential comyonents of E and B be continuous. 
Since the tangential components are those along S, and S,, we can write 
(remembering that z = 0 at the boundary and factoring out the eior term) 

(7-7-9) 

(7-7-8) e-  i[nlk(z cos Bt +xsin 0,) -or] 

Eolince- intkx sin O i  + ~ ~ , r e f l ~ - i n ~ k x s i n O , .  - 
~ ~ ~ , i n c  cos oi ,-intkxsinOi - ~ ~ ~ ~ r c ' f l  cos 0, ,-intkxsinO. 

trans -inlkxsinOc - Eo, e 

(7-7-10) = E~ trans cos 8, e-  inzkxsin Ot 

In order that these equations hold for any value of x ,  we must have 

n,kx  sin Oi = n,kx  sin 8, = n,kx sin 8, 

Thus we learn that the angle of incidence and the angle of reflection are 
equal. Furthermore, we have derived Snell's law relating 8, to Bi. 

n,  sin Oi = n2 sin 8, (7-7-1 1) 

Rewriting Eqs. (7-7-9) and (7-7-10) and adding the equations for the tangen- 
tial components of B, we have 

EOlinc + ~ ~ , r e f l  = ~ ~ ~ f r a n s  

(E, II inc - ,8z0 II raft) cos ei = E, II cos 8, 

nl(Eolinc - EOlref1) cos Oi = nzEOlfranS cos 0, 

n,(EoIIinc + Eollrefl) = n,EoIltrans 

Solving these, we obtain the well-known Fresnel equations 

ref, - n, cos Oi - n2 cos 8, 
n,  cos Oi + n,  cos 8, 

EOlinc Eo, - 

,rOltrnns = 2n, cos Oi EOlinc 
n,  cos 8, + n, cos 8, 

Eo II inc 
refl = n2 cos Oi - n ,  cos 8, 

n, cos 8, + n2 cos 8, E~~~ 

2n, cos Oi Eollinc 
n,  cos 8, + n, cos Oi 

Eolltrans = 

(7-7-12) 

(7-7-13) 

(7-7-14) 

(7-7-1 5 )  

(7- 7- 1 6 )  

We notice immediately that Eoll 
of incidence. This occurs whenever 

n2 cos Oi - n ,  cos 8, = 0 

can be zero at a particular angle 
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Inserting Snell’s law into the above, we have, for no reflection, 
sin 8, cos Bi = sin 8, cos 8, 

or 
n ei + 8, = - 2 

(7-7-17) 

If 8, and 8, satisfy this condition, then 8, is called Brewster’s angle. 
Finally, let us consider what happens when we have total internal 

reflection. If n,  is greater than n,, then there certainly exists a range of 
incident angles for which 

(7-7- 18) n1 -sin Bi = sin 8, > 1 
n2 

A little bit of thought indicates that this is no problem if we allow 8, to be 
a complex number. We find cos 8, by the usual relation 

cos 8, = *,/i”G?& = k i , / m  

To simplify our notation we let 

(7-7-19) 

(7-7-20) 

We then note that the phase factor e-in2kzcose~ becomes 
, - in~kzcose t  = ,*n&za 

We must eliminate the positive exponential inasmuch as it diverges as 
we let z go to infinity. Thus we accept only the negative alternative in 
Eq. (7-7-19). 

cos 8, = -ia (7-7-21) 

This gives us 

2n1 cos 8, 
n,  cos 6, - in,a 

n, cos Oi + in,a 
n ,  cos Oi - in,a 

EOlinc EOllrans = 

EOlrrf’ = EOlinc 

2n1 cos 8, 
n, cos Bi - in,u 

EoII‘rans = Eo 
(7-7-22) 

n,  cos Oi + inla 
n2 cos Oi - in,a 

EoIIrer1 = Eo 
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As we anticipate, the magnitudes of the reflected waves are identical 
to the magnitudes of the corresponding incident waves but out of phase 
with them. The transmitted electric and magnetic fields are given by 

(7-7-23) 

E01tmns62 - Eolltrnns 

e - n 2 k a z - i n l k s i n B , x + i w t  

(7-7-24) e-  n l k a z -  inrk sin 0 ,  x +iof 

A simple inspection of the Poynting vector will show that, averaged over 
time, no energy is flowing in the z direction. The only average energy flow 
is in the x direction, as expected. The characteristic distance in the z direction 
within which the amplitude decreases by a factor e is just 

(7-7-25) 
1 1 

2n J ( n , / r ~ ~ ) ~  sin2 Oi - 1 
- -  1 

n,ku 
s = - -  

We can obtain a feeling for the magnitude of S by faking some typical 
values for n,, n,, and sin Bi. We let n, = 1.5 and n, = 1 (corresponding to 
a glass-air interface) and take Oi = 45". 

E 0.451 d = - -  1 1  

2n Ji?T-1 
Typically then the electromagnetic radiation can extend out for a wavelength 
or so from a totally reflecting surface. 

PROBLEMS 

7-1. Find the skin depth in copper, aluminum, nonmagnetic stainless steel, and sea 
water for radiation at w = lo6 rad/sec, 10' rad/sec, and 1O'O rad/sec. 

uCoppcr = 1.6 x lo7 abamperes/statvolt-cm 

unluminum = 1.1 x 10' abamperes/statvolt-cm 

uStsinless scccl = 0.3 x lo7 abamperes/statvolt-cm 

Wl,,rr = 1.5 abamperes/statvolt-cm 

7-2. Referring to Fig. 7-2, calculate the time-averaged force per unit volume on the 
semi-infinite conductor by the magnetic field, as a function of z. Integrate from 
z = 0 to z = 03 to find the average radiation pressure on the conductor. Compare 
this result with the change in momentum per unit area of the incoming and re- 
flected radiation. 
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7-3. Radiation of frequency w is normally incident upon a semi-infinite slab of 
index of refraction n,, which has been coated with a thin layer of index n, (the 
thickness of the layer is 6). 

(a) Find a general expression for the reflected intensity as a function of o, 

(b) Given n,, find a set of values for n, and 6 for which the reflected intensity 

7-4. Linearly polarized light of the form E,(z,t) = Eoe-i(kz-o') is ' incident normally 
onto a material which has index of refraction nR for right-hand circularly polarized 
light and nL for left-hand circularly polarized light. Describe the reflected light 
quantitatively from the point of view of intensity and polarization. 

n, ,  n2,  and 6. 

at frequency w is zero. 

7-5. Electromagnetic radiation of frequency w is incident on a thick conducting plate 
of conductivity CT at an angle of incidence Oi. Find the intensity of the reflected 
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light for incident polarization parallel to and perpendicular to the plane of 
incidence. 

7-6. A semi-infinite slab of matter is constituted of N charges per unit volume, each 
of which is held in place by an asymmetric harmonic oscillator potential. The 
restoring force on each charge for a displacement in the xy plane is 

F = -mwOx2x&, - rnw0,2y&, 

Incoming radiation 

21 

t 2  k, out of paper ' 

Left-hand circularly polarized light of frequency w is normally incident upon 
the slab, as shown. The amplitude of the incident radiation is E,,. 
(n) Find the electric field as a function of time at a distance z into the slab. 
(b) Find an expression for the reflected radiation. What is its state of polariza- 
tion? 

7-7. A magnetic field B is now applied normal to the surface of the slab in Prob. 7-6. 
What are the two indices of refraction and what polarization states do they 
correspond to if we take wox2 = awoy2? 

7-8. Explain how the Faraday effect can be used to determine the sign of the mobile 
charges in a block of dielectric. 



8 
Multipole Expansion of the 
Radiation Field; Some 
Further Considerations on 
the interaction of Radiation 
with Matter; Interference 
and Diffraction 

8-1 A GENERAL STATEMENT OF THE PROBLEM 

When we studied electrostatics, we found it convenient to express the electro- 
static potential at a point r a large distance from a spatially limited charge 
distribution in terms of a power-series expansion. The expansion parameter 
was r’/r where the vector r’ denoted the position of charge contributing 
to the potential. This sort of expansion is not particularly useful when we 
deal with radiation because as we have already learned, the radiation fields 

273 
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must decrease as l lr  in order that there be a net energy outflow from the 
radiator. There is however another parameter which is of prime importance, 
the size of the source as compared with the wavelength of the radiation. 
It is clear that if the size of the source is comparable to the radiation wave- 
length, then various parts of the source will interfere coherently. 

We shall take then the point of view that r‘ is sufficiently less than r 
so that only electric and magnetic fields decreasing as l lr  must be considered. 
Subject to this assumption we will develop a rather general method for 
finding the fields and then make the further approximation that r’ is much 
smaller than the wavelength of the radiation. In the event that the latter 
assumption is not true, we can in many cases subdivide the source to the 
point where it is true and add the results later. This technique will be used 
when we reexamine the index of refraction and when we study diffraction 
phenomena. 

For convenience we will concern ourselves only with charge and current 
distributions which are harmonically periodic in their time dependence. 
(If the time dependence of our actual problem does not fit this criterion, 
we can decompose it into harmonic components by means of Fourier 
analysis.). 

If o is the angular frequency of the time dependence, then we write 

j(r’,t) = j(r’)eimr 

p(r’,t) = p(r’)eiwl 
(8-1-1) 

Substituting into our well-known expressions for A and cp [see Eq. 
(5-6-3)], we have 

dV 
j(r’) exp (- ik(r - r’l) s Ir - r‘l 

A(r,t) = eimt 

dV‘ 
p(r’)exp(-ik(r - r’l) s Ir - r‘I 

&,t) = eimr 

(8-1-2) 

(8-1-3) 

where, as usual, k = o j c  = 2n/3,. 
We have already agreed to consider r’ to be infinitesimal compared 

with r. Hence l/lr - r’I varies only negligibly as we vary r’. We can replace 
it by l lr  and take it out of the integral. On the other hand, exp (- ik(r - r’() 
can vary considerably because r’ and 3, are much more comparable. We 
note then that 

r - r’ 
= r - -  

r 
N (8- 1-4) 



8-1 A GENERAL STATEMENT OF THE PROBLEM 275 

If we let A = r/r, then we can rewrite the potentials as 

j(r’) exp (ikA - r’) dV‘ (8-1-5) s e - i ( k r - o t )  

A(r,f) = r 

p(r’) exp (ikA - r‘) dV‘ s , - i ( k r - o t )  

(P(rA = (8- 1 -6) 

So far we have only assumed that r’ << r and have not made any 
assumption about the magnitude of 2nr’ll = kr’. Indeed, in many cases 
we can carry out the above integration completely and never have any 
reason for further approximation. On the other hand, there are many 
situations where kr’ << 1 and further approximation is useful. For example, 
an atom with a typical size of cm will emit radiation with a wavelength 
of the order of 5 x cm. For those situations, we are entitled to write 

exp (ikA r’) = 1 + ikA - r’ - 3k2(h - r’)2 + . . (8-1-7) 

Substituting into the above equations yields a power-series expansion 
for A and (P: 

A =  A1 + A2 + A ,  + ‘ . .  
cp = (Pl + 4% + (P3 + . . .  

A, = r sj(r’) dV’ 

where 
e - i ( k r - o ~ )  

ik j(r’)(A - r’) dV‘ s e-  i ( k r -  01) 

A, = r 

and so forth. 
We could now proceed to find the electric field by taking -V(P - 

1 aA 
- - and the magnetic field by taking V x A. It is much more convenient 

however to make the following observations: 
c at 

E(r,t) = E(r)eioz 

B(r,t) = B(r)eio‘ 
(8-1-8) 

1 aE 
Hence, making use of Maxwell’s equation V x B = - -, we have 

c at 

1 
ik E(r) = -V x B(r) 

1 
ik 

= - V x [V x A@)] (8-1-9) 
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This obviates the necessity of knowing cp at all and simplifies our job 
considerably. 

8-2 ELECTRIC DIPOLE RADIATION 

As a first approximation we can ignore kr' completely. We then find 

(8-2-1) 

We can cast this into a somewhat more elegant form by a bit of manipulation. 
We evaluate the x component of j j(r') dV' : 

jx(r')dV' = j(r') - 6, dV' 

= sj(r') . V x '  dV' 

I S  
= IV' x'j(r') dV' - x'V' * j(r') dV' (8-2-2) s 

Note that the first of the integrals on the right side of Eq. (8-2-2) can 
be turned into an integral over a surface enclosing the current distribution 
completely. On that surface j = 0, and hence we conclude 

jx(r') dV' = - x'V' * j(r') dV' s s 
Generalizing to three dimensions, we obtain 

" " 
j(r') dV' = - r'[V' . j(r')] dV' J J 

Next, we remember the conservation of charge equation : 

(8-2-3) 

Hence, using Eq. (8-1-1), we have 

V . j(r') = - ikp(r') (8-2-4) 

Substituting back into Eqs. (8-2-3) and (8-2-l), we obtain our expression 
for A,(r,t): 

(8-2-5) 
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The integral now has a very familiar form. Consider the time-dependent 
electric dipole moment of the charge distribution. 

p(t) = r'p(r',r) dV' s 
= eiof Ir'p(r') dV' 

= poeimf 

Clearly then 

(8-2-6) 

(8-2-7) 

Finally we must determine B and E. We take the curl of A but ignore the 
term which goes as l / r z .  

