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CHAPTER 0

A brief introduction to finite element methods

1. Two-point boundary value problem and weak formulation

Consider the two-point boundary value problem: Given a constant ¢ > 0 and

a function f(z), find u(z) such that

—u" 4+ au = f(x), 0<zxz<1,
,( ) (0.1)
u(0) =0, u'(1)=0.

If w is the solution to (0.1) and v(z) is any (sufficiently regular) function such
that v(0) = 0, then integration by parts yields

1 1
/ —u"vdx + / auv dx
0 0

= —u/(1)u(1) + o (0)u(0) + / W (o) () dr + / auw da

/ fvdx.

Let us introduce the bilinear form
1
Alu,v) = / (u'v" + auv) du,
0
and define
V ={veL*[0,1]): A(v, )<ooandv ) =0}.

Then we can say that the solution w to (0.1) is characterized by

u €V such that A(u,v) / f@)v(x)dz YveV. (0.2)

which is called the variational or weak formulation of (0.1).

We remark that the boundary condition u(0) = 0 is called essential as it appears
in the variational formulation explicitly, i.e., in the definition of V. This type of
boundary condition is also called “Dirichlet” boundary condition. The boundary
condition u/(0) = 0 is called natural as it is incorporated implicitly. This type of
boundary condition is often referred to by the name “Neumann”.

THEOREM 1.1. Suppose f € C°([0,1]) and u € C?([0,1]) satisfies (0.2). Then
u solves (0.1).

PROOF. Let v € V(N C*([0,1]). Then integration by parts gives

1 1 1
dr=A = [ —uvd d ! . .
/0 fvdz (u,v) /0 u'v x—i—/o auvdz 4+ u'(1)v(1) (0.3)

1



2 0. A BRIEF INTRODUCTION TO FINITE ELEMENT METHODS

Thus, fol(f +u” —au)vdr = 0 for all v € V() C([0,1]) such that v(1) = 0. Let
w=f+u" —auec C°0,1]). If w # 0, then w(x) is of one sign in some interval
[b,c] C [0,1], with b < ¢. Choose v(z) = (z — b)%(z — ¢)? in [b,¢] and v = 0 outside
[b, c]. But then fol wv dz # 0 which is a contradiction. Thus —u” + au = f. Now
apply (0.3) with v(z) = z to find «/(1) = 0. So u solves (0.1). O

2. Piecewise polynomial spaces — the finite element method
2.1. Meshes. Let M}, be a partition of [0, 1]:
O=p <1 <9< < Tp_1 <z =1.
The points {z;} are called nodes. Let h; = x; — x;_1 be the length of the i-th

subinterval [z;_1,z;]. Define h = maxi<ij<p h;.

2.2. Finite element spaces. We shall approximate the solution u(x) by us-
ing the continuous piecewise linear functions over Mj,. Introduce the linear space
of functions

Vi, = {v e C°([0,1]) : v(0) = 0,

v

(0.4)

[zi_1,z;] 1S @ linear polynomial, ¢ =1, - ,n}.

It is clear that V;, C V.

2.3. The finite element method. The finite element discretization of (0.2)
reads as:

1
Find up € Vj,  such that  A(up,vp) = / f()vp(x)de Yo, € V. (0.5)
0

2.4. A nodal basis. Fori=1,--- ,n, define ¢; € V}, by the requirement that
¢i(z;) = 0;; = the Kronecker delta, as shown in Fig. 1:

@(x) @ (x)

t t t t t
0 X X . X X, 1 0 x; X X1

FIGURE 1. piecewise linear basis function ¢;.
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et mi < <,
_ Tit1—T .

i =94 Tho T << Tig, I<i<n-—1
0, T < Tj—1 Or T > Xjq1,
T—Tn—

¢ _ hslv xnflgxg]-v

n =
0, T < Tp_1-

For any vy, € V},, let v; be the value of v at the node x;, i.e.,
v =vp(x;), 1=1,2,---,n,

then
VUh = Ul(bl(x) + 7)2(,252(13) + o+ Un¢n(£)'

2.5. The finite element equations. Let
uh=u1¢1+uQ¢2—|—-~-—|—un(/5n, u17"'7un€Ra

where u; = up(z;).
Let v, = ¢, i =1,--- ,nin (0.5), then we obtain an algebraic linear system in

unknowns wq, ug, -« , Uy:

1
Alr. -+ A, i)+ + A = [ f@)ndo, o

1=1,---,n.
Denote by
1 1
hij = A9y, 1) = /0 8,0, +ad;didr, fi= /0 f()ér da,

and

K= (kij)ana F= <fi)n><1’ U= (ui)nxl’

then (0.6) can be rewritten as:

KU=F (0.7)

Here K is called the stiffness matrix.
It is clear that A(¢;,¢;) = 0 if z; and z; are not adjacent to each other.

Therefore K is sparse.
We recall that the Simpson quadrature rule

d —C C
[ o@rde = T8 o)) + 46(S5 %) + o(d)
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is accurate for polynomials of degree < 3. To compute A(¢;, ¢;), we first calculate
the following integrals over the subinterval [z;_1, z;]:

g o 1
dorde= [ de= o

Ti_1 i—1 h? hi’
N Gi_q¢i_y da = l
i 11— 1— hi’
T Li 1 1
R R T
Ti1 Ti1 h% h;
i i r — T;—1 2 hz 4 hz
i dr = (7>d:—170:—7
IH‘M"I /z h, =gt T0=73
o Ti Ty — X 2 hz
Pi—1¢i—1dx :/ ( ) dr = —,
Ti—1 Ti_1 hz 3
i Tip— X1\ (Ti— X h; 4 h;
i1 dz = ( )( )dz—zofozi. 0.8
[ b / . ) de = FO+ 0 =T (08
Hence
z; o 1 1
Jo G e+ [ ¢l de =
1 it i hi  hita
/QS;(ZS{Ld(E: i=1--,n-1,
0 1
h77 i= n,
1 . 1
/0 d);(rb;,—ldx: ¢;¢;—1dx:7h77 7’:27 ) 1,
Ti-1 ?
1 7hi+hi+1, =1,---,n—1,
/ @i dx = h 3
0 ?nv 1= n,
1
hy .
/ ¢i¢i—1dx:67 1:25"'7“'
0
Therefore
Lo St hig)
1 1 hz hi+1 3 i i+1)s
Aonén) = [ oididota [ oi0de =11,
0 0 1 4 ah )
hn 3 mns Z - n?
1 a .
A(bi, pi—1) = Aldi—1,¢4) = 5 + ghm i=2,---,n.
Combining the above equations and (0.6) yields
g g (i
ah; 1 a(h; i 1 1 ahg 1 _
(“6 _E)“i—1+[ 5 +H+hi+1]ui+( 5 _hi+1)“i+1_fi

1=2,--- ,n—1

7

(25 = s+ [ + = fo
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2.6. The interpolant. Given u € C?([0,1]), the interpolant u; € V}, of u is
determined by

n

uy = Zu(mi)gﬁi.

i=1
It clear that ur(z;) = u(x;), i =0,1,--- ,n, and
T — T — T
ur(z) = zh- w(wi—1) + %u(xz) for x € [x;—1, ;).

x; 1/2
Denote by 7; = [;—1,2;] and by [|gl| ;2(,,y = ([, , 97 dz) 2,

Ti—1

THEOREM 2.1.

1

HU*UIHLZ(W) < ;hz ”u/”L?(n)’ (0.9)
1

e = wrll oy < —5h2 10" 2ry (0.10)
1

" =il ey < —ha 10”2y - (0.11)

PROOF. We only prove (0.9) and leave the others as an exercise. We first
change (0.9) to the reference interval [0,1]. Let & = (x — z;—1)/h; and let é(&) =
u(z) — ur(x). Note that é(0) = é(1) = 0 and k = v} is a constant. The inequality
(0.9) is equivalent to

1

A2 2 h;
el zz2 0,1 = W lu—urllz2r) <

2 1. 2
o) [0 |72,y = 3 16" + khill 720,17 +
that is . )
112 112 2
H€||L2([o,1]) < ) ||€'||L2([o,1]) + 2 ”khi”L2([O,1]) ‘ (0.12)
Introduce the space W = {w € L*([0,1]) : w’ € L*([0,1]) and w(0) = w(1) =0} .
Let

2
w'
A= inf Rw= i ””;w.
weW,w#0 weW,w#0 ||wHL2([O,1])

By variational calculus it is easy to see that R[w] is the Rayleigh quotient of the
following eigenvalue problem:

—w" = dw,w e W.

Therefore A\; = 72 is the smallest eigenvalue of the above problem, and hence (0.12)
holds. This completes the proof of (0.9). O

2.7. A priori error estimate. Introduce the energy norm
ol = A(v, )"/,
From the Cauchy inequality,
A(u,v) < flullloll-

By taking v = v, € V}, in (0.2) and subtracting it from (0.5), we have the
following fundamental orthogonality

A(u — uh,uh) =0 Yy, € V. (013)
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Therefore
lw — unll® = Alw — wp, u = un) = A(w = un,u—ur) < flu— upllflu — g,

It follows from Theorem 2.1 that

n

1/2
2 2
lw = unll < flu—wl = [E (" = illL2r, +a||u—uf|L2(n))]

i=1

n . 1/2
[Z(( ) 12y + () ||u”||ia<m)]

1/2

A

IN

et [

We have proved the following error estimate.

THEOREM 2.2.

h A 2y 1/2
b=l < Z(1+a(2)") " I llagony-

Since the above estimate depends on the unknown solution w, it is called the
a priori error estimate.

2.8. A posteriori error estimates. We will derive error estimates indepen-
dent of the unknown solution wu.
Let e = u — up. Then

Ale,e) = A(u — up, e —ey)

1 1 1
; f~(e—el)dx—/0 u’h(e—ef)'dx—/o aup(e —ey)dx
1
— [ - —er)de — —er)d
/O(f auh) € 61 x Z/ e eI x

Since wj, is constant on each interval (x;_1,x;),
(e,e) E / f—aup)(e—er)da

< 31— cunlgagoy lle — erll ooy
=1

<D = el 1€l per, -
i=1

Here we have used Theorem 2.1 to derive the last inequality.
Define the local error estimator on the element 7; = [z;_1, x;] as follows

1
= ;hz‘ If - aUhHL?(n) : (0.14)

n 1/2 n 1/2
flell” < <Z n?) le'll < (Z n?) llell-
i=1 i=1

That is, we have the following a posteriori error estimate.

Then
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THEOREM 2.3 (Upper bound).

n 1/2
lw — un|| < (Z ?7?) : (0.15)
=1

Now a question is if the above upper bound overestimates the true error. To
answer this question we introduce the following theorem that gives a lower bound
of the true error.

THEOREM 2.4 (Lower bound). Define |¢ll-, = (7 ((¢/)? + a¢?) dz)"/*. Let

(f = aun)i = 5 fiil(f —aup)dz and osc; = h |[f —aun — (f —aun)ill p2(r,)-
Then

(0.16)

6ah?
i R

i — (1 + \/T?To)oscl < L (12 +

PROOF. Suppose ¢ is differentiable over each 7; and continuous on [0,1]. It is
clear that

Ale, ) = / (f — aup)ydz — Z/ up ) dw (0.17)

Ti—1

Define 9;(z) = 4¢;—1(x)¢i(x) if x € 7 and ¢;(z) = 0 otherwise. Choose ¢ = o,
such that

1
| —au)wde =21 = @il

From (0.8),
h3(f — au 3
o = ( h) 5 12 i ||( auh)iHLz(n) .

fol ’(/)z dl‘

Therefore, by simple calculations,

_ V30
hi 19l 2y = 5 hall(f = aun)ill ey 91| g2y = 2V3Bhi [(f = aun)ill g2,y -

From (0.17),

X4

1
Atest) = [ maunide = [ (fmow(f—aw) b de b2 [ = aw )l

Tj—1

We have,
2
h’L2 ”(f - auh)iHLz(Ti) < ”|€ (73)

— ((12+ 05 e, + 2o Y7 = il

r, +oscimhy !t |[9| 2

i

which implies

0s¢;

6ah /30
) kel +

h’ ||( - auh)iHLE(Ti) -+ 08¢;. O

hi ||(f - auh)i”Lz(T < (12 +

Now the proof is completed by using 7; <

-_—

We remark that the term osc; is of high order compared to n; if f and a are
smooth enough on 7;.
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ExaMpPLE 2.5. We solve the following problem by the linear finite element

method.

—u”+10000u =1, 0<z<l1,

u(0) =u(1) =0.
The true solution (see Fig. 2) is

1 o100z +6100(1—r)
U = 1-— .
10000 ( 1+ el00 )

If we use the uniform mesh obtained by dividing the interval [0, 1] into 1051 subin-
tervals of equal length, then the error ||u — || = 2.7438 x 1075. On the other
hand, if we use a non-uniform mesh as shown in Fig. 2 which also contains 1051
subintervals, then the error [u—up[| = 1.9939 x 1076 is smaller than that obtained
by using the uniform mesh.

x10™
1,

0.8

06

0.4+

02

FiGure 2. Example 2.5. The finite element solution and the mesh.

3. Exercises
EXERCISE 0.1. Prove (0.10) and (0.11).
EXERCISE 0.2. Let u € V, show that the interpolant u; € V} is the best
approximation of u in the norm H%'HL%[OJ])’ that is,
I = laqoy = oy W= on) oy

EXERCISE 0.3. Use Example 2.5 to verify numerically the a posteriori error
estimates in Theorem 2.3 and 2.4.



CHAPTER 1
Variational Formulation of Elliptic Problems

In this chapter we shall introduce the variational formulation of the el-
liptic boundary value problem

Lu=f in Q, u=20 on 01}, (1.1)

where (2 is a bounded open subset of R? (d = 1,2,3) and u : Q — R is the
unknown function. Here f :  — R is a given function and L denotes the
second-order partial differential operator of the form

9 ouY o du
Lu = — ”221 Oz <aij($)8xj> + ; bi(l')axi + c(z)u (1.2)
for given coefficients a;j, b;,¢, 4,5 =1,2,--- ,d.

We shall assume the partial differential operator L is uniformly elliptic,
that is, there exists a constant # > 0 such that

d
Z aij(z)6& > 0|¢)* for ae. x € Q and all £ € RY
ij=1

1.1. Basic concepts of Sobolev space

Let © be an open subset in R%. We define C$°(Q) to be the linear space
of infinitely differentiable functions with compact support in Q. Let Li (Q)

loc
be the set of locally integrable functions:

LL.(Q) = {f: fe LY(K) V compact set K C interior Q},
We start with the definition of weak derivatives.

DEFINITION 1.1. Assume f € L (Q),1 < i < d, we say g; € L{ () is

loc loc
the weak partial derivative of f with respect to z; in € if

/f&p d:):——/gl-cpdx Vo e C5 ().
o Oz Q

1



2 1. VARIATIONAL FORMULATION OF ELLIPTIC PROBLEMS

We write
of ‘ of of \r
Op f=—-t=gq, i=12---.d = (=L ..o 2L
sz aib'z i, 1 <y [t Vf (aZCl, ’ 8.%'d)
Similarly, for a multi-index a = (a1,az,--- ,a4) € N¢ with length |a| =

a1+ ag+ -+ ag, 0°f € LL () is defined by

[ osede= (-0l [ gorpds voe @),
Q Q
where 0% = 071 032 - - - 0g¢d.
EXAMPLE 1.2. Let d = 1,Q = (=1,1), and f(x) = 1 — |z|. The weak
derivative of f is
1 if x <0,
971 =1 ifz>o
The weak derivative of g does not exist.
DEFINITION 1.3 (Sobolev space). For a non-negative integer k and a real
p > 1, we define
WEP(Q) = {u € LP(Q) : 0% € LP(Q) for all o] < k}.
The space is a Banach space with the norm

(S 07ull?, ) ?, 1< p < +oo;

o<k

max ||0%ul| 00 (q), = +00.
max [0%ul| L= () P

The closure of C§°(£2) in W*P(€Q) is denoted by W(;C P(Q). Tt is also a Banach
space. When p = 2, we denote

HE Q)= Wh2(Q),  HE(Q) = WP (Q).

Hunkm(Q) =

The space H* () is a Hilbert space when equipped with the inner product

(u, V)0 = Z / 0%“ud®v dx.
Q

|a|<k
ExaAMPLE 1.4.

(1) Let Q = (0,1) and consider the function u = z®. One easily verifies
that u € L*(Q) if a > =1, u e HY(Q) ifa > 1, and u € H*(Q) if
oa>k— %

(2) Let Q = {x € R? : |x| < 1/2} and consider the function f(x) =
log‘logm}. Then f € WIP(Q) for p < 2 but f & L>(Q). This
example shows that functions in H'(Q) are neither necessarily con-
tinuous nor bounded.
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Now we consider the regularization of functions in Sobolev space. Let p
be a non-negative, real-valued function in C§°(R?) with the property

[ payds =1 supp(p) € Lo+ fal < 13- (1.3)

An example of such a function is

1
CeleP-1 if |z] <1
T) = ) 1.4
plz) {0 if |z| > 1, (14)

where the constant C' is so chosen that [pqp(z)dz = 1. For € > 0, the
function p.(x) = e ¢p(z/¢) belongs to C5°(R?) and supp(p.) C {z : |z| < €}.
pe is called the mollifier and the convolution

wla) = (peru)le) = [ oo =yuin)dy (1.5

is called the regularization of u. Regularization has several important and

useful properties that are summarized in the following lemma.

LEMMA 1.1.

(i) If u € L (R?), then for every e > 0, uc € C°(R") and 9%(pe *u) =
(0%pe) * u for each multi-index o;

(i) If u € C(R?), then u. converges uniformly to u on compact subsets
of ]Rd;

(ifi) Ifu € LP(RY),1 < p < o0, then u, € LP(RY, |[uel| o gy < [l oz
and limeo [[ue — ul| fppay = 0.

PRrOOF. (i) follows directly from (1.5).
(ii) is obvious by observing that

) = u(@) < [ pele =) luta) = u(w)] dy

< (maxp)s_d/ lu(z) — u(y)| dy

ly—z[<e

and that v is uniformly continuous on compact sets.
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To show (iii), let p’ € R such that 1/p + 1/p’ = 1. Then by Holder
inequality

[ HLP(Rd)

) {/Rd < R [u()lpe(z — ) dy>p d:z:}l/p
{/Rd </]Rd [u() [P pe(x — y) dy> : (/Rd ol — 1) dy)p/p, dx}l/p
] {/Rd /Rd [u(y)Ppe(z — ) dy dx}l/p

= [lull o Ry (1.6)
For u € LP(R?) and any § > 0, we choose a continuous function v with
compact support such that [|u —v|| ey < 6/3. From (ii), ||ve — | pp(ray <
d/3 for e sufficiently small. By the triangle inequality and (1.6),

N

[ue — ul| Loray < [ue = Vell Lo ray + Ve — vl Loy + [[u — 0| Lo ey < 6. (1.7)

This completes the proof of (iii). O

In this book, a domain is referred to an open and connected set. The
following lemma will be useful in proving the Poincaré-Friedrichs inequality.

LEMMA 1.2. Let Q be a domain, u € WHP(Q), 1 < p < oo, and Vu = 0
a.e. on £, then u is constant on ).

PROOF. For any bounded subdomain K of €} and € > 0, let K. be the
e-neighborhood of K, that is, K. is the union of all balls B(x,¢), x € K. Let
u be extended to be zero outside €2 and let ue = u * p. If K. C Q) for some
€ > 0, then Vu, = (Vu) * p. = 0 in K. Since u, is smooth, we deduce that
ue is constant in K. On the other hand, by Lemma 1.1, u, — u in L*(K).
Thus u is constant in K. This completes the proof. O

THEOREM 1.5 (Properties of weak derivatives). Assume 1 < p < 400.
(i) (Product rule) If f,g € WHP(Q) N L>2(2), then fg € WHP(Q) and
o(fg) _ of dg
6% N axig + f@xl
(ii) (Chain rule) If f € WHP(Q) and F € C*(R),F’ € L®(R), then
F(f) € WHP(Q) and

OF(f) _ o O
o (f)%

ae. in Q, 1=1,2---,d;

ae in Q, 1=1,2,--- ,d;
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Q(z,r) o0

FiGURE 1. The domain with a Lipschitz boundary

(iii) If f € WIP(Q) and F is piecewise smooth on R with F' € L>®(R),
then F(f) € WYP(Q). Furthermore, if L is the set of all corner
points of F, we have, fori=1,2,--- ,d,

OF(f) _ [F'(Ngh i f) L,

Ox; 0 if  f(z) € L.

In order to introduce further properties of Sobolev spaces, we introduce

the following condition on the boundary of the domain.

DEFINITION 1.6 (Lipschitz domain). We say that a domain € has a Lip-
schitz boundary 0S) if for each point x € 9€) there exist r > 0 and a Lipschitz
mapping ¢ : R! — R such that — upon rotating and relabeling the coor-
dinate axes if necessary — we have

QNQx,r) ={y: oy, - ,¥a-1) <ya} NQ(x,7),

where Q(z,r) = {y : |yi — x| < ri=1,2,---,d}. We call Q a Lipschitz
domain if it has a Lipschitz boundary.

THEOREM 1.7. Let Q be a Lipschitz domain in RY.
(1) Let D() be the set of all functions ¢lg, ¢ € C(RY). Then D(Q) is
dense in W*P(Q) for all integers k > 0 and real p with 1 < p < oo;
(i) Let u € WFP(Q) and let u denote its extension by zero outside €.
If i e WEP(RY), for k> 1,1 < p < oo, then u € WyP(Q);
(iii) If in addition Q is bounded and k > 1,1 < p < oo, there ezists a
continuous linear extension operator B from WHP(Q) to WFP(RY)
such that Eu = u in €.

The following theorem plays an important role in the application of
Sobolev spaces.

THEOREM 1.8 (Sobolev Imbedding Theorem). Let Q C R? be a bounded
Lipschitz domain and 1 < p < oo. Then
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(1) If 0 < k < d/p, the space W*P(Q) is continuously imbedded in
LY(Q) with ¢ = dp/(d — kp) and compactly imbedded in LY (Q) for
any 1 < ¢ < g
(ii) If k = d/p, the space W*P(Q) is compactly imbedded in L1(Q) for
any 1 < g < oo
(iii) If 0 < m < k —% < m + 1, the space WFP(Q) is continuously
imbedded in C"™*(Q) for a = k — g —m, and compactly imbedded

in C™B(Q) for all 0 < B < a.

ExXAMPLE 1.9. HY(Q) is continuously imbedded in C%Y/%(Q) for d = 1,
in LY(Q), 1 < q < oo, ford =2, and in L5(Q) for d = 3.

THEOREM 1.10 (Poincaré-Friedrichs Inequality). Let Q C R? be a bounded
Lipschitz domain and 1 < p < 0o. Then

ull oy < Coll Vaulloy  Vu € Wy (9),
lu = woll o) < CollVull o) Vu € WHP(Q),

where ug = ﬁ Jou(z) dz.

PROOF. We only give the proof of the first inequality. Assume it is false.
Then there exists a sequence {u,} C WO1 P(Q)) such that

Junlzoe =1 IVunlzogey < -
By the compactness imbedding theorem, there exists a subsequence (still
denoted by) u, and a function v € LP(Q2) such that u, — w in LP(Q). By
the completeness of LP(f2) we know that Vu, — 0 in LP(2)%. Thus, by the
definition of weak derivative, Vu = 0, which implies, by Lemma 1.2, that
u = 0. This contradicts the fact that [ul[z») = 1. O

Next we study the trace of functions in W*? for which we first introduce
the Sobolev spaces of non-integer order k. There are several definitions of
fractional Sobolev spaces which unfortunately are not equivalent. Here we
shall use the following one.

DEFINITION 1.11 (Fractional Sobolev space). For two real numbers s, p
with p > 1 and s = k + o where o € (0,1). We define W*P(Q2) when p < co
as the set of all functions u € W*P(Q) such that

|0%u(x) — 0%u(y)[P
dzdy < +00 V]a| = k.
/Q/Q |z — y|dtop Y o
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Likewise, when p = oo, W*°(Q) is the set of all functions u € W#>(Q) such
that

max esssup [0%u(z) = Ouly)|

< oo Vol =k.
laf= =k z,yeQ,z#y ‘x_y‘a ‘ ’

W#P(Q) when p < oo is a Banach space with the norm

() — P u(y)P
ooy = § laleney + 3 [ [ =20 sy

|la|=F

1/p

with the obvious modification when p = oo.

The closure of C§°(2) in W*P(Q) is denoted by WP (). It is also a
Banach space. When p = 2, we denote H*(Q2) = W*2(Q) and H§(Q) =
W),

We remark that the statement of Sobolev Imbedding Theorem 1.8 is valid
for fractional Sobolev spaces. The density result and the extension result in
Theorem 1.7 are valid as well for fractional Sobolev spaces when s > 0.

Now we examine the boundary values of functions in W*P?(Q2). The frac-
tional Sobolev space W*P(I") on the boundary I" of Q2 can be defined by using
the atlas of the boundary I' and using the definition of fractional Sobolev
space in Definition 1.6 locally. As we are mostly interested in the case when
s < 1 we make use of the following equivalent definition of Sobolev space on
the boundary.

DEFINITION 1.12 (Sobolev space on the boundary). Let € be a bounded
Lipschitz domain in R? with boundary I'. Let s,p be two real numbers with
0<s<land 1< p< oo. We define WP(T") as the set of all functions
u € LP(Q) such that

/F g st(w) ds(y) < oo.

W#P(T') is a Banach space with the norm

1/p
U
by = { By + | / [« _y‘d o as(oyast) |

As usual, when p = 2, H*(T') = W*?(T

We know that if u is continuous on (2 then its restriction to the boundary
0% is well-defined and continuous. If however, u is a function in some Sobolev
space, the restriction u|spg may not be defined in a pointwise sense. To
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interpret boundary values of Sobolev functions properly, we introduce the
following trace theorem for Sobolev spaces.

THEOREM 1.13 (Trace Theorem). Let © be a bounded Lipschitz domain
with boundary T', 1 < p < 0o, and 1/p < s < 1.

(i) There exists a bounded linear mapping
Yo : WP(Q) onto W*~L/PP(T)

such that vo(u) = u on T for all u € WP(Q) N C(Q);
(ii) For all v € CY(Q) and u € WHP(Q),

v ou
dr = — d . ds,
/Quaxi x /aniv x—i—/rfyo(u)vn s

where n; denotes the i-th component of the unit outward normal to
r;

(iii) WyP(Q) = {u € WHP(Q) : yo(u) = 0}.

(iv) Yo has a continuous right inverse, that is, there exists a constant C
such that, Vg € W*~YPP(T), there exists ug € W3P(Q) satisfying

Yo(ug) =g and HugHWs,p(Q) <C ||9||Ws—1/p,p(1“) :

vo(u) is called the trace of u on the boundary I' = 99Q. Noting that
7o is surjective and the property (iv) is a consequence of (i) and the open
mapping theorem. The function u, is said to be a lifting of g in W*P((2). In
what follows, whenever no confusion can arise, we write u instead of ~o(u)
on boundaries.

1.2. Variational formulation

We assume f € L?*(Q) and the coefficients in (1.2) satisfies a;j,b;,c €
L®(Q),i,5=1,2,-- ,d.

Assuming for the moment the solution u is a smooth function, we multiply
Lu = f in (1.1) by a smooth function ¢ € C§°(2), and integrate over €2, to
find

d ou Oy o u
Gijm——7— + bi—v + cu dm:/ dz, 1.8
i D i m Ll o+ o [ 1o (1)
where we have used the integration by parts formula in Theorem 1.13 in the
first term on the left hand side. There are no boundary terms since ¢ = 0 on
0. By the density argument we deduce that (1.8) is valid for any p € HE(Q),
and the resulting equation makes sense if u € H&(Q) We choose the space
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HZ(Q) to incorporate the boundary condition from (1.1) that “u = 0” on
0. This motivates us to define the bilinear form a : H}(Q) x H}(Q) — R
as follows

d ou Op 4 Bu
a(u, p) = /Q ( Z aijaixjg + Zbiamgo—i— Cng) dz.
b= E

ij=1

DEFINITION 1.14. u € H}(Q) ia called a weak solution of the boundary
value problem (1.1) if

a(u,9) = (f,9) V€ Hy(9),

where (-, -) denotes the inner product on L?().

More generally, we can consider the boundary value problem (1.1) for
f € H1(Q), the dual space of H}(€2). For example, f is defined by

d
0
<f780>:/g<f0¢+;fi8;

where f; € L?(Q),i = 0,1,--- ,d, and (-,-) denotes the duality pairing of
H~YQ) and H} ().

)dz, Ve Hy(Q),

DEFINITION 1.15. Suppose f € H1(Q). u € H(Q) is called a weak
solution of (1.1) if

a(u,9) = (f,¢) Ve e Hy().
The inhomogeneous boundary-value problem
Lu=f in €, u=g on 0f),

can be transformed to the homogeneous one if g € H'/?(T) is the trace of
some function w € H*(Q2). Then @ = u — w € H(Q) is a weak solution of
the problem

Lu=f in €, u =0 on 0f2,
where f = f — Lw € H1(Q).

THEOREM 1.16 (Lax-Milgram Lemma). Assume that V is a real Hilbert

space, with norm || - || and inner product (-,-). Assume thata : V xV — R
is a bilinear form, for which there exist constants a, 5 > 0 such that

la(u, v)| < Bllullllv]]  Vu,veV, (1.9)
and

a(v,v) = alv|? YveV. (1.10)
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Let f : V — R be a bounded linear functional on V. Then there exists a
unique element u € V' such that

a(u,v) = (f,v) YveV. (1.11)

The bilinear form a is called V-elliptic (or V-coercive) if it satisfies (1.10).
The Lax-Milgram lemma is a consequence of the following generalized Lax-
Milgram lemma.

THEOREM 1.17 (Generalized Lax-Milgram Lemma). Let U and V' be real
Hilbert spaces and let a(-,-) denote a bounded bilinear form on U x V. Con-
stder the vartational problem: Find u € U such that

a(u,v) = (f,v) Yv e V. (1.12)

(1.12) attains a unique solution w € U for any f € V' if and only if a(u,v)
satisfies the following two conditions:
(i) There exists a constant « such that

inf sup a(u, v)] > a > 0;
wel[ully=1 vevv]l, =1

(ii) For every v € V,v # 0,

sup |a(u,v)| > 0.
uelU

(i) is called the inf-sup condition of the bilinear form.

PROOF. Denote by (-,-) the inner product on V. From the Riesz repre-
sentation theorem, there exist two bounded linear operators J : U — V and
K : V' — V such that

(Ju,v) = a(u,v) YueUweV,
(Kf,v)=(f,v) YoeV,feV.

Then the problem (1.12) is equivalent to: Find u € U such that

Ju=Kf (1.13)
Since
s Ja(ww) = swp  |(Juo)| = [ully,  (114)
veV,|lv|ly=1 veV,|lvlly,=1

1) is equivalent to: there exists o > 0 such that
q

inf Jull,, = a. 1.15
ity (1.15)
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If (i) and (ii) hold, then from (1.15) J is injective and R(.J), the range of
J, is closed. It follows from (ii) that for any v € V,v # 0,
sup |a(u,v)| = sup |(Ju,v)| >0
uelU uelU
which implies that R(J)* = {0}, that is, J is surjective. Therefore, .J is
invertible and hence (1.13) attains a unique solution in U for any f € V'.
It remains to prove the necessity. If (1.12) attains a unique solution in U
for any f € V', then J is invertible and the open mapping theorem implies
that J~! is continuous. There exist a > 0 such that

_ 1
1774 0lly < vl or [ Tully = ellully -

From (1.14), (i) holds. (ii) is a consequence of R(J) = V. This completes the
proof of the theorem. O

REMARK 1.18. The Generalized Lax-Milgram Lemma is still valid if U
and V are complex Hilbert spaces and a(-,-) is a bounded sesquilinear form.

CoOROLLARY 1.19. If L is uniformly elliptic, b; =0 fori=1,--- ,d, and
c(z) = 0. Suppose f € H-Y(Q). Then the boundary value problem Lu = f
in Q has a unique weak solution u € Hg ().

THEOREM 1.20 (Regularity). Assume that a;; € C1(2),b;,c € L®(),i,j
=1,---,d, and f € L*(Q). Suppose that u € H}(Q) is the weak solution of
the problem Lu = f in Q. Assume that O is smooth (C*') or Q is conver.
Then u € H*(Q) satisfies the estimate

[ull g2y < CUIfll2) + lullL2(a))-

Bibliographic notes. The standard reference on Sobolev spaces is
Adams [1]. Here we mainly follow the development in Evans [32] and Girault
and Ravairt [34]. Further results on regularity theory for elliptic equations
can be found in Gilbarg and Trudinger [33] for smooth domains and in Gris-
vard [35], Dauge [25] for non-smooth domains. The generalized Lax-Milgram
Theorem 1.17 is due to Necas [45].

1.3. Exercises

EXERCISE 1.1. If Q is an open subset in R¢ and K is a compact subset
of Q, show that there exists a function ¢ € C§°(R?) such that supp(yp) C Q
and p =1in K.
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EXERCISE 1.2 (Partition of unity). Let {O;},i = 1,--- ,k, be a family
of open sets in R? that covers a compact set . Then there exists a family
of functions ¢; > 0, ¢; € C(0;), and SF_ @; = 1in K. {ip;} is called a
partition of unity subordinate to {O;}.

EXERCISE 1.3. Let € be a bounded domain with Lipschitz boundary.
For any g € HY?(9Q), let u, € H'(Q) be the weak solution of the following
Dirichlet boundary value problem

—Auy=0 in Q, u=g on Of.
Show that there exist constants C and C5 such that
Culgll g2 00) < lugllgqy < C2llgll gz o) -

EXERCISE 1.4. Let Q be a bounded domain in R?. A function v € H*(Q)
is a weak solution of Neumann problem

—Au=f in Q, Ou =0 on 0f)
ov
if
/Vu'Vvda::/fvdx Vo e HY(Q). (1.16)
Q Q

Suppose f € L*(€2). Prove (1.16) has a weak solution if and only if [, fdz =
0.

EXERCISE 1.5. Let Q be a bounded domain in R?. A function u €
HE(Q) is a weak solution of the homogeneous boundary value problem for
the biharmonic equation

Ny = in Q =— =
u=f in , U=

0 on 9N

provided
/ Au'Avdx:/ fvdx Vo € HE(Q). (1.17)
Q Q

Suppose f € L?(Q2). Prove that there exists a unique weak solution of (1.17).