B, = V x A, 
ikVe- i ( k r - o t )  

x Po N - r 
kze- i (kr- (o t )  

(A x Po) - - 
r 

To find E we take the curl of B and again ignore the l / r z  term. 

x (fi x Po) = -  kZ Ve-i(kr-mf) 

ikr 

(8-2-8) 

(8-2-9) 

A little bit of thought allows us to rewrite Eqs. (8-2-8) and (8-2-9) in 
slightly different form : 

E,(r,t) = r pp ( t  - :) 
B,(r,t) = A x E,(r,f) 

(8-2-10) 

where pp(t - r/c) is the component of the dipole moment perpendicular to 
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A and evaluated at the time f - r/c.  Physically then, to find the electric 
field at r, we put our eye there and observe the charge distribution as it 
appears to us at that instant. (Naturally we are really looking at the charge 
distribution as it was a time r/c in the past.) We calculate the electric dipole 
moment of this observed distribution, take the component perpendicular to 
our line of sight, multiply by kZ, divide by r, and we have our answer. 

We would like to compare this result with the one we found earlier 
for the case of an accelerating charge [see Eq. (6-4-2)]. Imagine that we 
have a charge q undergoing harmonic motion of the form 

r = r eiwt 0 

Then the acceleration is just 
a = -&roeiwt 

On the other hand, the electric dipole moment is given by 

p(t) = qr(t)  = qrOeiwt 

Hence 

Using Eq. (6-4-2), we have 

-qa,(t - r/c) 
c2r 

E(r,t) = 

- o 2 P P 0  - rlc) 

- k2PP(t - rlc) 

- 
czr 

- 
r 

This confirms the general result of Eq. (8-2-10) for the simple case of a 
harmonically oscillating point charge. 

The Poynting vector can now be evaluated and averaged over one 
cycle. This would usually require that we find the real parts of E and B, 
respectively, then take their vector product and finally do the time averaging. 
We can save ourselves some effort however by making the following observa- 
tions : 

E + E *  B + B *  
( S ) t i m r  av = 4n ( ~ 2 x 7) timcov 
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Now 
time. 
zero. 

E x B is proportional to e2iof, which is zero when averaged over 
Similarly E* x B* is proportional to e-ZiW',  which also averages to 
Hence 

C 
= -Re (E x B*)timcav 

87l 

Since E x B' has no time dependence we need not actually carry out any 
time averaging and we can write directly 

Applying this general result in the case of our dipole we have 

(8-2-1 1) 

(8-2-12) 

where 

A * P o  cos 6 = __ 
Po 

Integrating over a sphere, we find the average amount of energy 
radiated by the dipole per unit time: 

(8-2-13) 

Lastly, let us apply what we have just learned and calculate the radia- 
tion field due to the simple short dipole antenna shown in Fig. 8-1. We 
assume that the overall length of the antenna is a and that a << 2. 

The current in the antenna is taken to be 

(8-2-14) 

In this model then, the current is in the same direction in each half of the 
antenna and falls off linearly as we approach the ends. 
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a/2 Fig. 8-1 We calculate the radiation field 
due to a short dipole antenna of length a. 
We assume that a << I where I is the 
wavelength of the radiation. 

To obtain the dipole moment, we can either find p(z’) or we can just 
make use of Eq. (8-2-1) directly. It is simpler to do the latter. 

1 0 4  
2ik 

=- 

The angular distribution of radiated power is just 

(8-2-15) 

(8-2-1 6) 
C 

= - (ka)2Z02 sin2 6 
32a 

Thus for a given maximum current, the average radiated power 
increases as the square of the frequency in the situation where a << A. 

8-3 MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE RADIATION 

In the next order of approximation we consider the second term in the 
expansion of exp(ik6. r’) [see Eq. (8-1-7)]. Substituting into Eq. (8-1-6), 
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we obtain 

ik j(r’)(A - r’) d V  s e-  i ( k r -  01)  

r A2(r,t) = (8-3-1) 

It is convenient to break the integrand up as follows: 

j(A - r’) = +B(A - r’) - r’(j -A)]  + f B ( A  - r’) + r’(j -A)] 

= +[A x (j x r’)] + +b(A. r’) + r’(A - j)] (8-3-2) 

The part of the vector potential corresponding to the first term on the right 
of Eq. (8-3-2) will be called, for reasons which will become apparent shortly, 
the magnetic dipole potential Azm. The part corresponding to the second 
term will be called the electric quadrupole potential AZq. We examine the 
magnetic dipole potential first. 

(8-3-3) 

The integral on the right is nothing other than the magnetic moment of 
the current distribution. That is, 

p(t) = poeiW‘ (8-3-4) 
where 

po = r’ x j(r’) d V  

e-  i(kr - 01) 

s 
Hence 

A2,(r,t) = -ik A x Po r 

(8-3-5) 

(8-3-6) 

Taking the curl of A, and ignoring all terms which go as I/r’, we find the 
magnetic and electric fields. 

B,, = V x A,, 

2 -k2 
e-  i(kr - 01) 

A x (A x Po) 

[Po - (Po * A)AI 

r 
, - i ( k r - w t )  

= k2 
r 

(8-3-7) 

= -A x Bz, (8-3-8) 
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Note the amazing similarity to the expressions we obtained for electric 
dipole radiation. The magnetic field here has the same relation to the pro- 
jected apparent magnetic dipole moment as the electric field has to the 
projected apparent electric dipole moment. 

An example of such a magnetic dipole is the simple circular current 
loop shown in Fig. 8-2. We take the loop to have circumference a and let 
the current in the loop be given by 

Z(t) = ZOeiot (8-3-9) 

(In this case the total length of wire involved in the antenna is the same as 
it is for our previous electric dipole.) We will again calculate the average 
energy radiated per unit time per unit solid angle and compare it directly 
with what was obtained in the case of the Comparable electric dipole [see 
Eq. (8-2-15)]. The magnetic moment of the loop is just 

a2 
po = zo - 

471 
(8-3- 10) 

Hence 

= r'(f3.A) 
time av 

C 
= - k4p02 sin2 0 

871 

C 
-- - (ka)"ZO2 sin2 H 

128713 (8-3-1 1)  

It is instructive then to compare this result with Eq. (8-2-16). We have, for 
comparable currents and a comparable size, 

(8-3-1 2) 

The intensity of magnetic dipole radiation is thus characteristically 
smaller by a factor of about (~//i)~ than that of electric dipole radiation. 

R 

Fig. 8-2 Asimplecurrent loop 
with current I( t )  = loeiW' emits 
magnetic dipole radiation. 
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(This point is of considerable significance in analyzing the radiation of 
atomic states. When we get to study atomic transitions, we will find that 
some of them cannot take place through the medium of electric dipole 
radiation and hence are appropriately suppressed.) 

We next return to the so-called electric quadrupole potential. 
, - i (kr-wt)  

A,,(r,f) = ik ~ {b(A. r’) + r’(A - j)] dV‘ (8-3-13) 2r 

Consider the first part of the integral. We will examine its x component. 

j,(A - r’) dV’ = (A - r’)j - 6, dV‘ s 
= s ( A  - r’)j . V‘x‘ dV‘ 

= s V  . [x’(A - r’)j] dV‘ - x‘V‘ . [(A - r‘)j] dV‘ 

I 
s 

s 

We eliminate the first of these two integrals by converting it into a 
surface integral and by noting that j = 0 on the surface. Hence 

j,(A. r’) dV‘ = - x‘V‘ . [(A - r’)j] dV’ s 
= - sx ’V@ - r’) . j dV‘ - x’(A - r’)V’ . j dV‘ 

s 
But 

V’(A - r’) = A 
and, remembering Eq. (8-2-4), 

V‘ * j(r’) = -ikp(r’) 

We have thus 

j,(h - r’) dV‘ = - x’(A - j) dV‘ + ik x’(A. r’)p(r’) dV‘ s s s 
Generalizing to three dimensions, we conclude that 

j(A - r’) dV‘ = - r’(A. j) dV‘ + ik r’(A - r’)p(r’) dV‘ (8-3-14) s s s 
Substituting back into Eq. (8-3-13), we find for A,, 

A,,(r,f) = - k2  
,- i (kr-wt)  s r‘(A - r‘)p(r‘) dV’ 

2r 
(8-3-15) 
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To proceed, we wiil take the cur1 of AZq and find the magnetic field. 
Again we ignore terms of order l/r2. 

B,, = V x A,, 

A x r’(A - r’)p(r’) d V  s i k 3 e - i ( k r - o t )  
- - 

2r 
(8-3-16) 

We will add to the expression on the right of Eq. (8-3-16) a term which 
is zero but which helps us put the field in a somewhat more conventional 
form. We have 

A x [3r’(A - r’) - Ar’,]p(r’) d V  (8-3- 17) s jkSe- i(kr- 00 

6r Blq = 

The integral on the right side of Eq. (8-3-17) can now be written as the 
product of a second-rank tensor Q and the vector A :  

[3r’(A - r’) - Ar”fp(r’) d V  = Q A  s 
where the elements of Q are 

Qij = (3x:xj - rf2 dij)p(r’) dV’ s 
The magnetic field B,, is thus 

i k 3 e - i ( k r - w t )  

B2, = 6,, A x Q A  

As usual the electric field is 

(8-3- 18) 

(8-3-19) 

(8-3-20) 

E,, = - A  x B2, (8-3-21) 

The tensor Q is called the quadrupole tensor of the charge distribution. 
In the event that the charge distribution is cylindrically symmetrical, we 
can calculate the elements Qij very easily. Letting Qo be the quadrupole 
moment of the charge distribution [see Eq. (2-14-20)],’ we have 

Qij  = 0 for i # j  

Q,, = QZ2 = I(; - q) p(r’) d V  

= -Qo (8-3-22) 

‘Our definition of quadrupole moment differs by a factor of 2 from that occurring in many 
texts. Quite often, the quadrupole moment of a symmetrical distribution is directly defined 
as Q s o .  
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Q33 = S(3zj2 - f2)p(r’) dV’ 

= 2Qo 
We can calculate the distribution of radiated power as a function 

of position as follows : 

= r 2 ( S  - A) 
ck6 

288x 

(&)time av limc av 

= -[A x QA12 (8-3-23) 

Unfortunately this expression is rather complex and will not be evaluated 
in general. For the 

QA = 

[A x QA12 = 

particular case of axial symmetry we have 

-Qon,E*i - Q o Q Z  + W o n A  
9nZ2(nx2 + nY2)Qo2 = 9QO2 cos2 Q sin2 8 

(8-3-24) 

(8-3-25) 

(8-3-26) 

As a simple example of such a quadrupole radiator we consider the 
assembly of charges shown in Fig. 8-3. The charge -2q is stationary at 
the origin of our coordinate system, and two positive charges oscillate 
harmonically, each with amplitude d, about the origin. The two positive 

‘+4 

- 24 

+4 

Fig. 8-3 As an example of a quadrupole 
radiator we consider the assembly of 
charges showri above. The negative charge 
is stationary at the origin of the coordinate 
system. The two positive charges oscillate 
harmonically with amplitude d along the 
z axis and about the origin. The radiation 
pattern is indicated. 
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charges are always on opposite sides of the origin and exchange positions 
every half-cycle. 

To calculate the quadrupole moment Q, we assume that at t = 0 
the charges are at their maximum amplitude. Then 

~ ( r ’ ) r ’ ~ P ,  (cos 19’) dV‘ Q, = 

(8-3-27) 
s 

= 2 9 8  

The distribution of radiation is gotten from Eq. (8-3-26). 

(8-3-28) 

Integrating over the angle, we can find the total energy lost per unit 
time, first for the general symmetrical quadrupole and then for the special 
case we have just discussed. 

60 

For our special example, 

(8-3-29) 

(8-3-30) 

It is instructive to compare this with the dipole radiation which would 
result if one of the positive charges and half the negative charge were re- 
moved. We would then have a dipole moment lpl = qd, and, using Eq. 
(8-2-12), we would obtain 

ck48qz 
elect dipole 3 

Comparing directly, we have 

I du\ 

(8-3-3 1) 

(8-3-32) 

\ %) clcctdipole 

This result is very similar to Eq. (8-3-12), indicating, as anticipated, that 
electric quadrupole and magnetic dipole radiation have the same basic 
strength. Each is weaker than electric dipole radiation by a factor about 
equal to the ratio of the square of the characteristic size of the radiator 
to the square of the wavelength of the radiation. 

Obtaining higher terms in the multipole expansion of the radiation 



8-4 WE REEXAMINE THE PASSAGE OF RADIATION THROUGH MATTER 287 

field is beyond the scope of this book. The reader is referred to advanced 
texts' where more sophisticated mathematical methods are applied. 

8-4 W E  REEXAMINE THE PASSAGE OF RADIATION T H R O U G H  M A l T E R  

We will now make use of what we have learned about electric dipole radia- 
tion and reexamine some of the formalism we developed in Chap. 7 from 
a new point of view. We observe that an incoming electric field induces a 
dipole moment per unit volume in matter. This induced dipole moment, 
which has the same harmonic time dependence as the incident electric 
field, gives rise to a radiation field of its own. When we add together all 
contributions to the electric field at a point, we will again observe the 
characteristic interference which led us. to the notion of refractive index. 