CHAPTER 2

Finite Element Methods for Elliptic Equations

2.1. Galerkin method for variational problems

Let V be a real Hilbert space with the norm || - ||y and inner product
(-,-)v. Assume that the bilinear form a : V x V — R satisfies (1.9) and
(1.10), i.e. a is bounded and V-elliptic. Let f: V — R be a bounded linear
functional on V. We consider the variational problem to find u € V such
that

a(u,v) = (f,v) VovelV, (2.1)
where (-, -) denotes the duality pairing between V and V’.
Let V}, be a subspace of V' which is finite dimensional, h stands for a

discretization parameter. The Galerkin method of the variation problem is
then to find uy € V}, such that

a(up,vp) = (f,on) Vv € V. (2.2)
Suppose that {¢1, - ,¢n} is a basis for V},. Then (2.2) is equivalent to

a(uh?¢i):<f7¢i>a Z:LaN

Writing up, in the form
N

un =Y %d;, (2.3)

j=1
we are led to the system of equations

N
> aley, ¢i)z = (f,¢i), i=1,--,N,

Jj=1
which we can write in the matrix-vector form as

Az = b,

13
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where A;; = a(¢;, ¢;) and b; = (f, ¢;). Since a is V-elliptic, the matrix A is
positive definite:

N N N
2T Az = Z 2 Aijzj = a(szqu, Zzi@') = a(up, up) 2 04||“h||%/,
i,j=1 j=1 i=1

and so 2T Az > 0, for any z # 0. The matrix A is called the stiffness matriz.

THEOREM 2.1 (Céa Lemma). Suppose the bilinear form a(-,-) satisfies
(1.9) and (1.10), i.e., a is bounded and V-elliptic. Suppose u and up are
the solutions of the variational problem (2.1) and its Galerkin approzimation
(2.2), respectively. Then

B .
lu —up|lv < ay;g{ffhllu—vh\\v- (2.4)

PRrROOF. Since V3, C V, by the definition of v and wuy,
a(u,vp) = (f,vp) Y oy € Vi,
a(up,vp) = (f,vn) Y, €V,
It follows by subtraction we obtain the following Galerkin orthogonality
a(u —up,vp) =0 YV v € Vi, (2.5)
which implies that a(u — up, v, —up) = 0. Thus
allu — uplly < alu —up,u—up) = alu — up, u—vp)
< Bllu — unllvllu = vnllv-

After dividing by ||u — up||v, the assertion is established. O

According to Céa Lemma, the accuracy of a numerical solution depends
essentially on choosing function spaces which are capable of approximating
the solution u well. For polynomials, the order of approximation is deter-
mined by the smoothness of the solution. However, for boundary-value prob-
lems, the smoothness of the solution typically decreases as we approach the
boundary. Thus, it may not be advantageous to insist on a high accuracy by
forcing the degree of the polynomials to be high.

There are several methods related.

Rayleigh-Ritz method. When the bilinear form a : V xV — R is sym-
metric, then the variational problem (2.1) is equivalent to the minimization
problem

min J(v), J(v):= %a(v,v) —(f,v). (2.6)

veV
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The Rayleigh-Ritz method is then to solve (2.6) by solving uy, € V}, as

min J(vp).
v EVY ( h)

Usually one finds uy, as in (2.3) by solving the equation (8/82¢)J(Z§V:1 2jP;)
=0.

Galerkin method. The weak equation (2.2) is solved for problems
where the bilinear form is not necessarily symmetric. If the weak equations
arise from a variational problem with a positive quadratic form, then often
the term Ritz-Galerkin method is used.

Petrov-Galerkin method. We seek u;, € V3, with

a(up,v) = (f,v)  VoveSy,

where V}, is termed the trial space, Sy, is termed the test space, and the two
spaces V}, and Sy, need not be the same but have the same dimension.

Finite element method. The finite element method can be regarded
as a special kind of Galerkin method that uses piecewise polynomials to
construct discrete approximating function spaces.

2.2. The construction of finite element spaces

In practice, the spaces used in finite element methods over which we
solve the variational problems are called finite element spaces. We partition
the given domain 2 into (finitely many) subdomains, and consider functions
which reduce to a polynomial on each subdomain (element). For planar prob-
lems, the elements can be triangles or quadrilaterals. For three-dimensional
problems, we can use tetrahedrons, hexahedrons, etc. For simplicity, we re-
strict our discussion primarily to the piecewise polynomial approximations
over triangular (2D) or tetrahedral (3D) elements.

2.2.1. The finite element.

DEFINITION 2.2. A finite element is a triple (K, P, N') with the following
properties:
(i) K ¢ R?% is a closed set with piecewise smooth boundary (the ele-
ment);
(ii) P is a finite-dimensional space of functions on K (the space func-
tions);
(iii) N = {Ny, -+, N,} is a basis for P’ (the nodal variables or degrees
of freedom).
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DEFINITION 2.3. Let (K,P,N) be a finite element, and let {i1, 19, - ,
¥} be the basis for P dual to N, that is, N;(¢;) = d;;. It is called the nodal
basis for P.

It is clear that the following expansion holds for any v € P:
n
v(z) = ZNi(U)@bz’(fL’)-
i=1

Denote by P the set of polynomials of degree < k.

EXAMPLE 2.4 (The linear element). Let K be a simpler in RY with
vertices A; (i = 1,---,d+1),P = P, and N = {Ny, -+ ,Ngi1}, where
Ni(v) = v(A;) for any v € P. Then (K, P,N) is a finite element.

The nodal basis {\1(z), -, Ag+1(z)} of the linear element satisfies
)\Z(CC) is linear and )\Z(AJ) = 62’]’7 i,j = 1, tee ,d + 1. (27)

Given a simplex K in R? it is often convenient to consider the associated
barycentric coordinates defined as the ordered (d+1)-tuple (A (z), Ao(z), - -,
Ad+1(x)), where \;(z) satisfies (2.7). Let «; be the Cartesian coordinates of
the vertex A;. We have the following relationship between the Cartesian

coordinates and the barycentric coordinates:

d+1 d+1

Z Ai(z) =1and z = Zai/\i(x). (2.8)
i=1 i=1

The relationship is obvious since any two linear functions are equal if they
coincide at the vertices A;,7 = 1,--- ,d + 1. Note that the barycenter of K

has barycentric coordinates (ﬁ, e ﬁ)

Az

AL Ay

F1GURE 1. The triangle and the barycentric coordinates.
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Next we consider a geometric interpretation of the barycentric coordi-
nates in dimension 2. Let the coordinates of A; be (a;,b;) and let

1 aj b1 1
S = 5 a9 b2 1
as b3 1

be the directional area of the triangle K. S > 0 if A, Ao, A3 is ordered
counter-clockwise, S < 0 otherwise. For any point A(z1,x2) in the element
K (see Figure 1), by connecting A with three vertices of K, we obtain three
triangles. It is clear that \;(A) is the ratio of areas

\, = [AAA 4 ), = [AA1A4 o = [BA1434]
T AA Ay A 27 |AA Ay Ay’ 5T |AA Ax Ay
That is
1 1 X2 1 1 al b1 1 al b1 1
)qu a bg 1 ,/\sz 1 I2 1 ’)\3:7 a9 bg 1 .(2.9)
25 25 2
az bz 1 az b 1 x1 xo 1

EXAMPLE 2.5 (The Argyris element). Let K be a triangle in R?, P = P;
of dimension 21, N = the 21 degrees of freedom shown in Figure 2. “e”
denotes the evaluation at that point, the inner circle denotes the evaluation
of the gradient at the center, the outer circle denotes the evaluation of three
second derivatives at the center, and the arrows represent the evaluation of

the normal derivatives at three midpoints.
As

Ay l Ag
FIGURE 2. The degrees of freedom of the Argyris element

We claim that N' = {Ny, Na,--- , No1} determines Ps. Suppose that for
some P € Ps, N;(P) =0, fori=1,2,---,21. All we need is to prove P = 0.
From (2.8), P is a fifth order polynomial in A1 and 2. Since the edge AsAs
is on the line A1 = 0, the restriction of P to AsAs is a fifth order polynomial
in Ag. Moreover,
9P _9°P

P(A;) = 87)\2( i) = T)\%(Aj) =0, j=2,3
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Therefore
Pl, 4, = P(0,22) =0. (2.10)

On the other hand,
oP 0 OP
8A1( ]) a)\z 8A1 ]) ) J )

Since V1 is parallel to the unit outer normal to AxAs, g—ﬁ(Ml) = 0. Notice

that gTI\j‘AzAg 1s a forth order polynomial, we have gTI\Dl‘AzAg =0, that s,
oP
—(0,X2) = 0. 2.11
(0.2 (21)

Combining (2.10) and (2.11), we have P = A2 Py. Similarly, P = A\A3)\3Q =
0. Since Q is a polynomial, ) =0, and hence P = 0. U

DEFINITION 2.6. Given a finite element (K, P, N), let the set {¢; : 1 <
i <n} C P be the nodal basis of P. If v is a function for which all N; € N,
i=1,---,n, are defined, then we define the local interpolant by

Igv = Z N;(v)1;.
i=1

It is easy to see that Iy is linear and Ixu = u for u € P.

ExAMPLE 2.7 (Lagrange interpolant of linear elements). Let (K, P,N)
be the linear finite element with nodal basis {1;}. The Lagrange interpolant

is defined as
d+1

(Ixv)(x) = wv(z:)i(z) Vv e C(K).

=1

We now piece together the elements.

DEFINITION 2.8. A triangular (tetrahedral) mesh My, is a partition of the
domain © in R? (d = 2,3) into a finite collection of triangles (tetrahedrons)
{K;} satisfying the following conditions:

(i) The intersection of the interior of any two elements is empty;
(i) UK; =
(iii) No vertex of any triangle (tetrahedron) lies in the interior of an edge
(a face or an edge) of another triangle (tetrahedron).

In this book, a triangular or tetrahedral mesh is called a triangulation,
or simply a mesh.
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THEOREM 2.9. Let Q be a bounded domain in R? and M; = {Kj}‘j]:l
be a partition of Q, that is, UK; = Q and K; N K; = 0 if i # j. Assume
that OK; (i =1,---,J) are Lipschitz. Let k > 1. Then a piecewise infinitely
differentiable function v: Q — R over the partition My, belongs to H*(Q) if
and only if v € CF~1(Q).

PROOF. We only prove the case £k = 1. For k > 1, the assertion follows
from a consideration of the derivatives of order k — 1.

Let v € C(Q). For i = 1,2, define
v
8@3
where on the edges we can take either of the two limiting values. Let ¢ €

Cgo (),

/cpwzdx— Z /npax

wi(z) = for x € Q,

KeM,,
0 0
= Z <—/v cpd:c—i—/ gov-nids):—/v Spdfv,
Kem, Kk 0z oK o Ox;
where ng = (n1,--- ,ng)’ is the unit outward normal to K. This shows

that w; is the weak derivative of v and hence v € H'(Q).

Conversely, let v € H'(2). Let = be on the interior of an edge e shared
by two elements K7, K5. Then there exists a neighborhood B small enough
such that B C K; U Ks. Denote by v; = v|k,, ¢ = 1,2. Then, by Green
formula, for all ¢ € C$°(B)4,

wal(S}

K;

FiGURE 3. The neighborhood of a point & on the common
side of two elements K7 and Ks.

/Vv cpd:v——/ vV - <pdx+/ vi(p-ng,)ds, i=1,2.
OK;



20 2. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

Since v € H'(2), we have

/Vv‘cpdm——/vv-godx.
Q Q

Thus
/(Ul—vg)¢d820 vV ¢ € C5°(B).

[

This implies that v; = vy at . Therefore, v is continuous across any inter-
element edges. O

EXAMPLE 2.10 (Conforming linear element). Let (K, P,N) be the linear
finite element defined in Example 2.4. Since any piecewise linear function is
continuous as long as it is continuous at the vertices, we can introduce

Vi, ={v:v|g € P, YK € My, v is continuous

at the vertices of the elements}.
By Theorem 2.9, Vi, C H(Q), V}, is a H'-conforming finite element space.

EXAMPLE 2.11 (Crouzeix-Raviart element). Let K be a triangle in R,
P = Py the set of linear polynomials, and N' = {Ny, Na, N3}, where N;(v) =
v(M;) and M;, i = 1,2,3, are the midpoints of three edges. It is easy to see
that (K, P,N) is a finite element. Define

Vi ={v:v|g € P, YK € My, v is continuous

at the midpoints of the triangle edges}.

Then Vi, € L3(Q) but Vi, ¢ HY(Q). Vj, is an exzample of H'-nonconforming
finite element spaces.

EXAMPLE 2.12. Let (K, P,N) be the Argyris element and define

Vi, = {v:vlg € P5s, YK € My, v and its partial derivatives up to
second order are continuous at the vertices of the triangle
elements, v has continuous normal derivatives at the

midpoints of the triangle edges.}.

It can be shown that Vi, € CY(Q). Therefore Vi, C H2(2) is a H2-conforming
finite element space.
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2.3. Computational consideration

The computation of finite element methods can be divided into three
steps:
1. Construction of a mesh by partitioning €2;
2. Setting up the stiffness matrix;
3. Solution of the system of equations.

In this section we consider the computation of the stiffness matrix. The solu-
tion of the system of equations will be treated in Chapter 5. The construction
of the mesh will be discussed in Chapter 4 and Chapter 10.

We will only consider conforming linear finite element approximations to
elliptic equations of second order. In this case, the stiffness matrix can be
assembled elementwise. For simplicity, we consider only the principal part

ou Ov
(u,v) /QZ ag(z 8:quaxkdaz—/Qa(:L‘)Vu-Vvdx,

where a(z) = (ax(z)),, ;- Let {qu 1 be a nodal basis of the linear finite
element space V0 = V;, N HZ () so that ¢i(zj) = 635, 4,5 =1,---,J, where
{z; }3-]:1 is the set of interior nodes of the mesh M. Then

Aij =a(gj, 1) = > / 2)V; - V; dz. (2.12)
KeMy,
In forming the sum, we need only take account of those triangles which
overlap the support of both ¢; and ¢;. Note that A;; = 0 if the z; and z;
are not adjacent. The stiffness matrix A = (A4;;) is sparse.

In practice, for every element K € My, we find the additive contribution
from (2.12) to the stiffness matrix. Since on each element K, the nodal
basis function reduces to one of the barycentric coordinate functions Ay, p =

2,---d+ 1. Thus we need only to evaluate the following (d + 1) x (d + 1)
matrix

Ag : (Ar)pg = /Ka(x)V)\q -VApdz. (2.13)

Here Ak is called the element stiffness matriz. Denote by K, the global
index of the p-th vertex of the element K. Then ¢, |x = A, and the global
stiffness matrix may be assembled through the element stiffness matrices as

Aij = Z (AK)pq - (2.14)

Kp= 7,Kq =7
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For example, consider two adjacent nodal points x; and x; on a triangular
mesh as shown in Figure 4. Suppose the local indices of the vertices of the
elements K1, K11, ..., KV are labeled as in the same figure. Then

Ky=K{'=K" =K}V =K =Ky' =i, K}=K)'=}j.

and (2.14) implies that

FI1GURE 4. Global and local indices.

A,’j = (AK1)23 + (AKVI)SQ,
A = (AKI)QQ + (AKII)ll + (AK111)33 + (AKIV)QQ + (AKV)ll + (AKVI)33.

The computation of (2.13) can be simplified by using the following prop-
erty of the conforming linear finite element space.

THEOREM 2.13. The conforming linear finite element space V3, associated
with a triangulation My, of Q@ C R? is an affine family in the sense that there
exists a finite element (K PN ) called the reference finite element with the
following properties: For every K € My, there exists an affine mapping
Fx : K = K such that for every v € Vy,, its restriction to K has the form

v(z) = 9(Fg'(z)) with some @€ P.
ProOOF. It is obvious. We only need to set

A~

d
K:{fi:(glv"'vgd)eRd: 51""7£d>0, 125@20}7
=1

P=P,and N = {Nl,z =1,---,d+1}, where Nl(p) = p(fll) for any p € P,
where {4;} is the set of vertices of K. O
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To compute (2.13), we transform the element K into the reference element
K. Let

r = Fgi = Bk + bk

be the corresponding linear mapping. Then
|K

_ | als i AvAVAW Ty %
(A = 1 [ AOBTR) - BTN a9

Here |K| is the measure of K and |K]| is the measure of K.

EXAMPLE 2.14. Let K be a triangle element with vertices A;(a;, b;),1 =
1,2,3, and let Fi be the affine mapping defined by & = ngl(az) (cf. (2.9)):

R 1
1 = /\1 (:17) = m((bg - bg)xl + ((Ig - CLQ):EQ + a2b3 - agbz),
R 1
T9 = )\2(1‘) = W((bg — bl)xl + (a1 — a3)$2 + azby — alb3).

It is clear that Fle maps the points A1, As, and Az in the x1xo plane to the
points (1,0),(0,1), and (0,0) in the £1Z2 plane, respectively. Obviously,

pr_ L (bbb
K _2|K‘ a3z —az a1 —as '
Noting that \i(Z) = Xi(x) and A\ + Ay + A3 = 1, we have

(- w0 ()

Then the element stiffness matriz Ax can be computed by using (2.15) and
the global stiffness matriz can be assembled by using (2.14).

Vi

For partial differential equations with variable coefficients, the evaluation
of the integrals (2.15) is usually accomplished by using a quadrature formula.
Some examples of quadrature formulas on the two-dimensional reference el-
ement (see Figure. 5) are as follows. The quadrature formula

| eladi~ Kl are) (2.16)
K

is exact for polynomials of degree < 1, i.e.,

A

/ H(8)di = |R|p(ars) Vo € PL(K).
K

Here G193 is the barycenter of K.
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The quadrature formula
/ ¢(2)dx ~ |3| > @lai), (2.17)
K 1<i<j<3

is exact for polynomials of degree < 2. Here a9, do3, and a3 are the mid-edge
points of K.
The quadrature formula

) 3
N 1n K R R R
/ sz~ B33 0@y 18 S play) + 2 | (218)
K 60 i=1 1<i<5<3

is exact for polynomials of degree < 3.

A
a0, 1)
a3 23
~0
a123
as
ai ais (1, 0)'

FIGURE 5. The reference element K for the quadrature for-
mulas (2.16),(2.17), and (2.18).

Table 1 shows the sample points (&;,7;) and weights for Gaussian quad-
rature formula which is exact for polynomials of degree < 5

7
/ G(E)AR ~ Y " wip(&i,mi). (2.19)
K i—1

Bibliographic notes. The material in this chapter is classical. We refer
to the book of Ciarlet [23] for further information on the construction and
computation of finite elements. The quadrature formulas (2.19) in Section 2.3
is taken from Braess [11].

2.4. Exercises

EXERCISE 2.1. Construct the nodal basis functions for the Crouzeix-
Raviort element using barycentric coordinates.
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i & i w;

1 1/3 17}3 9/80

2| (6+15)/21 | (6+/15)/21
31(9—-2V15)/21| (6++15)/21 %/ﬁ
4| (6++/15)/21 | (9 —2V15)/21

5| (6—+15)/21 | (6 —+/15)/21

6 | (9+2v15)/21 | (6—15)/21 %ﬁ
7| (6 —+/15)/21 | (9+2V15)/21

TABLE 1. The sample points (&;, n;) and weights for the seven-
point Gaussian quadrature rule over the reference element K.

EXERCISE 2.2. Show that the finite element space based on the Argyris
element is a subspace of C! and thus is indeed H2-conforming.

EXERCISE 2.3. Show the quadrature scheme (2.17) is exact for polyno-
mials of degree < 2.

EXERCISE 2.4. Let K be a triangle in R?2. Compute the element mass

matrix
3
MK:</ )\i/\jdl') .
K 1,j=1

EXERCISE 2.5. Let K be a triangle in R?. Show that

1g\7!
NN Az = 2| K |—P 9 4 r > 0, integer.
/K123 ‘ ’(p—l—q—l—r—l—Q)! b,q g

EXERCISE 2.6. Consider the Poisson equation —Awu = 1 on the unit
square with homogeneous Dirichlet boundary condition. Compute the stiff-
ness matrix of the linear finite element method on the standard triangulation
of the unit square constructed by first dividing the unit square into n? sub-
squares of equal size and then connecting the southwest-to-northeast diagonal
of each subsquare. Here n is an positive integer. Compare the stiffness matrix
with the coefficient matrix of the five-point difference equations.



CHAPTER 3
Convergence Theory of Finite Element Methods

In this chapter we consider the convergence of the finite element method
for solving elliptic equations. From Céa lemma in Theorem 2.1 we know that
the error of the finite element solution is bounded by infy, cv;, [|u — vall g1 ()
This quantity will be estimated by the scaling argument that we develop in
the first section.

3.1. Interpolation theory in Sobolev spaces

We start from the following result which plays an important role in the
error analysis of finite element methods. This result generalizes the second
Poincaré-Friedrichs inequality in Theorem 1.10.

THEOREM 3.1 (Deny-Lions). Let Q be a bounded Lipschitz domain. For
any k > 0, there exists a constant C(Q2) such that

it o+ gk ) S C@blusng Vo e HY@. (3)

Here Pi(R2) is the set of polynomials over Q with degree < k.

PROOF. Let N = dim P(2) and let f;,1 < ¢ < N, be a basis of the
dual space of Py(Q2). Using the Hahn-Banach extension theorem, there exist
continuous linear forms over the space H*+1(12), again denote by f;,1 < i <
N, such that for any p € P(2), fi(p) = fa(p) =--- = fn(p) =0 if and only
if p = 0. We will show that there exists a constant C(€2) such that

N
ol ey < @) (Jelmngey + D Ifi0)]) Vo€ BI(Q). (32)
=1

(3.1) is a direct consequence of (3.2) because for any v € H*1(Q), there
exists a p € P(Q2) such that f;(p) = —fi(v),1 <i < N.

27
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If inequality (3.2) is false, there exists a sequence {v,} of functions v, €
H*1(Q) such that

(3.3)

S |-

N
lonll sy =1, |onlgrriy + D Ifi(vn)] <
=1

Since {v,} is bounded in H**1(Q), by the compactness imbedding theorem,
there exists a subsequence, again denoted by {v,}, and a function v € H¥(()
such that

[vn — vl ey = 0 as n — 00. (3.4)

Since, by (3.3), |vn|gr+1(q) — 0, and since the space HF1(Q) is complete,
we conclude from (3.4) , that the sequence {v, } converges in H**1(Q). The
limit v of this sequence satisfies

N
[0 esr gy + D 1fi(w)] = 0.
i—1

Thus, it follows from Lemma 1.2 that v € P,(€2), and hence v = 0. But this
contradicts the equality [|v]| gr+1(q) = 1. O

A direct consequence of this theorem is the following lemma which is
called Bramble-Hilbert Lemma in the literature.

LEMMA 3.1 (Bramble-Hilbert). Let Q be a bounded Lipschitz domain and
let k > 0 be an integer. Denote by X = H*TY(Q). Let Y be a Banach space
and let f € L(X,Y) be a continuous linear operator from X toY such that
f(p) =0 for any p € Pr(Q2). Then there exists a constant C(Q2) such that

1F)lly < COIS Nl exyylvlareg Vo e HHH(Q),

where || - || (x,y) s the operator norm.

The error analysis of the finite element method depends on the scaling
argument which makes use of the relation of Sobolev norms under the affine
transform.

LEMMA 3.2. Let Q and Q0 C R? be affine equivalent, i.e., there exists a
bijective affine mapping

F:Q0—Q, Fi=Bi+b
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with a nonsingular matriz B. If v € H™(Q), then © = vo F € H™(S), and
there exists a constant C = C(m,d) such that

8lm@y < CIIBI™ et BI™Y2[o] (0.
ol < CIB ™| det BIY213] gy,
Here ||-|| denotes the matriz norm associated with the Euclidean norm in R?,

PRrOOF. Consider the derivative of order m as a multi-linear form. For
Uk = Y1k, Yok, - 7ydk)T cRY k=1,---,m, define

D™(@) (Y, Um) = D Yt YimmOiy - Oi v ().
1<i17"'7im<d

From the chain rule, we have

D™(&) (1, Gm) = Z Girt ** PiymOiy -+ 03, 0(2)
1<7;17"'7i7n<d
= Z Z Yig1 - Qimmbjlh T bjmimajl T ajmv(x)
1<i17"' 7i'm<d 1<j17'“ 7]m<d
= > > bpadat i GimmO - 0, 0(x)

1<, im <A 141, im <d
= D"v(x)(Bij1, -, Bijm).
Thus
156 m < IIBI™ D™ 0],
where
[ D™ gm = sup {[D™v(x)(y1, -+ ym)| : lyel < 1,1 <k <m}.
Apply this estimate to the partial derivatives 0;,0;, - - - 0;,,v = D"™v(e;,, - -,
ei,.) to get
Y 10%0 < d™ max [0%0* < A" D™8||Zm < d™|BIP™ | D™ 0] 2
jal=m fol=m
<M BIP™ Y (0]
loe|=m.
Finally we integrate, taking account of the transformation formula for mul-
tiple integrals

/ S |éa@|2d:z<d2m||3|2m/ S [0%]? det B~ |da.
Q Q
|

al=m |a|=m
This completes the proof of the first inequality. The other inequality is proved
in a similar fashion. 0
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To apply Lemma 3.2, it is desirable to estimate || B|| and ||[B~!|| in terms
of simple geometric quantities.
LEMMA 3.3. Let  and Q be affine equivalent with
F: ieR'— Bi+beR?
being an invertible affine mapping. Then the upper bounds
h h d B d
IBI<Z 1B7<2 (£) <laetBl< (%) (3.5)
p P h
hold, where h = diam(Q), h = diam(Q), p and p are the mazimum diameter
of the ball contained in Q and €2, respectively.

F(2) N
7 ENF@G)

FIGURE 1. The affine mapping between {2 and Q.

ProoOF. We may write
1
|B|| = = sup |B¢|.

Plel=p
Given ¢ € R? so that |¢] = p, there exist §,2 € € such that § — 2 = £ (see
Figure 1). B¢ = F(y) — F(2) with F(9), F(2) € Q. We deduce |B¢| < h.
This proves the first inequality in (3.5). The second inequality can be proved
similarly. The last two inequalities are consequences of the identity |det B| =

121 /192- O
THEOREM 3.2. Suppose m —d/2 > 1. Let (K,P,N) be a finite element
satisfying
(i) Ppo1 C P C H™(K);
(i) N c CH(K)".
Then for 0 <i < m and © € H™(K) we have
|6 = 10| iy < Clmy dy K) 0]y 5

where I is the local interpolation operator of the finite element defined in
Definition 2.6.
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PROOF. We first prove I is bounded from H™(K) to H(K). Let N =
{N1,---,N,} and let {¢1, -+ ,d,} be the dual basis. Then

Tll g ey = || D N3 (@) <D IN@D51 i ey
Jj=1 Hi(K) J=1
<D NGty 1951 m iy @l o iy
j=1
<C HﬁHcl(k) <C HaHHm(f() :

Here we have used the Sobolev Imbedding Theorem 1.8 in the last inequality.
Next by Theorem 3.1

5 — 10, = it (0= p— F(D— )]s
| U|H2(K) ﬁellglmﬂ |0 —p (D p)’Hz(K)
gcpelﬁff,l I _pHHm(f() <C |U‘Hm(f<)-
This completes the proof of the theorem. O

DEFINITION 3.3. Let (K, P, N) be a finite element and = = F(i) = Bi+b
be an affine map. Let v = ¢ o F~!. The finite element (K,P,N) is affine-
interpolation equivalent to (K, P,N) if

A~

(i) K = F(K);
(i) P = {p:pePh
(iii) Tv = I0.
Here 9 and Iv are the (K, 75,/\Af)—interpolant and the (K, P, N)-interpolant,
respectively.

DEFINITION 3.4. A family of meshes {Mj} is called regular or shape
reqular provided there exists a number x > 0 such that each K € My
contains a ball of diameter px with pg > hg /K.

THEOREM 3.5. Let (K,P,N) satisfy the conditions of Theorem 3.2 and
let (K,P,N) be affine-interpolation equivalent to (K, P,N). Then for 0 <
i <m andv € H™(K) we have

v — IU|Hi(K) < Ch%_i |U|Hm(K) )

where C' depends on m, d, K, and hi /pK .
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Proor. By Lemmas 3.2-3.3 and Theorem 3.2 we have

. , —1ji 12| 15
v — Tv| s iy < C|| B[] det B ‘U T .

= C||B7|| det B|'/2 ‘u ~ i

Hi(K)
< OB det B2 8] ym ) < CIB™IBI™ [0] gom 1)

<) (G o < CGE G

This completes the proof. O

As a consequence of the above theorem we have the following estimate.

THEOREM 3.6. Suppose { My} is a regular family of meshes of a polyhe-
dral domain Q@ C R®. Let (K,ﬁ,/(f) be a reference finite element satisfying
the conditions of Theorem 3.2 for some | and m. For all K € My, sup-
pose (K, Px,Nk) is affine-interpolation equivalent to (IA(,75,./\A/') Then for
0 < i < m, there exists a positive constant C(K, d,m, k) such that

1/2 m—i m
< > - Ihv”%ﬁ(K)) S Ch™ ol gy, h = max hie, Yo € H"(Q),
KeMy,

where Inv is the global interpolant defined by Inv|x = Ixv for all K € My,.

Now we consider the inverse estimates which are useful in the error anal-
ysis of finite element methods. We first introduce the quasi-uniform meshes.

DEFINITION 3.7. A family of meshes {M}} is called quasi-uniform if
there exists a constant v such that

hhg <v Y KEM,,

where h = maxgem, hi.

THEOREM 3.8. Let {M},} be a shape-regular quasi-uniform family of tri-
angulations of Q and let Xy, be a finite element space of piecewise polynomials
of degree less than or equal to p. Then for m > 1 > 0, there exists a constant
C = C(p, k,v,m) such that for any vy, € X,

1/2 1/2

> Jvalfm SCRT™ Y7 Jonlingg
KeM,, KeMy,
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PROOF. From Lemma 3.2, we have
[0l m (i) < ClIBRH ™ det Bre[V2[0] gom 1)
Since

10| iy = Inf |04+ plympy < Inf [0+ D|| gz
H™(K) pEP_1(K) H™(K) pEP,_1(K) Hm(E)

<C inf o +pHHl(f() < C‘@’Hl(f()’

pEPl_l(K)

it follows from Lemma 3.2 and Lemma 3.3 that

[Vl () < CIBE ™ 1Bl 0l iy

N e\ m

PK e

This completes the proof. O

From (3.6) we have the following local inverse estimates on an element
K:

0l iy < CRE™ 0l iy, ¥m =120, v € Py(K), (3.7)

where C' depends only on p, m, and the shape regularity of the element K.

3.2. The energy error estimate

Let © be a polyhedral domain in R? and {M;} be a regular family of
triangulations of the domain. Let V}, be the piecewise linear conforming finite
element space over My, Denote V! = V,, N H}(Q). Let u € H}(Q) be the
weak solution of the variational problem

a(u,v) = (f,v)  Vve Hy(Q), (3.8)
and uy, € V,? be the corresponding finite element solution
alup,vp) = (f,on) Vo € V. (3.9)

We assume the bilinear form a : H () x H} () — R is bounded and H}(2)-
elliptic:

la(u, )| < Bllulla oVl alu,u) > allulfpng), Yuve Hy(Q).

Then we know from Lax-Milgram Lemma that (3.8) and (3.9) have a unique
solution u, uy, respectively.



34 3. CONVERGENCE THEORY OF FINITE ELEMENT METHODS

THEOREM 3.9. If the solution u € HZ(Q) has the regularity u € H%(Q),
then there exists a constant C independent of h such that

[w = unll (@) < Chlulgz ).

PRrOOF. By Céa lemma and the finite element interpolation estimate in
Theorem 3.6,

lu = upl[gro) < C ir€1‘f/0 lw = vnll g (0) < Cllu — Thul o) < Chlul o).
vpEV)

0

If the solution of the problem (3.8) does not in H?(2), we still have the
convergence of finite element methods.

THEOREM 3.10 (Convergence). If the solution u only belongs to H}(€2),
we still have

lim ||u — u =0.
P | hHHl(Q)
Proor. We only need to prove

li inf - =0.
hl_rf})vhlgv}?ﬂu Unl 1 (0)

For u € H}(Q) and any € > 0, there exists a function v. € C§°(£2) such that
v = vell () < e
On the other hand, by the interpolation estimate in Theorem 3.6,
[ve = Invell () < Chlve|m2()-
Thus

inf flu—wvp|lgro) < [Ju— Ihvell ) < €+ Chlve| g2(q)-
Uh€V£

By letting h — 0 we get

limy, o inf |ju— Unllpio) < € for any e > 0.
thV,?

This completes the proof. O
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3.3. The L2 error estimate

We assume the adjoint variational problem of (3.8) is regular in the fol-
lowing sense

(i) For any g € L%(Q), the problem
a(v,9g) = (g.:0) Ve HYS) (3.10)
attains a unique solution ¢, € H2(2) N H (Q);
(ii) There exists a constant C' such that
legllr20) < Cllgllrz(q)-

THEOREM 3.11. Assume the solution of problem (3.8) u € H?(Q) and
the adjoint problem is reqular. Then there exists a constant C independent

of h such that
[ — unllr2(0) < CB?|ulp2(q)-

PROOF. For g = u — uy, let ¢4 be the solution of (3.10). Then
(U - uhvg) = CL(U — Up, SOQ) = (I(U — Up, SOg - Ih@g)
< Bllu = upll g lleg — Inegll (o)
< CR®|ul 2yl @gl 20
<

Ch?||gll 2o lul r2(0) - @
This completes the proof. O

The argument used in the proof of Theorem 3.11 is termed Aubin-Nitsche
trick in the literature.

Bibliographic notes. The results in this chapter are taken for Ciarlet
[23] to which we refer for further developments in the finite element a priori
error analysis. The Deny-Lions Theorem is from [26]. The Bramble-Hilbert
Lemma is proved in [13].

3.4. Exercises

EXERCISE 3.1. Let m > 0 and let 1 < p < oo. Show that, under the
conditions of Lemma 3.2, there exists a constant C' = C(m, p,d) such that

”[)‘Wm,p(ﬂ) < CHBHm’ det B‘_l/p"l}’Wm,p(Q)7

[olwmno) < CIUB™™] det BIYP[6]ymp -


modiker-pc
附注
证明过程本身可以导出很多结论
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EXERCISE 3.2. Under the assumption of Theorem 3.8, show that
thHLI’(E)Q) < Ch=/P HUhHLp(Q) Vv € Xp.

EXERCISE 3.3. Let K be an element in R?* with diameter hx. Prove the
scaled trace inequality

||U||L2(8K) <C (h}(/2||vv||L2(K) + hl_(l/2||v||L2(K)) Vove Hl(K)

EXERCISE 3.4. Let {M},} be a regular and quasi-uniform family of trian-
gulations and V}, be the H'-conforming linear finite element space. Let Qj,
be the L2-projection to V;, € HY(Q), i.e.,

(Qrv,vp) = (v,v) Y vp € V.
Show that [|Qnv|l g1(q) < Cllv]lg1(q) for all v € H'(Q).



CHAPTER 4

Adaptive Finite Element Methods

The adaptive finite element method based on a posteriori error estimates
provides a systematic way to refine or coarsen the meshes according to the
local a posteriori error estimator on the elements. The purpose of this chapter
is to describe the basic idea of the adaptive finite element method using the
example of solving the Poisson equation.

4.1. An example with singularity

We know from Chapter 3 that if the solution of the elliptic problem Lu =
f has the regularity v € H?(€2), then the linear finite element method has
the optimal convergence order O(h). For the domain with reentrant corners,
however, the solution is no longer in H2(£). So the classical finite element
method fails to provide satisfactory result. The purpose of this chapter is to
construct one way to attack this problem. But first we construct an example
to illustrate the singular behavior around reentrant corners.

FIGURE 1. The sector S,,,.

We consider the harmonic functions in the sector S, = {(r,0): 0 <r <
00, 0 < 0 < w}, where 0 < w < 27. We look for the solution of the form
u = r*u(f) for the Laplace equation —Awu = 0 in S, with boundary condition
u =0 on I't UT'y, where

I={(r0:r>0 0=0 , Io={(r,0): r>0, 0=w}

37
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Let u = r*u(@). Since in polar coordinates

d*u  10u 1 9%u

A=W 10, L0
Y 8r2+7"87"+r2892’

we have
Au = ol — Dr*2u() + ar® 2u(0) + r* 24" (0) = 0,
which implies
W(6) + a2pu(8) = 0.

Therefore pu(6) = Asinaf+ B cos af. The boundary condition 1(0) = p(w) =
0 yields that o = k7 /w and p(0) = Asin(%’rﬁ), k=1,2,3,---. Therefore, the
boundary value problem Au =0 in S,,u =0 on I'; UT's has a solution

T

u=r%sin(af), a=—.
w

LEMMA 4.1. u & H?(S,, N Bg) for any R >0 if 7 < w < 2.

ProOF. By direct calculation

/ 0%u
Q

2 R (rw
52 dx = / / la(a — 1)ro—2 sin(a@)ﬁrdrd@
o Jo

w R
=a*(a— 1)2/ | sin?(a)|2d6 - / r203dr
0 0

2(a—1)|0R‘

=cr
This completes the proof. O

EXAMPLE 4.1. Let us consider the Laplace equation on the L-shaped
domain € of Figure 2 with the Dirichlet boundary condition so chosen that
the true solution is u = r2/3sin(20/3) in polar coordinates.

Let M}, be a uniform triangulation of 2, and uj be the solution of the
linear finite element method over M. Since u ¢ H?(2), the H! error esti-
mate of uy in Theorem 3.9 does not hold for this L-shaped domain problem.
To find the convergence rate of the linear finite element approximation wup,
we solve the L-shaped domain problem using a sequence of uniform refined
meshes M; which is obtained by connecting the edge midpoints of M;_;
starting from the mesh M shown in Figure 2 (left). Figure 2 (right) plots
the H' error ||u — uhj||H1(Q) versus 2/ = hg/h; in log-log coordinates, where
up; is the finite element approximation over M, and h; is the maximum
diameter of triangles in M. It shows that the following error estimate holds
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for the linear finite element approximation of the L-shaped problem over
uniform triangulations:

lw — wp | g2 () < CR*3. (4.1)

The implementation details of this example are given in Section 10.2.

1 10°

0.5
S .
0 5 107 Slope: -2/3
T
-0.5
10_2 0 1 2

-1 10 10 10

-1 -0.5 0 0.5 1 5

FiGURE 2. Example 4.1: the L-shaped domain and the ini-
tial mesh (left). The H! error versus 2/ in log-log coordinates
and the dotted reference line with slope —2/3 (right).

4.2. A posteriori error analysis

Let Q ¢ R? (d = 2,3) be a bounded polyhedral domain and M}, be a
shape regular triangulation of ). The set of all interior sides of the mesh Mp,
is denoted as By,. Let V}, be the standard H'-conforming linear finite element
space, V}? =V, HH&(Q). For any K € My, let hx be the diameter of K. For
any e € By, with e = K1 N Ko, let Q. = K7 U K5 and let h. be the diameter
of e as before.

We consider the variational problem to find u € H}(Q2) such that

(aVu, Vv) = (f,v) Vv e HH(Q), (4.2)

where a is assumed to be a piecewise constant function, f € L?(€2), and  is
not necessarily convex. Suppose that a(x) is constant on each K € My,.
Let uy, € V,? be the finite element solution of the discrete problem

(aVup, Vop) = (f,vp) Voo, € V2. (4.3)
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In this section, we first introduce the Clément interpolation operator
for non-smooth functions, then introduce the a posteriori error estimates
including the upper bound and lower bound.

4.2.1. The Clément interpolation operator. The Clément interpo-
lation operator to be introduced has a definition for any function in L'(Q),
comparing to the Lagrange interpolation operator which is defined for con-
tinuous functions.

Let {xj}]jzl be the set of nodes of the mesh My, and {¢; {:1 be the set
of nodal basis functions. For any z;, define S; = supp(¢;), the star surround
xj. Since the triangulation My, is regular, the number of elements in S; is
bounded by a constant depending only on the minimum angle of the mesh
M;,. Consequently, the macro-elements S; can only assume a finite number
of different configurations.

Denote by A = {S} the set of reference configurations. The number of
reference configurations #A depends only on the minimum angle of Mj,. For
any S;, let Sj be the corresponding reference configuration in A and let F}; be
a C%-diffeomorphism from S*j to S; such that F;| is affine for any K cC Sj.
Define R; : L'(S;) — Py(S;) the L? projection operator by

Rj’lz S Pl(gj) : /g,(Rﬂ&)@hdx = /S IZJ@hd:E Yoy € Pl(gj), (4.4)

J

for any 1) € Ll(gj). For any v € L'(€), denote by 1/A;j =1 o F}j. Let {mj}}']:1
be the set of interior nodes. The Clément interpolation operators I1; and H%
are then defined by

J
0y LNQ) — Vi, Twt = () (F; ()5,
j=1

J
s LHQ) = Vi, I =) (Rjdy)(F} (7).
j=1
THEOREM 4.2. There exists a constant C depending only on the minimum
angle of My, such that for any 1 € H}(Q)
[ — 4| 2y < ChilVl 2 ) VK € My, (4.5)

[ = Thbll 2y < ChZ [V 2oy Vee By,  (4.6)
VIR 2y < CUVY N (i) VK € My, (4.7
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where K is the union of all elements in My, having nonempty intersection
with K, and € = K1 U Ky with e = K1 N K.

PROOF. The proof is divided into three steps.

1°) (4.6) and (4.7) are direct consequences of (4.5). Let g = ITI\ [ dx
be the average of ¢ on K, then it follows from the local inverse estimate in
(3.7), Theorem 1.10, and (4.5) that

VI 20y = ||V(H ¥ — i)l r2(r) < Chig 1Y — ¥k |l r2(x
< Chyg (|11 — @Z)HL2 ) + 1v = Vkll2 k)
S OVl ey

On the other hand, by the scaled trace inequality in Exercise 3.3, for e C 0K

for some K € My,
1% = Tl 200y < C (he Y21 — ]| 2y + B2V (0 — TO0) 22y
< ORIV 2y < Che2 VYl 2 o)

2°) We have, from Theorem 3.1 and the inverse inequality, for any 1/3 €

H'(S))
1y — RWHp(gj) < ﬁeIiD?(ij) v —13HL2(SJ.) < C||V1/’”L2(§j)7 (4.8)
VR 25y = VR (D = b )l 25,y < Ol R; (% — %) 23,
CHw 1/}5 HL2 5 DI C”v¢"L2 (4'9>
Denote by h; the diameter of S;. Since Zj_l ¢; = 1, we have
=Tl 2y = | D (@ = Ritb) (B @) il 2,
z; €K
<C Z [ — (B (F; () HL2 55)
z; €K
<O |y - <Rﬂ/>j><F;1<mj>>HLz(gJ)
:EjEK
< Z h;-l/g( j%HLz + HRﬂ/}J (Ajzﬁj)(ijl(in))“Lz(gj))
Z‘jEK
< 2 121 = iyl ogs,y + 19 Rl 2cs,))
:BjGK

< Y B2V, < Chicl VYl 2 iy

:Z:]‘EK
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3°) To conclude the proof we must consider the case when K € M, has
a node on the boundary 0f2 because, otherwise, ng = Iy on K. Notice
that if x; € 0Q then there exists a side e; C 02 including z; as one of its
vertices. Let é; = Fj_l(ej). Since 1 = 0 on e; for ¢ € H&(Q), we have
/ Ry,

s -1LU ;
)55 03 < o) ) = 27 [ R+

C||VRJ¢]HL2 +C||¢J j¢j||L2(éj)
—d
< OVl a5, < Ch IV 1as,)-

[Z1]

Therefore, on boundary element K € My,

Th — Mol oy < D N (B (@) 165112y

Tj €ONNK

<O S TPVl s, hd
IJGBQQK

<C Y bl Vel < Chicl Vol -
z; €00ONK

This completes the proof of the theorem. O

4.2.2. A posteriori error estimates. For any e € B;, with e = K1NK>
we define the jump residual for uy by

Je = ([[a(a:)Vuh]] . V) ‘e = a(z)Vup|k, - v1 + a(x)Vup|k, - v2, (4.10)

where v; is the unit outer normal of 0K restricted to e. For convenience,
define J, = 0 for any side e C 9€). For any K € My, define the error
indicator ng by

My = h%{HfH%Q(K) + hi Z H‘]€||2L2(e)' (4.11)
eCOK
For any domain G C Q let ||| - || = [la'/?V - lz2(c)- Note that ||| - [[|o is

the energy norm in H} ().

THEOREM 4.3 (Upper bound). There exists a constant C1 > 0 which
depends only on the minimum angle of the mesh M}, and the minimum value

of a(x) such that
1/2

llu —unllo <Cu | > ni
KeM,,
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PROOF. Define R € H~1(2) as the residual through
(R,0) = (£,9) = (aVun, V) = (aV(u—up), Vo), Vo€ Hy(Q).

By (4.3) we obtain the Galerkin orthogonality (R,vs) = 0 for any v, € V0.
Thus

(aV(u—up), Vo) = (R, o — )
= (f,o =) — (aVun, V(p — )

= (fe—The)— Y /aVUhV(«P—H%sO)dw
KeMy, K

= (fro =) — Z/ aVuy, - v(p —hp) ds
KeM,, 9K

=Y /Kf(cp—H?Lgo)dx— PN RACESKE

KeMy, eeBy, €
1/2

<C > I flleu IVell2

KeMy,

1/2
+C [ D IhP T2 IVellr2
ecBy,
1/2

<ol ) el

KeMy,

The theorem follows by taking ¢ = u — uj, € HE(Q). O

THEOREM 4.4 (Local lower bound). There exists a constant Co > 0 which

depends only on the minimum angle of the mesh My, and the maximum value
of a(x) such that for any K € My,

nic < Colllu —unllffes +Co D RN = frllTecey:
KCK*

where fx = |Tl(| [ fdx and K* is the union of all elements sharing at least
one common side with K.

PRrROOF. From the proof of Theorem 4.3,

(aV(u—up), Vo) = Y /fgodx—z Jepds, Vo€ HY(Q). (4.12)
KeMy, K e€By, €
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The remains of the proof is divided into two steps.

1°) For any K € My, Let ox = (d + 1)™ A1 --- Agy1 be the canonical
bubble function in K, we choose the constant ax such that ¢ = axpk
satisfies

frede = B fic |72k
K
It is clear that

_ Wl fk|IK]

1—4
T [eerdr < Chye * bk fre|l 2 (k)

|ak|
and thus
hlellzzi, 1Vl < Clax| gt |K1Y? < Cllhi frell 22 e)-
Now
hi FIF 200y < 20 b ficl Ty + 200k (F = )Tz )

and it follows from (4.12) and ¢ € H}(K) that
ISl = [ Scedo = [ (= Podot [ a¥(u— )Tz
K K K
<Ok (f = fro)ll 2o lIhg el 2y + Clilw = wnlll e Vol L2y
9 9 1/2

<Cllhk fr |2 () <|||U —upll|lx + [[hr (f = fK)Hp(K)) :

Therefore,
Vorc 13 acy < © (W= wnllc + orc(F = f10)3c)) -

2°) For any side e C 0K NQ, let 1, = d?\1 - - - A\g be the bubble function,
where A1, -+, A\q are the barycentric coordinate functions associate with the
nodes of e. Denote by ¥ = B.1. the function satisfies

/eJew = hKHJeH%g(e),
It is easy to check that
1—4d
1Bel < ChiclTe] < Chye 2Bl el 2o
and thus

— — 1/2
Wit llz@ns IVl < C 1Bl bt 196 < OB ) o)
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Now it follows from (4.12) and ¢ € H}(€2.) that

hicl|Tell72 ) :/Jez/;:/Q fl/}dx—/ﬂ aV (u — up)Vipdz

1/2

1/2

< ChY2 ) e ( ) ||hKf||%2(K)+u|u—uh|uée> .
KCQe

This completes the proof upon using the estimate for ||hx fl|12(k)- O

The lower bound in Theorem 4.4 implies that up to a high order quantity

1/2
(ZKU(* h2||f — fKH%Q(K)) , the local energy error |||u — up|||x+ is bound
from below by the error indicator ng-.

4.3. Adaptive algorithm

Based on the local error indicators, the usual adaptive algorithm solving
the variational problem (4.5) may be described as loops of the form

Solve — Estimate — Mark — Refine. (4.13)

The important convergence property, which guarantees the iterative loop
(4.13) terminates in finite number of iterations starting from any given initial
mesh, depends on the proper design of marking strategies. There are several
marking strategies proposed in the literature. Here we give a brief review.

1. The error equidistribution strategy: Given # > 1 and a tolerance
TOL, mark all elements K such that
K = QLOL
= \/M b
where M is the number of elements in My,.
2. The maximum strategy: Given 6 € (0,1), mark all elements K such
that

> 60 max -
Nk = K’thnK

3. The Dorfler Strategy. Given 6 € (0,1], mark elements in a subset
Mh of M}, such that

i, = 0nmy,- (4.14)

Given a triangulation My and and a set of marked elements M g C My,
the refinement of Mg usually consists of two steps: refining the marked ele-
ments and removing the hanging nodes. We make the following assumption



46 4. ADAPTIVE FINITE ELEMENT METHODS
on the first step:
Any marked simplex is subdivided into several subsimplices such that

1
the measure of each subsimplex < — X the measure of its father simplex.
m

(4.15)

Here m > 1is a fixed number. For example, in the case of one time bisection,
m = 2. We remark that some unmarked simplices may be refined in the step
of removing hanging nodes.

4.4. Convergence analysis

In this section we consider the convergence of the adaptive finite element
algorithm based on the Dorfler strategy. We start with the following lemma.

LEMMA 4.2. Let My, be a refinement of My such that Vg C Vy,. Then

the following relation holds
llw = unllE = lllu —wrllé = lun — unllld.

PRrROOF. The proof is straightforward by the Galerkin orthogonality since
Up — U € VI(}. O

Let

e + = hacl gy + o D IVelfay,  where huc = [KJY9. (4.16)

eCOK

It is clear that there exist positive constants c¢; and ¢y such that

CoNK S NK < ClIK- (4.17)
The modified the error indicator 7k enjoys the following reduction property.

LEMMA 4.3. Let My C My be the set of elements marked for refinement
and let My, be a refinement of My satisfying the assumption (4.15). Then
there exists a constant C3 depending only the minimum angle of the meshes
and the maximum value of a(x) such that, for any 6 > 0,

- - 1 . 1
i, < (4 0) (e, — (1= ), ) + (14 5)Calln = wrl

Ym
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PrOOF. From the Young inequality with parameter d,

Ban = D (Riclf e + i D ([aV s +un = um)] - v)], 720, )

KeMy, eCOKNQ
<Y (B + W+ > [[([aVun]-v)|. |5, )
KEMh eCOKNQ

5 2 b >0 eV =] V)]s,

KeMy eCOKNQ
=I+41I.

Note that ([aVug] - V)‘e = 0 for any e in the interior of some element
K' € My and that hg = |K|'/? < J=Hy for any K ¢ K’ € Mpy. We

T
have
r<+8) Y (B e Y [([eVun]-#) ]2, )
KCK/EMH\MH eCOKNQ
) N S (X T A A S (21 RO W
KCK’EMH eCOKNQ
<040 Y (Tl Begen + Ho Y ([aVun]-»)|,|250,0)
K'GMH\MH e/ COK'NQ
1+9 ~ ~
t 2 Elf ey + oo S [[([6Vun] )]s
K'eMy e/ COK'NQ

) vty + oy = () (R — (1= ), )

Next we estimate II. For any e € By, denote by K7 and Ky the two elements
having common side e. We have

II<Cl+ ZhH [aV (up, — up)]] |HL2
e€By,
1
=C(1+ 5) > hel|aV (up — um)lk, - vi + aV (un — u)|x, - vall72 (0
eeBy,
1
gC(l + 5) Z he( HaV(uh - U’H)‘Kl H%Q(e) + Hav(uh B uH)‘K2H%2(3) )
eeBy,
1 1
<C(1+5) D NV (un —um)lie,um, < (L+ 5) Calllun — unl|.
echBBy,

The proof follows by combining the above three estimates. O
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THEOREM 4.5. Let 0 € (0,1], and let {My,up},o be the sequence of
meshes and discrete solutions produced by the adaptive finite element algo-
rithm based on the Dérfler marking strategy and the assumption (4.15). Sup-
pose the family of meshes { My} is shape reqular. Then there exist constants
v>0,Cyp >0, and 0 < o < 1, depending solely on the shape-regularity of
{My}, m, and the marking parameter 0, such that

1/2
(Il = ey + 7, ) < Coa. (4.15)

PRrOOF. We first show that there exist constants 79 > 0 and 0 < o < 1
such that
Il = il +707a,, < 02 (= welly + 207, ). (4.19)

For convenience, we use the notation

. . 1
er = [[lu —willla, =M, Ai=1- T

From Lemma 4.2, Lemma 4.3, and the Dorfler strategy, we know that

. N 1
M1 < (L+0)(1=20%) 7 + (1+ 5)03@% —€t1)- (4.20)

Next by Theorem 4.3 and (4.17) we have
er < 6’177,3, where C1 = Cy/cs. (4.21)

1
Let g = (1—1—5)03. Then, it follows from (4.20) and (4.21) that, for 0 < ¢ < 1,

1 1
ery1 + Eﬁiﬂ <ej + B(l +6)(1— X6?)ijp

<cet+ (1= 00 + 501 +8)(1- %) )if

¢ (4 5 (5 M-8 + UL+ 8) (L= 2 )R).

We choose § > 0 such that (1 + §)(1 — A?) < 1 and choose ¢ such that
BCH1 = ¢)C1+ (114 6)(1 — A6%) = 1 which amounts to take
(1+8)(1 — 262 + BCy -

1+ 551

This implies (4.19) holds with

o

1 S(1+6)(1—X62) + (1+6)C.Cs
VO_B_(1+5)03 '

and o? =( = =
d+(140)C1C3
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To conclude the proof, we note that by (4.17) 7 > comy and thus (4.18) is
valid with

~o\1/2
v =0c3 and Co = (|llu—uoll3 +~03) "

This completes the proof of the theorem. O

In two dimensional case, extensive numerical experiments strongly sug-
gest that the adaptive finite element method based on a posteriori error
estimates described in this chapter enjoys the remarkable property that the
meshes and the associated numerical complexity are quasi-optimal in the
sense that the linear finite element discretization error is proportional to
N~Y2 in terms of the energy norm, where N is the number of elements of
the underlying mesh. Theorem 4.5, however, does not provide any hint on
this important property.

ExXAMPLE 4.6. Consider the L-shaped domain problem in Example 4.1 us-
ing the adaptive algorithm base on the maximum strategy. Figure 3 plots the
mesh after 10 adaptive iterations (left) and plots the H! errors |lu — uk||H1(Q)
versus Ny in log-log coordinates (right), where wuy is the finite element ap-
proximation over My, the mesh after k iterations, and N} is the total number
of degrees of freedom in Mj. It shows that

lu = ug 10y ~ O(N, /), (4.22)

is valid asymptotically as k — oo. We notice that the convergence rate
is quasi-optimal. The implementation details of this example are given in
Section 10.3.

Bibliographic notes. The study of adaptive finite element methods
based on a posteriori error estimates is started in Babuska and Rheihnbold
[6]. The upper bound in Theorem 4.3 is from Babuska and Miller [5] and the
local lower bound in Theorem 4.4 is from Verfiirth [50]. Further results on the
a posteriori error estimates for stationary problems can be found in the book
Verfiirth [51]. The convergence of adaptive algorithms is first considered in
Dorfler [27]. Section 4.4 is based on the work of Cascon et al [18] where the
convergence of the adaptive finite element methods based on Dérfler strategy
using the error indicator 7 is proved. The Clément interpolation operator
for non-smooth functions is introduced in [24]. Studies on the quasi-optimal
convergence of adaptive finite element methods can be found in [18] and the
extensive references therein.
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FiGure 3. Example 4.6: the mesh after 10 adaptive itera-
tions (left). The H! error versus the total number of degrees
of freedom in log-log coordinates and the dotted reference line
with slope —1/2 (right).

4.5. Exercises

EXERCISE 4.1. Find the general solution of the form u = r*u(0) to the
Laplace equation —Awu = 0 in the sector S, which satisfies the boundary

conditions
(i) a% —0on Ty UTy;
o
(il) =0 on Ty, o= = 0 on Iy.

ov
EXERCISE 4.2. Show that there exists a constant C' depending only on
the minimum angle of M, such that (4.8) and (4.9) hold.

EXERCISE 4.3. Let Q be a bounded polyhedral domain in R? (d = 2, 3).
Prove the following error estimate for the Clément interpolation operator

lo = Wnell iy < OB Il ey Voo € HA(), k=0,1.

EXERCISE 4.4. Let Q C R? be a bounded polygon. For f € L?(Q) and g €
C(09), let u € HY(Q) be the weak solution of —Au = f in Q, u = g on .
Let up € Vi be the conforming linear finite element approximation such that
up, = Ipg on 9. Derive an a posteriori error estimate for ||V (u — up)||r2(q)-

EXERCISE 4.5. Let Q = (0,1). Derive a posteriori error estimate for the
conforming linear finite element approximation to the two-point boundary

value problem —u” = f in Q,u(0) = o, v/ (1) = .



CHAPTER 5

Finite Element Multigrid Methods

The multigrid method provides an optimal complexity algorithm for solv-
ing discrete elliptic boundary value problems. The error bounds of the ap-
proximate solution obtained from the full multigrid algorithm are comparable
to the theoretical error bounds of the the finite element solution, while the
amount of computational work involved is proportion only to the number of
unknowns in the discretized equations.

The multigrid method has two main features: smoothing on the current
grid and error correction on the coarse grid. The smoothing step has the
effect of damping the oscillatory part of the error. The smooth part of the
error can then be corrected on the coarse grid.

5.1. The model problem

Let Q ¢ R? (d =1,2,3) be a convex polyhedral domain and
a(u,v) = /(aVu - Vv + fuv) dz (5.1)
Q

where o and 8 are smooth functions such that for some ag, a1, 81 € RT we
have ap < a(z) < a3 and 0 < B(z) < By for all x € Q. We consider the
Dirichlet problem: Find u € V' = H} () such that

a(wv) = (f0)  Yvev, (5.2)

where f € L?(Q) and (-,-) denotes the L? inner product.

Let M}, be a sequence of meshes of €} obtained successively by standard
uniform refinements. Let Vj, be the H'-conforming linear finite element space
over M}, whose functions vanish on 0f2. The discrete problem on V} is then
to find uy € Vj, such that

a(ug,vg) = (f,vx) YV op € V. (5.3)

We introduce the L? and H' projection operators

(Qrp,v) = (pyv),  a(Pu,vr) = a(,vr) Yo, €V,
51
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where ¢ € L?(Q) and ¢ € H}(Q). Then by using the Aubin-Nitsche trick
(cf. Section 3.3) we have

lw — Prwl|p2i0) < Chillwlla Vw € Hy(9),

/2.

where hy = maxgem, hx and ||, = a(-,-) From v — P,_jv = (I —

P._1)(I — Px_1)v, we then have the following approximation property

H(I — Pkfl)'UHLZ(Q) < Cth(I — Pkfl)UHA Voe Vk (54)

5.2. Iterative methods
Let A : Vi = Vi be defined by
(Apwg, vg) = a(wg, vy) Vv, € V.
Then the finite element scheme (5.3) can be rewritten in the form
Apur = fr = Qrf. (5.5)

Let {qb}g : 4 =1,--- ,ng} denote the nodal basis of Vj. Given any vy =
. vkﬂ-(b}; € Vj, define vy, v, € R™ as follows

()i = vhis (k)i = (Uhy Bh),  i=1,++ ,my. (5.6)
Let Ek = [a( i,%)]?;:l be the stiffness matrix. We have the following

matrix representation of (5.5):
Ay, = f., (5.7)
We want to consider the following linear iterative method for (5.7): Given
0 ¢ R™
2"t = 4™ 4 R (f — Aa™), n=0,1,2,.--. (5.8)

ﬁk is called the iterator of Zk Note that (5.8) converges if the spectral radius
p(I — R Ag) < 1. If we define a linear operator Ry : Vi, — V}, as

Nk

Reg =Y (Ri)ij(g.61) b (5.9)

ij=1

then ]/%7.;} = szﬁ, so that the algorithm (5.8) for the matrix equation (5.7) is
equivalent to the following linear iterative algorithm for the operator equation
(5.5): Given u® €V,

w™D = 4™ 4 Ru(fr — Agu™), n=0,1,2,---.
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Here we have used the fact that Azu(® = gkﬂ(”). It is clear that the error
propagation operator is I — Ry Ag.

Noting that ﬁk is symmetric and positive definite, we write Ak =D-—
L — LT with D and —L being the diagonal and the lower triangular part of
ﬁk respectively. We recall the following choices of Ek that result in various
different iterative methods:

N Richardson;
p(Ak)
ﬁk _ wD™1 Damped Jacobi; (5.10)
(D—L)™* Gauss-Seidel;
(D—L)"TD(D ~ L)™' Symmetrized Gauss-Seidel.
LEMMA 5.1. We have
i) The Richardson method converges if and only if 0 < w < 2;
i) The Richard, hod if and only if O 2
ii e Damped Jacobi method converges if and only if 0 < w < —===—;
ii) The D d Jacob hod f and only if p(D21A)
k

(iii) The Gauss-Seidel method and symmetrized Gauss-Seidel method al-
ways converge.

LEMMA 5.2. The damped Jacobi iterative method for solving (5.7) is
equivalent to the following iterative scheme in the space Vy :

g
uf ™ =l + Ri(fo - A) . Re=w)  PiAL

where P,i 1s the projection operator to the subspace spanned by {gf)}ﬂ}
a(Piwy, ¢},) = a(wg, ¢}) Y wy, € V. (5.11)
PRrROOF. From (5.11) we know that

(ZUk, ¢Z )
a(d}.. 4},
Recall that the iterator of the damped Jacobi iterative method is Ek =
wD™! = diag(w/a(¢y, 1), -+, w/a(dp*, ¢p*)). It follows from (5.9) that

P,f;wk— ¢k7 i:1,2,---,nk.

n

k
ng—wz g’% &}, WZ((k gqf)k) ZPk kg Vg € Vi,
i=1 k> ¥k i=1

which completes the proof. O
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LEMMA 5.3. The standard Gauss-Seidel iterative method for solving (5.7)
is equivalent to the following iterative scheme in the space Vi :

ul(cn—i-l) _ u]E;n) + Rk(fk o Aku](gn)% Rk = (I — Ek)A];17
where EkZ(I—P:k)"‘(I_P/i)'

LEMMA 5.4. The symmetrized Gauss-Seidel iterative method for solving
(5.7) is equivalent to the following iterative scheme in the space Vi :

where By, = (I — P*)---(I — P!) and E} = (I — Pl)---(I — P[*) is the
conjugate operator of Ey with respect to a(-,-).

The proofs of Lemma 5.3 and Lemma 5.4 are left as Exercise 5.1.

It is well-known that the classical iterative methods listed in (5.10) are
inefficient for solving (5.7) when nj is large. But they have an important
“smoothing property” that we discuss now. For example, Richardson itera-
tion for (5.7) reads as

a0 =G0 ¢ X (f, — Aa™), n=0,1,2, .
p(Ak)
Let Apgi = mich with pn < o < -+ < finyy (6305) = 85 and @ — @° =
Z?:kl ai¢ia then

U =" =Y il = wpi/ )" i

For a fixed w € (0,2), it is clear that (1 — wp;/pn, )" converges to zero very
fast as n — oo if p; is close to py,,. This means that the high frequency
modes in the error get damped very quickly.

Let us illustrate the smoothing property of the Gauss-Seidel method by
a simple numerical example. Consider the Poisson equation —Awu = 1 with
homogeneous Dirichlet condition on the unit square which is discretized by
the uniform triangulation. Figure 1 shows that high frequency errors are well
annihilated by Gauss-Seidel iterations.

For the above model problem, Brandt applied the “local mode analysis”
to show that: The damped Jacobi method achieve its optimal smoothing
property when w = 4/5; the Gauss-Seidel method is a better smoother than
the damped Jacobi method; the Gauss-Seidel method with red-black ordering
is a better smoother than the one with lexicographic ordering. We also



5.3. THE MULTIGRID V-CYCLE ALGORITHM 55

00

Fi1GURE 1. Error after 0, 3,9 and 200 Gauss-Seidel iterations,
respectively, with 2113 unknowns

note that the red-black Gauss-Seidel and Jacobi method have better parallel
features.

5.3. The multigrid V-cycle algorithm

The basic idea in a multigrid strategy is that smoothing on the current
grid and error correction on a coarser grid. Let Ry : Vi, — Vi be a linear
smoother and R}"€ be the adjoint of Ry with respect to (-,-). The multigrid
V-cycle algorithm for solving (5.5) can be written as

ul"™ =" L B(fe — Al™), n=0,1,2,-- (5.12)
where the iterator By is defined by the following algorithm.

ALGORITHM 5.1. (V-cycle iterator). For k = 1, define By = A;'. Assume
that By_1 : Viz_1 — Vi_1 is defined. For g € V}, define the iterator By : Vi —
Vi through the following steps.

(1) Pre-smoothing: For yg=0€ Vy and j =1, -+ ,m,
yj = Yj—1 + Ri(9 — Aryj-1).

(2) Coarse grid correction: Ym+1 = Ym + Br—1Qk—1(9 — ArxYm),
(3) Post-smoothing: For j =m +2,--- ,2m + 1,

yj = yj—1 + Rj,(9 — Axyj-1).

Define Brg = yom+1-
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In the following, we assume that Ry is symmetric with respect to (-,-)
and positive semi-definite. Denote by y = A;l g, then we have

Yom+1 — Y = (I — ReAp)™ (I = Br_1Qr—1Ar)(I — R Ar)" (Yo — y)-
Thus
I —BrAr = (I — RpAr)" (I — Br_1Qr—14%)(I — R Ax)™
On the other hand, for any v € Vi, wip_1 € Vi_1, we have
(Qr-1A4kvk, wg—1) = (Agvg, wr—1) = a(Vk, Wk-1)
= a(Pg-10k, Wg-1) = (Ag—1Pk—1V, Wg—1)

that is, Qr_1Ar = Ag_1Px_1. Therefore we have the following two-level re-
currence relation.

LEMMA 5.5. Let Ky, =1 — Ry Ax. Then
I —ByAr = K"(I — Pr—1) + (I —Br_1Ax_1)Px—1)K;* on V.
The following lemma is left as an Exercise 5.2.
LEMMA 5.6. We have
a(Kpv,w) = a(v, Kyw) and (Brv,w) = (v, Byw) Vou,we V.

The following abstract estimate plays an important role in the analysis
of multigrid method.

THEOREM b5.1. Assume that Ry : Vi, — Vi is symmetric with respect to
(+,+), positive semi-definite, and satisfies

a((I — RiAg)v,v) =0 VoueV. (5.13)
Moreover
(R 'v,v) < aa(v,v)  Yve (I - Pp1)Vi (5.14)
Then we have
0 < a(({ — BrAg)v,v) < da(v,v) Voue Vg, (5.15)

where § = o/ (a + 2m).

PRrOOF. We prove by induction, (5.15) is trivial when k = 1 since By =
AT, Let us now assume (5.15) is true for k — 1:

0 <a(({ —Bi_14k—1)v,v) < da(v,v) Vove V. (5.16)
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Then it follows from Lemma 5.5 that for any v € Vi,

a((I —BrAg)v,v)

=a(K'(I — Pr—1)Kj;'v,v) + a(K;"(I — By—1Ak—1)Pe—1 K{'v,v)
a((I — Py—1)K;"v, Ki'v) + a((I — Bg—1Ak—1)Pr—1 K} "v, Py_1 K} 'v)
(I = Py—1)K'v, Ki'v) = a((I — Py—1) K0, (I — Py—1)Kj'0)

VoWV
o e

For the upper bound, we have

a((I = BrAg)v,v) < a((I = Pp—1) Kj'v, Ki'v) + 0a(Pp—1 Kj'v, P Kj'v)
= (1= 0)a((I — Po_1) K™, KI'™) + da(K"v, K™v).
Now
a((I—Py—1)Kj'v, Ki'v) = (I — Py—1)K}'v, A Ki'v)
= (R, Y (I — Py_1) K0, R AR Kiv)
< (RN — Poo1) KMo, (I — Pyt K0) Y2 (R AR KM, AR KM ) /2
< Vaa((I — Po_)) KMo, KJ')Y2a((I — K KMo, KJ'w) Y2,

Thus
a((I — Py—1) K", Ki'v) < aa((I — Ki) K 'v, K'v).

Since Ry : Vi — Vi is symmetric and simi-definite, by Lemma 5.6 we know
that K} is symmetric with respect to a(-,-) and 0 < a(Kxv,v) < a(v,v).
Thus the eigenvalues of K}, belong to [0, 1]. Hence

a((I — Kp) K™, v) < a((I — Kp)Kiv,v) Y 0<i<2m,

and consequently

2m—1
1 .
2 _ 2
a((I = Kp)K{™v,0) < o~ Z; a((I = Ki) Ko, v) = 5 —a((I = K{™)v,v)
1=

This yields
a((I = BrAr)v,v) < (1 — 8)-a(v,v) + (5 - Y- 5)) (K™, K™)
2m 2m
(v,v).