We will begin by letting P(r,t) be the polarization per unit volume 
of the matter in question. Then, since we will only be concerned with oscil- 
lations having frequency w, we can write 

P(r,t) = P(r)eio' (8-4-1) 

Consider then a thin sheet of material of uniform polarization and thick- 
ness 6 (see Fig. 8-4). We wish to find the electric field at a point which lies 
a distance z from the sheet. To make matters simple we will assume that P 

'For example, see J. D. Jackson, "Classical Electrodynamics," pp. 538-577, Wiley, New 
York, 1962. 

Fig. 8-4 An incoming beam of radiation causes an induced dipole 
moment per unit volume P(r) = Pd"' in a sheet of thickness 6. We are 
interested in finding the field due to this polarization at a distance z from 
the sheet. 

i 
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lies along the x axis. Later we can generalize somewhat to an arbitrary direc- 
tion for P in the xy plane. 

In carrying out the integration over the sheet, we will use the same 
technique as was applied in Sec. 7- 1. We will consider the sheet to be limited 
in extent in order that we be able to consider the projected dipole moment 
to be equal to the full dipole moment. Making use of Eq. (8-2-10), we 
integrate to find the electric field resulting from the sheet. 

e-  i ( k R -  wt) 

dV s sheet 
Ex(z , t )  = k Z P  

(8-4-2) 

Just as we did when we dealt with Eq. (7-1-5), we ignore e-ikRmax(o) since 
it will average to zero. This leaves us with the simple result 

E,(z,t) = -2nikPGe-i(k'-w') (8-4-3) 

We can compare this result directly with Eq. (7-1-9). The equations are 
identical if we just identify ikP with oE,. To see that this is reasonable, 
let us just go back to Eqs. (8-2-1) and (8-2-5) and consider a uniform current 
distribution and a unit volume. We have then, removing the integrals, 

ikP = j (8-4-4) 

But j = aE and hence our result. 
Now it often happens that P is related to the applied field by a pro- 

portionality constant x, called the electric susceptibility. This propor- 
tionality constant which was introduced earlier for the static field will, 
in general, be a frequency-dependent second-rank tensor. In our simple 
case we have taken o to be a constant number and we assume now that P 
is due to an incoming field. 

EXinyz,t) = ~ , ~ - i ( k z - w t )  (8-4-5) 

Thus, taking the field at z = 0, we have 

P = XE, (8-4-6) 

Substituting back into Eq. (8-4-3), we find 

E l n d ( z , f )  = - 2 n i k ~ ~ E o e - i ( k ' - " ' )  (8-4-7) 
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Again, comparing with Eq. (7-1-9), we find 

ikx = 0 (8-4-8) 

This means that wherever we previously had (r we can now substitute 
ikx. In particular, going back to Eqs. (7-2-5) and (7-2-6), we find the general 
solutions for radiation traveling within this medium in the z direction. 

(8-4-9) 

We remember now that the expression 1 + 4nx was just equal to the 
dielectric constant E in the case of electrostatics. We can define the dielectric 
constant at frequency o in the same manner and thus observe that the 
refractive index can be put in terms of p and E.  

n = J m = J L E  (8-4- 10) 

(Needless to say, the dielectric constant and the magnetic susceptibility 
that one must use here are not the values obtained from electrostatics and 
magnetostatics. The values we need here are to be obtained at the appropriate 
frequency 0.) 

8-5 INTERFERENCE PHENOMENA FROM AN ARRAY OF DISCRETE 
DIPOLES; THE NOTION OF COHERENCE 

With this section we begin a systematic study of the interference problems 
that result when we add together the radiation from a collection of coherent 
dipoles. Before we do much adding however it is wise to define precisely 
what it is that we mean by coherence, in simple physical terms. 

Suppose for a moment that we have only two dipole oscillators 
operating at exactly the same frequency. If the phase between the oscillators 
remains absolutely fixed, then the amplitude of electric field at any point 
in space will remain constant in time. Wherever the electric fields from the 
two add constructively, we will have increased intensity. Wherever they 
add destructively, we will have decreased intensity. The main point is that 
the intensity pattern averaged over a cycle of the oscillation will not vary 
with time. These two oscillators are then completely coherent with respect 
to one another. 

Suppose, on the other hand, that the two oscillators were going very 
fitfully in stops and starts so that every so often the phase between them 
would jump. If we looked at the combined electric field from the two oscil- 
lators at any given point in space, it would vary in amplitude each time such 
a jump in phase occurred. If the jumps took place in intervals which were 
short compared with the time constant of our sensing instruments, we 
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would average over them and see no net constructive or destructive inter- 
ference, just the sum of the independent intensities. If the phase jumps 
occurred in intervals which were long compared with the instrumental 
time constant, we would still see a complete interference pattern, but its 
nature would change at each jump. In any case the extent to which we will 
say that the sources are coherent will depend on the time constant of our 
instrument as compared with the time between phase jumps. 

As an example of incoherence we might consider two independent 
monochromatic light sources. Since the light from any source is composed 
of the contribution from numerous atoms and since each atom only radiates 
for a very short time, about sec, the interference pattern changes 
much too rapidly to follow with our instruments. On the other hand, if 
the atoms in the two oscillators can be driven together by having them each 
scatter the radiation from a third source, then they will act completely 
coherently. When we studied the origin of the refractive index, we observed 
exactly such a coherence among the scattering centers in our medium as 
they were driven by the incident plane wave. 

As our first exercise then we examine the interference pattern at a 
great distance from a simple linear array of N parallel dipoles spaced a 
distance d apart (see Fig. 8-5). We will concern ourselves only with the 
electric field in the plane normal to the dipoles; for convenience we will 
call this the yz  plane and take our dipoles in the x direction. The z axis is 
taken perpendicular to the line of dipoles. 

We take the dipole moment of the nth dipole to be p n S l .  The distance 
from the first dipole to the point at which we wish to evaluate the field is r .  
Since r >> d, we can write 

(8-5-1) 

From here on, in principle, all we need to do is add together the 
complex numbers corresponding to each of the dipoles and take the real 
part of the sum. This procedure is particularly simple if all the dipoles are 
equal. In that case 

k 2 p e - i ( k r - w t )  N -  1 

r n = O  
c eikndsinO (8-5-2) Ex(r ,8 ,0  = 

Fig. 8-5 We are interested in 
the radiation field at a position 
(r,O) in the plane normal to an 
array of dipoles. We assume 
that r is much larger than d, the 

Y 

0 

xoutr -1- 
:t 

spacing between dipoles. 
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We can get a good idea of what takes place here by plotting the sum in the 
complex plane. If we let a = kd sin 8, then the various terms in the sum 
are_ vectors of unit length, each of which is rotated at angle a relative to the 
previous term. For example, taking IZ = 4, we have plotted the sums in 
Fig. 8-6 for various values of a. It is clear that we have minima with Ex = 0 
at a = 7112, 71, 37112, 57112, 371, 77112, etc., and maxima when a is any integral 
multiple of 271. Generalizing to arbitrary N ,  we observe that the pattern 

3 

Fig. 8-6 We have plotted the sum eina for various values of a. (The dashed line indicates 
n=o 

the resultant.) We obtain maxima at a = 2mn and minima at a = n/2, n, 3n/2, 5n/2, 

--- 
a = 0 or 2mx (maximum) 

i 

i 



292 MULTIPOLE EXPANSION OF THE RADIATION FIELD 

has a series of N - 1 nulls between large maxima. At these maxima, 

tl = kd sin 6 = 2mn (8-5-3) 

where m is an integer. Since k = 2n/A where A is the wavelength of the 
radiations, we can rewrite Eq. (8-5-3) into more conventional form: 

ml = d sin 0 (8-5-4) 

These peaks of constructive interference occur then when the path length 
difference between successive dipoles is just equal to an integral number 
of wavelengths. 

We find the intensity by squaring the magnitude of E and multiplying 
by 487-1 [see Eq. (8-2-1 l)]. 

(8-5-5) 

The intensity pattern for a set of four dipoles is shown in Fig. 8-7. 
The potential significance of the analysis we have just completed is apparent. 

Fig. 8-7 
antennas spaced a distance d apart along a line (see Fig. 8-5). 

A plot of relative intensity versus kdsin 0 for a set of four synchronous dipole 
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We have observed that radiation of a given frequency can be made more 
and more directional by increasing the number of phased antennas involved 
in the transmission. A bit of thought will indicate that by varying the phase 
among the antennas we can vary the direction in which the radiation is 
transmitted. Thus we see that a large field of phased antennas is the natural 
way of “beaming” broadcasts to specific areas around the world. 

Incidentally, in a very analogous way we can consider the direction- 
ality of a set of receiving antennas. Suppose the dipoles of Fig. 8-5 had 
been set to receive rather than transmit radiation. If they were all connected 
to a common amplifier with no phase lag among them, then they would 
add completely constructively whenever the radiation was coming from 
a direction given by Eq. (8-5-4). By varying the relative phase lags from the 
antennas to the ampiifier, the directions of maximum sensitivity can be 
varied. Much of radio astronomy these days is done with large fields of 
phased-antenna arrays. 

8-6 FRAUENHOFEH DIFFRACTION BY A SLIT; SCATTERING 
BY A DISK; THE DIFFRACTION GRATING 

We are all qualitatively familiar with the fact that a plane wave of light 
passing through a small hole in a wall exhibits a remarkable interference 
pattern on the far side. This pattern is generally explained in terms of the 
so-called Huygen’s principle, which tells us to consider each point on a 
wavefront as a new source of radiation and add the “radiation” from all 
of the new “sources” together. Physically this makes no sense at all. Light 
does not emit light; only accelerating charges emit light. Thus we will begin 
by throwing out Huygen’s principle completely; later we will see that it 
actually does give the right answer for the wrong reasons. 

What happens then as our radiation strikes a wall with a hole in it? 
Referring to Fig. 8-8 we see that the radiation to the right of the wall is a 
superposition of the incoming radiation and the radiation arising from the 
oscillating dipoles in the wall. If we were to fill in the hole so as to make the 
wall complete, then nothing would penetrate the wall. That is, the complete 
wall radiates just enough to completely cancel the incoming plane wave 
to the right of it. Hence the radiation which appears when the hole is open 
must be precisely canceled out by the radiation from the stopper as we cover 
up the hole. This makes our calculation of the diffraction pattern very 
simple. We need only calculate the radiation from the stopper itself. The 
radiation field to the right of the hole is equal and opposite in amplitude 
to that which would be emitted by the stopper if it were radiating all by 
itself with the same dipole moment per unit area as the rest of the screen. 

Our job then consists of two parts. First, we must find out what the 
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Fig. 8-8 An incoming plane wave strikes an 
opaque wall with a hole in it. If the “stopper” 
wcre inserted into the hole, then no radiation 
would penetratc. Hence the stopper radiates 
just enough to cancel the radiation which 
would be transmitted through the hole. We 
find the radiation pattern on the right by 
taking the negative of the clectric field which 
would be radiated by the stopper. 

dipole moment per unit area of our wall’ is in terms of the incoming radia- 
tion. Second, we can replace the combination of incoming radiation and 
wall by the “equivalent” stopper alone. Giving this stopper a dipole moment 
per unit area which is equal and opposite to the rest of the wall, we calculate 
its radiation pattern and have the answer to our problem. 

Let p be the dipole moment per unit area of our wall. If the wall 
were complete, then the field contributed by its oscillating charges [see 
Eq. (8-4-3)] would just be 

ExWal l ( z , f )  = -2nik p e - ’ ( k Z - m t )  

if the incoming radiation had the form 
,J7xinC(z, f) = Eoe - i (kz  - Of) 

Then in order that the total radiation to the right of the wall be zero, we 
must have 

(8-6-1) 

We assume throughout that the radiating dipole distribution in the wall has negligible thick- 
ness. In other words, the wall is made of exceedingly opaque material. We also ignore the 
displacement current at the edge of the hole or disk which results from the discontinuity in 
the currcnt distribution. These edge effects arc only important if the hole is of the same order 
of size as the wavelength. 
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We thus replace the incoming radiation and the wall with its hole by the 
stopper having dipole moment per unit area equal to -E0/2nik. If we 
let r’ refer to a point on the aperture and r be the place at which we wish 
to know the electric field, then, using Eqs. (8-2-10) and (8-6-l), we obtain 

dA‘ 
exp (- ik(r - r’() 

2n s aperture (r - r’I 
ikEo 

E,(r,t) z - eior (8-6-2) 

[We assume here that the diffraction angle is relatively small so that we 
need not worry about taking the projection of the dipole moment normal 
to the propagation direction. That is the reason for writing Eq. (8-6-2) 
as an approximation.] 

As a simple exercise we can now calculate the diffraction pattern 
from a rectangular slit in .the so-called Frauenhofer limit, where the distance 
from the slit to the point of interest r is much larger than any dimension 
of the slit itself. We set the origin of our coordinate system at the center 
of the aperture with the z axis normal to the wall and pointing in the direction 
of propagation of the incoming radiation. We take the aperture to extend 
from x = -a12 to x = +a12 and from y = -b/2 t o y  = + b/2. A5 before, 
the incoming radiation will be taken as polarized in the x direction. To 
simplify matters we will only consider relatively small angles where both 
x and y are quite a bit smaller than z ,  making Eq. (8-6-2) valid. We have 
then 

ikE . exp (-ik(r - r’l) E,(x,y,z,t) = 2 eLot (8-6-3) 
2n 

We can take the denominator out of the integral, since it varies very little 
over the aperture. We can also approximate Ir - r’I using Eq. (8-1-4). 
We have then 

The integral splits very simply into the product of an integral over x’ and 
one over y‘. Thus we have 

where 

X Y sin 6, = - and sin 6, = - r r 
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Integrating, we obtain 

sin (k + sin 8,) sin (k ;- sin 8,) 
(8-6-6) ____I___ 

a .  b 
2 2 

k - sin 0y k - sin 8, 

Before we go on to calculate the intensity of the diffracted radiation, 
it is well to make some interesting observations. Note the phase of 90" 
between the directly forward-going diffracted field (0, = 0, = 0) and the 
field that would be present there if the wall were removed. Note also that 
the amplitude of the directly forward-going diffracted field varies inversely 
as the wavelength of the incoming radiation. The longer the wavelength, 
the wider will be the diffraction pattern and hence the weaker will be the 
intensity at the center. 

It is convenient to express tne intensity of the diffraction pattern 
in terms of the amount of energy per unit solid angle at emission angles 
8, and OY. Since the Poynting vector determines the energy passing a given 
area per unit time, we can write 

time av 

sin' k-sin ex 

(k t sin 8.>' 
sin2 k - sin O,, 

(k 4 sin 0,)' 

= I ,  ( ' ) ( ' (8-6-7) 

where 

Zo = intensity per unit solid angle in forward direction 

- ca2 b2 k2 Eo2 - 
32n3 (8-6-8) 

U A plot of the intensity pattern versus k - sin 0, for 8, = 0 'is shown 
2 

in Fig. 8-9. Note that the minima occur at angles such that 

2mn ml  21171 n l  
ka a kb b 

_ -  or sin eY = I_ - sin 8, = ___ = -  (8-6-9) 

where m and n are integers and l is the wavelength of the radiation. 
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n 2n 

Fig. 8-9 A plot of intensity versus (ku/2)sinO, for a slit of width a. 

We will not go through the trouble of integrating the intensity over 
angle to find out how much of the incident energy makes it through the 
hole. Needless to say, all the energy which strikes the hole makes it through 
and contributes to the diffraction pattern. If we carried out the integral 
for any shape aperture, we would find 

it, (&) time 9y dC2 = (incident energy/unit area/unit time)time 

(area of aperture) (8-6-10) 

Suppose that we replaced the wall with a hole in it (of arbitrary shape) 
by a disk which precisely matches the aperture (see Fig. 8-8). Now only a 
very small amount of energy is absorbed in the opaque disk and most of the 
radiation continues on as before in the plane wave. 

To calculate the radiation pattern we need only ascribe to the disk 
a dipole moment per unit area equal to Eo/2nik [see Eq. (8-6-l)]. The 
total field is then obtained by summing the incident field and the field 
produced by the disk. 

angles 

exp(-iklr - r'l) 
dA' ikE0 eiWi E,(x,y,z,t) E Eoe-i'k"-oi) - - 

271 

(8-6-1 1) 
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It is interesting at this point to determine the forward-scattering 
amplitude of the disk. Back on page 257 we defined the forward-scattering 
amplitude f(0) for a single scatterer. The definition here is identical; we 
take the ratio of the amplitude of forwardly emitted radiation at z = 1 cm 
to the amplitude that the incident radiation would have had at the same 
point if there were no scatterer. Hence we have in this case 

(8-6- 12) ik 
2n 

- - - ~ (area of disk) 

Taking another look at Eq. (8-6-1 l), we see that the scattered radiation 
is identical except for a minus sign to that which we obtained when we had 
a hole rather than its complementing disk [see Eq. (8-6-2)]. Hence, making 
use of Eq. (8-6-10), we conclude that 

oelastic = elastic scattering cross section' of disk 

= area of disk (8-6- 13) 

Since the disk absorbs all the energy which is incident on it, we can also 
write 

dabs = area of disk (8-6-14) 

Summing the two, we have the total cross section. 

otola, = 2 (area of disk) (8-6- 15) 

We can rewrite Eq. (8-6-12) in terms of the total cross section, in a somewhat 
weaker form than we have it. As we shall see, this will be a result which will 
prove to be independent of the opacity of the disk. 

(8-6- 16) 

Summarizing then, we have shown that the elastic scattering cross 
section and the absorption cross section of an opaque disk are identical. 
Furthermore, we have related the total cross section to the imaginary part 
of the forward-scattering amplitude. (In the case of an opaque disk the 
forward-scattering amplitude turned out to be completely imaginary.) 
These results will turn out to be of substantial importance when we study 
the scattering and absorption of elementary particles quantum mechanically. 
Indeed, the relation between the imaginary part of the forward-scattering 

'For the definition of cross section see page 223. 
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amplitude and the total cross section goes under the name of the optical 
theorem in many quantum-mechanics texts. (The sign is often reversed 
because the sign convention for i is taken differently.) 

What, we might ask, would be the situation if the disk had not been 
completely opaque? To answer that we first go back to our complete wall 
which is radiating the plane wave represented by Eq. (8-4-3). Again, for 
convenience, we let a be the dipole moment per unit area ( a  = PJ). In 
the case of an opaque wall we found that p = Eo/2nik [see Eq. (8-6-l)]. 
We will modify this result by letting 

(8-6- 17) 

The electric field to the right of the wall (see Fig. 8-4) would then be 

E,(z,t) = Eo(l - q)e-i(kz-m') forz  > 0 (8-6-18) 

The fraction % of the incoming energy which is transmitted through the 
wall is just given by 

% = 11 - q12 (8-6-19) 

If we now make up a disk having area A of this nonopaque material, 
we would anticipate its absorption cross section a,,, to be given by 

a,,, = (1 - F ) A  (8-6-20) 

The outgoing radiation to the right of our disk would be 

(8-6-21) 
The forward-scattering amplitude would be 

qik 
2n f(o) = - -A (8-6-22) 

Finally, the elastic cross section would be 1q/' times the elastic cross section 
for an opaque disk of the same area. Hence, referring to Eq. (8-6-1 3), we have 

celnstic = 1~1'A (8-6-23) 

Summing the elastic and absorption cross section to find the total cross 
section, we obtain 

Qt,,I = (1 - 11 - V l 2  + 11I2)A 
= 2AReq (8-6-24) 
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Hence, the so-called optical theorem works for a nonopaque disk : 

kA 
2n 

Imf(0) = - -Rev 

(8-6-25) 

This general result was derived subject to the small-angle approxi- 
mation which we have been making all along. It happens however to be 
independent of this approximation and is completely true in general. As 
mentioned before it plays a very important role in studying the quantum- 
mechanical scattering of elementary particles. 

We now return to our wall with its aperture and replace our single 
slit with a series of N parallel slits each of height a and width b. The arrange- 
ment of the slits will be as shown in Fig. 8-10. We take the origin of our 
coordinate system at the center of the first slit. All slits extend from x = 
-a/2 to x = +a/2. The first slit extends from y = -b/2 to y = 612. The 
nth slit then extends from y = (n - 1)d - b/2 t o y  = (n - 1)d + b/2. We 
calculate the electric field exactly as we did in the case of a single slit except 

Fig. 8-10 
a series of N slits each of width b that are spaced a distance d apart. 

We investigate the diffraction-interference pattern caused by 
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that the integral over y’ consists of N different parts. 

( n -  l ) d + b / 2  

eik(sin 8,)y‘ dyf ) (8-6-26) El s (n-  l ) d - b / 2  

Our expression can be simplified somewhat by noting that 
(n-  l ) d + b / 2  b P  

&k(sin 8,)u du (8-6-27) eik(sin 8,)y’ dy/ = eik(n - 1 )d sin 8, s (n - l ) d  - b/2  \- b/2  

Substituting back and integrating, we find an expression for Ex. 

iabEoe- 
2KT a .  b 

2 2 

E , ( X , Y , Z ,  4 = 
k - sin 8, k - sin 8, 

N 
. C &k(n- 1)ds in  8, (8-6-28) 

n = l  

If we go back and compare this expression with Eqs. (8-6-2) and 
(8-6-6), we come to a very interesting conclusion. The intensity pattern 
arising from’a set of N slits spaced a distance d apart can be arrived at by 
multiplying the intensity pattern for a single slit by the intensity pattern for 
N dipole antennas with the same spacing. 

PROBLEMS 

8-1. A dipole radiator (see Fig. 8-1) is set parallel to a perfectly conducting wall. The 
distance from the dipole to the wall is 1/2 where ?, is the wavelength of the emitted 
radiation. What is the intensity distribution as a function of 0 in a plane per- 
pendicular to the dipole at a long distance away from it? 

- Dipole 
2 moment 

into paper 
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8-2. 

8-3. 

8-4. 

Suppose the electric dipole radiator of Prob. 8-1 were replaced with a magnetic 
dipole radiator (see Fig. 8-2) whose moment was oriented in the same direction. 
How would the intensity distribution change, if at all? 

Consider the dipoles of Probs. 8-1 and 8-2 turned so as to have their moments 
perpendicular to the conducting plane. Evaluate the radiated intensity as a 
function of 0 at a long distance away for each of the two cases. 

A classical atom is made up of two electrons traveling in a common circle of 
radius a about a helium nucleus. (The orbits of the two electrons coincide.) 
Assume the frequency of rotation to be w where w << 2ncla. 
(a) Find the radiation pattern if the two electrons are always on. opposite sides 

of the circle from one another and are following one another around. How 
much energy is radiated per unit time? 

(b) How much energy would be radiated per unit time if the two electrons moved 

(c) How much energy would be radiated per unit time if the two electrons traveled 

8-5. Calculate the Frauenhofer diffraction pattern that would result from a circular 
aperture of diameter D illuminated by radiation of wavelength 1. Sketch the 
pattern for the case where D = A. 

together as one doubly charged object? 

in opposite directions about the circle? 
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8-6. A beam of light of wavelength 5 x lo-’ cm is normally incident upon a square 
glass plate of thickness cm on a side. The glass is ideal, com- 
pletely nonabsorbing, and has refractive index 1.5. 
(a) What is the scattering cross section of the glass plate? That is, what fraction 

of the incident energy per square centimeter is removed from the beam and 
reradiated? 

cm and 

(6) What is the angular distribution of the reradiated light? 
(c) What are the real and imaginary parts of the forward-scattering amplitude 

of the plate as a whole? 
( d )  Suppose the phase of the scattered radiation could somehow be shifted 

relative to the incident radiation by 4 2 .  What would the apparent absorption 
cross section of the plate be to an observer who was measuring its forward- 
scattering amplitude? Can you think of how to produce this shift? You 
would be reinventing the phase-contrast microscope. 

8-7. As we fly at 30,000 ft, most of the atmosphere is below us. Why is it then that 
the air above us seems so much bluer than the air below us? Would the sky be 
blue if the density of the atmosphere were uniform throughout and the same as 
it is at sea level? 



9 
Waveguides and Cavities 

One of the more useful applications of what we have just learned about the 
reflection of radiation at a conducting surface is in the field of waveguides 
and cavities. A waveguide is a rather simple device. Imagine that we have a 
long, hollow tube which is a perfect mirror on the inside. If we put a light 
bulb at one end, some light will obviously be carried to the other end. 
Hence the pipe or waveguide is a means of transferring radiant energy from 
one place to another with minimal attenuation. 

Now in the pipe we have just described, we tacitly assumed that the 
pipe diameter was very much larger than the wavelength of the light. Hence 
we did not need to worry about any coherent interference effects as the light 
bounced back and forth across the pipe. If we were to take the wavelength 
to be comparable to the transverse dimension of the waveguide, we would 
observe a variety of such effects, and these indeed are largely the subjects 
of this chapter. 
304 
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Now to make our work simple, we will limit our considerations to 
rectangular waveguides and cavities. (A cavity is a length of waveguide 
which is capped off at each end.) Without much physical difficulty, but with 
considerably mathematical difficulty, other shapes can be considered by 
the reader. We will begin by assuming the walls of our waveguide to be 
perfectly conducting. Later we will consider the effect of having only a 
finite conductivity. 

9-1 THE PERFECTLY CONDUCTING, RECTANGULAR WAVEGUIDE 

Consider then a straight pipe with rectangular cross section whose height 
and width are a and 6, respectively. We will set up our coordinate system 
at some point in the waveguide, as shown in Fig. 9-1, with the z axis pointing 
in the direction in which we want our radiation to propagate. The inside 
of the waveguide extends from x = 0 to x = a and from y = 0 to y = b. 