This completes the proof of the theorem. O

a+2ma
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Now we define the smoothers which satisfy the assumptions in Theorem
5.1. Let

K .
V=) Vi
i=1
and denote by P,f:, Ve — Vki the projection
a(Piv,w) = a(v,w) VweV, VeV

We introduce the following additive and multiplicative Schwarz operator
K
F=D PAy
i=1
and

R = (I — E;Ey)A; ",

where Ey, = (I — PK)---(I — P}) and E}f = (I — P})---(I — PK) is the
conjugate operator of Ej with respect to a(-, ).

If K = ny, and V' = span{¢}}, then, from Lemma 5.2 and Lemma 5.4,
R} and R} are the iterators of the Jacobi method and the symmetrized
Gauss-Seidel method, respectively.

THEOREM 5.2. Assume there exist constants 3,y > 0 such that

() > Y alvhwh) < B( Y alvi, b))

1

K . .
(Y atwlw))®,

i=1 j=1 i=1 j=1 o ‘
Yoy, wy, € Vil
K
(i) inf > a(vh,vh) <yav,v) Yve - PV
“:Zszl v, i=1
viEVlz B

Then

1°) For w < 1/B, Ry, = wR{ satisfies the assumptions in Theorem 5.1
with o = y/w.
2°) Ry, = R} satisfies the assumptions in Theorem 5.1 with o = 52.
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Proo¥r. 1°) For any v € Vj,

K K K 1/2
a(Rj Agv,v) = a (Z P,iv,v) < a(v,v)%a (Z Piv, ZP;’U)
i=1 i=1

=1

X 1/2
< 61/261(7), 0)1/2 (Z a(Plw, v))

i=1
= BY2a(v,v)?a(R} Ao, v) /2.
Thus
a((I — wR{AR)v,v) =20 if  w<1/8.
Next we prove (5.14) by showing that

K
(RY) v, v) = inf E a(vi,vy) forany v € (I — Po_1)Vi. (5.17)
v=2iT Vi

P k =1
vkEVk

Denote by © = R, and v = Zfil vy, v}; € V,f. Then

K K K
(O 1lv,v) = Z(@flv,vi) = Za(Agl@flv,v,i) = Z a(P,iAgl@flv,v,i)
i=1 =1 i=1

=1

K 12 , g 1/2
< (Z a(P,iA;@_lv,P,iA,;l@_lv)) (Z a(vi,vi))

K /2 , i 1/2
(P,f;Akle—lv,@—lv)> (Za(v,i,v,g)) , (5.18)

i=1 i=1
that is
% 1/2
(©1v,0) < (v, 0 10)1/2 (Zawz?v@)
i=1
Thus
(071, v) < Z a(vy, vg,) Vo= ZU}~C
=1 i=1

—_ .

To show the equality in (5.17) we only need to take v} = P,iA,;l(%*lv. This

proves the assertion for R.
2°) Since R = (I — E}Ey)A; ", we have

a((I — RZ”A;C)U,U) = a(Ev, Exv) = 0.
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Note that (5.18) holds for any invertible operator on V. By letting © = R}
n (5.18) we have

” 1/2
my\— a/ pm m 1/2 T
(R v, v) < (RE(RI) ™o, (R o) / (Za(vk7vk)> :
i=1
It follows from (ii) that
(B Yo,v) <Y (REBRE) o, (RE) ™ 10) Pa(v, 0)12. (5.19)
Now we show
(Rgv,v) < 62( ?U,v), VveV,. (5.20)
Denote by y = A,:lv, then
(Riv,v) = ((I = E*E)A; v,0) = a((I = E*E)y,y) = aly, y) — a(Exy, Exy)
Let EY =T and E|, = (I — P})---(I-P}), i=1,--- ,K. Then
Ei =(I-P)E;" and Ef = E;.
Therefore
a(Byy, Bry) = a((I = PO E 'y, By 'y)
= a(E; 'y, E; ) — a(PLE 'y, By M),

which yields
K

a(Epy, Exy) = a(y,y) = Y a(PLE 'y, B 'y).
i=1
Consequently,

K
Rk v, v Za P,;E,ifly,E,ifly).
i=1
On the other hand,
K K K
(Riv,v) = > (Pidi v,0) = > a(Piy,y) = ) _a(Piy, Py).
i=1 i=1 i=1

We deduce from Ei = Ei_l — P,g Ei_l that

K
Eiy=y-> PlE ™y
=1
and thus

) 7
Ply=PiEy+ P> PE'y=PY PlEy.
j=1 j=1



5.4. THE FINITE ELEMENT MULTIGRID V-CYCLE ALGORITHM 61

Now
(Rfw,v) =Y a(Ply,Y PIE]'y)=> > a(Ply, PLE] 'y)
i=1 j=1 i=1 j=1
1/2 [ g 1/2
<B (Z a(Ply, P;iy)) > a(PlE] 'y, PLE 'y)
i=1 j=1
a 1/2( 1/2
= B(Rkv,v) (Rk v,v) .
This proves (5.20). Finally, we deduce from (5.19) that
((R) ™ v.0) < A2 (R o.0) Palv, ).

This completes the proof of the theorem. O

5.4. The finite element multigrid V-cycle algorithm

Now we apply the abstract result in last section to solve the discrete el-
liptic problem (5.3). Let K = ny and V}' = span{¢} }, the subspace spanned
by nodal basis function ¢%,i = 1,2, ,ng. Then the condition (i) in Theo-
rem 5.2 is easily satisfied by the local property of finite element nodal basis
functions. For any v € (I — Py_1)Vj, it remains to find the decomposition
v=> " vl vl €V sothat (ii) of Theorem 5.2 is satisfied. To do so, we
take the canonical decomposition v = Y% v(xl)¢l with v}, = v(z})¢l € V{.
It is easy to see that

ng Nk
D vkliFz ) < O hiv(rh)* < Clloll7aq)
=1 =1

by the scaling argument. Thus by the inverse estimate and (5.4) we get

ng s
Za(”iavi) < Chy” Z [k ll72(0) < Chl:2HU”%2(Q) < Ca(v,v),
i=1 i=1

for any v € (I — Py_1)Vj.

THEOREM 5.3. Let By be the standard multigrid V-cycle with symmetric

Gauss-Seidel relaxation as the smoothing operator. Then the exists a constant
C independent of My and m > 1 such that

C

T—Bedpl, < ——,
| KAkl A Cxm
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where

a((I —BLAE)v,v
0A£vEV, V] 4

EXAMPLE 5.4. Consider the Poisson equation —Awu = 1 with homoge-
neous Dirichlet condition on unit square discretized with uniform triangula-
tions. We solve the problem by the V-cycle algorithm (5.12) with zero initial
value, Gauss-Seidel smoother (m = 2), and stopping rule

= ~ = ~ (0 _

17— A oo /1 Fx = Ariy oo < 107°.
The initial mesh consists of 4 triangles. Table 1 shows the number of multi-
grid iterations after 1-10 uniform refinements by the “newest vertex bisec-
tion” algorithm. The final mesh consists of 4194304 triangles and 2095105

interior nodes. For an implementation of the V-cycle algorithm we refer to
Section 10.4.

N | 5 (25| 113|481 | 1985 | 8065 | 32513 | 130561 | 523265 | 2095105
[ 13,61 6 7 7 7 7 7 7 7
TABLE 1. Number of multigrid iterations (/) versus number

of degrees of freedom (NN) for Example 5.4.

5.5. The full multigrid and work estimate

We shall now describe a more efficient multigrid technique, called the full
multigrid cycle. Recall that wuy, is the k' level finite element solution. By
the convergence theory of finite element methods in Chapter 3 we have the
following error estimates:

lu —ull4 <cihg, k=1, (5.21)

where ¢; > 0 is a constant independent of k. The full multigrid method
(FMG) is based on the following two observations:

(1) ug—1 € Vi—1 C Vg is closed to ug € Vi and hence can be used as an
initial guess for an iterative scheme for solving uy;

(2) Each uj can be solved within its truncation error by a multigrid
iterative scheme.

ALGORITHM 5.2. (FMG).
For k = 1, @1 = Aflfl;
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For k > 2, let 4y = u_1, and iterate Uy < U + Br(fr — Apty) for [
times.

Denote by hy = Max K e M, |K|'/. It is clear that there exists a positive
number p > 1 such that hy = IN”Lk_l/p and that Ay is equivalent to hyg, that
is, there exist positive constants co and c3 depending only on the minimum
angle of the meshes such that CQilk < h; < c;;ﬁk. The following theorem
says that the above full multigrid algorithm can produce results with errors
comparable to the errors of the finite element solutions.

THEOREM 5.5. Assume that Theorem 5.1 holds and that ' < 1/p. Then

capdt
g — |, < (3p cihp, k> 1.

ca(1 — pdt)
ProOF. By Theorem 5.1 we have
lur — il 4 < 6" Nl — g1l 4 < 6 (lJur — unall 4 + llur—1 — @r—1l o).

Noting that ||u; — @1]| 4 = 0, we conclude that

k-1 k—1
= il 4 <Y ()" fr—nir = wrnll g <D (6" lu—ur—nll 4
n=1 n=1
k-1 k-1
< Z 5l nhk n < Z(‘Sl)nhk n
n=1 n=1
Al cics  pdt
< ]NI 51 n €163
X C1C3 kZ(p ) Cs 1_p51 k-
n=1
This completes the proof. O

‘We now turn our attention to the work estimate. It is clear that

L Lo (ph)*. (5.22)

ni 1myvi h% hz

THEOREM 5.6. The work involved in the FMG is O(ny).

PROOF. Let W}, denote the work in the k" level V-cycle iteration. To-
gether, the smoothing and correction steps yield

Wi < Cmng + Wi_1.

Hence
Wi < Cm(ny +ng + -+ 4+ ng) < Cng.
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Let W}, denote the work involved in obtaining 4y, in the FMG. Then
Wi < Wi—1 + IWj, < W1 + Cny.

Thus we have

Wk QC(TLl—F“‘—Fnk) < C?”Lk
This completes the proof. O

This theorem shows that the FMG has an optimal computational com-
plexity O(ny) to compute the solution within truncation error. In contrast,
the computational complexity of the k' level V-cycle iteration is not op-
timal, because its number of operations required to compute the solution
within truncation error is O(ny log ﬁ) = O(nylogny).

5.6. The adaptive multigrid method

The distinct feature of applying multigrid methods on adaptively refined
finite element meshes is that the number of nodes of M} may not grow expo-
nentially with respect to the number of mesh refinements k. In practice, local
relaxation schemes are used in applying multigrid methods on adaptively
refined finite element meshes.

Let ./\~/k be the set of nodes on which local Gauss-Seidel relaxation are
carried out

Ni={z €N, : zis anew node or z € Nj_ but ¢7 # ¢7_, 1,

where ¢7 is the nodal basis function at the node z in V. For convenience we
denote N}, = {a],: j=1,--- ,7}. The local Gauss-Seidel iterative operator
is given by
Ri= (I = (I = P*) (I - P))AL
The following theorem is proved by Wu and Chen [52].

THEOREM 5.7. Let the meshes My, 0 < k < J, be obtained by the “newest
vertez bisection” algorithm in Section 10.4. Let each element K € My is
obtained by refining some element K' € My._1 finite number of times so that
higr < Chg. Then the standard multigrid V-cycle with local Gauss-Seidel
relaxation satisfies

HI — BkAkHA <6

for some constant § < 1 independent of k and M.
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Bibliographic notes. There is a rich literature on the mathematical
theory of multigrid methods. We refer to Brandt [14], the book Bramble
[12], and the review paper Xu [53] for further mathematical results. Our
development in Section 5.3 follows Arnold et al [3]. The full multigrid method
is introduced in Brandt [15]. The convergence of the adaptive multigrid finite
element method is considered in Wu and Chen [52].

5.7. Exercises
EXERCISE 5.1. Prove Lemma 5.3 and Lemma 5.4.
EXERCISE 5.2. Prove Lemma 5.6.

EXERCISE 5.3. Let Ri be symmetric with respect to (~, ) and let K =
I — RpAj. Then Rj is semi-definite and satisfies
a(Kkv,v) >0 VveVi

is equivalent to
[Kkllo <1 and [ — Kgll, < 1.



CHAPTER 6

Mixed Finite Element Methods

In this chapter we consider mixed finite element methods for solving
partial differential equations that can be formulated in the variational saddle
point form. We first introduce the abstract framework for the approximation
of saddle point problems. Then we apply the general results to two examples,
the Possion equation in the mixed form and the Stokes problem.

6.1. Abstract framework
Let X, M be two Hilbert spaces and assume

a: XxX—->R, b: XxM-—>R

are continuous bilinear forms. Let f € X’ and g € M’. We denote both the
dual pairing of X with X’ and that of M with M’ by (-,-). We consider the
following problem: Find (u,\) € X x M such that

a(u,v) + b(v, ) = (f,v) Yo e X,
b(u,p) = (g,p) VY€ M.

Define the Lagrange functional:

(6.1)

L) = %a(u,u) C(fou) + b ) — (g, V] V(A) € X x M.

It is easy to see that every solution (u, \) of problem (6.1) must satisfy the
saddle point property

L(u, p) < L(u, \) < L(v, N) V(v, ) € X x M.

It is often easier to handle the saddle point equation (6.1) if we reformulate
it as operator equations. Introduce

A: X - X' (Au,v) =a(u,v) WweX.

Similarly, we associate a mapping B and its adjoint mapping B’ with the
form b:
B: X —M : (Bu,p)="b(u,u) Ve M,

67
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B :M— X (B'X\v)=0b0v,N) Vv e X.
Then (6.1) is equivalent to
Au+BA=f inX,

6.2
Bu=g¢g in M’ (6.2)
Define
V=ker(B)={veX: bvu =0 Yue M}. (6.3)
LEMMA 6.1. The following assertions are equivalent:
(i) There exists a constant 8 > 0 such that
b
inf sup M > B; (6.4)
neM yex [[vllxlwllar
(ii) The operator B : V*+ — M' is an isomorphism, and
|Bv|ar = Blvllx  Yve Vs (6.5)
(iii) The operator B': M — V° C X' is an isomorphism, and
|1B'ullx = Bllpllm Ve M. (6.6)

Here VO is the polar set
Vi={leX :(l,v)=0 YveV}.
PrROOF. By Riesz Representation Theorem, there exist canonical isomet-
ric isomorphisms
ax: X' =X, M - M

such that

(rxl,v) = (l,v) Yve X, Vlie X,

(marg, ) = (g, 1) Vpe M, VgeM.

It is easy to check that V9 and V' is isomorphic under the mapping 7.
In fact, for any I € VO, (nxl,v) = (I,v) = 0 for any v € V. This implies
7wxl € VL. The inverse is also valid.

We prove now the equivalence of (i) and (iii). It is clear that (6.4) is
equivalent to (6.6). So we only need to show that B’ : M — V? C X’ is an
isomorphism. By (6.6) we know that B’ : M — R(B’) is an isomorphism.
We now show R(B’) = VY. First we have R(B’) is closed and R(B’) c VY.
In fact, for any v € V and p € M, we know (B'u,v) = (Bv,u) = 0. That is
R(B') c V. By isometry mx we know that mx R(B’) is a closed subspace of
axV0=V+ IfvenxR(B)*,

(nxB'u,v) =0 VueM & (Buo,u)=0 VueM & wvel.
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Thus V+ = nx R(B’)*. This proves the equivalence of (i) and (iii).
Next we prove the equivalence of (ii) and (iii). We consider the diagram

vi B W

ﬂ)_(ll lﬂ'M
X' oyo = M
For any v € VL, W)_(lv S VO7 thus there exists a u € M such that B’y = 71)_(11)
and ||ullar < BB pllx = B |Iwx vllx = B~ v x. Thus

B B/ 2
HBUHM’ = sup ( Ua)‘> 2 < M, U> 2 7”1)HX
rem (I Al [pllar = B Hlvllx

= Blvllx.

Now we prove B : V1t — M’ is an isomorphism. First R(B) is a closed
subspace in M’; which implies my;R(B) is a closed subspace in M. If p €
7y R(B)*, then

(u,myBv) =0 YveX & (B'uv)=0 weX <« Bu=0.
Hence p = 0 since B’ is an isomorphism. This shows (iii) implies (ii). Simi-
larly, one can show (ii) implies (iii). This completes the proof. O

THEOREM 6.1. Assume that
(i) The bilinear form a is V -elliptic, i.e.,
a(v,v) > allvl% Vv eV, for some o> 0;
(ii) The bilinear form b satisfies the inf-sup condition (6.4).

Then the saddle point problem (6.1) has a unique solution (u,\) € X x M
which satisfies

Jullx + 1M < CUfllxr =+ llgllag)-

PRrROOF. From Lemma 6.1, B : V+ — M’ is an isomorphism, there exists
an element ug € V =+ such that Bug = ¢ and

luollx < B~ | Buollar = B~ |gllar-
Let w = u — ug, then (6.2) is equivalent to
Aw+ B'\ = f — Aug, Bw = 0.

Since A is V-elliptic, by Lax-Milgram Lemma, there exists a unique w € V
such that Aw = f — Aug in V' and

allwllx < [Ifllx + Clluollx < 1fllx + 87 Clgllar-
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Finally, since f — Aug—Aw € V°, by Lemma 6.1, there exists a unique A € M
such that B'A = f — Aug — Aw and

Bl < I1B'Allx = |If — Aug — Awllx < || fllx + Clluo + wlx.
Thus (u, A\) = (ug + w,\) € X x M is the solution of (6.1) and satisfies
lullx < A7 Mgl + a7 HIfllxr + o= 87 Clgllar

= o Y|fllx + 1+ C)B gl
Ml < BT A+ o™ O)Ifllxr + (1 + o™ C)CB?|gllar-

This completes the proof. O

Now we choose finite dimensional subspaces X, C X, My C M and solve
the discrete approximation problem: Find (up, A\p) € Xp, x M}, such that

a(up, vp) +b(vn, An) = (f,vn)  Vop € Xp,

(6.7)
b(un, pin) = (9 pin) Vup € Mp,.

Define
Bp: Xp — My (Bpup, pn) =b(un, pn) Vs € My,

and
Vi =ker(By) = {vn € Xp: b(vp,pin) =0 Vup € Mp}.

THEOREM 6.2. Assume that there exist positive constants «y, and By, such
that

(i) The bilinear form a is Vy-elliptic, i.e.,
a(vn,vn) = onllonll% Vo € Vi (6.8)

(ii) The bilinear form b satisfies the inf-sup condition:

b
inf sup M > By, (6.9)
PREMy, oy, e, VR x (e |l 0

Then the discrete problem (6.7) has a unique solution (up,\p) € Xp x My,
which satisfies

[u—unllx +[IA = Al <C < inf [lu—wpllx + inf |JA— Mh|M> :
vp€Xp HREMp,
Here the constant C' depends on oy, Bp,.

PROOF. Introduce the set

Zn(g) = {wn € Xp : b(wn, pun) = (g, pn)  Yun € My} (6.10)
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Clearly, Z;(g) is non-empty because By is surjective. Let v, be arbitrary
in X},. Since By, verifies (6.9), the reciprocal of Lemma 6.1 (ii) implies the
existence of r, € X}, such that

b(rns pin) = b(u — vp, pin) Ypn € Mp,  Bpllrallx < Cllu—vpllx - (6.11)
It is clear that r, + vy, € Zp(g). Let wy = rp + vp, yp = up — wy. Then
yp € Vp,, which implies
an llynl% < alun — wh,yn) = alun — u, yn) + alu — wn, yn)
= b(Yn, A — An) + alu — wn, yn)
b(yn, A = pin) + alu — wp, yn)
< Cllynllx 1A= pnllys + € llu = wallx llynllx -

Therefore
lynllx < ClIA = pnllay + C llu = wpl x -
It follows from the triangle inequality and (6.11) that
I = unllx = llu = vn =70 = ynllx < CUIA = pllyr + Cllu = vnllx -

We now estimate A— Ay, Since b(vp, A—Ap,) = a(up—u,vy) for all vy, € Xp,
we have for any up € My,

b(vh, i = An) = a(up — u,vp) + b(vp, ph — A) Vo € X
Combining (6.9) then implies
[l = Anllar < Cllu —unlly + ClIA = pallyy < Cllu—wvnllx + ClIA = pnllar

which completes the proof of the theorem. O

In the practical application, the verification of the inf-sup condition (6.9)
can be done through the following lemma due to Fortin.

LEMMA 6.2. Suppose that the bilinear form b : X x M — R satisfies the
inf-sup condition. In addition, suppose that for the subspaces Xy, My, there
exists a bounded linear projection mp, : X — Xy, such that

b(v — RV, pp) =0 Vup € M,

Then if ||mh]| < C for some constant independent of h, the finite element
spaces Xy, My, satisfy the inf-sup condition in (6.9) with By, independent of
h.
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PRrOOF. By the assumption,

b b b
Bllunllar < sup blo i) _ o M) o TR, )
vex vllx wex  llvllx vex llmnvllx
b
< C sup (Uhv,uh)

v €Xp ||Uh||X .

This proves the lemma. O

6.2. The Poisson equation as a mixed problem

Let © be a bounded polygonal domain in R?. We consider the Dirichlet
problem of the Poisson equation

—Au=f inQ, w=0 on 0.
Let o = Vu, then we have —div o = f. Introduce the Sobolev space
H(div;Q) = {r € L}*(Q)?: divr € L*(Q)}
with norm
17l = (7 lZag@) + v T2y ).
Then the original problem can be put in the mixed form: Find (o,u) €
H(div;Q) x L?(Q) such that
(o,7)+ (divr,u) =0 V7 € H(div;Q),
(dive,v) = —(f,v)  Yoe L*Q).
Set X = H(div;Q),M = L?>(Q). Let a: X x X - R, b: X x M — R be the

bilinear forms

(6.12)

alo,7)=(o,7), b(T,v)=(divT,v).
Clearly the forms a, b are continuous. From (6.3), V = {r € X : divr = 0}.
Therefore, for any 7 € V, we have
a(t,7) = ||| 7200y = I7II%-
Thus a is elliptic in the kernel V. It remains to check the inf-sup condition
for b. For any v € L*(Q), let w € H}(Q) be the weak solution of —Aw = v
in Q. Then 7 = —Vw € H(div ;) satisfies
I7llx = Il = Awllr2(0) + [Tl r2(0) < Cllvliz2 (-

Thus )
b(r',v) _ (divr,v) HUHLz(Q)
o 7lix T Cllvllze

sup

rex |I7'llx = Bllvllz2 (- (6.13)
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This shows that (6.12) has a unique solution (o,u) € X x M. It is easy to
show that u € H}(Q) by the first equation in (6.12).

We now consider the finite element approximation of (6.12). Let My,
be a shape regular mesh over 2. We introduce the Raviart-Thomas element
which is conforming in H(div;2). The first hint to proceed is the following
result whose proof is similar to Theorem 2.9 and is omitted..

LEMMA 6.3. Let © be a bounded domain. Then a piecewise infinitely
differentiable function v : Q@ — R belongs to H(div;Q) if and only if v -n is
continuous across any inter-element side.

DEFINITION 6.3. The lowest order Raviart-Thomas element is a triple
(K, P,N) with the following properties:

(i) K C R? is a triangle with three edges e, 2, €3;
(i) P={pe P(K)?:p=ag +cxr,ax € R? cx € R};
(iii) N ={N; :i=1,2,3} is a basis of P/,

1
Ni(p) = / p-n;ds VpeP.
|€i| €5
Here n; is the unit outer normal vector to e;.

Notice that if N;(p) =0 (i = 1,2,3) for some p € P, then

1 1

This implies cx = 0 and consequently agx = 0. This shows that A is a basis
of P/, the dual space of P.

Next let K be a triangle with vertices A;,1 < i < 3. Let Ff : K — K be
the affine transform from the reference element K to K

¢ = Fg(i) = Bki+bg, i€ck.
Notice that the unit outward normal vectors n, n satisfy
no Fr = (B) n/|(Bg") hl.
For any scaler function ¢ defined on K, we associate
$=ypoFg, thatis, @(&)=¢(BgZ+bg).
For any vector valued function o defined on K, we associate
6 =BplooFg, thatis, &(2)=By'o(Bg#+bg).

LEMMA 6.4. We have
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i(0)=0& N;(6)=0 VYo e P(K), i=1,2,3;
(iii) Ny(e)=0=0-n;=0o0ne; VoeP(K) i=1,23.

o= Bf(l(aK + CK(BKj + bK)) = B;(I(aK + CKbK) +cgT € P(K)

The proof of the reverse is the same.
(ii) For any o € P(K), we have

N 1 A 1 |é&] _ —INT ~
N;(o) = /6 o -n;ds = B /e Bilo - Bin; - |(BH) | ds

€3] &l el
= ’61’ / o-n;ds- |[(Bx) | = (B | - Ni(o). (6.14)
(iii) It is a direct consequence of
6 -0 =|(B) 'R o n,.
and the corresponding result in the reference element. O

LEMMA 6.5. There exists an operator mx : H'(K)? — P(K) and a con-
stant C' such that

/(WKO'—O')'HidS:O, i=1,2,3, (6.15)
and
I
lo — 7o || raiv ) < O (lo|mx) + |div ol g k) - (6.16)
K

PROOF. We notice that (6.15) uniquely defines the interpolation operator
7wk and N;(o) = Nj(rxo). By (6.14) we know that

~

Ni(rro) = [(Bg") 0| Ni(rxo) = [(B') i Ni(or) = Ni(6).
Thus we have
TKO = TKO.
This implies
|K’1/2
‘f(’l/2

lo — 7ol L2k Bk (60 = 76| 12

|K’1/2
‘KP/Z

< || Bxl 167 = Tr 6l L2 )
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By Theorem 3.1 and the definition of 7y,

o — Ko ~ = inf ||[6 —c—7g(6 —c .
” K ”L2(K) cc P2 ” K( )”L2(K)

<0£%ma—ﬂpmywo—dmww

Thus, by Lemma 3.2 and Lemma 3.3,

‘K|1/2 . B
Ha—mvhmqéwmmwﬁﬁwmwagmwmmm;mﬂmm)

hic
PK

On the other hand, from (6.15),

/divad:z::/ divrgodr.
K K

Hle (0' —7TKO')||L2(K) < 1€n1£ HleO’ - CHLQ(K) < ChK|le0"H1(K)
celo

Thus

This completes the proof. O

We define the finite element spaces
Xp:={r € Hdiv;Q): 7|x € P(K) VK € M},
My :={veL*Q): vlg € P(K) VK € My}.
By Lemma 6.3 and 6.4(iii) we know X, is well-defined. The discrete problem
to approximate (6.12) is: Find (o, up) € Xp X M}, such that
(oh,Th)+ (div Ty, up) =0 V1, € Xn,

(diV ah,vh) = —(f, ’Uh) Vvh S Mh. (6'17)

LEMMA 6.6. For any p € L*(Q), there exists a function T € H'(Q)? such
that divt = p and ||7| g1 (o) < CllpllL2()-

Proor. We extend p to be zero outside the domain €2 and denote the
extension by p. Let Bg be a circle of radius R that includes Q. Let w be the
solution of the problem

—Aw=p in Bg, w=0 on JBpg.

By the regularity theorem for elliptic equations in Theorem 1.20 we know
that w € H*(Bg) and ||lwllg2) < wllpzsy) < Cllbllzsg) = Clpllizg)-
This shows the lemma by setting 7 = —Vw. U
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THEOREM 6.4. Assume that u € H*(Q) and f € HY(Q). Let My, be a
shape regular mesh of Q. Then the problem (6.17) has a unique solution and
there exists a constant C' such that

lo — onlla(givio) + v —unllr2@) < Ch(lullg2) + | £l a1 )-

ProoF. The proof is divided into two steps.
1°) Notice that
Vi = {Th e Xy (diVTh,Uh) =0 WV, € Mh}
={rheXp: divr, =0 on K & My}.

Thus a(-,-) is Vp-elliptic with the constant oy, = 1.
2°) We show

N
(div 7y, n) > B> 0. (6.18)

inf  sup
€My e x;, |70l Eaiv;0) vnll L2 )

By Lemma 6.6, for any v, € M, there exists a function 7 € H'(Q)? such
that

divr =v, in Q@ and ||7]|g1 ) < Cllvnllr2o)-

We define the interpolation operator 7, : H'(2)? — X}, by using the local
operator in Lemma 6.5 to get

/div (1) dx:/diVde.
Q Q

Moreover, we have

Il 2) < I Tll2) + 17 =TTl L2
< |I7llz2) + ChllTll a1 @) < Cllvnllzea),
)< |

[div mn 7| 12y < [|div Tl L2) = lvnllz2(0)-

Now for any v, € L(9),

div 7, vp, div T, T, vp, div 7, vp
sup ( , Uh) > ( 2 Uh) > (div T, vn) > Cllonllp2()-
rneXs ITllmaive) = It laive) ~ Clonlze)

This shows (6.18) and thus completes the proof by using the abstract result
Theorem 6.2 and Lemma 6.5. U
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6.3. The Stokes problem

Let © be a bounded Lipschitz domain in R%(d = 2,3). We consider the
Stokes problem
—vAu+Vp=f in Q,
divu=0 in Q, (6.19)
u=20 on Of.
We set X = H}(Q)?, M = L3(9), and
a(u,v) =v(Vu,Vv), b(v,q) = —(q,divv).
Then (6.19) is equivalent to the variational formulation: Find a pair (u,p) €
X x M such that
a(u,v) +b(v,p) =(f,v) VveX,
(6.20)
b(u,q) =0 Vg€ M.

To prove the well-posedness of the above variational problem, we need
the following theorem whose proof is outside the scope of this book and is
omitted.

THEOREM 6.5 (Necas). Let 2 be a bounded Lipschitz domain. There
exists a constant C' > 0, depending only on €2, such that

Ipll 2y < C (PN g-10) + IVPl 1)) VP E L*(9),
Pl L2y < CUIVPI -1y VP € L(R),
where H=Y(Q) is the dual space of HE(Q) and Vp € H=1(Q)? is defined by
(Vp,v) = —(p,divv) Vv e H(Q) (6.21)
By (6.3), V = {v € H}(Q)?: divv = 0}. Then the polar set of V is
Vo = {1 e HYQ): (Lv) =0 Wve V}.

LEMMA 6.7. Let Q be a bounded Lipschitz domain. Then
(i) The operator V is an isomorphism of L3(2) to VY;
(ii) The operator div is an isomorphism of V* to LE(1).

PROOF. (i) First we know that V is an isomorphism of LZ(Q) to R(V) C
H~Y(Q)%. By Theorem 6.5, R(V) is closed. Since (Vp,v) = —(p,divv) =0
for any p € L3(Q) and v € V, we know R(V) C V. Let 7 be the canonical
mapping between H~1(Q) and H{(Q), then mR(V) is a closed subspace of
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V0 = VL. If there exists a function v € V+, v # 0 such that v € 7R(V)*,
that is,

0= (7Vp,v) = (Vp,v) = —(p,divv) Vp e L3(Q),
then divv = 0, that is, v € V, a contradiction! Thus 7R(V) = V1 and
hence R(V) = V0.
(ii) This is a direct consequence of (i) since div is the dual operator of V
and 7V? = V1. This completes the proof. O

It is easy to see by Poincaré inequality that a(-,-) is X-elliptic and thus
also V-elliptic. The continuous inf-sup condition follows from Lemma 6.7
and thus (6.20) has a unique solution.

In the rest of this section, suppose €2 is a bounded polygonal domain in
R2. Next we consider the finite element approximation of (6.20). Let M, be
a shape regular mesh. We will approximate the velocity by the “mini” finite
element which we now introduce. On each element K we approximate the
velocity by a polynomial of the form

P(K) = (P ® {MA2As})?

and the pressure by a polynomial of P;(K). We define

Xp={veC(Q)? v|g e P(K) YK e My}, Xn=X,nHjQ),

Mh :{q € C(Q) : q]K € Pl(K) VK € Mh}, M;, = Mh ﬂLg(Q)
The degrees of freedom are the simplest ones, namely the values of the ve-
locity at the vertices and the center of K, the values of the pressure at the
vertices of K. The discrete problem is: Find a pair (up, pp) € Xp X M}, such
that

a(up, va) +b(va,pp) = (£, vi)  Vvp € Xp,
b(up,qn) =0 Vgp € M.

LEMMA 6.8. There exists a constant 5 > 0 independent of h such that

.
o sap (@dVV)

> 6 >0.
Gh€Mp v, eX), ||Vh||H1(Q)

PRrOOF. We define an operator 7, satisfying the condition in Lemma 6.2.
For any v € H}(2)2, we want to construct a function 7, v € X, that satisfies

/ﬂhv-Vuhdx—/v-V,uhdx Yun € My,
Q Q



6.3. THE STOKES PROBLEM 79

Since Vuy, € Py(K)? on each K, this equality induces us to define 7, v in X},
such that

(mpv)(a) = (rpv)(a) ¥V node a of My,

/Whvdx:/ vdzx VK € My,
K K

where 7, is the Clément interpolation operator in Section 4.2. Clearly 7, :
HE(Q)? — X, is well-defined. Moreover

and

/ div (mpv — v)updx = 0 Yun € Mp.
Q
On each element K € My, we have

ThV|K = raVv|K + BrAiAaAsz,

ﬁK:/K(V_ThV)dIE//K)\l)\Q)\gd:E.

By the scaling argument and Theorem 4.2

where

B| < ChiH v = vl 2(s6) < ClIVI g 2y
where K is the union of all elements having non-empty intersection with & .
Hence
[mnvila ) < Clivlia ).

This proves the lemma by Lemma 6.2. U
The following theorem is a direct consequence of Theorem 6.2.

THEOREM 6.6. Let the solution (u,p) of the Stokes problem satisfy
ue (HXQ)NHYQ)?,  pe H(Q)NILZQ).
Then

lu—upllgiq) + P = pullre) < Ch(lulm2q) + [pla1 @)

Bibliographic notes. There is a rich literature on mixed finite element
methods. We refer to the monographs Girault and Raviart [34], Brezzi and
Fortin [16] for further studies. Theorem 6.5 is due to Necas [46]. Duvaut and
Lions [28] gives a proof of Theorem 6.5 when the boundary of the domain is
smooth.
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6.4. Exercises

EXERCISE 6.1. Formulate the mixed formulation of the Neumann Prob-

lem 5
—Au=f in £, —u:g on 0f),
on
and prove the unique existence of the solution to the corresponding saddle

point problem.

EXERCISE 6.2. For the Stokes problem, let

X, ={veC()?: vlx € PI(K)*? VK € My, v]sq =0},
My ={q€ L) : qlx € Py(K) YK € My}
Does the inf-sup condition

(g, divv)

inf sup >06>0

9€Mp ve X, HQHL2(Q)||V||H1(Q)
hold?