Now we could begin by writing down a plane- wave, letting it reflect 
each time it reaches a surface, and then adding everything together. It is 
however much simpler to start from scratch and look for solutions to 
Maxwell’s equations subject to the boundary condition that the tangential 
component of E be zero at the surface. We have 

1 dE 
V X B = - -  

at 

and 

Taking the curl of the second equation, we obtain 

V x (V x E) = V ( V . E )  - V2E 

Fig. 9-1 Segment of a rectangular waveguide of cross section n x b. 
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But V . E = 0. Hence 

Similarly 

(9-1-1) 

(9-1 -2)  

These wave equations hold for each of the components of E and B indepen- 
dently. For example, we can write 

(9-1-3) 

Now we can search for a solution to this equation of the form 

E,(X,Y,Z, 4 = ~ x , ( x ) ~ x , 0 i ) E x 3 ( ~ ) E x , ( t )  

(It is possible to show that the solutions of this form make up a complete 
set; any solution to the problem can be expressed in terms of them.) Sub- 
stituting back, we have 

Since each term in this sum involves a different and independent variable, 
we can set each equal to a constant. 

d 2  Ex, - = -C2k2EX4 
dt2 

(9-1-5) 

As usual we define o 3 ck. In order that Eq. (9-1-4) hold, we must have 

k l 1 2  + kz12 + k 3 1 2  = k2 (9- 1-6) 

Now the solutions for Ex, and Ex, are of the form 

Ex, = A , ,  cos k , , x  + B , ,  sin k , ,x  

Ex, = A , ,  cos k 2 , y  + B 2 ,  sin k2 ,y  
(9- 1-7) 

In order that the radiation be traveli& in the direction of increasing z ,  
we need only make use of those products of Ex, and Ex, which combine 
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k31z with - o t  and leave out the ones which combine k3,z with +wt. 
That is to say, we keep only the terms leading to sin(k,,z - ot)  and 
cos(k,,z - of) among the various products of sin k j l z ,  cos kglz ,  sin at, 
and cosot. We throw away the alternative terms sin(k,,z + o t )  and 
cos(k,,z + wt). Now we can represent an arbitrary combination of sin 
(k,,z - wt) and cos(k,, - ot)  by taking the real part of Eoxe-"k31'-"') 
and allowing E,, to be a complex number. We have then 

E,(x,y,z,t) = Eox(All cos k l l x  + B , ,  sin k l lx ) (Az l  cos k,,y 
+ Bzl sin kzly)e-i(k31z-"') (9-1-8) 

Similarly 

Ey(x,y,Z,O = EOy(Al2 cos k l z x  + B, ,  sin k lzx) (Azz  cos kzzy  
+ B,,  sin k z 9 )  e-i(k32Z-W') (9-1-9) 

E,(x,y,z,t) = EOz(Al3 cos k13X + B13 sin k13X)(A23 cos k23y 
+ B23 sin k23y)e-i(k~3z-0r) (9-1-10) 

The boundary conditions on the tangential components of E at x = y = 0 
tell us that 

A21 = A , ,  = A13 = A23 = 0 (9-1-11) 

The requirement that V . E = 0 everywhere within the waveguide tells 
us that 

B, ,  = B,, = 0 

and 

k, ,  = k, ,  = k,, 

k,, = k,, = k,, 

k l l  = k,, = k3,  

( = k ,  by definition) 

(=k ,  by definition) 

(=k3 by definition). 

In addition, if we incorporate the remaining arbitrary constants into the 
definitions of E,,, Eoy, and E,,, we have 

klEox + kzEoy + ik3Eo, = 0 (9-1-12) 

where 

Ex = E,, cos k,x  sin kzy  e-i(k3z-'"') 

E,, = Eoy sin k,x  cos k2y  e-i(k3z-of) (9- 1-1 3) 

E, = Eo, sin k ,x  sin k z y  e-i(k32-"r) 

Finally the requirements that Ex = E, = 0 at y = b and that E,, = E, = 0 



308 WAVEGUIDES AND CAVITIES 

at x = a yield the restrictions 

(9-1-14) 

where n and m are integers. To find the magnetic field components B,, 
By, and B, we take the curl of E and remember that 

Integrating the curl of E with respect to time and multiplying by -c, we 
obtain 

ic B, = - (k2E0, + ik3Eoy) sin k , x  cos k,y e- i (k3z-wt)  
w 

ic By = - - (k,E,, + ik3Eo,) cos k , x  sin k 2 y  e- i (k3z-wt )  (9-1-15) 
w 

ic B, = - (k,E,, - k2E0,) cos k , x  cos k2y  e-i(k3z-wr) 

We notice incidentally that V . B = 0 as expected. 
Now because of the constraint that k ,  E,, + k ,  Eoy + ik,E,, = 0, 

we cannot choose E,,, Eoy, and E,, arbitrarily. It is convenient to define 
two different classes of solutions for a given choice of the integers n and m. 
One, called the transverse electric mode (TE), has E,, = 0. The other, called 
the transverse magnetic mode (TM), has B,, = 0. Hence, for the latter, 

We can easily show that any possible solution to the problem for a 
given m,n, and w can be written in terms of TE and TM modes. If EOxTE, 
E O Y ,  EOXTM, E0yTM, EOlTM represent the coefficients corresponding to 
those modes, we require only that 

E,, = EOxTE + &,TM 

w 

k,Eo, - k,Eo, = 0. 

Eoy = E O Y  + EOyTM (9-1-16) 

E,, = EOzTM 

In addition, we have the two conditions that 

k ,  EOxTE + k 2 E 0 Y  = 0 

klEOyTM - k2EOxTM = 0 

Solving these five equations for the five unknowns, we have 

(9- 1 - 1 7) 

kZ2EOx - klk2EOy EOxTE = 
k I 2  + k z 2  
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k12EOy - klk2EOX EOyTE = 
k I 2  + k 2 2  

k12EOx + klk2EOy EOxTM = 
k 1 2  + k 2 2  

k22E0, + klk2EOX EOyTM = 
k 1 2  + k22  

EOzTM = E 02 
Incidentally the requirement that EOxTE/EoyTE = - k,/k,  establishes that 
EOxTE and EOyTE have the same complex phase. The same is true of EOxTM 
and EOyTM. However EOzTM = i(k,EOxTM + k,EOyTM)/k3 and is 90" out of 
phase with either EOxTM or EOyTM. 

It is instructive at this point to have a look at some of the simpler modes. 
A mode will be written as TE,,, or TM,,", depending on its type and the 
values of the integers m and n. The simplest is clearly TE,,, for which we 
have 

The requirement that k ,  EOxTE + k2EOyTE = 0 permits us to conclude that 
in this case Eoy = 0. Hence 

E~ = E,, sin Ily e - i ( k 3 z - m r )  

b 

E, = E, = 0 

B, = 0 

If we now assume E,, to be real, we can find the fields as they actually exist 
within the waveguide by taking the real parts of these equations. 

'II 
Ex = E,, sin -y cos ( k3z  - wt)  

b 

7t 
(9- 1 - 19) k3 By = - E,,, sin -y cos (k,z - wt)  

B, = - -E,,cos-ysin ( k3z  - wt)  

k b 

k2 It 

k b 
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We see that the electric field just runs across from the plane at x = 0 to the 
plane at x = a. The magnetic field, on the other hand, appears to go in 
closed loops centered about the points where the electric field is zero. We 
indicate the directions of the field lines in Fig. 9-2. Solid lines represent 
electric field and dashed lines represent magnetic field. 

The logical mode to examine next would be the TMol. We note how- 
ever that this mode as well as all modes of the form TM,, or TM,, are 
zero by virtue of the fact that k ,  Eoy = k ,  E,, = 0 for these modes (since 
either k ,  or k ,  is zero). This means that the lowest frequency which can 
pass through the waveguide is in the transverse electric TE,, (or TE,,) 
mode 

C7l 

U 
=[- f o r a > b  

Omin  

for b < a - _  
- lc; 

This mode, called the dominant mode, is the important one in the transmission 
of microwave power. At any frequency below the minimum value, k3 will 
be imaginary and hence the radiation will be attenuated exponentially in 
going down the waveguide. 

When we examine the velocity at which radiation travels down the 
waveguide, our first reaction is that it appears to be elk,, which is greater 
than c (since k3 < k).  To understand this it is convenient to think of the 
entire process as composed of the superposition of waves being reflected 
back and forth from the walls. We illustrate this process in Fig. 9-3 where 
we show only one set of wavefronts (ignoring the reflected ones to avoid 
confusion). We see that in one period T the wavefront will move a distance 
CT at right angles to itself. The observer will think that the wave has moved 
a distance uP7 downstream along the waveguide, where up = c/sin 0. The 

Fig. 9-2 Sketch of the field lines in the mode 
TEO,. 
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Fig. 9-3 Diagram of one set of wavefronts, illustrating the phase and 
group velocities and their relationship with c. 

rate at which information moves down the waveguide is just c sin 0 = vg.  
Hence 

vpvg = c2 (9- 1-20) 
We observe from our mathematical expressions for Ex, E,, and E, that 
up = w/k, .  The group velocity can also be obtained, as before, by dif- 
ferentiating w with respect to k,.  We have 

( k l Z  + k2’ + k3’)cZ = o2 

and hence 

- - k 3  aw 2 

ak, w 
- - - c  = v g  

as expected. To see if all this makes sense we can transform into a frame of 
reference moving with the group velocity vg down the waveguide. We should 
then have a situation where the solutions for Ex, Ey ,  and E, should not 
depend upon z .  We first examine the term k 3 ~  - wt. Our Lorentz trans- 
formation yields 

z = y(z’ + pct’) 

t = y t ’ +  -2‘ ( : )  
In our case 
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We have then 

Hence 

k,z - ~t = J m ~ t ’  (9-1 -21) 

We see then that the term e-i(k3Z-Wf) b ecomes exp ct‘) and 
the z‘ dependence falls out. Since x = x‘ and y = y‘, the dependence on 
the x and y directions remains unchanged. The coefficients E,,, E,,, E,,, 
Box, Boy, B,, are, of course, transformed like the appropriate elements 
of a second-rank tensor. Inasmuch as longitudinal fields transform into 
themselves under this transformation, the two sets of modes TE,,, and 
TM,., retain their characters. 

9-2 IDEAL RECTANGULAR CAVITIES 

If we take a segment of waveguide of length d and cap it off with a sheet 
of conductor at each end, we have a rectangular cavity. We will let the 
cross-sectional dimensions of the waveguide segment be a and b as before 
and assume for the moment that the walls of the cavity are perfectly 
conducting. 

Physically we can now think of the radiation as coming to one end 
of the cavity, reflecting back, coming to the other end, and reflecting again. 
If we choose the frequency right, the radiation will add constructively each 
time around, leading, as we shall see, to a standing wave. If the frequency 
is ever so slightly off resonance, then each reflection will throw the wave 
a bit more out of phase with the original wave, and the net result will be 
the destructive cancellation of the radiation by itself. 

If we had considered a real cavity, on the other hand, rather than 
an ideal one, the radiation would be diminished in amplitude at each suc- 
cessive reflection. Hence, even if it was a bit out of phase after the reflection 
which brings it back to the original position, it still could never interfere 
completely destructively. We expect then that the resonance width, the 
frequency range over which the cavity resonates, will depend on the absorp- 
tion of radiation by its walls. 

At the moment though let us stick with our perfect walls and find 
the solutions to Maxwell’s equations within the cavity subject to the same 
boundary conditions as before-the tangential components of the electric 
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field are zero at the walls. As before we can search for solutions which are 
products of separate terms, each depending on one coordinate only. We 
follow the same procedures as we followed in dealing with waveguides 
and obtain 

Ex = E,, cos k , x  sin k2y  sin k 3 z  e'"' 

Ey = Eoy sin k , x  cos k2y  sin k 3 z  e'"' 

E, = E,, sin k , x  sin k 2 y  cos k 3 z  eiwt 

with 

2 w2 
kl + k 2 2  + k3' = - = k2 

C2 

and 

(9-2-1) 

(9-2-2) 

(9-2-3) 

where 1, m, and n are integers. For convenience we can define the two vectors 
k and E, as 

(9-2-4) 

(9-2-5) 

The requirement that V . E = 0 leads to the restriction on E, given by 

k - E ,  = 0 (9-2-6) 

We find the magnetic field as before by taking V x E and integrating with 

ic 
B, = - (k x E,), sin k , x  cos k,y  cos k 3 z  eiWf 

0 

ic 
By = - (k x EO)y cos k , x  sin k,y  cos k,z  eiWt (9-2-7) 

w 

ic 
B, = - (k x Eo)z cos k l x  cos k l y  sin k 3 z  eiof 

8 

Now, since E, must lie at right angles to k [see Eq. (9-2-6)], we can choose 
two standard vectors EOTM and EOTE and express any solution in terms of 
them. Again we define EOTE so as to have no L component. Thus 

k ,  EOxTE + k , E , Y  = 0 (9-2-8) 
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We define EOTM so as to lead to no z component of magnetic field. That is, 

(k x EoTM), = 0 

or 

k ,  E O Y  - k,EOxTM = 0 (9-2-9) 

We can see immediately that EoTE and EOTM are normal to each other: 

E ~ ~ ~ ~ E ~ ~ ~ ~  + E,~TEE,,T~ = E , , ~ ~ E , ~ T ~  

+ (- 2 EOxTE) (2 EOxTM) = 0 

Since EOzTE = 0, we have 

EoTE. EoTM = 0 (9-2-10) 

Incidentally our choice of the normal modes was somewhat arbitrary. We 
chose to give preference to the z axis, but we could just as easily have chosen 
the x or y axes. Obviously the normal modes obtained if we had used the 
x or y axes as our preferred direction can be expressed in terms of the normal 
modes we have just obtained. We see then that the system has two normal 
modes for each allowed frequency w and an infinite number of possible 
solutions for w. 