EXERCISE 6.3. Construct the local nodal basis functions for the lowest
order Raviart-Thomas finite element.



CHAPTER 7

Finite Element Methods for Parabolic Problems

In this chapter we consider finite element methods for solving the initial
boundary value problem of the following parabolic equation:

%_zd:a ()% tel@u=f inQx(0,T)
o 2 o azjxamj c(r)u = in ,T),

ny=1 (7.1)
u=0 onlx(0,7),

u(0) = up() i Q,
where (2 is a bounded domain in R? with boundary T', T > 0, u = u(x,1),
and a;;, c are bounded functions on €2, a;; = aj;, and there exists a constant

ag > 0 such that

d
Z aij(2)&€; > apl€]?, c(x) =0 forae 2 € Qandall & €RY (7.2)
ij=1

7.1. The weak solutions of parabolic equations
We start with introducing the function spaces involving time.

DEFINITION 7.1. Let X be a real Banach space with norm || - ||.

(i) The space LP(0,T; X) consists of all measurable functions u : [0, 7]
— X with

T 1/p
lullzeo,7;x) = (/0 ||u(t)]pdt> < 00

for 1 < p < oo, and

lull oo 0,7,x) == sup flu(t)|| < oo.
<t<

(ii) The space C([0,T]; X) consists of all continuous functions w : [0, 7]
— X with

lulleqo,r1,x) = Jnax, [u(t)[] < oo.

81
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DEFINITION 7.2. Let u € LY(0,T;X). We say v € L'(0,T;X) is the
weak derivative of u, written v’ = v, provided

T T
/ & (t)ult) dt = — / sty dt Yo € C2(0,T).
0 0

The Sobolev space W1P(0,T; X) is then defined as the set of all func-
tions u € LP(0,T; X) such that «’ exists in the weak sense and belongs to
LP(0,T; X). When p = 2, we write H'(0,T; X) = WH2(0,T; X).

THEOREM 7.3. Let u € WYP(0,T; X) for some 1 < p < oo. Then
(i) After possibly being redefined on a set of measure zero u € C([0,T7;
X);
(i) u(t) = u(s) + [fo/(r)dr for all 0 <t < T;
(iii) We have the estimate

[ax. lu@®)|| < Cllullwreo,rx),

the constant C' depending only on T.
The proof of this theorem is left as an exercise.

THEOREM 7.4. Suppose u € L(0,T; H}(Q)) with v’ € L*(0,T; H(Q)).
Then after possibly redefined on a set of measure zero, u € C([0,T]; L?(2))
and the mapping t — ||u(t)||%2(m is absolutely continuous with

d
a”“(f)”%g(ﬂ) =2(u/(t),u(t)) forae 0<t<T. (7.3)
Furthermore, we have the estimate
max, lu(@®)[| 2@ < C <||U||L2(0,T;Hg(g)) + HU/||L2(0,T;H—1(Q))> , (74

for constant C dependening only on T.

PROOF. 1°) We extend u to be zero on (—o00,0) and (7, 00) and define
the regularization u. = p, * u, where p. is the usual mollifier on R!. It is clear
that u. = pe xu’ on (e, — €). Then for €, > 0,

@ ue(t) — s(1) gy = 20008) — w(0) welt) — s (1),

Thus, for all 0 < s,t < T,

() = us() 17200y = we(s) — us(s) 72

+ 2/ (ul (1) — us(7), ue(T) — ug(7))dr. (7.5)
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Fix any point s € (0,T) for which uc(s) — u(s) in L?(£2). Hence
limsup sup || u*(t) — u(1) | 2o

€,0—0 0<t<T

T
< Jim [ (Ilr) = b0 sy ) = s0) By ) 47 = 0.

This implies there exists a v € C([0,T]; L?>(Q2)) such that ue — v in C([0,T7;
L?(Q)). Since u. — u for a.e. ¢, we conclude v = u a.e. in (0, 7).
2°) Similar to (7.5) we have

aael®) 22y = Il te(s) 22 + 2 / (u (), we(r))dr.

By letting ¢ — 0 we obtain,

) 2@y = 10(6) By +2 [ ((r)utr)dr Vst 0.T). (7.6)

This proves |[u(t)||12(q) is absolutely continuous and the equality (7.3). (7.4)
is a direct consequence of (7.6). O

To define the weak solution of the problem (7.1) we introduce the the
bilinear form a(u,v) : HY(Q) x H'(Q2) - R

d
ou 0
a(u,v) :/Q Z aij(x)@ai@; + c(x)uv | dz.

ij=1

It is clear by the assumption (7.2) that a is bounded and V-elliptic, that is,
there exist constants ag, 5 > 0 such that
la(u, v)] < Bllull gy vl ¥ uve Hy(%), (7.7)
and
a(v,v) = alvljng Vv e H Q). (7.8)

We have the following definition of weak solutions for parabolic problems.

DEFINITION 7.5. Given f € L?(0,T; H-1(Q2)) and ug € L?(Q2). We call a
function
u € L*0,T; HY(Q)), dwu e L*(0,T; H1(Q)),
is a solution of the parabolic initial boundary value problem (7.1) if

(i) (Opu,v) + a(u,v) = (f,v) Vo€ HYQ) and ae. 0 <t < T}
(ii) u(z,0) = up(z) in Q.
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By Theorem 7.4 we see u € C([0, T]; L%(€2)), and thus the equality in (ii)
makes sense.

THEOREM 7.6. There exists a unique weak solution to the problem (7.1).
Moreover, the following stability estimate holds

| Ovu || 20,7551 (2)) + w2208 ) < Clluo l2) + CI f lr20,mm-1(0))-

PROOF. Let N > 1 be an integer and 7 = T'/N be the time step. Denote

t"=nr,n=1,---,N. Forn=1,--- N, we consider the elliptic problem
to find U™ € H}(Q2) such that

(U™, v) +a(U",v) = (f",v) Vv € Hy(), (7.9)
where QU™ = (U™ — U™ Y /7, f* =L [I"| f(x,t)dt, and U = ug. By (7.2)

and the Lax-Milgram Lemma, (7.9) has a unique weak solution U™ € HE ().
Notice that

(BU™,U™) = 21U ey + 51 " e + 310" = U Bagey,
by taking v = U™ in (7.9), we can obtain the energy estimate
N N
 max [[U" 7200 + ; 10" = U™ 22y + nz:l ool U™ (3@
< Clluo H%Q(Q) + CHfH%%O,T;Hfl(Q))' (7.10)
Now we define the U, and U, through the following relations
Ur(t) = 1(U™ + (1= 1@t)U™L, Us(t) =U" VYte (" 5", Yn>1,
where [(t) = (t —t"~1)/7. Then by (7.10)
10 220,70 + 1 Or 20,7301 (02))
< Clluo 22y + ClF 20 201 (52))- (7.11)
Moreover, it follows from the equation (7.9) than
10U 720 m2r-1 () < Cllwo 172y + CllF I Z20.00-1(52))- (7.12)
Therefore we know that there exist functions
we L*0,T; Hy(Q) N HY 0, T; H1(Q)), @< L*0,T; H(Q))
such that
U, - u weakly in L*(0,T; H}(Q)) N H'(0,T; H1(Q)),

U, —u weakly in L*(0,T; H}(Q)).
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But by (7.10)

N
10 = UsllZ20 020y < 27U = U™z < O,
n=1

which by taking 7 — 0 implies u = @ a.e. in Q x (0,7).
Now by (7.9) we have
(U, v) + a(Ur,v) = (fr,v) Vv € H}(Q) ae. in (0,T),
where f, = f" for t € (t"71,¢"). We then have, for any ¢ € C§°(0,T),

T B T
/ [(8,U~,v) + a(Ur,v)] pdt = / (fr,v)odt Vv e H(Q).
0 0

Let 7 — 0 in above equality, we obtain

T T
| @) +awoa= [ (oo e Hi@).6 € CFO.)
0 0
which implies
(Opu,v) + a(u,v) = (f,v) Yo e Hy(Q) ae. in (0,7).

This proves the existence of weak solution. The stability estimate of the
theorem follows from (7.11)-(7.12) by letting 7 — 0. The uniqueness is a
direct consequence of the stability estimate. O

7.2. The semidiscrete approximation

The problem (7.1) will be discretized and analyzed in two steps. In the
first step we shall approximate u(z,t) by means of a function uy(x,t) which,
for each fixed ¢, belongs to a finite element space V. This function will be a
solution of an h-dependent finite system of ordinary differential equations in
time and is referred to as a spatially discrete, or semidiscrete, solution. We
then proceed to discretize this system in the time to produce a fully discrete
time stepping scheme for the approximate solution of (7.1). In this section
we consider the spatially semidiscrete approximation and the a priori L? and
H' error estimates.

Suppose that © C R? is a bounded polyhedral domain and M, is a
shape regular partition of ). Let V,? C H} () be the standard piecewise
linear conforming finite element space. We may then pose the approximate
problem to find uj, = up(z,t), belong to V0 for each ¢, such that

(unt,vn) + a(up,vp) = (fyon) Yop € V2, >0, up(-,0) = upg, (7.13)

where wupg is some approximation of wug in V}? .
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In terms of the nodal basis {qb] , for Vh , our semidiscrete problem may
be stated: Find the coefficients z; (t) in up(z,t) = ZFI zj(t)¢j(x) such that

J J
ZZ ¢ja¢l +sz ¢jv¢l _(f7¢z)7 izla"'vJa
7=1

Jj=1

and, with z;jo the components of upg, 2;(0) = zjo for j = 1,---,J. In the
matrix notation this may be expressed as

M2 (t) + Az(t) = b(t), t >0, with 2(0) = 2o, (7.14)

where M = (m;;) is the mass matrix with elements m;; = (¢4, ¢;), A = (aij)
the stiffness matrix with a;; = a(¢;, ¢i), b = (b;) the vector with entries
bi = (f,¢i), z(t) the vector of unknowns z;(t), and zy = (zj0). Since M is
positive definite and invertible, the system of ordinary differential equations
(7.14) has a unique solution for ¢ > 0.

Next we estimate the error between u, and u. To do so we first prove a
stability result for the semidiscrete problem. Throughout this chapter, C' will
denote a positive generic constant independent of h,t, and can have different
values in different places.

THEOREM 7.7. Let r(t) € L*(Q2), and 0,,(t) = 04 (-, t) € V) satisfies

(Ghﬂg,vh) + a(&h,vh) = (7“, ’Uh) Yy, € V]?, t > 0. (7.15)
Then
t
1640120y < 10Oy + [ Iz ds (710
t 9 1/2
1810y < IOy + C( [ Iy as) ™ (77

PROOF. We choose vy, = 0,(t) in (7.15) and conclude

1000y + B (1), 01(6) = (r(1), 60 (1)

From (7.8) and the Cauchy inequality,

1d
e G OIS G
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Since % 16 (t) L2(q) might not be differentiable when 6, = 0, we add 2 to
obtain

1d 1d
5z I0n(t MZ2g) = 55(”‘%(75)”%2(9) +e?)
1/2 d 1/2
= (100 () + =) >3 (108 22y + %)
< @l 2 H@h(t)”m(ﬂ)a
and hence

d 1/2
5 (100 2(0) + %)% < Ir(®)l 20

After integration and letting ¢ — 0 we conclude that (7.16) holds.

In order to prove (7.17), we use again (7.15), now with v, = 0, we
obtain

100ty + = a0, 0 One) < S r(r)2 2
hitllzz(9) + 5 qp@(0n: On) = (1), One) < o llr(®)liz20) + 10n.el 720

Therefore
d 1 2
74000 (0), 0n (1)) < 5 [l ()2 »

and hence by integration

ol04(0)01(6) < 00000 + 5 [ 175220 @
Now (7.17) follows from (7.7) and (7.8). O

For the purpose of error estimates between w;, and u, we introduce the
so called elliptic or Ritz projection Rp onto V}? :

a(Rpp,vn) = a(p,vp) Yo, € VP, for any ¢ € HH(Q). (7.18)

As an immediate consequence of Theorem 3.9 and 3.11 we have the following
error estimate:

[Rre = ¢l 2y + Rl Rre = @l g1y < Ch? 2l 2

Vo € H*(Q) N HE (Q), (7.19)

1R = @ll2() < Chllellmqy Ve € Hy(9), (7.20)

where h is the maximum diameter of the elements in Mjy,.
Now we are ready to prove the following estimates in L?(Q2) and H'()
for the error between the solutions of the semidiscrete problem and the con-

tinuous problem.
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THEOREM 7.8. Let u and uy, be the solutions of (7.1) and (7.13), respec-
tively. Suppose that

luno = woll 2(qy + h l[uno — woll g1 () < CB? |uo| g2 - (7.21)

Then fort =0,

t
n(t) — u(®)] 2y <C? (|uO|H2(m+ /0 () 2y ds>, (7.22)

Jun(t) = w(®)] g1 (q) §Ch< [wol g2y + [w(t) | 2

- </0t lue(s) [ 1 ds> 1/2>. (7.23)

PrROOF. We split the error into two parts:
up —u =60, +p, where 9h:uh—Rhu€V,?, p=Rpu—u. (7.24)
The second term is easily bounded by (7.19),
1(8) 20 + 1 10 (8) 1y < OB [u®) 72y - (7.25)
In order to estimate 6y, we note that by our definitions

(On,t>vn) + alOn, vn) =(un, vn) + alun, vn) — (Rpug, vi) — a(Rpu, vp)
=(f,vn) — a(u,vy) — (Rpug, vp)
:(Ut - Rhuta Uh)) (726)

or
(On,6(1),0n) + a(On(t), o) = (pe(t), o) Vop € Vi, ¢>0. (7.27)
From Theorem 7.7 with r(t) = —p:(t),

t
10n.(0)]| L2(0) < 198(0) 20 +/0 lpe($)] 2 () ds-
Now (7.22) follows from (7.21), (7.25),

loe()ll 2y = llue(s) = Ruue(s)ll 20y < Ch? lus(s) 2 » (7.28)

. t
U +/ ug(s)ds < |uol g2y +/ [ue(s)| 2y ds,
0 0

[u(®)] 20y =
H2(9)

and

0r,(0) = uno — Rpug = uno — uo + up — Rpuo.
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Similarly, from Theorem 7.7 with r(t) = —p:(t),

t 1/2
10h ) 1) < CllORO) 1) + C(/o lpe(5)1I72 (0 ds) : (7.29)
Then the estimate (7.23) follows from (7.21), (7.25), and

[0e() 20y = llue(s) — Ruaue(s)ll 2y < Chflue(s)l g - (7.30)

This completes the proof of the theorem. O
If we choose upg = Ipug or upg = Rpug or upg = Qprup then (7.21) holds.
Here I}, is the standard finite element interpolation operator onto Vh0 , and
Qp, is the L? projection onto Vho. We also remark that if we take upg =
Rpug then 6,(0) = 0 and hence (7.29) and (7.28) imply that [|64(¢)]| g1 (o) =
lun(t) = Rpu(®)|| g o) = O(h?), that is, the finite element solution wuy(t) is

superconvergent to the elliptic projection Rpu(t) of the exact solution in
H'(Q) norm for any fixed ¢ > 0.

7.3. The fully discrete approximation

In this section we turn to the analysis of some simple time discretization
schemes. We begin by the backward FEuler-Galerkin method. Let 7 be the
time step and U™ the approximation in V,? of u(t) at t = t, = nr, this
method is defined by replacing the time derivative in (7.13) by a backward
difference quotient, or if U™ = (U™ — U™ 1) /7,

QU™ vp) + a(U™, vp) = (f(tn),vn) Yo, €V, n>1, U°=uy, (7.31)
For given U™ ! this defines U™ implicitly from the equation
(U™, o) + Ta(U™,vp) = (UL + 1f(tn),vn) Yop € V2.
With the notation as in the semidiscrete situation, this may be written
(M 4+ 7A)2" = Mz""Y +7b(t,), n>1, with 2(0) = 2, (7.32)

where M + TA is positive definite.
Following the argument in the semidiscrete case, we first prove a stability
estimate for the backward Euler fully discrete problem (7.31).

THEOREM 7.9. Let r" € L*(Q) and 6™ € V0 satisfy

(00, vp) + a(0™,vp) = (P, vn) Yo, €V, n>1. (7.33)
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Then
16" 1120 < H00HL2(Q) T “TjHLQ(Q)’ (7.34)
j=1
. 1/2
n 2
16"l 1) < C 16 g1y + € 27\\7«3\\L2(m . (7.35)
j:

PRrOOF. Choosing vy, = ", we have (90",6") < (r™,0"), o

1672200y < 10712 1071 200y + 7 1 L2y 1671 2y
so that
16" ]| L2 (o) < A 1HL2 + 717" 20

and, by repeated application, we have that (7.34) holds.
To prove (7.35), we choose instead v, = 9" to obtain

ann ann n apn n aon 1 n aom |2
(96", 06") + a(6",00") = (r",00") < 7 IIr 1720 + 1|06 22

or
n on n on—1 T .m2
a(0",0") <a(6",6 )+*”T 1720 »

1 n an n— n— Tmy2

<500",0") + 3a(6" 6"+ T
so that

n n n— n— T n

a0, 0") < a0 0+ i By

which together with (7.7) and (7.8) implies that (7.35) holds. O

We need the following Taylor formula with integral remainder in the
subsequent analysis:

S 90 1 ! (m+1) m
= Z t —a)f + il (s)(t —s)™ds. (7.36)
k=0 ca

THEOREM 7.10. Suppose that

luno = woll 2y + hrlluno = uoll 1 (@) < CB? [uol 2 (q)
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With U™ and u the solutions of (7.31) and (7.1), respectively, we have
tn
HU” — u(tn)HLz(Q) <0h2 <‘u0’H2(Q) +/0 |ut(8)|H2(Q) dS)

tn
w01 [ )l s (737)
0

10" = ultn)ll 11 <Ch<|uo!m<m + [ultn) 2

tn 1/2
+ ( /O ue() 2 ds) )

tn 1/2
cor ([Tl as) o nz0. @
0

PRrROOF. In analogy with (7.24) we write
U™ —u(tn) = (U™ = Rpu(tn)) + (Rpu(tn) — u(tn)) = 0" + p",

and p" is bounded as claimed in (7.25). This time, a calculation correspond-
ing to (7.26) yields

(00™,vp) + a(0™,vp) = —(W" vp) Yo €VY, n>1, (7.39)
where
W" = Rpou(ty) — ug(ty)
= (Ry, — I)Ou(ty) + (Ou(tn) — us(tn)) = wi + wh. (7.40)
We write
. tj tj
Twl = (Rh—I)/ utds:/ (R, — Duy(s)ds,
tj_l tj_l
. tj
Twé =u(t;) —ultj—1) — Tu(t;) = —/t (s —tj—1)uu(s)ds,
j—1
and obtain

, t
Tl wi llr2@) < Chz/ |ue(8) 2y ds,

tj—1

. tj
7l ] 122y < Ch / Jue(5)ll 1 gy 5.

ti—1

. t;
7l 2y < O / ot () 2 s

ti—1
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Together our estimates and using Theorem 7.9 with r” = —w"™ complete the
proof of the theorem. O

We now turn to the Crank-Nicolson Galerkin method. Here the semidis-

crete equation is discretized in a symmetric fashion around the point ¢, 1 =
2

(n— %)7’, which will produce a second order accurate method in time. More

precisely, we define U™ in V,? recursively for n > 1 by

A

(OU™,vp)+a < 5

) = (lg)oon) Vo€ Vi w1, ()

with U° = wy,o. Here the equation for U™ may be written in the matrix form
as

with a positive definite matrix M + %TA. We have the following stability
result for (7.41).

THEOREM 7.11. Let r™ € L*(Q) and 0™ € V}? satisfy

on 4 911—1

(00™,vp,) + a ( 5

,vh> =(r"vn) VYo, €VY, n>1. (7.42)

Then (7.34) and (7.35) hold, that is,

167112y < H00HL2(Q) T HTjHLz(Qw (7.43)
j=1
. 1/2
n 2
16"l < C 16| gy + € 27“TJ“L2(Q) : (7.44)
j:

PROOF. (7.43) and (7.44) can be proved by choosing v, = (0" +6"1)/2
and v, = 00" in (7.42), respectively, we omit the details. O

Now the error estimate reads as follows.
THEOREM 7.12. Suppose that

l[uno = woll p2(qy + 1 lluno — ol g1 gy < CB? |uol g2 (g -
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Let U™ and w be the solutions of (7.41) and (7.1), respectively. Then we have
forn >0,

U™ = u(tn)ll 2
tn
< Ch2 <|U0‘H2(Q) +/(; ‘ut(s)’H2(Q) d5>
g [T
Lor /0 (1l ()25 + e () Ly ) s, (7.45)

tn 1/2
< Ch<|uo|H2(Q) + [un)l (o) + (/0 s ()11 0 d5> )

1/2
+Cr? </Otn(||uttt(3)H%2(Q) + [lus () 1712 )) ds) / : (7.46)
PROOF. Since p" is bounded as above, we only need to consider ™. We
have
(00", vp,) +a <0n+29n_1,vh> = —(w",vp) Yo, € V,?, n>1,
where now

W= Wl Wl + Wi, Wl = (Ry — Dou(ty), wh = ou(t,) — ug(t, 1),
2
and w§ € V2 such that

tn tn
(ngvh) 4 <u( )"‘QU( 1) — “(tn—é)ﬂ)h) Yoy, € V}?.

Since #Y and w{ are estimated as before, to apply Theorem 7.11, it remains
to bound the terms in w) and w}. This can be done by using Taylor formula
(7.36). We omit the details. O

7.4. A posteriori error analysis

In this section we consider the a posteriori error estimates for the finite
element method for solving linear parabolic problems which are the basis of
the time and space adaptive algorithm in next section.

Let Q be a polyhedron domain in R? (d = 1,2,3), ' = 9Q and T > 0, we
consider the following linear parabolic equation:

up — div (a(x)Vu) = f in Q x (0,7),

7.47
u=0onT x(0,7), wu(z,0)=ug(z)in Q, (7.47)
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where f € L?(0,T;L*(Q)) and ug € L*(Q2), and the coefficient a(x) is as-
sumed to be piecewise constant and positive. The weak formulation of (7.47)
reads as follows: Find u € L2(0,T; H}(Q)) N HY(0,T; H~(Q)) such that
u(+,0) = up(-), and for a.e. t € (0,7) the following relation holds

(u, ©) + (aVu, Vo) = (f,0) Vo € Hy(Q). (7.48)

We consider the backward Euler fully discrete approximation with vari-
able time steps for (7.48). Let 7, be the n-th time-step size and set

= ) =)

for any function ¢ continuous in (#"71,#"]. Let N be the total number of
steps, that is t& > T. At each time step n, n = 1,2,---, N, we denote
by M™ a uniformly regular partition of {2 into simplexes which is obtained
from M"~! by using refinement/coarsening procedures. Let V' C H}()
indicate the usual space of conforming linear finite elements over M™. Let
UY = Qoug, where Qo : L*(Q) — V{ is the L? projection operator into
the linear finite element space V) over the initial mesh M. Then the fully
discrete finite element approximation at the n-th time step reads as follows:
Given U;Z_l € V"1 then M™ ! and 7,,_; are modified as described below
to give rise to M™ and 7, and thereafter U;} € V' computed according to
the following prescription:

(0"U},v) + (aVU}, Vo) = (f*,v) Vv e V. (7.49)
Here 0"U}' = (U} — U, }?_1) /Tn is the backward difference quotient, and

_ 1 [t
ff=— f(z,t)dt.

Tn tn—1

Denote B" the collection of interior inter-element sides e of M™ in Q. hg
stands for the diameter of K € M™ and h, stands for the size of e € B". We
define the interior residual

R = fr - o,
along with the jump residual across e € B™

JI = [aVUR]e - ve = (aVU] |k, —aVU]|Kk,) - Ve, e=0K1NIK,,
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using the convention that the unit normal vector v, to e points from K to
K. We observe that the integration by parts implies

(@VU;, V) == ) / Jlpds Vo € HY(Q). (7.50)
eeBn v €

1/2

Introduce the energy norm [|¢fo = (aVe, V) /. We have the following

upper bound estimate.

THEOREM 7.13. For any integer 1 < m < N, there exists a constant
C > 0 depending only the minimum angle of meshes M™ n = 1,2,--- . m,
and the coefficient a(x) such that the following a posteriori error estimate
holds

1 9 ot
310" = Uy + 3 [ = VRl
n=1

m m
< HUO - Ui?”iﬂ(g) + Z Tnn?ime + C Z Tnngpace

n=1 n=1
m tn B 9
+2(Z/tn1 Hf - anLQ(Q) dt) ) (7.51)
n=1

where the time error indicator 0. and space error indicator Ng,,c. are given
by

1 —112
n‘gme = §|”U}? - U}TLL |”Q’ ngace = Z 77?
eeB”

with the local error indicator n? defined as

n 1 n n
Ne = 5 E h%(H R H%Z(K) + heH Je H%Q(e)'
KeQe

Here ). is the collection of two elements sharing the common side e € B".
PROOF. From (7.49) we know that, for any ¢ € H}(Q2) and v € V,

(0"U", ) + (aVU}, Vo)
= —(R", ¢ —v) + (aVU}, V(p —v)) + (", ¢). (7.52)

For any t € (t"~1,#"], we denote by

Un(t) = WU + (1= 1)U~ U(t) = (¢ =t /7.
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Then from (7.48) and (7.52) we have, for a.e. t € (t"~1, "], and for any
¥ € Hy(Q),v € Vi,

(22O 0 4 taviu—up), v

= (R", 0 —v) = (aVU}, V(e —v)) + (f = [", ).
Now we resort to the Clément interpolation operator r, : H}(Q) — V@

defined in Subsection 4.2.1, which satisfies the following local approximation
properties by Theorem 4.2, for any » € H} (),

1 = ru Lz + Al V(@ = 1) 2 < Chicl 90 Loy (753)

I = lr2@e) < C*hP| Ve 2@, (7.54)

where A is the union of all elements in M™ surrounding the sets A = K € M™

or A = e € B". The constant C* depends only on the minimum angle of mesh

M™. Based on this interpolation operator, by taking ¢ = u — Uy, € H(Q),
v=ry(u—Up) €V, and using (7.50) and the identity

n 1 n
(aV(u—Uy),V(u—Us)) = *H!u ~Uplla + 5 Hlu = Unll, = 51Ux = UR i,

we deduce that
1d

2dt‘
= 7|HUh - Uf?m?) + <Rn7 (u - Uh) - rn(u - Uh)>

1 1
u = Ui 320 + llu = URE + 5l — Ual

+ 2 /J" (u—Un) = rn(u—Up)lds + (f = f",u—Up).  (7.55)

ecBn
For any t* € (t™~1,#™], by integrating (7.55) in time from 0 to t*, using
(7.53)-(7.54) and exploiting the standard argument in finite element a pos-
teriori analysis, we have
t"/\t*

1 n
= U E) ey + Z / (I — U703+l — U3 )
1 0112 n| 2
< glluo — Uf oy + 3 Z [ - vl
1
£ O [ )= Ol + s = U

i
+ (2:1/tn_1 If—f" HLQ(Q)dt>27
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where t" At* = min(¢", ¢t*). This implies the desired estimate (7.51) by using
the fact that

tm t"
| o= vt = [ o= weon - vp

tn—1
= SrallUf - Up R
- 3 nil~h h Q-
This completes the proof. ]

In our a posteriori error estimate at the n-th time step, the time dis-
tn
cretization error is controlled by [|UF — U !|q and / | f = f" 2o dt,
tn—l
which can only be reduced by reducing the time-step sizes 7,. On the other
hand, the time-step size 7, essentially controls the semi-discretization error:
the error between the exact solution u and the solution U™ of the following
problem

ur—uynt F
() T @YUM VR) = (M) Ve e HYQ).  (T50)
Thus |UF — U Yo is not a good error indicator for time discretization
unless the space discretization error is sufficiently resolved. In the adaptive
method for time-dependent problems, we must do space mesh and time-step
size adaptation simultaneously. Ignoring either one of them may not provide
correct error control of approximation to the problem.

Our objective next is to prove the following estimate for the local error
which ensures over-refinement will not occur for the refinement strategy based
on our space error indicator. First we note that for given U, ,?71 e Vgt let
U € H}(2) be the solution of the following continuous problem

n _ grn—1
<w, @)+ (VUL Vg) = (") Ve HY(Q),  (T57)

Tn
Then the space error indicator ng,,.. controls only the error between Uy and
U, not between Up' and U™ (or the exact solution u).
For any K € M™ and ¢ € L?*(Q), we define Pxp = |Tl(|fK pdx, the

average of ¢ over K. For any n = 1,2,---, we also need the notation
Cpn = Knel%(h‘j;( /) +1,  hg = diam (K). (7.58)

THEOREM 7.14. Let U € H}(Q) be the solution of the auziliary problem
(7.57). Then there exist constants Ca,C3 > 0 depending only on the minimum
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angle of M™ and the coefficient a(x) such that for any e € B™, the following
estimate holds

n A 1 n n n n
ne <CoCh Y- (U2 = UR gy + 102 = UR )

KeQe "
+C3 Y hil| R* = PrcR™ |72 (7.59)
KeQe

PRrROOF. The proof extends the idea to prove the local lower bound for
elliptic equations in Theorem 4.4. For any K € M", let vx = (d +
1)d+1)\1 -+ Ag+1 be the bubble function, where Ay, - -, Ag4+1 are the barycen-
tric coordinate functions. By the standard scaling argument, we have the
following inf-sup relation that holds for some constant 5 depending only on
the minimum angle of K € M"™

/ vhprYKrde
inf sup K

> >0,
v €PL(K) o, e Py (K) | en ”L2(K)H Up, ”LQ(K)

Thus there exists a function " € Py(K) with || " ||f2(x) = 1 such that
Bl P R™ || 22k

S / (P R")¢x " d
K

Un — Un—l
e >¢K<P"d93

n

— [ (PR~ mypprda [ (77—
- / (PxR" — R")bye"da + / U= U8 eomds + (aVU™, ¥ (re ™)
K K

Tn

where we have used (7.57) in the last identity. Since U}’ € P;(K) and g =0
on 0K, simple integration by parts implies that (aVU}', V(¥k¢™))k = 0.
Thus, we have

| Pk R™ || 2(x) <C|| R — Pk R™ || 1250 + C1p UL = U || 2y
+ ONUL = Ul s " -

Since |||k < Chy' by inverse estimate, we conclude by the definition
of C,, in (7.58) that

| P R™ || L2 (k) <C|| R" = PR R"™ || 12(k)

A — 1 n n n n 1/2
+ OO (U2 = UF gy + WUZ = UR)
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Therefore, we have
| B 1325y SChic| B" — P R™ |72 50y
+ OO (VP = UF Bague + 107 — UF 1),

For any e € B", let 1), = d%\ - - - A\q be the bubble function, where Ay, - -+ , Ag
are the barycentric coordinate functions associated with the nodes of e. De-
note by " = JMp, € H}(Q). Then since J? is constant on e € B", we get,
after integration by parts, that

H‘]nHLQ(e) <C/an”dx_—c Z / VUh @bndx

KeQe
_CK%:2 / Ur — Ur)Vypdz
—CKg / 7)1/%

where we have used the definition of U[" in (7.57). Moreover, it is easy to see
that

I VY™ (| L2y < Cha 21 T2 2oy, 19" 2y < ChEP T2 | L2y, VK € Qe
Thus
hell T2 1320y <C D Wkl R™ 132

KeQ,
+ocm Y (mU" URl + 5 W02 = UF oy )-
KeQ,
This completes the proof. O

7.5. The adaptive algorithm

We start by considering the algorithm for time-step size control. The ad-
justment of the time-step size is based on the error equi-distribution strategy:
the time discretization error should be equally distributed to each time inter-
val ("1, t"),n =1,--- ,N. Let TOL¢ige be the total tolerance allowed for the
part of a posteriori error estimate in (7.51) related to the time discretization,
that is,

m

N N
_ 2
Z Tn’r/?ime + 2<Z/t . || - fn HLQ(Q)dt) S TOLtime- (760)
n=1 n=171""



100 7. FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS

A natural way to achieve (7.60) is to adjust the time-step size 7, such that
the following relations are satisfied

TOL+t1me 1 [ 1

Ntime < o 7 fos I f = f"llr2@)dt < o7V TOLtine. (7.61)

Let TOLgpace be the tolerance allowed for the part of a posteriori error
estimate in (7.51) related to the spatially semidiscrete approximation. Then
the usual stopping criterion for the mesh adaptation is to satisfy the following
relation at each time step n

Moo < 2. (762
This stopping rule is appropriate for mesh refinements but not for mesh
coarsening. We will use the coarsening error indicator based on the following
theorem.

Define the weighted norm of H'(2) with parameter 7, > 0

1 1/2
[9lrne = (el +Ield) ~ YoeHYQ)  (763)

THEOREM 7.15. Given U,:L_l e V1l and 7, > 0. Let M be a coars-
ening of the mesh M™. Let Uf; € Vbn’H, Ui € Vi be the solutions of the
discrete problem (7.49) over meshes MY, and M™, respectively. Then the
following error estimate is valid

JUF = Uk, o <NUF=UR 2, o+ 1UF = IEUR |2, o

where 1% : C(Q) — Vgn’H is the standard linear finite element interpolation
operator.

Proor. By definition, U}, € VO"’H and Uy € V' satisfy the following
relations

Un — Un—l B
(FE=he0) + (@VUR, Vo) = (F0) Yo e VT (7.64)

(U;; - upt

Tn

,v)+(aVUg,vu):<fn,v> Yo e Ve, (7.65)

Since M, is a coarsening of M", we have Von’H C Vg'. Thus U - Uy € V.
Now the equation (7.65) together with (7.57) implies the following Galerkin
orthogonal identity:
Ur —yr
(Z——2 Uf — Ut ) + (@V(UZ ~ Up), V(U — UR) = 0.

Tn
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Hence
|UF = UR 2, o =10 =UR |2, o+ 1 U — U |2, o (7.66)

Next, by subtracting (7.64) from (7.65) and taking v = U, — I U} € Von’H,
we obtain the following Galerkin orthogonal relation
U — Uy n nrrn n n n nrrn
<%a Un — IHUh> + (@V({Ug - Uy), V(Ug — 15Uy)) = 0,

which implies
10 — U 12, 0 = NUF = TUR 1,0 — 1 UB — TUR 12, o
<0 = ORI, o
This completes the proof by using (7.66). O

Theorem 7.15 suggests us to introduce the following coarsening error
indicator

1
Neoarse = — I 1aUp = Uy 1720 + IHEUR — UR I (7.67)
n

The nice feature of this indicator lies in that it does not depend on Uy, the
solution of the coarsened problem. This property allows us to do coarsening
only once, without checking whether the coarsened solution U} satisfies some
stopping criterion such as (7.62). Combining above ideas together, we arrive
at the following adaptive algorithm for one single time step.