Again we will label the modes as TE,,,,, and TMl,,,,, respectively. 
Now for any mode we have either 

klEOxTE + k2E0,TE = 0 or k,E,TM - k2EOxTM = 0 

In either case E,, and Eoy are in phase with each other because k ,  and 
k ,  are real numbers. In the case of a transverse magnetic mode we can 
write k,EoxTM + k,E,,TM + k,E,,TM = 0, and hence EOzTM is also in 
phase with EOxTM and EOYTM. 

As a result we see that the electric and magnetic fields are 90" out of 
phase with respect to each other if the cavity is resonating in one of its 
modes. When the electric fields are at their maximum, the magnetic fields 
are zero, and vice versa. The energy stored in the fields thus is alternately 
electric and magnetic. To illustrate this, let us take the simplest mode 
corresponding to the lowest frequency. If we assume the dimensions a, b, 
and d are such that a s b 2 d, then the minimum frequency corresponds 
to I = 0, m = 1, n = 1. This frequency, m o l l ,  is just given by 

(9-2-1 1) 

Only the TE,,, mode exists for this frequency. If we take the real parts of 
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Ex, By, B,, we have the following electromagnetic fields for this mode. 

n 7c 
Ex = E,, sin -y sin -z cos ot 

b d 

Ey = E, = 0 

B, = 0 (9-2- 12) 

k3 n n 
By = - -Eox sin -y cos -z sin 01 

k b d 

k2 7L n 
B, = -Eox cos -y sin -z sin ot 

k b d 

Figure 9-4 shows the electric fields at time t = 0 and the magnetic fields 
which follow a quarter cycle later. AS we can see the charge will oscillate 
from one side of the box to the other, just as in the case of a capacitor shunted 
by a perfect inductance. As we expect, the magnetic field reaches its maximum 
at the time of maximum current flow, when the electric field is zero. 

Other modes will, of course, correspond to different and more com- 
plicated charge distributions oscillating about the cavity. The principle 
is the same although the frequencies are higher. 

9-3 LOSS IN THE CAVITY WALLS; THE NOTION OF Q IN GENERAL 
AND AS APPLIED TO OUR CAVITY 

We begin by making some remarks about a resonant system in general. 
For any resonant system which is oscillating by itself, there is a given amount 
of energy loss per cycle which is often proportional to the energy stored. 
For example, in the case of our cavity, the energy loss per cycle is propor- 
tional to the average component of the Poynting vector normal to the cavity 
wall, which is in turn proportional to the energy density of the electro- 
magnetic field. A mass vibrating at the end of a spring and being acted 
upon by a resistive force proportional to its velocity has an amplitude which 

Fig. 9-4 The lowcst mode TEolr in 
cavity of dimensions a x b x d (a < b 
< c). Solid lines represent electric 
field. Dashed lines represent magnetic 
fields a quarter cycle later. 
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diminishes exponentially and hence loses energy at a rate proportional to 
its stored energy. For all systems of this sort we can define a parameter 
called the Q of the system as follows: 

energy stored in system 
Q = energy lost per cycle 

If U is the energy stored in the system, we can write 

(9-3-1) 

(9-3-2) 

where wo is the resonant frequency. Hence 

u = ~ ~ ~ - ( w 0 / 2 n Q ) r  (9-3-3) 

If the energy stored is proportional to the square of the amplitude of oscil- 
lation, as is most often the case, then the amplitude will diminish as 
e-(ooi4nQ)r. Thus, if A represents the coordinate which is oscillating (the 
electric field in the case of a cavity), we can write 

A = ~ , ~ - ( w 0 / 4 n Q ) t + i w o r  (9-3-4) 

We can ask now for the frequencies which are present if we Fourier 
analyze this oscillation. We have then (assuming the oscillation to begin at 
t = 0) 

g(w)eiw' dw 

(9-3-5) 

The energy density per unit frequency interval is proportional to Ig(o)12,  
which turns out to be 

(9-3-6) 

The full width at half-maximum of the resonance curve is just given by 

(9-3-7) 

This is more or less what we anticipated on the basis of the arguments we 
made earlier about reflection and absorption within our cavity. The larger Q 
is, the sharper our resonance. 

It remains for us to evaluate the Q of a cavity whose walls have con- 
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ductivity a. This is actually quite simple if we remember that the tangential 
components of both E and B are continuous as we cross into the metal. 
We remember also that BII (the tangential component of B at the surface) 
remains essentially unaltered as we reduce the conductivity from infinity 
to some finite value, as long as ,/* is much less than 1 [see page 243 
and in particular Eqs. (7-1-36) and (7-1-37)]. On the other hand, E l l ,  which 
is zero for infinite conductivity, increases in proportion to as we 
reduce the conductivity. 

To find an exact expression for Ell  in terms of BII, we can make use 
of Maxwell's equation for conducting material and insert the appropriate 
time dependence. 

I aE 
V x B = 4noE + - - = (4x0 + ik)E (9-3 - 8) 

at 

We have already solved the problem however if we just go back to 
Eqs. (7-1-36) and (7-1-37). Letting A be a unit normal vector pointing into 
the cavity wall, we can write 

1 1  - 1 na E - (BII x A)ei"/4 (9-3-9) 

To find the energy leaving the cavity per cycle we must evaluate the 
normal component of the Poynting vector along the cavity wall and average 
it over time. Referring back to Eq. (8-2-11), we have 

C 
(S)timcnv = - Re (E x B') (8-2-1 1) 

8n 
Applying this result to Eq. (9-3-9), we find that 

Re (IBli l 2  ei"/4) (S A),imcav = -!.- 8X 

(9-3-10) 

Let us return to Eq. (9-2-7) and evaluate the above expression for one 
wall at a time. For convenience we make the following notational changes: 

(k x E0)X 
k Box = 

(9-3-1 1) 



31 8 WAVEGUIDES AND CAVITIES 

For the wall at x = 0 we have then 

B, = 0 

By = iBoy sin k2y cos k,z eiot 

B, = iB,, cos k2y sin k,z eiW‘ 

and 

lBll12 = P Y I ’  + lBz12 
= BoyZ sin’ k,y cos’ k3z  + BOzZ cos’ k,y sin’ k3z  (9-3-12) 

If we integrate the Poynting vector over the wall at x = 0, we find 

= - (B,: + B,,’) bd 
&)through n t x = 0  wall 327c 2xa 

(9-3-13) 

The total energy lost per unit time (averaged over time) is thus 

(g) through = - LF 1671 27ca [(B,: + B,?) bd + (Boxz + Bo:)ab 

+ (Box2 + BoZ2)adl (9-3-14) all walls 

The energy lost per cycle is then 

1 -- - -  
cycle 8- 

[aB,,’(b + d )  + bBOy2(a + d )  
Au 

+ dBo,’(a + b)] (9-3-15) 

To complete our calculation of the Q of our rectangular cavity, we must 
know the total energy u stored within the cavity. We can best evaluate this 
energy at the time when the electric fields are all zero and the magnetic 
fields are at their maximum. At that moment we have 

B, = Box sin k , x  cos k,y cos k,z 

By = BOY cos k ,x  sin k,y cos k,z (9-3-16) 

B, = B,, cos k ,x  cos kzy  sin k,z 

The energy stored at that moment per unit volume is 

(9-3-17) 
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Finally dividing Eq. (8-3-18) by Eq. (8-3-16), we have 

where 6 = skin depth = 1 1 s .  This simplifies considerably in the case 
of a cubical cavity where a = b = d = L. In that case 

L 
2nQ = - 

86 
(9-3-19) 

The important thing to note is that 27cQ is approximately equal to 
the ratio of cavity volume to the volume corresponding to the skin depth. 
Over a wide range of frequencies this ratio increases as the square root 
of the frequency. Typical values of Q in the microwave region for silver 
are about lo4. 

PROBLEMS 

9-1. 

9-2. 

9-3. 

9-4. 

9-5. 

A long perfectly conducting waveguide of cross-sectional area 5 cm by 10 cm 
carries microwave energy in the dominant TE,, mode. Keeping the maximum 
amplitude of electric field fixed, find and graph an expression for the trans- 
mitted power as a function of frequency. Does the asymptotic behavior as 
w -+ co make sense? 

Suppose we now cap off a section of the waveguide described in Prob. 9-1 by 
means of a plate having finite conductivity 6. We introduce energy into the 
open end in the TE,, mode at frequency w. What is the fraction of the incoming 
energy that is absorbed by the end plate? 

Suppose the entire waveguide described in Prob. 9-1 were made of copper. 
How would radiation of frequency w be attenuated in the TE,, mode as a 
function of distance along the waveguide? Suppose the frequency w were 
sufficiently large so as to allow propagation in the TM,, mode. Would the 
attenuation be any different from that in the TE,, mode at the same frequency? 

A rectangular cavity with perfectly conducting walls has dimensions of 2 cm by 
4 cm by 8 cm. 
(a) What is the lowest resonant frequency at which this cavity will oscillate? 
(b) Suppose the cavity is opened to air. Estimate the change in its resonant 

frequency. 
(c) What would the Q of the cavity become if its 2 cm by 4 cm faces were 

made of copper? 

A waveguide is made of two perfectly conducting coaxial cylinders with the 
radiation propagating in the space between them. Show that it is possible to 
have a mode in which both the electric and magnetic fields are perpendicular 
to the axis of the cylinder (transverse electric and magnetic mode-TEM). 
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Is there a cutoff frequency for this mode? What is the velocity of propagation 
of this mode? 



I 0  
Electric and Magnetic 
Suscept i bi I i ty  

In earlier chapters we studied the effects of the macroscopic electric and 
magnetic properties of matter on the electric and magnetic field distribu- 
tions. In this chapter we will try to explain, at least in a simple-minded sort 
of way, how it is that these properties exist. We will revert to a microscopic 
description of matter and see how the polarizability of individual molecules 
leads to a reasonable understanding of electric and magnetic susceptibilities. 
Needless to say, we are not prepared at this point for the full rigors of 
quantum theory and statistical mechanics; we will find though that we can 
go a long way with “seat-of-the-pants” reasoning and come up with results 
which are not too unreasonable. 
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Electric or magnetic polarization is the result of the average molecule 
having an electric or magnetic dipole moment in a given direction. This 
average moment can arise from two alternative sources or from a combina- 
tion of them. 

1. The molecule (or atom) can normally be free of any intrinsic moment. 
Applying an electric or magnetic field will however induce a moment. 
This, in general, will lead to a relatively small electric or magnetic 
susceptibility. 
The molecule may already have an electric or magnetic dipole moment. 
In this case the applied field will try to align this moment. Clearly the 
average polarization is temperature dependent because collisions be- 
tween molecules tend to disrupt the alignment. (It is also possible, 
as in the case of ferromagnetism, that a certain amount of long-range 
coherence exists among a fairly macroscopic group of molecules. The 
extent of this coherence will also be temperature dependent. Needless 
to say, coherence can lead to very large susceptibilities.) 

We will begin by discussing the electric susceptibility of material whose 
molecules have no intrinsic electric dipole moments. This treatment is 
relatively simple because we have no need to worry about the disrupting 
influence of collisions. We will then introduce some notions which derive 
from statistical mechanics and which will permit us to deal with a large 
number of interacting molecules at a given temperature T. When we apply 
these notions to molecules having intrinsic electric dipole moments, we 
will be able to estimate the extent of their average polarization in the presence 
of an external electric field. The same types of treatment will be carried out 
for magnetism. 

Finally, we will say a few words about ferromagnetism and its origin 
in the closely coupled behavior of neighboring atoms. 

2. 

10-1 THE ELECTRIC POLARlZABlLlTY OF NONPOLAR 
MOLECULES HAVING SPHERICAL SYMMETRY 

Naturally, we start with the simplest molecular system, an atom having 
complete spherical symmetry. We can think of the electrons’ charge as 
being distributed over a sphere of about 0.5 x lo-* cm. The nucleus is of 
negligible size ( z  cm) and can be thought of, for our purposes, as a 
point charge at the center of the electron cloud. We would like to find out 
how much of a dipole moment is induced if an external field Ea is applied 
(see Fig. 10-1). 

To first approximation the nucleus will move relative to the electrons 
to the point where the restoring force from the electron cloud just equals the 
applied field. At a distance I from the center of a uniform charge distribution 
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Fig. 10-1 An applied electric field causes the 
positive nucleus to be displaced relative to the 
center of the electron cloud, leading to a net 
electric dipole moment. 

of radius R and total charge Q, the field is given by (see page 33) 

(10-1- 1) 

In our case Q = - 2 e  where - e  is the electron charge and Z is the atomic 
number. In order that E just precisely balance En, we must have 

R3 
r = - E  

Ze a 
(10-1-2) 

The dipole moment p of the atom is then 

R3 
Ze 

p = Z e - E n  

= R3E, (I 0- 1-3) 

In general, we can think of our atom as having an atomic polarizability tl 
such that pin,, = aEapP. In the case of the simple model we have taken above, 
the polarizability is just equal to R3. This result is not in terrible disagree- 
ment with what we would have obtained had we done a complete quantum- 
mechanical calculation. For example, in the case of atomic hydrogen, M 
turns out to be equal to 4uo3 where a. is the Bohr radius (ao = 0.52 x lo-* 
cm). 

Notice that the displacement of the nucleus is not very large for the 
sort of fields that are available in the laboratory. Typical high fields are in 
the hundreds of gauss (100 gauss = 30 kV/cm). Using our value of 0.5 x 

cm for R and letting 2 = 1, we find, for a field of 100 gauss, that r = 
2.5 x cm. This is a very small displacement indeed, smaller in fact 
than the radius of the nucleus itself. 

On the whole we expect a certain amount of variation of atomic 
polarizability as we vary the details of the atomic structure. For example, 
we expect that noble gases with closed shells and no valence electrons might 
be harder to distort than alkali metals with z relatively free valence electron. 
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We also anticipate a modification of the elementary atomic polarizabilities 
when atoms are bound into molecules. These variations can be substantial 
and can run over several orders of magnitude. Hence precise measurements 
of polarizabilities can serve as important analytical tools in the study of 
chemical structures. 

10-2 THE RELATION BETWEEN ATOMIC POLARIZABILITY 
AND ELECTRIC SUSCEPTIBILITY 

Some time ago [see Eq. (2-6-22)] we defined the proportionality constant 
between electric field and dipole moment per unit volume to be the electric 
susceptibility xe.  That is to say, P = xeE. One would naively guess that 
the ratio between the electric susceptibility x e  and the atomic polarizability 
(which we will call a,) would just be the number of atoms per unit volume N. 
This is however not exactly the case; we must be careful to read the fine 
print in our definitions. When we defined polarizability, we related the 
induced dipole moment p to the applied electric field E,. That is to say, 
p = a,E,. On the other hand, the susceptibility equation relates the average 
dipole moment per unit volume at some point in the dielectric to the total 
field at that point. Since the applied field on the dipole does not include any 
part of the field caused by the dipole itself, we must be careful to remove that 
field when evaiuating the atomic polarizability in terms of xe .  

The applied field E, at the dipole is just equal to the total field E 
minus the field due to the dipole itself. We must average everything over the 
volume taken up by the dipole, which we will call V.  We have then 

(1 0-2- 1) <&)v = (E>v - (Eatom)" 

To carry out this averaging process rigorously, taking into account 
the complete charge distribution of the atom, is difficult. We will make the 
approximation that the distance between atoms is much larger than the 
atomic size. We will then let V be the average volume per dipole, or 1/N. 
The assumption that V is much larger than the atomic size permits us to 
make use of only the leading dipole term [Eq. (2-6-7)] to obtain the field 
due to the atom itself within V .  We have then 

(Eatom)v = - Eatom dV 1" 
where r' is the location of the atomic dipole. 

We convert this to a surface integral, obtaining 

( 10-2-2) 

(10-2-3) 
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If we now simplify matters by letting V be a sphere of radius b about the 
point r’, we find 

-4IKp -- - 
V 

(10-2-4) 

(A little bit of thought will convince the reader that the shape of the volume 
V is irrelevent provided it is symmetrically situated about the position of 
the dipole.) 

Taking V = l/N, we have our result 

(Eatom)v = -$IKNP = --IK : p  (1 0-2-5) 

Finally, going back to Eq. (10-2-l), we can write 

= (; + ;)P 

This yields the equation for xe in terms of E, :  

(1 0-2-6) 

In the limit where N becomes very small, x, reduces, as expected, to 
Na,. We might ask about the other limit, where N gets large. Is it really 
possible that x, becomes infinite for a particular value of N and then becomes 
negative for N greater than that value? We remember that a, is about equal 
to the volume of the atomic charge distribution [see Eq. (10-1-3)]. When 
we began our derivation for x,, we assumed that the volume of the charge 
distribution was very small compared with the average volume per dipole. 
That is, 

1 
a, << - 

N 

Na, << 1 ( 10-2-7) 
or 

Thus the domain of validity of Eq. (10-2-6) does not include the situation 
where 4nNu,/3 is comparable with 1. 

10-3 POLARIZABILITV AS A SECOND-RANK TENSOR 

The most general linear relationship between the applied electric field E, 
and the polarization p of a molecule is that of a second-rank tensor with 
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components aij .  That is, 
3 

pi = aijEj 
j =  1 

(10-3-1) 

We will now demonstrate a rather important property of the tensor M, 
namely, its symmetry. The component aij  is the same as the component aji. 
To see the physical meaning of this let us take our electric field, for example, 
in they direction and of magnitude E,. This would give rise to a polarization 
component in the x direction equal to a,,E,. If instead we had taken the 
same magnitude of electric field along the x direction, we would have found 
a y component of polarization equal to aZ1E,.  If azl = alZ, we could 
conclude that these two resultant components are equal. 

The demonstration of the symmetry of M rests upon the very simple 
observation that the electrostatic energy of a given charge distribution 
cannot depend upon the historical sequence of events by which it was built 
up. All that should matter when we determine the interaction energy of a 
given dipole p and the applied field E, are the magnitude of p and E, and 
the angle between them. Suppose we change E, slightly and allow p to 
change accordingly by an amount dp. The amount of work done on the 
charges in p by the field E, is just 

dW = E, . dp (10-3-2) 

Suppose now that we allow the z component of E, to be zero and let E,, 
and E,, be the x and y components, respectively. To arrive at these final 
values for the components of E,, we can proceed in one of two ways: 

1. We can first build up the x component of E, to its final value, allowing 
the y component of E, to remain z.ero. We then raise the y component 
of E, to its final value. 

2. We can reverse the order, first bringing up the y component of E, 
and then the x component of E,. 

Let us begin first with procedure 1 and evaluate the work done by 
E, on p as we bring it up by the indicated two-step process. In the first 
step we have 

wl(a> = IoEol EaldP1 = JOE’’ ~ 1 1 E n 1  dEa1 

= 4M1lE,l2 

In the second step of procedure 1 we have 

Wz(a) = ~ 1 2 E a l E a 2  + 4 ~ 2 2 E a 2 ’  

The total work for procedure 1 is thus 

(10-3-3) 
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Completely analogously, procedure 2 yields 

W(b) = $a11Ea12 + 4 ~ 2 2 E a 2 ’  + a21Ea1Ea2 

Letting W(b) = W(a), we conclude that 

(10-3-4) 

a21 = a12 

Obviously, the same proof works for any pair of indices i andj.  Hence we 
generalize for all i and j 

a,.  = a.. (10-3-5) 
1.l J I  

One very important consequence of this symmetry is the possibility 
of diagonalizing the polarizability tensor (see Sec. 1-7). We can find three 
mutually perpendicular directions in which p and Ea are colinear. These 
three axes are three fundamental axes of symmetry for the system. The 
remarkable point is that three such axes of symmetry exist for the polariz- 
ability even though the charge distribution itself may be totally asymmetrical 
and show no axis of symmetry. 

10-4 THE POLARlZABlLlTY OF A POLAR MOLECULE 

Quite commonly the molecules out of which our dielectric is composed have 
a built-in electric dipole moment. If the dielectric is a liquid or a gas, then 
the molecules will be relatively free to rotate and will tend to line themselves 
up with their dipole moments lying along the direction of an applied electric 
field. Were it not for the fact that collisions between molecules are continually 
upsetting this alignment, one might expect the molecules to eventually all 
point along the field. Our chore then in this section is to understand, first, 
how large the permanent dipole moment of a typical polar molecule is 
likely to be and, second, to calculate, making use of some basic ideas from 
statistical mechanics, a value for the polarizability of the molecule as a 
function of temperature. 

Water is a very typical polar molecule. Referring to Fig. 10-2, we see 
that the water molecule is quite asymmetric. The two hydrogen atoms are 

Net dipole moment 
Fig. 10-2 The water molecule has a net dipole 
moment because of the fact that the electrons 
from the hydrogen spend a part of their time 
“going around” the oxygen nucleus. \ 

\ 

\ 
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attached to the oxygen atom so as to have the OH axes make an angle of 
about 105" with one another. The electrons from the hydrogen atoms then 
spend a good part of their time around the oxygen atom, leading to a net 
dipole moment, as shown. We can estimate its size very approximately by 
noting that each electron is displaced by about a Bohr radius (ao = 0.5 
x cm) on the average from its proton. This leads to a moment po 
given by 

po 1 2ea0 cos 52.5" 

z 2(5 x lo-" esu)(0.5 x 

1 3 x 10-18esu-cm 

cm)(0.6) 

In actual fact, the dipole moment of a water molecule is 
po(water) = 1.84 x esu-cm (1 0-4- 1) 
We will next make use of the Boltzmann distribution to determine 

the polarizability of the average polar molecule in an applied electric field 
E, at a temperature T. We shall not go through the details of deriving the 
Boltzmann distribution equation or justifying it. We will only assert that 
statistically the dipoles will be distributed according to the distribution 
function e-W/kT where W is the dipole's potential energy in the electric 
field and k is Boltzmann's constant. That is, the probability of finding the 
dipole pointing into a given solid angle dR will be proportional to ,-"'IkT 
and d o .  We can thus write 

(1 0-4-2) 

where A is chosen to suitably normalize the distribution. If there are N o  
dipoles altogether, we have 

No = A e - w / k T d R  (10-4-3) s 
The potential eneigy of a dipole po in an applied field E, is just 

W = -PO * E, = -PO E, cos 9 (1 0-4-4) 

Substituting in Eq. (10-4-3), we obtain 

2nA = -(@ - 
U 

( 10-4-5) 
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where 

Solving for A ,  we now have 

N0a 
27-48 - e- , )  

A =  

(1 0-4-6) 

(1 0-4-7) 

To find the average polarization we note that the only component which is 
not averaged out is that along E,. If we let p be the component along E,, 
we have 

p = P o  cos e (1 0-4-8) 

and 

p o  cos 0 e-W'kT dR 
NO 

e" + e - ,  1 
= Po(ceq - -J ( 10-4-9) 

The function on the right of Eq. (10-4-9), called the Langevin function 
L(a), can be expanded for small values of a : 

2 $a for small a 

We have then our final result, relatingp to E,, 

The polarizability u, is thus given by 

(1 0-4- 10) 

( 10-4- 1 1) 

( 10-4- 12) 

It is interesting to evaluate this for the water molecule at room temperature 
(300°K). We have then 

I (1.84)~ x 10-36 
u,(water at 300°K) = - 3 (1.4 x 10-16)(300) 

= 2.7 x 10-23cm3 (1 0-4-1 3) 
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Needless to say, this is an order of magnitude larger than the polarizability 
of a nonpolar molecule [see Eq. (10-1-3)]. 

10-5 DIAMAGNETISM 

We are all quite familiar with the attractive force which the pole of a magnet 
exerts on a piece of iron, but very few of us realize that the same pole can 
repel a drop of water. This is because the forces related to diamagnetism, 
as displayed by the interaction of a magnetic field and water, are so weak 
on the scale we are accustomed to that we tend to ignore them. Nevertheless, 
diamagnetism represents an important example of the application of the 
laws of electrodynamics on the atomic scale and an excellent experimental 
tool for probing atomic structure. 

Diamagnetism is most clearly observed in those atomic systems which 
have no intrinsic magnetic dipole moments. In the event that such a moment 
does exist, the applied field will try to align it, giving rise to paramagnetism, 
a phenomenon which generally masks diamagnetism at room temperature 
and which will be discussed shortly. To treat diamagnetism properly really 
requires solving the quantum-mechanical Schrodinger equation in the 
presence of a magnetic field; nevertheless, we can go a long way toward 
understanding it by means of a crude classical model. At the very least we 
will determine the order of magnitude for the effects we anticipate and their 
dependence on atomic size. 

We will take as our simple model an electron with charge e traveling 
in a circular orbit of radius ro about a nucleus to which it is attracted by an 
electrostatic force F,. The speed of the electron will be taken as v,; its 
angular momentum about the nucleus has magnitude Lo = muor,. 

Naturally the above atomic system has a magnetic moment po which 
is parallel and opposite in direction to Lo. Purely diamagnetic molecules 
can be produced by tying two of these atoms together in such a way that 
their angular momenta are forced to be in opposite directions. (This anti- 
correlation of the angular momenta of electrons arises out of the Pauli 
exclusion principle, a rather profound rule which governs the quantum- 
mechanical behavior of all particles having half-integer spin.) Alternatively, 
we can produce a purely diamagnetic medium by heating it sufficiently 
so as to keep the angular momenta of the molecules randomly oriented in 
direction. In any case, we will assume in our treatment that there is no 
preferential direction along which angular momenta are aligned, but rather 
that they are uniformly and isotropically distributed. 