ALGORITHM 7.1. (Time and space adaptive algorithm) Given tolerances

TOLtine, TOLspace and TOLcoarse, parameters o1 € (0,1),02 > 1 and Ome €
(0,1). Given U[LL_I from the previous time-step at time t"~! with the mesh
M" ! and the time-step size 7,,_1.

1. M= ML 5 =1, " =t"" L 1,
solve the discrete problem for U;' on M™ using data U ,?_1
compute error estimates on M"
2. while (7.61) is not satisfied do
Tp 1= 01T, t" :=t""1 4+ 1,
solve the discrete problem for U;' on M"™ using data U, ,?_1
compute error estimates on M"
end while
3. while 7{,,ce > TOLgpace/T do
refine mesh M™ producing a modified M"
solve the discrete problem for U;' on M™ using data U }?*1
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compute error estimates on M"

while (7.61) is not satisfied do
T 1= 01T, t" :=t""1 4+ 1,
solve the discrete problem for U]’ on M" using data U, }’:_1
compute error estimates on M"

end while
end while
4. coarsen M" producing a modified mesh M"™ according to 77, e <
TOLCO&I‘SE
T
solve the discrete problem for U;' on M"™ using data U, ,?_1
5. if
TOL¢; 1 _ 1
Nime < 9time$> a /tnl | f—f" ||L2(Q)dt < oT V/ Otime TOLtine,
then
Tn i= 02Ty
end if

A good choice of the parameters in above algorithm for the backward
Euler scheme in time is to take §; = 0.5,02 = 2, and O¢jme = 0.5. The
goal of the first three steps in above algorithm is to reduce the time-step
size and refine the mesh so that the time and space error indicators become
smaller than the respective tolerances. We achieve this goal by first reducing
the time-step size to have the time error estimate below the tolerance while
keeping the mesh unchanged. In Step 5, when the time error indicator is
much smaller than the tolerance, the step size is enlarged (coarsened) by a
factor §o > 1. In this case, the actual time step is not re-calculated, only the
initial time-step size for the next time step is changed.

We have the following theorem which guarantees the reliability of the
above algorithm in terms of error control.

THEOREM 7.16. For n > 1, assume that Algorithm 7.1 terminates and
generates the final mesh MY, time-step size T,, and the the corresponding
discrete solution Up;. Here the mesh MY is coarsened from the mesh M"
produced by the first three steps. Then for any integer 1 < m < N, there exists
a constant C' depending only on the minimum angles of M", n=1,2,--- ,m,
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and the coefficient a(x) such that the following estimate holds
1 2 - [ 2
Sl = U sy + - [ u— Ul
n=1

tm
< lwo — Ul? H%Q(Q) + ?TOLtime

tm O AL
+C ?TOLSpace +CCY ?TOLcoarse, (7.68)
where C’g = max{h%(/m T KeMpy,n=12,--- ,m}.

ProOOF. Let U]} be the solution of the discrete problem (7.49) over the
mesh M"™ and with the time-step size 7,. Then upon the termination of
Algorithm 7.1 we have that

TOL¢ipe 1 [t
,’721’110 g 2T )

=n 1
” f - f ||L2(Q) dt < ﬁVTOLtimea

Tn Jin—1
n < TOLspace
nspace ~ T :

From (7.49) we know that, for any ¢ € H}(Q),
<U}_} —upt
Tn
= (PEER ) + @V (U - UF), )
—(R",¢) + (aVUR, Vo) + (f", ¢). (7.69)

Since M7, is a coarsening of M", by the Galerkin orthogonal relation as in

)+ (aVU}, V)

Theorem 3.1, we have
UZT — U}TLL n n _ n,H
Ti,UH +((IV(UH—Uh),V'UH)—O V'UHG‘/O .

On the other hand, since U}’ is the discrete solution over mesh M", we have

—(R",v) + (aVUy,Vv) =0 Vv e Vj.
Thus from (7.48) and (7.69) we deduce that, for a.e. ¢ € (t"~1,#"] and for
any ¢ € H}(Q), vy € VOH’H, ve Vi,

(ZO=T0 ) 4 (@v(u—Up), V)

= (R", ¢ —v) — (aVUR, V(e =) + (f = ", ¢)

ur —ynr
— (FE=2h o — vy ) — (@V(UR — UR), V(e = on),

Tn
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where for any ¢t € ("1, ¢"], Up(t) = I()US + (1 — 1(t))U;~" with I(t) =
(t —t"1)/7,. By taking vy = Iy € VO”’H, the Clément interpolant of
o € HYQ) in VOn’H, we get, after using the estimate (7.53) for the Clément
interpolation operator, that

(PEZUE o 110 + @V (U — UF). V(o — T3))|

Tn
<C( X WU = Ui e, + 107 = URIR) el
KeMy,
< C(CE)2| Uy = UF I

[l

Again, since MY; is a coarsening of M", from the proof of Theorem 3.1 and
the Step 4 in Algorithm 7.1 we know that

TOL
1U = Uit e < N EUR = U 0 < (ioasse) ' < —

which yields

Ku o— nr;{gp> + (aV(Ug = Up), V(g - H?Iso))(

Tn

C™TOL
<Gy %\H@HIQ.

The rest of the proof is similar to that of in Theorem 2.1. Here we omit the
details. ]

In practical computations, it is natural to choose the coarsening tolerance
TOLcoarse much smaller than the space tolerance TOLspace- However, the
additional factor C’f} in the estimate (7.68) suggests that the ratio between
the coarsening tolerance and the time tolerance should also be small.

Bibliographic notes. The Sobolev space involving time in Section 7.1
follows Evans [32]. A comprehensive account on the mathematical theory
of parabolic equations can be found in Ladyzhenskaya et al [40]. Sections
7.2 and 7.3 follow the development in Thomée [49] where further results on
finite element methods for parabolic problems can be found. There are several
approaches for deriving a posteriori error estimates for parabolic problems,
e.g., the duality argument by Eriksson and Johnson [30, 31| and the energy
argument by Picasso [47]. The analysis in Sections 7.4 is from Chen and Jia
[20] and improves the results of [47]. The space and time adaptive algorithms
based on a posteriori error estimates and their implementation are considered
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in Schmidt and Siebert [48]. Section 7.5 is taken from [20] to which we refer
for the discussion on the termination of the adaptive algorithm 7.1 in finite
number of steps.

7.6. Exercises
EXERCISE 7.1. Prove Theorem 7.3.

EXERCISE 7.2. Under the assumptions of Theorem 7.7, prove that, for

t>0,
t

16r.(D)]| 20y < € 108 (O)]l L2 +/0 e~ r(s)ll 2y ds,
where « is the constant in (7.8).

EXERCISE 7.3. Let u and uy, be the solutions of (7.1) and (7.13), respec-
tively. Suppose that [[uno — uoll 12(q) < Ch? [uo| 2 - Then for ¢ 2> 0,

t t
/0 lun(s) — Ruu(s)||3 oy ds <Ch4( [uol72 +/0 Jus(5) |32 ds)-

EXERCISE 7.4. Complete the proofs of Theorem 7.11 and Theorem 7.12.



CHAPTER 8
Finite Element Methods for Maxwell Equations

The Maxwell equations comprise four first-order partial differential equa-
tions linking the fundamental electromagnetic quantities, the electric field E,
the magnetic induction B, the magnetic field H, the electric flux density D,
the electric current density J, and the space charge density p:

VxH=J+9D, divD=p,
VxE=-9B, divB=0.

They are usually supplemented by the following linear constitutive laws
D=c¢cE, B=_uH,

where ¢ is the dielectric permittivity and p the magnetic permeability. In
the wave form, we have

cOZE+V x (W'VxE)=-0J, div(eE) = p,
pofH+V x (e7'VxH) =V x (e713),  div(uH) = 0.

Usually, time harmonic solutions are considered, that is,
E(z,t) = R(E(z)e ™), H(z,t) = R(H(z)e "), I (z,t) = R(I (x)e ),
where w > 0 is the angular frequency, then

VX (07 'V x E) —ew?B = iwd, div(eE) = p,
VX (e7'VxH) - uw?H =V x (671), div(uH) = 0.

In this chapter we consider adaptive edge element methods for solving the
time-harmonic Maxwell equations. We will first introduce the function space
H(curl;©2) and its conforming finite element discretization, the lowest or-
der Nédélec edge element method. Then we will derive the a priori and a
posteriori error estimate for the edge element method.

107
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8.1. The function space H (curl; Q)

Let  be a bounded domain in R? with a Lipschitz boundary I'. we define
H(cur; Q) = {v e L*(Q)%: V xveL*Q)?3}

with the norm

1/
IVl ey = (IV13200) + IV % VIEa)
We define Hy(curl; Q) to be the closure of CSO(Q)S in H(curl; Q). H(curl; Q)
and Ho(curl; Q) are Hilbert spaces.

LEMMA 8.1. Let Q be a bounded Lipschitz domain. Let v € H(curl; R?)
vanish outside Q). Then v € Hy(curl; Q).

PROOF. Suppose for the moment that the domain € is strictly star-
shaped with respect to one of its points. Without loss of generality, we
may take the point as the origin. Then

9QCcQ VOe€[0,1) and QCHQ VO > 1.
Define, for 6 € (0,1),
vo(z) = v(z/0) Vo eR3.
It is obvious that vy has a compact support in 2 for § € (0,1) and

lim vg = v in H(curl, R3).
0—1

For any € > 0, let p.(7) = e %p(x/e) € C(R3) be the mollifier function
where p(z) is defined in (1.4). Recall that p. = 0 for |z| > e. Hence, for € > 0
sufficiently small, p, * vy is in C§°(Q2)? and from Lemma 1.1,

lim lim (p, * vp) = v in H(curl, Q).

e—=060—1

In the general case, €2 can be covered by a finite family of open sets
QcC Ulgiqui
such that each ; = QN O; is Lipschitz, bounded and strictly star-shaped.

Let {xi}i1<i<q be a partition of unity subordinate to the family {O;}1<i<q,
that is,

q
Xi € C3(0;), 0<x;<1, and » xi=1 inQ.
i=1
Then v = 37  x;v in R3. Clearly x;v € H(curl;§2) with support in ;.
Therefore, we can finish the proof by using the result for the strictly star-
shaped domain in the first part of the proof. O
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THEOREM 8.1. Let D(Q) be the set of all functions ¢|o with ¢ € C°(R?).

Then D(Q)? is dense in H(curl; ).

PROOF. Let 1 belong to H(curl;Q2)’, the dual space of H(curl; Q). As
H (curl; Q) is a Hilbert space, by Riesz representation theorem, we can asso-
ciate with 1 a function u in H (curl; Q) such that

(Lv) =(u,v)+ (w,V xv) Vve H(curl;Q),
where
w=V xu.

Now assume that 1 vanishes on D(Q)? and let @1, W be respectively the exten-
sion of u, w by zero outside 2. Then we have
{fa-v+Ww-Vxvlder=0 VveCrR?>.
R3
This implies that
u=-Vxw.
Therefore w € H(curl;R?), since & € L?(R3)3. Now by Lemma 8.1 we have
w € Hp(curl; ). As C5°(2)3 is dense in Hyp(curl; 2), let w, be a sequence of
functions in C§°(Q2)? that tends to w in H(curl; Q) as € — 0, then

(Lv) = lir%{(—V XWe,Vv)+ (we,Vxv)} =0 VveH((cul;Q).
€E—

Therefore, 1 vanishes on D(Q)? implies that 1 also vanishes on H(curl; ().
This completes the proof. ]

The following theorem about the tangential trace of the functions in
H(curl; Q) is a direct consequence of the above theorem.

THEOREM 8.2. The mapping v : v — v X n|p defined on D(Q)3 can be

extended by continuity to a linear and continuous mapping from H(curl; Q)
to H=Y/2(T)%. Moreover, the following Green formula holds

(vxn, w)p = / V-wadaz—/ Vxvwdr Vwe HY(Q)? ve H(curl; Q).
Q Q

We remark that the trace operator v; is not a surjective mapping. The
following characterization of the Hy(curl; Q) follows from the definition of the
space Hy(curl; Q) and Lemma 8.1.

LEMMA 8.2. We have

Ho(curl; Q) = {v € H(curl, ) : vxn =0 on I'}.
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The Helmholtz decomposition plays an important role in the analysis and
computation of electromagnetic fields. We start with the following general-
ization of the classical Stokes theorem.

THEOREM 8.3. Let 2 be a simply connected Lipschitz domain. Then
u € L2(Q)? and V xu = 0 if and only if there exists a function ¢ € H*(Q2)/R
such that u = V.

PROOF. We first prove that u = Vg for some ¢ = L2 (). Since Vi €

loc

L?(Q)3, we then easily have p € L?(). In fact, using the argument in
Lemma 8.1 we may assume () is strictly star-shaped. Then we can introduce
¢p as in Lemma 8.1. Since ¢ € L2 (Q) and Vi € L?(2)3, we know that

loc

Vg — Ve and [ Do — i) pas 0 — 1, where D is some compact subset of
2 () we know ¢y € L%(Q). By using Poincaré inequality

loc
we know that ¢y is a Cauchy sequence in L?(2) as # — 1. Thus there exists
a @1 € L%(Q) such that ¢y — 1 in L?(Q2). This implies ¢ = 1 € L?().

2
loc

connected Lipschitz domain {2, },,>1 such that

Q. Now since ¢ € L

To show u = Vi for some ¢ = Li. (), first we find a sequence of simply

Qm cQ, Qn CQpyr, Q= Um)lgm-
In Q,,, we can smooth u so that its curl is zero and so we can apply the classical
Stokes theorem for C! functions. For any € > 0, let p.(x) = e 9p(x/e) €
C§°(R3) be the mollifier function where p(z) is defined in (1.4). Recall that
pe = 0 for |x| > €. Denote by u the zero extension of u outside 2. Then
pe 1 € C$°(R3)3, and
pexit — 1 in L2(R3)3?,  V x(pxit) =p+xV x @
For sufficiently small €, we have Uzcq,, B(z;€) C Q. Thus
V X (pext) =0 in Q.

Now from the classical Stokes theorem, there is a smooth function . €
H'(Q,,)/R such that

pex 0=V, in Q.

Let € — 0, we know that there is a function ¢, € H(Q,,) such that ¢ — ¢,
in H'(Q,,)/R, and

u=Vy, in Q,,.

But Vo, = V11 in Q. Thus ¢, om+1 differ by only a constant which
we can choose as zero. Therefore

Omtl = ©m in 2y, Ym > 1.
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This defines a function ¢ € L2 () such that u = V. O

Our next goal is to show that a vector field whose divergence vanishes
must be a curl filed. We assume 02 has p + 1 connected parts [';,0 < i < p,
and T'g is the exterior boundary. We denote €2; the domain encompassed by
I, 1 <4 < p (see Figure 1).

FIGURE 1. The domain 2 and the ball O.

THEOREM 8.4. A wvector field v € L*(Q)3 satisfies
divv=0 in, (v-n,1l)r,=0 0<i<p, (8.1)
if and only if there is a vector potential w € H*(Q))? such that
v=Vxw. (8.2)

Moreover, w may be chosen such that divw = 0 and the following estimate

holds
Wl < ClIviirzg)- (8.3)

PROOF. 1°) Let w € H}(Q)? and v = V x w. Obviously divv = 0. For
0<i<<plet y € CSO(R3) be the cut-off function such that 0 < x; < 1,
Xi = 0;; in the neighborhood of I';. Define v; = V x (x;w). Then

<V-n,1>pi:<vi-n,1>p:/divv,-dxzo, 0<i<p.
Q

This shows (8.1).
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2°) Now let us assume (8.1) holds. First we extend v to be a function in
R? so that its divergence is zero. Let O be a ball containing € (see Figure 1).
For 0 < i < p, denote by 6; € H'(£);) the solution of the following problem

—Afy=0in Qy =0\ (QU_; @), nbo = v -non Iy, 9uby =0 on JO,
— A0, =0in Q;, Onbf; =v-nonly, 0<i<p.

Define
v in €,
v = V@z in Qi, 1<’L'<p,
0 in R3\O.

Then v € L%(R3) and divv = 0. Let v = (01,02,93)7 be the Fourier
transform of v

3
WO = [ T, (@06 = Y nk
=1

By taking the Fourier transform of (8.1) we obtain
§101 + &202 + &303 = 0. (8.4)
Notice that if (8.2) is satisfied we need
v = 2mi(&aibs — Eaia, by — &3, Exady — Eotdr ) (8.5)
If divw = 0 we need
S + Eabg + E3ws = 0. (8.6)

Solving w from (8.4)-(8.6) we get

1

W = W(fﬁb — &3, E103 — 301, &1 — 51@2)T‘

We will define w as the inverse Fourier transform of the above function.
Obviously Vw € L?()3*3 because

. I N .
[€5Wk| < o (101] + [0a] + [B3]). (8.7)

Now we show w € L?(Q)3. Denote by w € C§°(R?) the function which is 1
in the neighborhood of the origin. Then

W(§) = w(w(E) + (1 - w(&))w(E).
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From (8.5) we know that 0;(0) = 0. Since 0;(§) is holomorphic, we know
that, in the neighborhood of the origin,

O
Z ”ﬂg +O(le?).

Thus w is bounded in the nelghborhood of the origin. Now ww has the com-
pact support, its inverse Fourier transform is holomorphic and its restriction
to Q belongs to L?(Q2)3. On the other hand, (1 — w)W is zero in the neigh-
borhood of the origin. Hence (1 — w)W € L?*(R3)? and its inverse Fourier
transform in L?(R3)3. This proves the inverse Fourier transform of W is in

L2(2)3.
Clearly w can be chosen up to an arbitrary constant. Thus (8.3) follows
from (8.7), the Parserval identity, and Poincaré inequality. O

The following Helmholtz decomposition theorem is now a direct conse-
quence of Theorems 8.3 and 8.4.

THEOREM 8.5. Any vector field v € L?(Q)? has the following orthogonal

decomposition
v=Vqg+V xw,
where ¢ € H'(Q)/R is the unique solution of the following problem
(Va, Vo) = (v. V) Ve H'(Q),

and w € HY(Q)? satisfies divw =0in Q, Vxw-n=0 onT.

We conclude this section by proving the embedding theorem for function
spaces X () and Xp(€Q) which will be used in our subsequent analysis
Xn(Q)={velL?Q)?: VxvelL*Q)?3 divve L*(Q), vxn=0onT},
X7r(Q)={velL?Q)?: VxvelL?Q)?3 divwve L*(Q), v.-n=0onT}.

THEOREM 8.6. If  is a C! or convex domain, X (), X1 (Q) are con-

tinuously embedded into H(2)3.

Proor. Without loss of generality, we may assume 2 is also simply con-
nected and has connected boundary. For, otherwise, €2 is the union of finite
number of domains €2 having above properties. We can introduce the par-
tition of unity xj subordinate to €, and apply the result for each xpv.

1°) Let v € X7 (£2). By Theorem 8.4, for V x v, we have vector potential
w € H'(Q)3 such that

Vxw=Vxv, divw =0 in Q.
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Moreover, [[w|giq) < C[|V X V|12 Thus V x (v —w) = 0 and by

Theorem 8.3, v — w = Ve for some function ¢ € H(2). Moreover, ¢

satisfies
—Ap=—divv inQ, Ohp=-w-n onl. (8.8)

Since w € H'(Q)3, w-n € HY/*I'). Now if Q is a C' domain, then the
regularity theory for elliptic equations implies ¢ € H2(Q2). Thus v = w+ Vg
belongs to H'(2)3. Moreover,

ol ar2q) <C <|| divv |22 + [[w - n \|H1/2(r)>
<O ([ divv | 2) + 1V x v [l 220 -

Thus
Vigi) < C (1divy [ 2) + 1V X V|| 120)) -

2°) Let v € Xn(€). Let O be a ball in R? that includes 2. Denote
by v the zero extension to O of v. By Theorem 8.4, there exists a function
w € H'(0)3 such that

Vxw=Vxv, divw=0 in O.

Now w is curl free in O\Q and by Theorem 8.3, w = V1) for some ¢ €
H?(O\Q). On the other hand, V x (v —w) = 0 and O is simply connected,
again by Theorem 8.3, v —w = V¢ for some function ¢ € H'(0O). Clearly ¢
satisfies

—Ap =—divv inQ, ¢=—¢ onlI. (8.9)

If Q is a C! domain, then ¢ € H?(Q) and consequently v = w+V¢ € HY(Q)3.
Moreover,

VI < C (1 divy [ 2 + |V X V20) -

3°) If © is a convex domain, the regularity theory for elliptic equation
ensures that the solution ¢ of (8.9) is in H?(2) and thus X (f2) is contin-
uously embedded into H'(Q2)? by using the same argument in 2°). For the
case of X7(£2), the regularity of the elliptic equation with Neumann condition
in (8.8) is unknown. A different approach is used to prove the embedding
theorem. We refer the reader to the monograph [34]. i
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8.2. The curl conforming finite element approximation

In this section we only consider the lowest order Nédélec finite element
space.

DEFINITION 8.7. The lowest order Nédélec finite element is a triple (K, P,
N) with the following properties

(i) K C R3 is a tetrahedron;
(ii) P={u=ax +bg xz Vag,bg € R3};
(iil) N = {M, : Mc(u) = [ (u-t)dl Vedgeeof K, Vue P}. Mc(u) is
called the moment of u on the edge e.

Note that if u € P;(K)? then V xu is a constant vector, say Vxu = 2bg,
which implies V x (u—bg x ) = 0in K. We get u = Vo +bg X x for some
¢ € P2(K). When bg = 0, u should approximate the function in L?(K)3,
the minimum requirement is ¢ € P;(K), that is, Vo = ag for some constant
vector ar in R3. This motivates the shape functions in P.

LEMMA 8.3. The nodal basis of the lowest order Nédélec element is {\;V;
—AjVAi, 1 <i < j <4} Here A\, j = 1,2,3,4, are barycentric coordinate
functions of the element K.

PROOF. Let K be the tetrahedron with four vertices Ay, As, Az, A4 cor-
responding to A1, Ag, A3, A4, respectively. We first notice that the normal to
the face Fio3 with vertices Ay, As, Ag is parallel to V4. In fact, for any edge
e of Fiog with tangential vector t.,

Oy
4 Ot 0

Similarly, we have the normal to the face Fb34 is parallel to V ;.

Now we show that the basis function corresponding to the edge e14 is
uyy = MV — MV A1 In fact, since Ay = 0 on the face Fy34 and Ay = 0 on
the face Fio3, we have

/u14-tedl:O Ve;ﬁem.
e

It remains to prove

/ uig - t14 dl =1.
€14

Noting that A\ + A4 = 1 on eq4, we have
uyy = Vs — )\4V(>\1 + )\4) =V + >\4V()\2 + )\3)



116 8. FINITE ELEMENT METHODS FOR MAXWELL EQUATIONS

Therefore
oA
/ u14-t14dl:/ V)\4.t14dl:/ =1
e14 e14 e14 Ot1a
This completes the proof. ]
Let K be a tetrahedron with vertices A;, 1 < i < 4, and let Fi : K 5 K

be the affine transform from the reference element K to K
&= Fg(#) = Bxkié +bg, @€k, By isinvertible,

so that FK(AZ) = A;;1 < i < 4. Notice that the normal and tangential
vectors n, fi and t,t to the faces satisfy

no Fi = (Bg")YTa/|(Bg") 4|, to Fx = Bgt/|Bkt|.
For any scaler function ¢ defined on K, we associate
p=¢oFg, thatis, @)= p(Bgi+bgk).
For any vector valued function u defined on K, we associate
u=BEuoFg, thatis, ()= Bku(Bgi+bg). (8.10)

Denote by u = (uy,ug,us), 0 = (41, te, u3). We introduce

:<3“i_f’“j>3 and é:(a?l'—af‘f')s .
aﬂfj 8$l ij=1 8:Cj axl ij=1

Then we have

Co Fr = (BH)TCBL. (8.11)

oz, = oz, (Ek:bm(uk o FK)) = ; bkiaixlblj

In fact,

and
6111- 871] 8uk auk (‘)uk 8ul

— b i3 b b i = bri by
0%; 0 Z e Z " oz " Z M\ Oz, Oxp
This yields

C}'j = Zbkicklblj and hence é = BII‘Z;(C o) FK)BK,
k,l

that is, (8.11) holds.

LEMMA 8.4. We have
(i) ue P(K) = u e P(K);
(i) Vxu=0&Vxu=0, VuePK)
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(iii) Me(u) =0 Ms() =0, VueP(K),

(iv) Let u € P(K) and F be a face of K. If Mc(u) = 0 for any edge
e COF, thenuxn=0 on F;

(v) Ifu e P(K) and M.(u) =0 for any edge e, then u =0 in K.

PrOOF. (i) For u =ag + by x z € P(K), we have
(&) = Bj(ak + bk x (B + bg))
= Bl (ag + by x bg) 4+ Bl (bg x Bgi)
=BFax +bg x@  (by BE(bx x Bgi) i =0)
e P(K).
(ii) From (8.11), it is obvious.
(iii) By definition,

Brt .
M.(u) :/u'tdl: el [ e @) - 2EE ai
e ‘6’ é |BKt|
I
le| | Bxt| Je
1
- @fMé(ﬁ). (8.12)
le| | Bkt

(iv) Without loss of generality, we may assume
F C{x = (z1,20,23) €ER®: x5 =0}.

First by Stokes theorem

/qu-nds:/ u-tdl=0
F oF

which implies Vxu-n=0on F, ie.,
8'&1 8u2

it =0}. 1
92 Do, 0 on {x3 =0} (8.13)

Let v’ = (uq (21, 22,0), uz(x1,x2,0)) and
u=ag + bK X T = (52.1‘3 — ngg, bgl‘l — blxg, bl.%'g - b2$1) +ag.

(8.13) implies b3 = 0. Thus u’ is constant. Note that u-t = u’ -t on F.
By assumption, we have, M.(u) = 0, for any edge e C F, which implies
u -t =0 on any edge ¢ C F. Thus u' = 0 in F. This shows u x n =
(ua(z1,2,0), —ui(x1,22,0),0) =0 on F.
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(v) At first, by (iv) we know that u x n = 0 on F for any face F. Thus,
from Theorem 8.2,

/qu‘bde:—/ (uxn)-bgds=0
K K

which implies bx = 0, that is, u = ag. Now ax x n = 0 for any face F' yields
ag = 0. O

This lemma induces a natural interpolation operator on K.

DEFINITION 8.8. Let K be an arbitrary tetrahedron in R? and u €
WP (K)3 for some p > 2. Its interpolant yxu is a unique polynomial in P(K)
that has the same moments as u on K. In other words, M.(yxku —u) = 0.

Recall that for any bounded Lipschitz domain, the trace theorem says
that the trace of any function in W*P(Q) is in W*~1/PP(9Q), where s > 1/p.
Thus if u € WP(K)3 for some p > 2, u € W'=V/PP(9F) for any face F
of K. Again by the trace theorem u € W'=2/P?(9F). Therefore, M, (u) is
well-defined for functions u in WiP(K), p > 2.

The following lemma indicates that the interpolation operator ~x can
also be defined for functions with weaker regularity.

LEMMA 8.5. For any p > 2, the operator v s continuous on the space
{(veIP(K)?:V xvelLP(K)® andv xn e LP(OK)3}.

PROOF. Let p’ be such that 1/p+ 1/p’ = 1. For an edge e of a face F of
K, we let ¢ be the function which equals to 1 on e and 0 on the other edges
of F. Then ¢ € W=V/P'"? (9F) since 1 — 1/p/ < 1/2. Denote @ its lifting
from W1=VPP' (9F) to W' (F). Next, we extend @ to be zero on the other
faces of K and denote @ its lifting from W'=1/?* (9K) to W' (K). By
Stokes theorem and Green formula

M) = [ (eved
= /Vx(@v)-nds
F
= /@va~nds+/Vg0xv-nds
F F

= /va~Vg5dx+/V<p><v-nds.
K F

This implies
M) < CUNY XV Loy + 1V % 0 o) @ s
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with a constant C' depending only on K and p. This completes the proof. [
Let Q be a bounded polyhedron and My, be a regular mesh of 2. We set
Xy =A{uy € H(curl; Q) : up|x € P(K) VK € My}.

For any function u whose moments are defined on all edges of the mesh My,
we define the interpolation operator v, by

'yhu|K =vygu on K, VK € M.

THEOREM 8.9. Let u € H'(curl;Q), that is, u € HY(Q)? and V x u €
H'(Q)2. We have

u = ynull g eure) < CR(Julgi) + IV xulgiq) -
PROOF. First it follows from (8.12) that
KU =510, e, Bi[(ygu)o Fg] = v [Bj(uo Fx)).
From (8.10), we have
= sl gy < | det(Bro) V2 B 1 — 7l o e
Since Py(K)? C P(K), for any p € Py(K)?3, we have
= el o ey = 1T = )@+ B

But the degrees of freedom of u may be estimated by using Lemma 8.5 and
by using the Sobolev imbedding theorem to get

1 =74 (4 B) | ity < € (I8+ Bll sy + IV % (04 B) 1 )
= C (18 + Bl iy + IV % 0l g )
Now, by using Theorem 3.1,

inf (10 = ) (04 D) sy < O (180 + 1V % ) -

pEP(K)3 H
Mapping back to the original element K and using (8.11) we obtain
o — el p2aey < Cledet(Bic) V2B 8] ) + 19 % 71 )
< CIBEHNIBr (Il g + 1Br |l [V < ulgi(x)
< Chi(lulgrgy + IV xulgigy)-

To show the curl estimate, we use the H(div,2) conforming finite element
space W, and the interpolation operator 73, : H(div,Q) — W}, in Exercise
8.4 to obtain

IV < (w =)l 29y < (1 = 70)V X ullp2(g) < CRIV xul[g1q).-
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This proves the theorem. O

8.3. Finite element methods for time harmonic Maxwell equations

Let © be bounded polyhedral domain in R3. In this section we consider
the finite element approximation to the time harmonic Maxwell equation

V x (a(z)V X E) = E*B(z)E =f in Q,
with the boundary condition
Exn=0 on 0f).

Here k > 0 is the wave number. We assume f € L?(Q)3, a, 8 € L>®(Q2) such
that a > ag > 0 and 8 > By > 0.
The variational formulation is to find E € Hy(curl; ©2) such that

(aV X E,V x v) — E*(BE,v) = (f,v) Vv € Hy(curl; Q). (8.14)

The problem (8.14) is not necessarily coercive and thus its uniqueness and
existence is not guaranteed. Here we will not elaborate on this issue and
simply assume (8.14) has a unique solution E € Hy(curl; Q2) for any given
f e L?(Q)3.

Let X9 = Xj N Hy(curl;2). Then the finite element approximation to
(8.14) is to find Ej, € XY such that

(aV x Ep,V x v,) — k2(BEy, vi) = (f,v,) Vv, € XY, (8.15)

The discrete problem (8.15) may not have a unique solution. It can be
proved that for sufficiently small mesh size h, the problem (8.15) indeed
has a unique solution under fairly general conditions on the domain and the
coefficients «, 5. Here we only consider a special case when the domain is a
convex polyhedron and «, 3 are constants.

THEOREM 8.10. Let Q be a convex polyhedral domain in R® and o =
1,8 = 1. Then there exists a constant hy > 0 such that for h < hg, the
discrete problem (8.15) has a unique solution Ej. Moreover, assume that
the solution B of (8.14) satisfies E € HY(Q)3,V x E € HY(Q)3, then the
following error estimate holds

IE = Enll #(euro) < Ch (|Elg1 o) + |V X E|gg)) -

PRrROOF. The proof is divided into several steps.
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1°) Let a(+,-) : Ho(curl; Q) x Hyp(curl; 2) — R be the bilinear form defined
by

a(u,v) = (Vxu,V x v) — k?(u,v).
From (8.14) and (8.15) we know that
ao(E—Ep,vy) =0 Vv, € X). (8.16)
Let PLE € X% be the projection of E to X?L defined by
(Vx PE,V xv)+ (PE,v) = (VXE,Vxv)+ (E,v) VYveX).
Thus
H E - Eh H?’{(curl;Q) = a(E - Eh’ E - Eh) + (1 + kz)” E- Eh ||%2(Q)
= a(E - Ey, E - P,E) + (1 + k)| E - Ep [|72(q
=(Vx(E—E,),Vx (E—-—FE)+ (E-—E, E—- FE)
+(1+k*)(E - Ep, B,E — Ey).
This yields
” E-E, HH(Curl;Q)

E—-—E;,v
<||E = PE| geuto) + (1 + k) sup (B = En, vi)| (8.17)

ozvrexy |1 Valla(eune)

2°) Now we estimate the second term in above estimate. First since
E — E;, € Ho(curl;Q), there exists a w € Hp(curl; Q) and ¢ € H} () such
that

E—E, =w+ Vy, divw =0. (8.18)
In fact we can define ¢ € H}(Q) as the solution of the following problem
(Vo,Vu) = (E - E;,, Vv)  Yu e H(Q),

and let w = E — Eh - V(p. Clearly H Vgo ||L2(Q) < H E— Eh HLQ(Q)
For any vy, € Xg, we use the following decomposition

v =wp + Vo, wp € X%,Ov ©p € V;?, (8.19)

where V2 C H}(Q) is the conforming linear finite element space having zero
trace on the boundary and X%,o is the subspace of X?L whose functions are
discrete divergence free

Xho={uy € X} : (up, Vo) =0 Vo, € Vi'}.
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In fact we can construct ¢ € Vho as the solution of the following discrete
problem

(Vgoh,VUh) = (Vh,Vvh) Vvh S V;?,
and let w, = vi — Vo, Cleatly [ Vy |lr2) < | vallz2@) and thus

IWhllz2@) < Cllvallzz (o)
Since E—Ey, is discrete divergence free by (8.16), we have by (8.18)-(8.19)
that

(E—Ep,vp) = (E—Ep,wyp) = (w,wy) + (Vo,wy). (8.20)
3°) We will use the duality argument to estimate ||w|[|z2(q). Let z €
Hy(curl; ©2) be the solution of the following problem
VxVxz—k’z = w inQ,
zxn = 0 onl.

By the assumption that k2 is not the eigenvalue of the Dirichlet problem
for the Maxwell system, we know that z € Hy(curl; 2) is well-defined and
1z | 5 (cutn) < CllW|lL2@q)- Moreover, divz = 0 in Q as the consequence of
divw = 0 in Q. Thus z € X (). Since Q is convex, by Theorem 8.5, we
have z € HY(Q)? and || z 1@ < Cf|wl[2(q). Similarly, noting that

/sz-ngoz/sz-Vg0:/nxz-g0:0, Vo € HY(Q),
r Q r

we have V x z € X7(Q), and hence by Theorem 8.5, V x z € H'(Q)3 and
IV Xz <ClW|Lq)-
Now, since z is divergence free, by (8.16),

W |172(q) = a(w,2) = a(E — Ep, z) = a(E — Ep, 2z — 1,2),
which implies, by Theorem 8.9,
W 1720y < Chll W |20 | E = En || mr(eurt:o)-
Therefore
Ch‘” E—-E, HH(Curl;Q)H Wh HL2(Q)
Ch|E = Ep || gewto)ll Vi l2@)- (8.21)
4°) To estimate (V, wy,), we define v € Hy(curl; ) such that

(W, wn)| <
<

Vxv=Vxwy, divv=0.

Note that v is the divergence free part in the Helmholtz decomposition of vy,.
Since (2 is convex, we have v € H'(Q2)3 and || v [m1 @) < CIV X w220
On the other hand, since V x v = V x wy, € LP(QQ) for any p > 2, we
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know from Lemma 8.5 that ~,v is well-defined. By using the operator 7, in
Exercise 8.3, we have

VXyv=mVxv=mVxw,=VXxw,

Thus y,v — wp, = Vi, for some ¢, € H}(Q). Since v, v — wy, € P(K),
Up, € V}?. Now since divv = 0 and wy, is discrete divergence free,

Iwh =V 17200y = (Wh =V, Wh = V) + (Wh — v, 3V = V)
= (W = v,V —V) < [[wn = V2@l v — vz,
which implies
[ wn =Vl < 1y = vil@)-
By using Lemma 8.5 we can prove as in Theorem 8.9 that
v = v L2@) < Ch (Vg + IV x ViiL29)) < ORIV x wi [ 12()-
Therefore, since divv = 0,

[(Vo,wi)| = [(Vo,wp = V)| S Ch|V x w20y | Vol 22(0)
= Chl|V x v 2@l Vel L2 () (8.22)

5°) Combining (8.21)-(8.22) with (8.20) we obtain
‘(E — Ep, vh)‘ < Ch” E-E, HH(Curl;Q)H Vh HH(curl;Q)'

Substitute it into (8.17) we know that for sufficiently small i, Ej, is uniquely
existent, and by Theorem 8.9

IE —Ep |l gcuto) < Ch (|Elmio) + IV X Elgig) -

This completes the proof. O

8.4. A posteriori error analysis

In this section we consider the a posteriori error estimate for the time-
harmonic Maxwell equation with homogeneous Dirichlet boundary condition
(8.14). We start with the following theorem on the interpolation of non-
smooth functions [8].
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THEOREM 8.11. There exists a linear projection 11}, : H'(Q)3NHy(curl; Q)
+— X9 such that for all v € H*(Q)3

||HhVHL2(K) < C( ||V||L2(f() +hi ‘V|H1(f<)) VK € My,
HV — HhVHL2(K) < ChK‘V’Hl(f() VK € My,

IV = TVl g2y < Chi2 [Vl )V face F € F,

where Fy, is the set of all interior faces of the mesh My, K and F are the
union of the elements in My, having having nonempty intersection with K
and F', respectively.

PROOF. For any edge e € &, let w, € X}, be the associated canonical
basis function of X}, that is, {We}eesh be the basis of X, satisfying

/We-tedl:L /we-te/dl:O Ve,e' € &,, € #e.

On each face F' € Fj, with edges {e1, ez, e3}, we construct a dual basis {q;}
of {w; x n} as follows

w; X n) - q;ds = d;4, i,7=1,2,3. 8.23
j J
F

We claim that

lill ooy < ChE' (8.24)
which implies that ||q;| 2y < C. Without loss of generality, we will prove
that (8.24) holds for i = 1. We first find o = (a1, 2, a3)” such that

q1 = A1W1 XN+ aoWo X N+ 3wz X n, /(WZ xn)-qpds =0, i=1,2,3.
F

It is clear that « is the solution of the linear system

Apa = (1,0,0)7,  where Ap— </(wi><n)-(wj><n) ds) . (825)
F 3x3

We will show that Ar is invertible. Let F be the face Fjo3 of a tetrahedron K
with vertices A;,7 = 1,2,3,4 and let eq, e2, e3 be the edges A2 A3z, AzAq1, A1 Ao,
respectively. From Lemma 8.3,

Wi = )\QV)\S - )\3V)\2, W9 — )\3V)\1 - )\1V)\3, W3 — )\1V)\2 - )\QV)\l.
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Let bi; = (VA xn)-(VAjxn). Since .-, VA; = 0 and V)4 is perpendicular
to the face F93, we have

3
Z bij =0 and bij = bji.
j=1

Therefore, Ap can be rewritten as

3bag + 3b33 —b11 —3b33 + b11 4+ baa  —3boo + b33 + b1
—3b33 + b11 +baa  3b11 + 3033 —baa  —3b11 + bao + b33
—3boy + b3z +b11 —3bi1 + bos + b3z 3bi1 + 3bog — bss

_ 17
12

It follows from VAL F534 that
|V A1| = 1/the height of K to the face Fy34,

which implies that

2
61‘
b = [V xnf? = 141
1=V | 4]F|2
Similarly,
22 = |€2|2 33 = |63|2
4|F1* 4|F*

Straightforward computation shows that

le1]” + lea|? + Jes|?
d tA — 2 9
var 576 |F| “

where cg is a positive constant that depends only on the minimum angle of
the elements in the mesh. Thus Ap is invertible. Since Ap = O(1), we have
AL' = O(1) which implies a = AZ'(1,0,0)T = O(1), that is, (8.24) holds.

Now for each e € &, we assign one of those faces with edge e and call it
F, € F. We have to comply with the restriction that for e on the boundary,
F, also on the boundary. Then we can define

= .qte .
;v e%;h(/e(vxn) q. ds)w

By virtue of (8.23) this defines a projection. Obviously the boundary condi-
tion is respected. By (8.24)

/ (v xn)-qf*do

e

<

|VHL2(FE) |q58HL2(Fe) <0 ||V||L2(Fe)'
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Let K. € M}, be an element with F, as one of its faces. By the scaled trace
inequality, we have

VI 72y < C(he VT2 k) + he IVITnek,) )-

Therefore,
2
TV Z2 g0y < Chie Y

e€sy,
eCOK

< Chg Z (he! HVH%Q(KE) + he ’Vﬁ{l(Ke))

e€sy,
eCOK

< O(IVIGagz) + P VIap i )

This proves the first estimate in the theorem.

/ (v x n)qf* do
Fe

Since IIj, is a projection, we know that II,cx = cx for any constant cx.
Thus

IV = T Vll oy = InfI(v + ex) = TV + ex)ll ey
< Cinf (IIv + exclagioy + hic v + exclin i) )
< Chg |V|H1(f() )

where we have used the scaling argument and Theorem 3.1 in the last in-
equality. This proves the third inequality. The last inequality can be proved
similarly. The proof of the second inequality is left as an exercise. O

The following regular decomposition theorem is due to Birman-Solomyak.

LEMMA 8.6. Let 2 be a bounded Lipschitz domain. Then for any v €
Hy(curl; Q), there exists a1 € H} () and a vs € H(2)3 N Hy(curl; Q) such
that v =V + vy in Q, and

[l @) + Vsl ) < ClVIaEwLo)
where the constant C' depends only on Q.
PRrROOF. Let O be a ball containing 2. We extend v by zero to the

exterior of {2 and denote the extension by v. Clearly v € Hy(curl; O) with
compact support in O. By Theorem 8.4 there exists a w € H'(O)? such that

Vxw=Vxv, divw=0 in O, (8.26)

and
W0y SCIV XV 20) = CIIV X V]2 - (8.27)
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Now since O is simply-connected, V x (w—v) = 0, by Theorem 8.3, there
exists a o € H'(O)/R such that v =w + Vg in O, and, from (8.27),
el o) < Clelmo) < CINN 20y + 1Wlr20)) < C VI euno) »
el ovg) < Wiy S C IV x V]2 -

Since O \ Q is a Lipschitz domain, by the extension theorem of Necas, there
exists an extension of p|p\q, denoted by ¢ € H?(R3), such that

g=p in O\Q,  [@lp2ms) < Clelmow < ClVIaCcuso) -
This completes the proof by letting 1 = ¢ — @ € H}(Q) and vs = w + V.
Remember that v = v, + Ve in O and v = v = 0 in O \ Q. Thus v, €
HE(Q)3. O
THEOREM 8.12. Let E € Hy(curl; Q) and Ej € X?L be respectively the

solutions of (8.14) and (8.15). We have the following a posteriori error

estimate
1/2

|E - Eh”H(curl;Q) <C Z 77%( )
KeMy,

where

Nk =hi [ =V x (aV X Ep) + KBEs| 1o ) + b [|div (£ + K28R 7o )

2
+ 32 (hrlinx (@9 X B2z + e [|L(E + K28En) - 0] gy )
FCOK
Here [-]] denotes the jump across the interior face F.
PRrROOF. Let a(-,-) : Ho(curl; ) x Hp(curl;2) — R be the bilinear form
defined by
a(u,v) = (aV x u,V x v) — k*(Bu,v).
From (8.14) and (8.15) we know that
a(E—Ep,vy) =0 Vv, € X, (8.28)
The unique existence of the weak solution of the problem (8.14) implies that
there exists a constant C' > 0 such that
inf
0#ue Ho(curki) 0£ve Hoy(curl;Q) HuHH(curl;Q) ||V||H(cur1,ﬂ)

For any v € Hy(curl;Q), by Lemma 8.6, there exists a ¢ € HJ(Q) and a
vs € HY(Q)3 N Hy(curl; ) such that v = Vi) + v in €2, and

la(u, v)|

> C. (8.29)

1l i) + 1Vsllmo) < ClVIgEuno) - (8.30)
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Let r, : HY(Q) — V? be the Clément interpolant defined in Chapter 4,
Section 4.2.1, and define
vy = Vrp + v € Xg
Then by the inf-sup condition (8.29) and (8.28)
|a(E — Ep, v)|
0£veHo(cur,?) VI (eurl0)
E-E —
—C s | WV = Vi)l
0#veHp(curl,Q) HV”H(Curl,Q)

On the other hand, by integrating by parts, we have
a(E —Ep,v—vy)
=(f,v—vp)—(aVXE,Vx(v-vy))+ kQ(ﬁEh,v - V)
= (f, (Vi +vg) — (Vrpy + Hhvs)) - (aV X Ep, V X (vg — Hhvs))
+ k2 (BEn, vs — ILyvs) + k* (BEn, V(¢ — 1))
- Z (f =V x (aV x Ep) + k*BEp, v — II,v)

KeMy,

+ /F[[n X (aV x Ep)] - (vs — yvs)

FeFy

— > (div(f + k*BER), v — rat))

KeMy,
+ 30 [ 1+ R5E) 6 — ).
Fer, ¥
Now by Theorem 8.11 and (8.30)

1/2
B = Epv=vi) <C( 3 nk) " (Il + W)
KcMy,

1/2
< C( Z 77%() ||v||H(curl;Q) :
kCMy,
This completes the proof. O

Bibliographic notes. The results in Section 8.1 are taken from Girault
and Raviart [34]. Further results on vector potentials on nonsmooth domains
can be found in Amrouche et al [2]. The full characterization of the trace for
functions in H (curl; 2) can be found in Buffa et al [17]. The Nédélec edge
elements are introduced in Nédédec [43, 44]. Lemma 8.5 is taken from [2].
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Further properties of edge elements can be found in Hiptmair [36] and Monk
[42]. The error analysis in Section 8.3 follows the development in [42] which
we refer to for further results. The interpolation operator in Theorem 8.11
is from Beck et al [8] although the proof here is slightly different. In [8] the
a posteriori error estimate is derived for smooth or convex domains. Lemma
8.6, which is also known as regular decomposition theorem, is from Birman
and Solomyak [10]. Theorem 8.12 is from Chen et al [21] in which the adap-
tive multilevel edge element method for time-harmonic Maxwell equations
based on a posteriori error estimate is also considered.

8.5. Exercises
EXERCISE 8.1. Prove D(2)3 is dense in H(div; Q).

EXERCISE 8.2. The lowest order divergence conforming finite element is
a triple (K, D, N') with the following properties:

(i) K C R3 is a tetrahedron;
(ii) D —{u—aK+wa Vag € R® by € R}
(iil) N ={Mp : Mp(u) = [(u-n)ds V face I of K, Vu € D}.
For any vector field u deﬁned on K, let
ﬁOFK(i'):BKu<BKi'+bK).
Prove that
(i) u e D(K) & &€ D(K);
(i) divu=0&<divi=0 VueDK);
(iii) Mp(u) =0 Mg(a) =0 VuecD(K);
(iv) f u € D(K) and Mp(u) =0, then u x n =0 on F}
(v) If u e D(K) and Mp(u) =0 for any face F, then u =0 in K.

EXERCISE 8.3. For any function u defined on K such that Mpg(u) is
defined on each face F' of K. Let 7xu be the unique polynomial in D(K)
that has the same moments as u on K: Mp(7xku —u) = 0. Prove that for
any p > 2, Tx is continuous on the space

{ue LP(K)?:divu e L*(K)}.
EXERCISE 8.4. Let D(K) be the finite element space in Exercise 8.2 and
W), ={u, € H(div; Q) : up|x € D(K) VK € My}.
Let 75, be the global interpolation operator

Thu|K:TKu on K, VK € Mjy,.
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Prove that V x X;, C Wy and V X y,u =7,V X u.

EXERCISE 8.5. Prove that
lu— Thu”L2(Q) < ChHuHHl(Q) Vu € H1(9)37
[div (u = 7p0)|[2(q) < Chlldivullgiq) VYue HY(Q)3,diva € H(Q).

EXERCISE 8.6. Prove the second estimate in Theorem 8.11.



CHAPTER 9

Multiscale Finite Element Methods for Elliptic

Equations

In this chapter we consider finite element methods for solving the follow-
ing elliptic equation with oscillating coefficients

-V - (a(xz/e)Vu) = f in Q,

(9.1)
u=0 on 0,

where Q C R? is a bounded Lipschitz domain and f € L?*(Q). We assume
a(z/e) = (a;;(z/e)) is a symmetric matrix and a;j(y) are WHP(p > 2) peri-
odic functions in y with respect to a unit cube Y. We assume a. = a(z/¢) is
elliptic, that is, there exists a constant v > 0 such that

aij(y)&&; = 1€)* VEER?, forae yey.

Here and throughout this chapter, the Einstein convention for repeated in-
dices are assumed.

The problem (9.1) a model multiscale problem which arises in the mod-
eling of composite materials and the flow transport in heterogeneous porous
media. The main difficulty in solving it by standard finite element method
is that when ¢ is small, the underlying finite element mesh h must be much
less than € which makes the computational costs prohibitive. The multiscale
finite element method allows to solve the problem with mesh size h greater
than e.

9.1. The homogenization result

In this section we introduce the homogenization result that will be used
in the subsequent analysis. We start with using the method of asymptotic
expansion to derive the homogenized equation for (9.1). Assume that the
solution of (9.1) has the following expansion

u(z) = ug(x, z/e) + euy (x, z/e) + e2uz(z, x/€) + o(e?),

131
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where w;(x,y) is periodic in Y with respect to the second variable y. By
V = 6_1Vy + V., we know that

Vu = e 'Vyug + (Vaeuo + Vyur) + e(Vour + Vyus) + o(e),

76_18017:]' %_’_a a2u
N ayi 81']‘ “ 8371895]

_ 20 (a..au()>
Ay \ " dy;
P [ (a2) o 2 (a2 o
8yi K 695]- ayi * Gyj e 8yi8$j

LoD, o) D owY P o
oy, \ Y 0y, oy \ Y 0z " 0x;0x; K 0x;0y;

+o(1).

Substitute the above equation into (9.1) and compare the coefficient of £~2

0 Jug .
—— — | = Q.
o (am ayj> 0 in

By the boundary condition we have ug = 0 on 092. iSRS
independent of y, that is, ug(z,y) = uo(x) in Q

Now we compare the coefficient of e~ and obtain

0 < 6u1) Bai]’% —0

we know that

dy; aijale dy; dxj
If we assume x/ is the periodic solution of
Vy - (a(y)Vyx?) = Gy'aij(y) inY (9.2)
with zero mean, i.e., [ x/dy = 0, then
; 811,0
= i (y) 2R 9.3
ur(z,y) = —x’(y) oz, (9.3)

Finally we compare the coefficient of €° to get

0 (D) D[ om O P
Oy \ 7 0y; ) Oy \ Y Oy Y Owi0w; Y Onidy;
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Integrating the above equation in y over the cell Y and using the periodicity,
we obtain the following homogenized equation

—V - (a*Vug) = f in Q,

(9.4)
up =0 on 01,
where a* = (a;‘j) is the homogenized coefficient
X 1 .
% = Ty /Yaz‘k(y)(5kj — Ox’ /Oyx) dy. (9.5)

In summary we have the following asymptotic expansion
u(z) = up(x) + eur(z,x/e) + o(e),

where ug satisfies (9.4) and wu;(x,y) is given by (9.3).
The above argument is heuristic. Our purpose now is to show the con-
vergence of the asymptotic expansion. Let 6. denote the boundary corrector
which is the solution of
-V - (a:Vl:) =0 in Q,
0. = ur(z,z/e) on ON.

The variational form of the problem (9.1) is to find u(z) € H(Q) such
that

(9.6)

a(u,v) = (a(x/e)Vu, Vv) = (f,v) Vv € H}(Q). (9.7)
Similarly, the variational form of the problem (9.4) is to find ug(z) € H} ()
such that
(a*Vug, Vo) = (f,v) Yo € H}(Q). (9.8)
It can be shown that a* satisfies
ahi&& =€ VEe R
Thus by Lax-Milgram lemma, (9.8) has a unique solution.

LEMMA 9.1. Let p € L2 (RY)? (d > 1) be Y-periodic and divp = 0 in
RY. Then there exists a skew-symmetric matriz o = (ayj) € R such that
aij € HE (RY), ay; is Y -periodic with zero mean, and

1 0
pj = Y’/ij(y)der By

7
This lemma extends the classical result in Theorem 8.4 that a divergence

free vector must be a curl field. The proof is left as an exercise.
The following theorem plays an important role in our analysis.
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THEOREM 9.1. Assume that ug € H*(Q). There exists a constant C
independent of ug, e, 2 such that

lu—uo — eur + €bc| () < Celuolm2()

PROOF. By simple calculation, we have

ou(a/2) 5, (uo —ex* gzz>

—aij(a:/a)ng caij(z/e) 5 — (X" (@/ )?)zD

e/ g2 —as(af e B —costafon el
= a;;‘;;‘j — G¥( /e)gzi —eaij(z/e)x"(x/e) 82;;7

ox*
GF=al, —aii [0 — = ).
7 Qi Qij ( kj ayj>
From the definitions of a;, and x*(y), it follows that

Gk
GF(y)dy=0 and L=0.
/Y (y) dy 0,

By Lemma 9.1 there exist skew-symmetric matrices of(x/¢) = (ozfj (z/€))

such that
0
k k k
Gk(y) = —(aF oF () dy = 0.
z(y) P j( Zj(y))a / zﬂ(y) Y 0

With this notation, we can rewrite

ou 0 ou 9%u
k T _ . Y [k g K 0
GH e/ g = 5 (cla/aGen ) - ealtafe i

For any ¢ € H}(2), from (9.6)—(9.8) and (9.3), we have

(a(z/e)V(u —up — cus + €6:), Vo)
= (a*Vug, Vy) — (a(w/E)V (uo — €ngzz> 7V90>

Pug 9 ug 0
_ y k 0 0oy _ k 0 0Oy
= 5/Qa1j(:c/6)x 92,005 O, dz »S/Qcxl](z:/e)(%cjagc]~C oz, dz.

Notice here we have used % (afj (x/ a)g%z) is divergence free. Thus by taking

p =u—uy — euj + €6, yields the result. O



9.2. THE MULTISCALE FINITE ELEMENT METHOD 135

9.2. The multiscale finite element method

Let © be a bounded convex polygonal domain and Myj be a regular
mesh over 2. We denote by {z; }37:1 the interior nodes of the mesh M, and
{1; }3-’:1 the canonical basis of the H!-conforming linear finite element space
Wy, € HY(Q). Let S; = supp(;) and define ¢' with support in S; as follows

—V - (a:(z)V¢') =0 in K C S,
¢ =1; on OK.
It is clear that ¢ € H}(S;) C H} (). Introduce the multiscale finite element
space

(9.9)

Vi =span{¢' :i=1,---,J} C H}(Q).
In the following, we study the approximate solution of (9.4) in V4, i.e., up € Vj,
such that
a(up,vp) = (f,vn) Yo € Vi (9.10)

9.2.1. Error estimate when h < . We first introduce the interpola-

tion operator I, : C(Q2) — V},
J .
Ly =Y u(z)¢ (z)
j=1

and the usual Lagrange interpolation operator IIj, : C(Q) — W),
J

Mhu = u(z;)e;(z).

j=1
It is obvious that

=V - (a(z/e)VIpu) =0 in K,
(9.11)
Ihyu =1IIu on JK.

LEMMA 9.2. Let u € H2(Q)NH(Q) be the solution of (9.1). There exists
a constant C' independent of h,e such that

lu — Thul| 20 + hllu — Iyull i) < Ch*(Julgzi) + [1f 2 ()
Proor. By Theorem 3.6, we have
lw = Tyl g2 + hllu — Myul| ) < CR?|ul g2y (9.12)

Since [u — Inu = 0 on 0K, by the scaling argument and the Poincaré-
Friedrichs inequality we get

| Mpu — Inullo,x < Ch||pu — Inu||i k. (9.13)
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From (9.11), it follows that
(a(x/e)VIpu,V(Ihu — ) = 0.
Then
(a(z/e)V(Ipu — Mpu), V(Ihu — pu)) ik
= (a(z/e)V(u — pu), V(Iyu — u))k — (a(x/e)Vu, V(Iu — Hpu))k
= (a(x/e)V(u — pu), V(Ipu — Hpu)) k — (f, VIpu — Hiu)) g

< Clu — Hpuly g [Inw — Mpuly ke + || fllo,x ([ {nu — Wpullo ks

which implies by using (9.13) that
[hu — Hpulyk < Ch(|ul2,k + [ fllo.x)-
This completes the proof. ]

THEOREM 9.2. Let u and up, be the solutions of (9.1) and (9.10), re-
spectively. Then there exists a constant C, independent of h and €, such
that

lu — unllg1 @) < Ch(lulg2@) + (| fllL2@)- (9.14)
Moreover,
lw — unll 20y < C(h/€)* | £l 12(02)-

PRrOOF. (9.14) follows easily from the Céa Lemma and Lemma 9.2. To
show the error estimate in L?, we use the Aubin-Nitsche trick. By the regu-
larity estimate for the elliptic equation, we know that

lul 20y < Ce™ | fllr20)-
Thus, by (9.14)
lu = unllr ) < C(h/e)[|fll2(0)- (9.15)
For any ¢ € L%*(Q), let w € HI(Q) N H%(Q) be the solution of the dual

problem
—V - (a(z/e)Vw) = ¢ in Q,

w=0 on 0f.
Then, for any v, € V3, we have
(un — u, @) = (a(x/e)V(up — u), Vw)
= (a(x/e)V(up —u), V(w — vp))
< Cllun — ull g yllw — vall g

Hence by (9.15)

(up, —u, ) < C(h/e)|lfllr2) inf [[w — vl g1
v EVY
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Choosing vy, as Ipw yields

(un — 1, 0) < US| Lzl — Dwll sy
< CUN Lz (/) el 2.
Hence
up — U,
W — ey = sup D) e e

0£pcr2(@) el

This completes the proof.
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9.2.2. Error estimate when h > . Now we consider the error esti-

mate when h > € which is the main attraction of the multiscale finite element

method.

THEOREM 9.3. Let u and up, be the solutions of (9.1) and (9.10), re-
spectively. Then there exists a constant C, independent of h and €, such

that

lu = unll ) < Clh+ )l fllr2() + C((e/R)? + €7%) |[uollwr.oo 0

PrOOF. Denote u. = ug + euy; — €b;. Let

J
ur = Ipug = Zuo(l‘j)gbj(x).

J=1

It follows that
-V - (a:Vur) =0 in K,

uy = Ipug on OK.
Let uyg be the solution of the homogenized problem
~V - (a*Vup) =0 in K,
uro = Hpug on 0K,
and

.0
ur = —x’ ;I? in K.
Lj

Let ;. be the boundary corrector
-V - (a(x/e)VOr) =0 in K,
Orc = upi(x,x/e) on OK.
Clearly
urg = Hpug in K,

(9.16)

(9.17)

(9.18)

(9.19)
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that is, ujo is linear in K which implies |urgl2,x = 0. Thus by following the
proof of Theorem 9.1,

||u1 —urg — €U + 69[&—”}11([() =0.
Again by Theorem 9.1

lu —urllg) < lluo —urollgr) +ellur — unllmy(q)

(9.20)
+ lle(0: = 01) | 12 () + Ccluo| 2 ()

It is clear that
luo — uroll () = lluo — Mauoll g1 (o) < Chluol m2i)- (9.21)
Simple calculation shows that

1€V (w1 — un) |2 (xy = 11V (X O(uo — Mauo) /02| 12(xe)
< OV (ug — puo) 2 () + Celuol m2(x)
< C(h+ &)luol g2 (x)-

N

Here we have used the fact that for any K € My
I3 | poo 56y + €l VX | Lo 26y < C,
where C' is independent of K, h,e. Hence
1€V (u1 = un)ll 2y < C(h + &)uol (o)
On the other hand
lle(ur — up)llr2(0) = ellx?0(uo — Maug) /02| 1210y < Cheluo| 2 (q).
Thus, we have
le(ur —un)llio < C(h+€)|uol g2y < C(h+ )l fllL2@)- (9.22)

Next we estimate |lef:||g1q) and |efrc|g1(q) respectively. Let § €
C§°(R?) be the cut-off function such that 0 < £ <1, £ =11in Q\ Qc2,6=0
in Q, and |V¢| < C/e in Q, where Q := {z : dist{z,0Q} > ¢}. Then

0 + £(x? uo/0x;) € Hy().
Thus, from (9.6) we get

(a(z/e)V0:, V(0 + Ex?Oug/0z4)) = 0.
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Hence
IVO: |l 12(0) < ClIV(EX? Ouo/0z;) | 12(0)
C|IVEX Qo /05| 12(0) + CIIEV X! Duo /Ol 12 ()
+ C1ExIV (Duo/dz;) | L2 ()
< C||Vuo| () v/ 109Q/e + Cluo| 2oy (9:23)

On the other hand, from the maximum principle, we have

NN

1<l o= (2) < 17 Do/ 0| e a2) < Cllwollir.oo -

Thus, we obtain

H‘geEHHl(Q) < C\/EHUOHI/Vloo(Q) + CE‘U0’H2(Q). (9.24)

Finally, we estimate [0 z1(q). From the maximum principle, we have

1602l oo (1) < X O pug) /05| o o1y < Cllpuollwroo (s
< Clluollwr,00 (k-
Hence
[€0rell 2 () < Celluollwroe ()
Similar to (9.23), we have

1eVbrell2ey < ClVuol oo (i) VIOK [e + CelThuol prz e
< CVhel|ug|lwioe (i),
which implies
1eV01e ] 20y < C(e/h)?[[uollw.oe (-
Hence
I<bre e < CUE/M)M2 + O)uallwnoe (9.25)
Combing (9.21)—(9.22), (9.24)—(9.25) and using Céa Lemma, we obtain

= unllie < Ch+ )| fllz2q@y + Ce/M)Y2 + /%) fuollw e
This completes the proof. O

We remark that the error estimate in Theorem 9.3 is uniform when ¢ — 0
which suggests that one can take the mesh size h larger than € in using the
multiscale finite element methods. The term (£/h)'/? in the error estimate is
due to the mismatch of the multiscale finite element basis functions with the
solution u of the original problem inside the domain. One way to improve
this error is the over-sampling finite element method that we introduce in
the next section.
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9.3. The over-sampling multiscale finite element method

Let My be a regular and quasi-uniform triangulation of 2 and Wy the
H 1—conformmg linear finite element space over M. For any K € My with
nodes {a:ZK}?:l, let {cpZK}?:l be the basis of P;(K) satisfying goZK(xf) = 0j;.
For any K € My, we denote by S = S(K) a macro-element which contains
K and satisfies that Hg < C1 Hg and dist (0K, 0S) > dpH for some positive
constants C1, §g indipendent of H. The minimum angle of S(K) is bounded
below by some positive constant 6y independent of H.

Let Mg(K) be the multiscale finite element space spanned by ’QZJZK ,i =
1,2,3, with ¢ € H'(S) being the solution of the problem

—div (acVe7) =0 in S, ¢las = ¢}
Here {gois}f:l is the nodal basis of P;(.5) such that goZS(x]S) = 0ij,4,5 = 1,2,3.
The over-sampling multiscale finite element base functions over K is defined
by
&iK:Cé{‘w}S’K in K,
with the constants so chosen that

K_ K &8 .
Yi = Cij Py |K in K.

3
The existence of the constants cf](- is guaranteed because { gojs } - also forms
]:
the basis of P;(K).
Let OMS (K) = span {&ZK 3, and g : OMS (K) — Pi(K) the projec-
tion
K . - K
gy = Cip; if P =cp; € OMS (K)
Let Xp be the finite element space
X = {¢n : Yulx € OMS(K) VK € My}
and define Iy : Xy — e, Pi(K) through the relation
HHwH’K = HK"L/}H for any K e MH,"(#H S XH
The over-sampling multiscale finite element space is then defined as
Xp={vg € Xg:Uypy € Wy C H'(Q)}.

In general, Xy ¢ H'() and the requirement Iyvy € Wy is to impose
certain continuity of the functions ¢ € Xy across the inter-element bound-
aries. Here we have an example of nonconforming finite element method.
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The multiscale finite element method is then to find uyg € X%, where
X%:{I/JHGXHHH@bH:O on&Q},

such that
> / a:Vug Vi de = / fogde  Yog e XY
KeMpyg K Q
We introduce the bilinear form ag(-,) : [[xepm,, HYK) x [rem, HY(K)
—R
)= Y [ avevids vowve ] HU(K).
KeMyg K KeMpy

and the discrete norm

1/2
lellno =1 D IVeliz voe [ H'(K).
KeMy KeMyg
LEMMA 9.3. We have
Jue —um|lq
dz — ag(ue,
YHEXY ’ 0 XY, I rllyq

PROOF. Define (R, ¥u) = [, fYr — an(ue,¥p), then we have
ar(ue —up,¥n) = — (R,vm)  Viu € Xj.
The lemma follows easily by taking ¥y = vy — uy for any vy € X%. O

LEMMA 9.4. Let N € L®(R?) be a periodic function with respect to the
cell Y and assume [, N(y)dy = 0. Then for any ( € H'(K)NL®(K),K €
My, we have

' /K (N (2) da

PROOF. Define (; = [,. (dz, where Y; is a periodic cell of N(z/¢),Y; C
K. Then

< Chie | VC 2 ry + Ceh [ICl poo (i) -

1€ = Gill L2vy) < CellVCl L2y -
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o |3 [ s

Y, CK

Denote K’ = Uy, kY, we have

‘/KC(w)N Z/c N

Y;CK

+ / (@)N(2) de
K\K' €
<O V€ ooy 1IN 2 giery + CNEH poe iy 1B\ K|
SChie ||Vl g2y + Cehr [|Cl oo
This completes the proof. O

LEMMA 9.5. There exist constants vo and C independent of H and € such
that Zf HK
are valid

< v and e/Hi < 72 for all K € My, the following estimates

CHIVaxal r2r) < IVXHI 200y < CNIVIEXHE 200) VX € X

PROOF. We know that yy € H'(S) satisfies

-V - (a:Vxg)=0 in S, xg =Igxg on dS. (9.26)

For any ¢ € H}(S) we have
(aeVxm,Ve)s = 0.
By taking ¢ = xg — Hyxm € H}(S) we obtain easily that

”VXHHL2(K) < ”VXHHLZ(S) < CHVHHXHHL2(S) < CHVHHXH”H(K)'

Next by Theorem 9.1 we have the asymptotic expansion

JAH aXH — &6

XH—XH—5X oz, (9.27)

where x¥ = yxy and 62 € H'(S) is the boundary corrector defined by

s : g OXY
-V (a:V02)=0 inS,  07],q= I
J
By simple calculations
Qg 81‘j = aij 8.%']' — Gy axk — €aijX O a o —€(CLV95 )z
* 8X(I]-I k(¥ aXH S
= i (D) T ; 2
1) amj Gz( ) ark €(aV9€ )z: (9 8)
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where Gl-K satisfies

oGk
Ayi
Multiplying (9.28) by Vx% and integrating over K we see

/a 8XHaXHd / GXHade +/ Gk T 8XH8de
K

=0.