Incidentally, we recall from Eq. (4-1Q-1) that a simple relationship 
exists between po and Lo : 

eL0 
P o  = 2mc (10-5-1) 
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Let us see what happens when we apply a magnetic field B in the same 
direction as Lo (see Fig. 10-3). In the process of bringing the field up to its 
final value, we will induce an electric field (Faraday’s law) which will on 
the average be opposite in direction to the velocity of the electron. This 
will cause the electron to speed up (because of its negative charge) and will 
increase the magnitude of its magnetic moment (opposite in direction to 
B). If we take a time At to bring the magnetic field up, then we expect an 
average component of electric field along the electron’s path given by 

Solving for E, we have 

(1 0-5-2) 

In this time interval, Echanges the momentum of the electron by an amount 

(10-5-3) 

Before we can evaluate the change in the magnetic moment, we must find 
if the radius of the orbit will be altered by the introduction of the magnetic 
field. Remembering that Fo is the centripetal force excited on the electron 
before the field is turned on, we have 

(1 0-5-4) 

The additional centripetal force needed to keep the electron in the same 
orbit after the field has been turned on is just 

A F = -  2Po AP 
mrQ 

But, using the result from Eq. (10-5-3) for Ap, we find 

(1 0-5-5) 

(10-5-6) 

fl Fig. 10-3 We apply a magnetic field B to a 
classical atom having magnetic moment po 
as shown. This causes a change in magnctic 
moment opposite in direction to B. I Po 
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This is exactly the extra force which is supplied by the magnetic field B 
acting on the electron as it moves with velocity uo around the nucleus. 
Hence the radius ro remains unchanged, and the change in magnetic moment 
is given by 

eAL eroApB 
2nzc 2mc 

A p = - = -  

- e2r02B - -- 
4mc2 (10-5-7) 

In the above example, the applied field caused the (negative) electron to 
speed up, inducing an increase in the (negative) magnetic moment. If indeed 
we had taken Lo opposite in direction to B, the electron would have started 
with its magnetic moment pointing along B. It would have slowed down 
upon application of the field, and, again, the change in magnetic moment 
would be opposite in direction to B. Indeed, retracing our steps, we see 
that Ap is again given, exactly as before, by Eq. (10-5-7). 

Suppose now that we had set our atom with its magnetic moment p o  
at right angles to the applied field B. As we learned back in Chap. 4 the 
angular momentum and magnetic moment would precess about B as 
shown in Fig. 10-4. Looking along the direction of B, we would see the 
plane of the atom rotating clockwise. This clockwise rotation would look 
to us like an added magnetic moment pointing opposite in dhection to B. 
The angular frequency associated with this precession is [see Eq. (4-10-2)] 

eB w L =  -- 
2mc 

(10-5-8) 

To find the magnetic moment Ap associated with oL we must first 
find R2, the mean squared distance of the electron from the axis of pre- 
cession. Remembering that the magnetic moment of a current loop is equal 
to the current times the area of the loop, we have 

e w  - 
lApl = - L . R 2  

c 2n 
(10-5-9) 

p Fig. 10-4 The magnetic moment p precesses about 
the magnetic field B giving rise to an additional 
component of magnetic moment opposite in direc- 
tion to B. 

\ 
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A simple geometrical evaluation will demonstrate that 

Substituting into Eq. (10-5-9), we have finally 

e2rO2B 
8mc2 

A p =  -- 

(1 0-5- 10) 

(10-5-1 1) 

In fact we can combine the results expressed in Eqs. (10-5-7) and (10-5-11) 
into one equation which works for any orientation : 

e 2 z B  
4mc2 

A p =  -- (10-5- 12) 

where again 2 is the mean square distance of the electron from a line 
through the nucleus and parallel to B. 

It is illuminating to get some feeling as to the magnitude of A p  and 
compare it with the magnetic moment of the electron itself. If we take 
ro as lo-* cm, we obtain 

IApI E 3.5 x lo-” Besu-cm 

The electron’s magnetic moment, g eL/2mc [see Eq. (4-13-4)], can be 
calculated if we let L take on the quantized value of h/4n where h is Planck’s 
constant. For an electron, g = 2, and hence 

eh 
P O = = -  = 9.2 x esu-cm. 

We note then that even in fields as high as 30 kilogauss the induced 
magnetic moment per atom is at least three orders of magnitude less than 
the magnetic moment of the electron itself. Small wonder that diamagnetic 
effects are relatively small and easily masked by paramagnetic effects, 
especially at low temperatures. 

10-6 PARAMAGNETISM AND FERROMAGNETISM 

As we have mentioned earlier, paramagnetism results from the fact that 
an atomic or molecular system may have a residual magnetic moment after 
all energetically feasible “cancellations” among electrons have taken place. 
For example, if the molecule has an odd number of electrons, then there 
is no way in which the effect of the intrinsic magnetic moment of the last 
odd electron can be fully eliminated. Hence, just as when we were dealing 
with an electric field and polar molecules, there will be a predisposition for 
the residual magnetic moments to align themselves with the field. Again 
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the extent of alignment will depend on the temperature and will be calculable 
by means of the Boltzmann distribution function e-w'kr. The only problem 
we have is what to use for W because, as we discovered in Chap. 4, the 
variation in the energy of the system as we rotate our dipole around will 
depend on just exactly what we are keeping constant-the current in the 
dipole, or the flux through the dipole, or perhaps something else. Indeed 
it would seem at first glance that we would have to understand the detailed 
dynamics of the atom itself to make some evaluation of W. 

Fortunately, this is not the case. As we learned when we studied 
diamagnetism, the change in the magnetic moment of our atom, even for 
a fairly large applied field, is small and can be ignored. Hence, as far as an 
outside observer is concerned, the dipole always has a torque equal to 
p o  x Ba acting on it, where p o  is the magnetic moment in the absence of 
field and Ba is the applied field. This torque is such as to try to get p o  and 
Ba in the same direction. Thus the externally observable mechanical behavior 
of the magnetic dipole in a magnetic field is exactly the same as if we re- 
placed its magnetic moment by an equal electric dipole moment and the 
applied magnetic field by an equal applied electric field. We have then 

W = - p  0 '  B a (10-6-1) 

This leads us [see Eq. (10-4-9)] to a result for the average value of the 
component of p along B given by 

P = Po (m - 
@ + e-a  7 

where 

(10-6-2) 

(10-6-3) 

For small values of a we can expand the Langevin function as before with 
the result 

( 10-6-4) 

It is again instructive to have a look at the order of magnitude of this 
polarization and compare it with diamagnetism. We can evaluate p / p o  
in terms of Ba and T if we allow p o  to be equal to the electron's intrinsic 
moment 
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For comparison. we find for the case of diamagnetism that 

-0.38 x 10-7 B, 

We see then that at room temperature paramagnetic effects are not 
orders of magnitude larger than diamagnetic effects. We might just determine 
the magnitude of the force on samples of a typical paramagnetic material 
at room temperature in a reasonable magnetic field gradient. Let us set up 
a magnetic field along the z .direction of our coordinate system of the form 

B = B(z) = (B, + K Z ) ~  (10-6-5) 

That is to say, B increases linearly with increasing z in our region of interest. 
Let us now place our sample, consisting of N paramagnetic atoms, at the 
origin of our coordinate system. It will develop a total magnetic moment of 
Njik : 

,. 1 ~ p , ~ ~ , k  
Njik E - 

3 kT 

Making use of Eq. (4-7-20), we find the force on the sample: 

(10-6-6) 

(10-6-7) 

We take the following typical values (for 1 gram of sample) : 

N z 4 x 1 0 2 3  

B, = 10,000 gauss 

K = 1,000 gauss/cm 

T = 300°K 

Inserting these values into Eq. (10-6-7), we find the magnitude of F to be 
about 175 dynes. This is not very much at all, not even 20 percent of the 
weight of the sample. Clearly then, paramagnetism alone is not responsible 
for the large forces on iron in the vicinity of a magnet. 

Before we go on to understand the origin of ferromagnetism, we 
should make one final observation related to paramagnetism. When we 
develop the quantum theory of atoms, we will discover that the possible 
orientations of po  with respect to B, are quantized, whereas in our derivation 
we assumed that any orientation was possible. This does not make a large 
qualitative difference to our result. For example, in the case of an atom 
having only a single electron spin contributing to its moment, there are 
two orientations possible, parallel and antiparallel to the applied field. 
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In this case the Langevin equation becomes 

P O  Bo - tanh- B 
PO kT 
_ -  

r?- Ba for low field or high temperature (19-6-8) 
- kT 

Comparison with Eq. (10-6-4) indicates only a factor of 3 difference in the 
low-field or high-temperature approximation. The agreement of quantum 
theory with classical theory improves as we deal with larger atomic angular 
momenta and a correspondingly larger number of possible orientations 
relative to the applied field. 

None of what we have done so far would give us any clue to the re- 
markable phenomena of ferromagnetism. If we take an iron atom all by 
itself, then we would find that 11 of its 26 electrons would have their spins 
lined up in one direction and 15 would have their spins lined up in the 
opposite direction. This would imply an excess of 4 Bohr magnetons of 
magnetic moment for the atom as a whole. (The unit of electron magnetic 
moment, eh/2mc, where h is Planck’s constant divided by 271 and m is 
the electron mass, is called the Bohr magneton.) The excess moment would 
actually occur in the next-to-last atomic shell which is not completely 
filled. Naturally we can calculate how much magnetic field this magnetic 
moment could lead to in its immediate vicinity and we could then estimate 
how much correlation should exist between neighboring atoms. It is not 
hard to estimate the magnitude of this effect; needless to say it is nowhere 
near what Is needed to establish the high degree of correlation which exists 
between neighboring atoms in a crystal of iron or nickel. There must then 
be a new type of “force” which is acting here to establish the strong tendency 
of neighboring atoms to have parallel spin. 

To really understand this force even qualitatively requires a study of 
quantum mechanics beyond the scope of this book. One of the fundamental 
rules governing the behavior of particles with intrinsic angular momentum 
equal to a half-integer times Planck’s constant divided by 271 [spin = 
(n/2)h]  is the Pauli exclusion principle. This principle forbids two such 
particles from occupying identical quantum-mechanical states at exactly 
the same time. (That is why the two and only two electrons in the innermost 
shell of an atom have their spins pointing in opposite directions.) One 
result of this principle is the fact that two highly overlapping electron clouds 
tend to have opposite magnetic moments. Now two neighboring iron atoms 
in an iron crystal are bound together as a result of the sharing of the electrons 
in their outermost shells. These electrons in turn act on the two sets of 
aligned electrons in the unfilled inner shells and cause them to line up together 
It is this so-called exchange force between the two atoms that gives rise to 
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ferromagnetism. If we were to examine unmagnetized iron microscopically, 
we would find that it was made up of almost macroscopic domains, each 
with typical volume of about mm’. Within a given domain the moments 
of the individual atoms all point in the same direction with an average 
moment per atom of about 2.2  Bohr magnetons. As we apply an external 
field to the iron the domain boundaries begin to move. Those domains whose 
moments are along the direction of the applied field grow at the expense 
of domains whose alignment is not as fortunate. Of course, the more the 
applied field, the more overall alignment we obtain until we reach the 
point of saturation. At this point, typically 15,000 gauss in iron, the leading 
domains have conquered all there is to conquer and no more magnetization 
can be induced. 

Needless to say, if we raise the temperature of our iron we reach the 
point where the high correlation between neighboring atoms is destroyed. 
Above this temperature, called the Curie point, iron is more or less a 
paramagnetic solid. 

PROBLEM 

10-1. Estimate the magnetic field which one iron atom produces at the site of its 
neighbor in an iron crystal. Compare the magnetic interaction energy of two 
neighboring iron atoms with kT for T = 300°K. 
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CONVERSION TO “PRACTICAL“ U N ITS 

Quantity Symbol 

Distance S 

Mass rn 
Time t 

Work, energy W 

Current I 

Velocity U 

Charge 9 

Gaussian Practical 
unit unit 

cm meter 
gram kg 
sec sec 
cm/sec meter/sec 
erg joule 
esu coulomb 
emu/sec ampere 
(abampere) 

Relation 

1 meter = 100cm 
I kg = IOOOgrams 

1 meter/sec = 100 cm/sec 
1 joule = 10’ ergs 
1 coulomb = 2.998 x lo9 esu 
1 ampere = lo-’ emu/sec 

1 
volt/cm 1 volt/cm = ~ 

299.8 gauss Electric field E gauss 

Electric cp statvolt volt 1 volt = - 29s.8 statvolt 

Magneticfield B gauss weberlrn’ 1 weber/m’ = lo4 gauss 

Resistance R statvolt/ ohm 

potential 

1 ohm = - statvolt/abampere 
29.98 

abampere 
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FUNDAMENTAL CONSTANTS 

Quantity Symbol Value 

Speed of light in vacuum 
Fundamental charge 
Planck’s constant 
Rest mass of electron 
Rest mass of proton 
Avogadro’s number 
Boltzmann’s constant 
Electron volt 
Rest energy of electron 
Rest energy of proton 
Bohr radius 

C 

e 
h 
m 

4 
NO 
k 
eV 
mc2 
Mp c2 

0 0  

2.998 x 10iOcm/sec 
4.803 x 10-”eesu 
6.626 x 10- ” erg-sec 
0.911 x lo-’’ gram 
1.672 x 10-24gram 
6.022 x loz3 mole-’ 
1.38 x erg/”K 
1.602 x 10-’2erg 
0.511 x 1o6eV 
0.938 x 109eV 
0.529 x 10-’cm 

~~ ~ ~- ~~~~ ~~ 

SOME USEFUL VECTOR RELATIONS 

V(u0) = uvv  + v v u  
V(A * B) = (A * V)B + (B * V)A + A x (V x B) + B x (V x A) 
V - (uA) = UV - A + VU - A 
V * ( A  x B) = B * ( V  x A) - A * ( V  x B) 
V x (uA) = u(V x A) + Vu x A 
V x (A x B) = (B  * V)A - (A * V)B + A(V * B) - B(V * A) 
V x (V X A) = V(V * A) - V2A 
v x (VU) = 0 
V * ( V  x A) = 0 

i C F  * d l  = (V x F) - A d A  
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