/ GF(y)dy =0 and
Y

gl Oxj Oz i Oxj Oz axk oz;
062 OxY;
_ ; d.
6/K ]0:1:] 0x;

From the interior estimate due to Avellaneda and Lin [4, Lemma 16]
S =1 11pS
V0 e 1y < Ch 162 ] oo )

Therefore by the maximum principle and the finite element inverse estimate

S 0
8/ 0. 902 X |
K Xy

< Cehg HVQESHLOO(K) HVX(I)LIHB(K)

£ 2
< C@ HVXOHHB(K)

By Lemma 9.4 we have

[ G PO ] <ot [V iy < O 19
Thus
@ V3 Z ey < C IV gz IV oy + O 93 iy
This completes the proof. O
THEOREM 9.4. we have
lhie = witllng < C(h+2) 1fll 200y + C (5 +VE) (Iuolwrom(ey + 1 Fllz2(ey )-

Proor. First we notice that by Theorem 9.1

HV[UE - (uo - €$ng(j — &b )}

< Celul g
L2(Q)

By the estimate (9.24)
elIVOel 120y < CVelluollwe (o) + Ce [uol y2(q) -

we get

HV(uE —ug + Exj%)
LQ(Q)

Lj
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We take
Y = > uolw)di(x) € X,
z; interior node
then
HHwH‘K:IHUO VK € My.
where Iy : C(Q) — Wy is the standard Lagrange interpolation operator over
linear finite element space. By (9.27) we know that

Y = (Iguo) —ex’ e 6?2,
j

where 05 € H'(S) is the boundary corrector given by

O(Ixug)

V@) =0 s ] = o 2
J

By the interior estimate in Avellaneda and Lin [4, Lemma 16]
HvesSHLoo(K) < Chy! HQEHLOO(S) < Chy' [LEuolyroo(s) < Chy' [tolwri.oo (i)

Therefore

V<?/JH — (Iguo + EXjM))

— 1/2
o < Cehic! [ulyyoe ) K]

L2(K)
< Ce ‘UOIWLOO(K) . (930)

Since
IV (uo — Truo)|| o) < Chi |uol gy »

v (Xj O(Igug — u0)>

oz, S C(h+e) |uol g2k »

L*(K)

we finally obtain

3
IV (e = ¥m) g < Ch+) [uolgragiey + C (7 + V) ol ey

It remains to estimate the non-conforming error. Since Illgyy € Wy C
H1(Q) we know that

/Q Foou de — aH<ua,¢H>‘

= /Qf(wH—HHwHNJU— Z /KGEVUaV(TﬂH—HHdJH)dw-

KeM,,
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Uwa M) dar| = ‘/ ( il a@§>d
]

< Ce |l fllpeey IV | p2 ) + HVHHwH”Loo(K))
g
Co 2y IV 22y

By (9.27) and Lemma 9.5 we have

=

Thus

[ o~ o) as| < 0 1)
Q

Furthermore, by (9.29)

'/ asVusV wH Hhi/)H)‘

KeMy
< C(e [uol 2oy + Velluollwroc ) 10wl o
Ouyg
+ > /K <UO+€X I )'V(¢H—HH¢H)d$

KeMpg
=I141I

But

11} < <‘/ a*VuoV (g — Ogipy) do

KeMpg

/ Gkauoa Y — Hm/JH)
¢ 8£L’k 8.%1

te |U0|H2(K) IV (r — HHT/)H)HL?(K))

:Ill —+ 112 —+ 113
By (9.27) and Lemma 9.4

‘ / » Ouo 0 ?l)H Hyy)de

i dz; O
6U0 6 kaHH¢H S
‘/ 4 O:Uj < X Oz, €0 | dw

« Oug Ox" gy s
<| [ S0 DC AU 4ol 1 Sl 1962

< 05( |U0|H2(K) + |U0|W1,oo(K)) HV¢H||L2(K)
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That is,
€
] < O (= Juol gz + C ltolyromqen ) Il
Similarly, we know that
€
| < C<€ |U0|H2(Q) + Cﬁ ’u0|W1»°°(Q)) ||¢H”h,Q'
It is obvious that

5| < Ce ’uO‘HQ(Q) HwHHhQ :
This shows that the non-conforming error in Lemma 9.3

| [o for dz — ap (ue, ¥u)|
sup
0£YreXy WHHh,Q

€
< Celuol ey + C (5 + V&) (Ifll 2y + ol oy )-
This completes the proof.

O

Bibliographic notes. Homogenization theory for elliptic equations with

highly oscillatory coefficients is a topic of intensive studies. We refer to the

monographs Bensoussan et al [9] and Jikov et al [39] for further results. The-

orem 9.1 is taken from [39]. The multiscale finite element method is intro-

duced in Hou and Wu [37] and Hou et al [38]. The over-sampling multiscale

finite element is introduced in Efendiev et al [29]. Further development of

multiscale finite elements can be found in Chen and Hou [19] for the mixed

multiscale finite element method and in Chen and Yue [22] for the multiscale

finite element method dealing with well singularities.

9.4. Exercises
EXERCISE 9.1. Show that the homogenized coefficient a* satisfies
a6 > g VEER?.

EXERCISE 9.2. Prove Lemma 9.1.



CHAPTER 10

Implementations

In this chapter we talk about some implementation issues. First we give
a brief introduction to the MATLAB PDE Toolbox. Then we show how to
solve the L-shaped domain problem on uniform meshes and adaptive meshes
by MATLAB. Finally we introduce the implementation of the multigrid V-

cycle algorithm.

10.1. A brief introduction to the MATLAB PDE Toolbox

The MATLAB Partial Differential Equation (PDE) Toolbox is a tool for
solving partial differential equations in two space dimensions and time by

linear finite element methods on triangular meshes. The PDE Toolbox can

solve linear or nonlinear elliptic PDE
-V (cVu) +au = f,
the linear parabolic PDE

d% - V- (cVu) +au = f,
the linear hyperbolic PDE
0%u
dw—v-(cVu)—{—au:f,

or the linear eigenvalue problem
—V - (¢Vu) + au = M\du,
in a plane region €2, with boundary condition
hu=r onl}y,

(cVu) - m+qu=g on/Tly,

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)
(10.6)

where I'y Uy = 09, ' N’y = (). The PDE Toolbox can also solve the PDE

systems. The PDE Toolbox includes tools that:

e Define a PDE problem, i.e., define 2-D regions, boundary conditions,

and PDE coefficients;

147



148 10. IMPLEMENTATIONS

e Numerically solve the PDE problem, i.e., generate unstructured
meshes, discretize the equations, and produce an approximation to
the solution;

e Visualize the results.

There are two approaches to define and solve a PDE problem: by using a
graphical user interface (GUI) or by MATLAB programming. The GUI can
be started by typing

pdetool
at the MATLAB command line. From the command line (or M-files) you can
call functions from the toolbox to do the hard work, e.g., generate meshes,
discretize your problem, perform interpolation, plot data on unstructured
grids, etc., while you retain full control over the global numerical algorithm.

One advantage of the PDE Toolbox is that it is written using the MAT-
LAB open system philosophy. There are no black-box functions, although
some functions may not be easy to understand at first glance. The data
structures and formats are documented. You can examine existing functions
and create your own as needed.

10.1.1. A first example—Poisson equation on the unit disk. We
consider the Poisson equation
-V (Vu)=1 inQ,
u=0 on 0,

on the unit disk 2. For this problem, you can compare the exact solution

(10.7)

u = (1 — 22 — y?)/4 with the numerical solution at the nodal points on
the mesh. To set up the PDE on the command line follow these steps (cf.
pdedemol.m):
1. Create a unit circle centered at the origin using the geometry M-file
”circleg.m”:
g=’circleg’;
2. The initmesh function creates a triangular mesh on the geometry
defined in g:
[p,e,t]=initmesh(g);
pdemesh(p,e,t); axis equal; %Plot the mesh.
3. Specify the PDE coefficients:
c=1;
a=0;
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f=1;

4. Specify the boundary condition:
b=’circlebl’;

5. Solve the PDE and plot the solution:

u=assempde(b,p,e,t,c,a,f);
pdesurf (p,t,u);

6. Compute the maximum error:
exact=(1-p(1,:).72-p(2,:).72)°/4;
error=max (abs (u-exact)) ;
fprintf (’Error: %e. Number of nodes: %d\n’,...

error,size(p,2));
pdesurf(p,t,u-exact); %Plot the error.

7. If the error is not sufficiently small, refine the mesh:
[p,e,t]l=refinemesh(g,p,e,t);

You can then solve the problem on the new mesh, plot the solution, and
recompute the error by repeating Steps 5 and 6.

10.1.2. The mesh data structure. A triangular mesh is described
by the mesh data which consists of a Point matrix, an Edge matrix, and a
Triangle matrix.

In the mesh vertex matrix (for example, denoted by p), the first and
second row contain x- and y-coordinates of the mesh vertices in the mesh.

p =[x % x coordinates for mesh vertices
yl; % y coordinates for mesh vertices

In the boundary element matrix (for example, denoted by e), the first
and second row contain indices of the starting and ending point, the third
and fourth row contain the starting and ending parameter values, the fifth
row contains the boundary segment number, and the sixth and seventh row
contain the left- and right-hand side subdomain numbers.

e = [pl;p2 % index to column in p

sl;s2 % arc-length parameters
en % geometry boundary number
1 % left-subdomain number

rl; % right-subdomain number
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In the element matrix (for example, denoted by t), the first three rows
contain indices to the corner points, given in counter-clockwise order, and
the fourth row contains the subdomain number.

t = [pl; p2; p3 % index to column in p
sd]; % subdomain number

We remark that the (global) indices to the nodal points are indicated by
the column numbers of the point matrix p, i.e., the coordinates of the i-th
point is p(:,1i). The edge matrix e contains only the element sides on the
boundary of the (sub)domain(s). In the j-th element (the triangle defined by
the j-th column of t), the 1st—3rd rows gives the global indices of the 1st—3rd
vertices of the element. It is clear that, the first three rows of element matrix
t defines a map from the local indices of the nodal points to their global
indices. This relationship is important in assembling the global stiffness
matrix from the element stiffness matrices in the finite element discretization
(see Section 2.3).

For example, we consider the unit square described by the decomposed
geometry matrix

g = [2 2 2 2
0 1 1 0
1 1 0 0
1 1 0 0
1 0 0 1
0 0 0 0
1 1 1 11;

Here the decomposed geometry matrix g is obtained as follows. We first
draw the geometry (the unit square) in the GUI, then export it by selecting
“Export the Decomposed Geometry, Boundary Cond’s” from the “Boundary”
menu. For details on the decomposed geometry matrix we refer to the help
on the function "decsg.m”. Figure 1 shows a standard triangulation of the
unit square obtained by running

[p,e,t] = poimesh(g,2);
Here the output mesh data

p=I[0 o051 0 051 0 0.51
0 O O 0.50.50.51 1 11;

e =1[1 2 3 6 9 8 717 4
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(6]

T 1 2 2 3

FI1GURE 1. A standard triangulation of the unit square. The
numbers give the global and local indices to the points, the
indices to the elements, and the indices to the edges, respec-

tively.

2 3 6 9 8 7 4 1
1 0.51 0.51 0.51 0.5
0.60 0.50 0.50 0.50
3 3 2 2 1 1 4 4
1 1 1 1 1 1 1 1
o 0 o0 o0 o o0 o0 o0];

t = [2 4 4 5 1 1 2 5
6 5 8 9 5 2 3 6
5 8 7 8 4 5 6 9
i 1+ 1 1 1 1 1 1];

Figure 1 also shows the global and local indices to the points, the indices to

the elements, and the indices to the edges, respectively.

ExXAMPLE 10.1. Assemble the stiffness matriz for the Poisson equation
(10.7) on a given mesh p, e, t. The following function assembles the stiff-
ness matrix from the element stiffness matrices which is analogous to the
function “pdeasmc.m”.

CoODE 10.1. (Assemble the Poission equation)

function [A,F,B,ud]=pdeasmpoi(p,e,t)
% Assemble the Poission’s equation -div(grad u)=1
% with homogeneous Dirichlet boundary condition.
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h

% A is the stiffness matrix, F is the right-hand side vector.
% UN=A\F returns the solution on the non-Dirichlet points.

% The solution to the full PDE problem can be obtained by the
% MATLAB command U=B*UN+ud.

% Corner point indices
it1=t(1,:);
it2=t(2,:);
it3=t(3,:);

np=size(p,2); % Number of points

% Areas and partial derivatives of nodal basis functions
[ar,glx,gly,g2x,g2y,g3x,g3y]l=pdetrg(p,t);

% The element stiffness matrices AK.
c3=((glx.*g2x+gly.*g2y)) .*ar; % AK(1,2)=AK(2,1)=c3
cl1=((g2x.*g3x+g2y.*g3y)) .*ar; % AK(2,3)=AK(3,2)=cl
c2=((g3x.*glx+g3y.*gly)) .*ar; % AK(1,3)=AK(3,1)=c2
% AK(1,1)=-AK(1,2)-AK(1,3)=-c2-c3

% AK(2,2)=-AK(2,1)-AK(2,3)=-c3-cl

% AK(3,3)=-AK(3,1)-AK(3,2)=-cl-c2

% Assemble the stiffness matrix
A=sparse(itl,it2,c3,np,np);
A=A+sparse(it2,it3,cl,np,np);
A=A+sparse(it3,itl,c2,np,np);
A=A+A.°;
A=A+sparse(itl,itl,-c2-c3,np,np);
A=A+sparse(it2,it2,-c3-cl,np,np);
A=A+sparse(it3,it3,-cl-c2,np,np);

%, Assmeble the right-hand side
f=ar/3;
F=sparse(itl,1,f,np,1);
F=F+sparse(it2,1,f,np,1);
F=F+sparse(it3,1,f,np,1);
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% We have AxU=F.

% Assemble the boundary condition
[Q,G,H,R]=assemb(’circlebl’,p,e); % HxU=R

% Eliminate the Dirichlet boundary condition:

% Orthonormal basis for nullspace of H and its complement
[null,orth]=pdenullorth(H);

% Decompose U as U=null*UN+orth*UM. Then, from H*U=R, we have
% H*orth*UM=R which implies UM=(H*orth)\R.

% The linear system A*U=F becomes

%  null’*A*null*UN+null’*Axorth* ((H*orth)\R)=null’*F
ud=full (orth* ((H*orth)\R)) ;

F=null’*(F-A*ud) ;

A=null’*A*null;

B=null;

10.1.3. A quick reference. Here is a brief table that tell you where
to find help information on constructing geometries, writing boundary con-

ditions, generating and refining meshes, and so on.

Decomposed geometry g that is specified
by either a Decomposed Geometry See decsg, pdegeom, initmesh.
matrix, or by a Geometry M-file:

Boundary condition b that is specified
by either a Boundary Condition matrix, | See assemb, pdebound.
or a Boundary M-file:

Coefficients ¢, a, f: See assempde.
Mesh structure p, e, t: See initmesh.
Mesh generation: See initmesh.
Mesh refinement: See refinemesh.
See assempde, adaptmesh,
Solvers: parabolic, hyperbolic, pdeeig,
pdenonlin, ......

TABLE 1. A brief reference for the PDE Toolbox.
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10.2. Codes for Example 4.1—L-shaped domain problem on
uniform meshes

10.2.1. The main script.

CobE 10.2. (L-shaped domain problem — uniform meshes)

% lshaped_uniform.m

% Solve Poisson equation -div(grad(u))=0 on the L-shaped

% membrane with Dirichlet boundary condition.

% The exact solution is ue(r,theta)=r"(2/3)*sin(2/3*theta).

% The exact solution and its partial derivatives
ue=’(x."2+y."2).7(1/3) .*sin(2/3* (atan2(y,x) +2*pi* (y<0))) ’;
uex=’-2/3*(x.72+y."2) .7 (-1/6) .*sin(1/3*(atan2(y,x) +2*pi* (y<0))) ’;
uey=’2/3*(x."2+y."2) .7 (-1/6) .*cos(1/3*(atan2(y,x) +2*pi*(y<0)))’;

% Geometry
g=[2 2 2 2 2 2

0 1 1-1-1 0
1 1-1-1 0 O
0 01 1-1-1
0 1 1-1-1 0
11 1 1 1 1
0O 0 0 0 0 O0];

% Boundary conditions

r="(x."2+y."2) .7 (1/3) .*sin(2/3*(atan2(y,x) +2*pi* (y<0))) ’;
b=[1 11 1 1 length(r) ’0’ ’0° ’1’ r]’;

b=repmat(b,1,6);

% PDE coefficients
c=1;
a=0;
£=0;

% Initial mesh
[p,e,t]=initmesh(g);

% Do iterative refinement, solve PDE, estimate the error.
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error=[];

J=6;

for j=1:J
u=assempde(b,p,e,t,c,a,f);
err=pdeerrH1(p,t,u,ue,uex,uey);
error=[error err];
if §<J,

[p,e,t]l=refinemesh(g,p,e,t);

end

end

% Plot the error versus 27j in log-log coordinates and
% the reference line with slope -2/3.

n=2."(0:J-1);

figure;

loglog(n,error,’k’);

hold on;
loglog(n,error(end)*(n./n(end))."(-2/3),’k:’);
xlabel(’273%);

ylabel(’H"1 error’);

hold off;

10.2.2. H! error. The following function estimates the H' error of the

linear finite element approximation.

CoDE 10.3. (H! error)

function error=pdeerrH1(p,t,u,ue,uex,uey)
% Evaluate the H"1 error of "u"

it1=t(1,:); % Vertices of triangles.

it2=t(2,:);

it3=t(3,:);

% Areas, gradients of linear basis functions.
[ar,glx,gly,g2x,g2y,g3x,g3yl=pdetrg(p,t);

% The finite element approximation and its gradient

u=u.’;

ux=u(itl) .*glx+u(it2) .*g2x+u(it3).*g3x; % ux

uy=u(itl) .*gly+u(it2) .*g2y+u(it3) .*g3y; % uy

f=0C ue ’-(xi*xu(itl)+eta*u(it2)+(1-xi-eta)*u(it3)))."2’];
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err=quadgauss(p,t,f,u);

errx=quadgauss(p,t, [’ (’ uex ’-repmat(u,7,1)).72°],ux);
erry=quadgauss(p,t, [’ (’ uey ’-repmat(u,7,1)).72°],uy);
error=sqrt (err+errx+erry) ;

10.2.3. Seven-point Gauss quadrature rule. The following function
integrates a function over a triangular mesh.

CODE 10.4. (Seven-point Gauss quadrature rule)
function g=quadgauss(p,t,f,par)
% Integrate ’f’ over the domain with triangulation ’p, t’ using
% seven-point Gauss quadrature rule.
h
% gq=quadgauss(p,t,f) evaluate the integral of ’f’ where f can
% be a expression of x and y.
% gq=quadgauss(p,t,f,par) evaluate the integral of ’f’ where f
% can be a expression of x, y ,u, xi, and eta, where xi and eta
% are 7 by 1 vector such that (xi, eta, 1-xi-eta) gives the
% barycentric coordinates of the Gauss nodes. The parameter
% ’par’ will be passed to ’u’. The evaluation of ’f’ should
% give a matrix of 7 rows and size(t,2) columns.

% Nodes and weigths on the reference element
xi=[1/3; (6+sqrt (15))/21; (9-2%sqrt (15))/21; (6+sqrt (15)) /21
(6-sqrt (15))/21; (9+2*sqrt (15))/21; (6-sqrt (15))/21];
eta=[1/3; (6+sqrt (15))/21; (6+sqrt(15))/21; (9-2*sqrt (15)) /21
(6-sqrt(15))/21; (6-sqrt(15))/21; (9+2xsqrt (15))/21];
w=[9/80; (165+157(1/2))/2400; (165-15~(1/2)) /2400] ;

it1=t(1,:); % Vertices of triangles.
it2=t(2,:);
it3=t(3,:);
ar=pdetrg(p,t); % Areas of triangles
% Quadrature nodes on triangles
x=xixp(1l,itl)+eta*p(1l,it2)+(1-xi-eta)*p(1,it3);
y=xi*p(2,itl)+eta*p(2,it2)+(1-xi-eta)*p(2,it3);
if nargin==4,

u=par;
end
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f=eval(f);
gt=2*ar.*(w(1)*£ (1, :)+w(2) *sum(£(2:4, :))+w () *sum(£(5:7,:)));
gq=sum(qt) ;

10.3. Codes for Example 4.6—L-shaped domain problem on
adaptive meshes

CoDE 10.5. (L-shaped domain problem — adaptive meshes)

% Solve the L-shaped domain problem by the adaptive finite
% element algorithm based on the greedy strategy.

% See "lshaped_uniform.m" for a description of the L-shaped
% domain problem.

% Parameters for the a posteriori error estimates
alfa=0.15;beta=0.15;mexp=1;
J=17; % Maximum number of iterations.

% The exact solution and its partial derivatives
ue=’(x."2+y."2).7(1/3) .*sin(2/3*(atan2(y,x) +2*pi* (y<0))) ’;
uex=’-2/3*(x."2+y."2) .7 (-1/6) .*sin(1/3*(atan2(y,x) +2*pi* (y<0))) ’;
uey=’2/3*(x."2+y."2) .7 (-1/6) .xcos(1/3*(atan2(y,x) +2xpix*(y<0)))’;

% Geometry
g=1[2 2 2 2 2 2

60 1 1-1-1 0
1 1-1-1 0 O
0 01 1-1-1
60 1 1-1-1 0
11 1 1 1 1
0 0 0 0 0 O0];

% Boundary conditions
b=[1 11 1 1 length(ue) ’0° 0’ ’1’ uel’;
b=repmat (b,1,6);

% PDE coefficients
c=1;
a=0;
f=0;
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% Initial mesh
[p,e,tl=initmesh(g) ;

% Do iterative adaptive refinement, solve PDE,
% estimate the error.
error=[];
N_k=[];
for k=1:J+1
fprintf (’Number of triangles: %g\n’,size(t,2))
u=assempde(b,p,e,t,c,a,f);
err=pdeerrH1(p,t,u,ue,uex,uey); % H™1 error
error=[error err];
N_k=[N_k,size(p,2)]; % DoFs
if k<J+1,
% A posteriori error estimate
[cc,aa,ff]=pdetxpd(p,t,u,c,a,f);
eta_k=pdejmps(p,t,cc,aa,ff,u,alfa,beta,mexp);
% Mark triangles
it=pdeadworst(p,t,cc,aa,ff,u,eta_k,0.5);
tl=it’;
% Kludge: tl must be a column vector
if size(tl,1)==1,
t1=[t1;t1];
end
% Refine mesh
[p,e,t]l=refinemesh(g,p,e,t,tl);
end
end

% Plot the error versus DOFs in log-log coordinates and
% the reference line with slope -1/2.

figure;

loglog(N_k,error,’k’);

hold on;
loglog(N_k,error(end)*(N_k./N_k(end)) . (-1/2),°k:’);
xlabel (’DOFs’);

ylabel(’H"1 error’);
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hold off;

10.4. Implementation of the multigrid V-cycle algorithm

In this section, we first introduce the matrix versions of multigrid V-cycle
algorithm 5.1 and the FMG algorithm 5.2, then provide the MATLAB codes
for the FMG algorithm (fmg.m), the multigrid V-cycle iterator algorithm
(mgp_vcycle.m), the V-cycle algorithm(mg_vcycle.m), and “newest vertex bi-
section” algorithm (refinemesh_mg.m). We remark that “mgp_vcycle.m” is
an implementation of the adaptive multigrid V-cycle iterator algorithm that
can be applied to adaptive finite element methods.

10.4.1. Matrix versions for the multigrid V-cycle algorithm and
FMG. Recall that {gf)}c, - ,gbzk} is the nodal basis for Vj, we define the so
called prolongation matriz I 11571 € R™*™—1 ag follows

N

1 = > (1) (10.8)

i=1
It follows from the definition (5.6) of vy and Uy, that
U = I Up—1 Yop = vp—1,v € Vi, vk—1 € Vi1,

—— _ (10.9)
Qr_1rr = (IF_ )7 Vry € V.

Notice that Ag_1vk_1 = Qr_1Arvi_1,Vur_1 € Vi_1, we have

P —_——
—~—

A1t = Apqvg—r = (IF ) Agvg—y = (IF ) ARIE D1,
that is,
Ap_y = (IF )PAIF . (10.10)

ALGORITHM 10.1. (Matrix version for V-cycle iterator). Let By = ;Il—l
Assume that B_; € R™-1*"-1 ig defined, then B, € R"*" is defined as
follows: Let g € R™.

(1) Pre-smoothing: For yp =0 and j =1,--- ,m,
Yj = Yj-1+ Re(g — Axyj-1)-

(2) Coarse grid correction: € = @k_l(lllj_l)t@ — A, Ums1 = Um +
I e
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(3) Post-smoothing: For j =m +2,--- ,2m + 1,
Ui = Uj—1 + RL(@ — 4.
Define @kﬁ = Yom+1-
Then the multigrid V-cycle iteration for (5.7) read as:
gt — g By(f, — A, n=0,1,2,---, (10.11)

ALGORITHM 10.2. (Matrix version for FMG).
For k = 1,171 = A/l—lle‘

For k > 2, let uy, = I,’:_lﬂk,l, and iterate wy < Uy —i—@k(fk — Zkﬂk) for [

times.

10.4.2. Code for FMG. The following code is an implementation of

the above FMG algorithm.

CoDE 10.6. (FMG)

function [u,p,e,t]=fmg(g,b,c,a,f,p0,e0,t0,nmg,nsm,nr)
% Full multigrid solver for "-div(ckgrad(u))+a*u=f".

T

% "nmg": Number of multigrid iterationms.

% "nsm": Number of smoothing iterations.

"nr": Number of refinements.

p=p0;
e=e0;
t=t0;
fprintf (’k = %g. Number of triangles = %g\n’,1,size(t,2));

(A,

F,Bc,ud]=assempde(b,p,e,t,c,a,f);

u=Bc* (A\F)+ud;
I={};

for k=2:nr+1

% Mesh and prolongation matrix
[p,e,t,Cl=refinemesh_mg(g,p,e,t);
[A,F,Bf,ud]=assempde(b,p,e,t,c,a,f);

fprintf(’k = %g. Number of triangles = ’g\n’,k,size(t,2));
I=[I {Bf’*C*Bc}]; % Eliminate the Dirichlet boundary nodes
Bc=Bf;

u=Bf’*Cxu; % Initial value
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for 1=1:nmg % Multigrid iteration
r=F-A*u;
Br=mgp_vcycle(A,r,I,nsm,k); % Multigrid precondtioner
u=u+Br;

end

u=Bf*xu+ud;

end

10.4.3. Code for the multigrid V-cycle algorithm. The following
code is an implementation of Algorithm 10.1 for multigrid iterator.

CoDE 10.7. (V-cycle iterator)
function Br=mgp_vcycle(A,r,I,m,k)
% Multigrid V-cycle precondtioner.
b
% "A" is stiffness matrix at level k,
% "I" is a cell of matrics such that: [I;I{k-1}]1=I_{k-1}"k.
% "m" is the number of smoothing iterations. Br=B_kxr.

if (k==1),
Br=A\r;

else
Tk=I{k-1}; % Prolongation matrix
[np,npll=size(Ik);
ns=find (sum(Ik)>1);
ns=[ns, npi+l:np]; % Nodes to be smoothed.
y=zeros(up,1);
y=mgs_gs(A,r,y,ns,m); % Pre-smoothing
ri=r-A(:,ns)*y(ns);
ri=Ik’*ri;
B=Tk’*A*TIk;
Bri=mgp_vcycle(B,r1,I,m,k-1);
y=y+Ik*Bril;
y=mgs_gs(A,r,y,ns(end:-1:1) ,m); % Post-smoothing
Br=y;

end

The following code is an implementation of the V-cycle algorithm (10.11).
CoDE 10.8. (V-cycle)
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function [u,steps]=mg_vcycle(A,F,I,u0,m,k,tol)
% Multigrid V-cycle iteration

if k==1,
u=A\F;
steps=1;
else
u=ul;
r=F-Axu;
errorO=max(abs(r));
error=error0;
steps=0;
fprintf (’Number of Multigrid iterations: ’);
while error>tol*errorO,
Br=mgp_vcycle(A,r,I,m,k); % Multigrid precondtioner
u=u+Br;
r=F-Ax*u;
error=max(abs(r));
steps=steps+1;
for j=1:floor(loglO(steps-0.5))+1,
fprintf (°\b’);
end
fprintf (’%g’,steps);
end
fprintf (°\n’);
end

The following code is the Gauss-Seidel smoother.

CoDE 10.9. (Gauss-Seidel smoother)

function x=mgs_gs(A,r,x0,ns,m)

% (Local) Gauss-Seidel smoother for multigrid method.
b

% "Axx=r": The equation.

% "x0": The initial guess.

% "ns": The set of nodes to be smoothed.

% "m": Number of iterationms.

Al=A(ns,ns);
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ip=ones(size(r));
ip(ns)=0;
ip=ip==1;
A2=A(ns,ip);
y1=x0(ns) ;
y2=x0;
y2(ns)=[1;
ril=r(ns)-A2xy2;
L=tril(Al1);
U=triu(Al,1);
for k=1:m

y1=L\ (r1-Ux*y1) ;
end
x=x0;
x(ns)=y1;

10.4.4. The “newest vertex bisection” algorithm for mesh re-
finements. We first recall the “newest vertex bisection” algorithm for the
mesh refinements which consists of two steps:

1. The marked triangles for refinements are bisected by the edge oppo-
site to the newest vertex a fixed number of times (the newest vertex of an
element in the initial mesh is the vertex opposite to the longest edge). The
resultant triangulation may have nodes that are not the common vertices of
two triangles. Such nodes are called hanging nodes.

2. All triangles with hanging nodes are bisected by the edge opposite to
the newest vertex, this process is repeated until there are no hanging nodes.

It is known that the iteration in the second step to remove the hanging
nodes can be completed in finite number of steps. An important property
of the newest vertex bisection algorithm is that the algorithm generates a
sequence of meshes that all the descendants of an original triangle fall into
four similarity classes indicated in Figure 2. Therefore, let M;,j =1,2,--- |
be a sequence of nested meshes generated by the newest vertex bisection
algorithm, then there exists a constant 8 > 0 such that

Ok >0 VYKeM; j=1,2,--, (10.12)

where 0 is the minimum angle of the element K.
Next, we provide a code for the “newest vertex bisection” algorithm for
mesh refinements.
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1 1 2) )
(a) (b) (©) @

FIGURE 2. Four similarity classes of triangles generated by “newest

vertex bisection”.

CoDE 10.10. (Newest vertex bisection)

function [pl,el,tl,Icr]l=refinemesh mg(g,p,e,t,it)

h
h
o
o
o
b
h
o
h
h
h
h
o

The "newest-vertex-bisection algorithm" for mesh refinements.
Output also the prolongation matrix for multigrid iteration.

G describes the geometry of the PDE problem. See either
DECSG or PDEGEOM for details.

The triangular mesh is given by the mesh data P, E, and T.
Details can be found under INITMESH.

The matrix Icr is the prolongation matrix from the coarse
mesh to the fine mesh.

’it’ is a list of triangles to be refined.

This function is a modification of the ’refinemesh.m’ from
the MATLAB PDE Toolbox.

np=size(p,2);
nt=size(t,2);

if nargin==4,

it=(1:nt)’; % All triangles

end

ittl=ones(1,nt);
itt1(it)=zeros(size(it));
it1=find(itt1); % Triangles not yet to be refined

it=find(itt1==0); % Triangles whose side opposite to

T

% the newest vertex is to be bisected

Make a connectivity matrix, with edges to be refined.
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% -1 means no point is yet allocated

ipl=t(1,it);

ip2=t(2,it);

ip3=t(3,it);

A=sparse(ipl,ip2,-1,np,np)+sparse(ip2,ip3,-1,np,np)...
+sparse(ip3,ipl,-1,np,np);

A=-((A+A.?)<0);

newpoints=1;

% Loop until no additional hanging nodes are introduced
while newpoints,

newpoints=0;

ipl=t(1,itl);

ip2=t(2,it1);

ip3=t(3,itl);

ml = aij(A,ip2,ip3);%A(ip2(i),ip3(i)), i=1:length(itl).
m2 = aij(A,ip3,ipl);
m3 = aij(A,ipl,ip2);

ii=find (m3) ;

if “isempty(ii),
itt1(it1(ii))=zeros(size(ii));

end

ii=find((m1 | m2) & ("m3));

if “isempty(ii),
A=A+sparse(ip1(ii),ip2(ii),-1,np,np);
A=-((A+A.’)<0);
newpoints=1;
itt1(it1(ii))=zeros(size(ii));

end
itl=find(ittl); % Triangles not yet fully refined
it=find(itt1==0); % Triangles fully refined

end

% Find edges to be refined
ie=(aij(A,e(1,:),e(2,:))==-1);

iel=find(ie==0); % Edges not to be refined
ie=find(ie); % Edges to be refined
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% Get the edge "midpoint" coordinates
[x,y]l=pdeigeom(g,e(5,ie), (e(3,ie)+e(4,ie))/2);
% Create new points

pl=[p [x;yll;

% Prolongation matrix.
if nargout == 4,
nie = length(ie);
Icr = [sparse(l:nie,e(1l,ie),1/2,nie,np)+...
sparse(l:nie,e(2,ie),1/2,nie,np)];
end

ip=(np+1) : (np+length(ie));

npl=np+length(ie);

% Create new edges

el=[e(:,iel)
[e(1,ie);ip;e(3,ie);(e(3,ie)+e(4,ie))/2;e(5:7,1ie)]
[ip;e(2,ie); (e(3,ie)+e(4,ie))/2;e(4,ie);e(5:7,ie)]];

% Fill in the new points

A=sparse(e(1,ie),e(2,ie),ip+1,np,np)...

+sparse(e(2,ie),e(l,ie),ip+1,np,np)+A;

% Generate points on interior edges
[i1,i2]=find(A==-1 & A.’==-1);
i=find (i2>i1);

i1=i1(1);

i2=12(1);

pl=[p1 [(p(1:2,i1)+p(1:2,i2))/2]];

% Prolongation matrix.
if nargout == 4,
ni=length(i);
Icr = [Icr;sparse(l:ni,il,1/2,ni,np)+...
sparse(1:ni,i2,1/2,ni,np)];
Icr = [speye(size(Icr,2));Icr];
end
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ip=(npi+1): (npil+length(i));
% Fill in the new points
A=sparse(il,i2,ip+1,np,np)+sparse(i2,il,ip+1,np,np)+A;

% Lastly form the triangles
ipl=t(1,it);
ip2=t(2,it);
ip3=t(3,it);

mpl = aij(A,ip2,ip3); % A(ip2(i),ip3(i)), i=1:length(it).
mp2 = aij(A,ip3,ipl);
mp3 = aij(A,ipl,ip2);

% Find out which sides are refined

bm=1% (mp1>0) +2* (mp2>0) ;

% The number of new triangles
nntl=length(it1)+length(it)+sum(mp1>0)+sum(mp2>0)+sum(mp3>0) ;
tl=zeros(4,nntl);

t1(:,1:1length(itl))=t(:,itl); % The unrefined triangles
ntl=length(itl);
i=find (bm==3); % All sides are refined

li=length(i); iti=it(i);

t1(:, (nt1+1) : (nt1+1i))=[t(1,iti) ;mp3(i) ;mp2(i);t(4,iti)];
ntl=ntil+length(i);

t1(:, (nt1+1) : (nt1+1i))=[mp3 (i) ;t(2,iti) ;mp1(i);t(4,iti)];
ntl=ntil+length(i);

t1(:, (nt1+1) : (nt1+1i))=[t(3,iti) ;mp3 (i) ;mpl(i);t(4,iti)];
ntl=ntl+length(i);

t1(:, (nt1+1) : (nt1+11))=[mp3(i);t(3,iti) ;mp2(i);t(4,iti)];
ntl=nti1+li;

i=find (bm==2) ; % Sides 2, 3 are refined
li=length(i); iti=it(i);

t1(:, (nt1+1) : (nt1+1i))=[t(1,iti) ;mp3(i) ;mp2(i);t(4,iti)];
ntl=ntil+length(i);

t1(:, (nt1+1) : (nt1+1i))=[t(2,iti);t(3,iti) ;mp3(i);t(4,iti)];
ntl=ntil+length(i);

t1(:, (nt1+1): (nt1+11))=[mp3(i);t(3,iti) ;mp2(i);t(4,iti)];
ntl=ntl+li;

i=find(bm==1); % Sides 3 and 1 are refined
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li=length(i); iti=it(i);

t1(:, (nt1+1) : (nt1+1i))=[mp3(i);t(2,iti);mpl(i);t(4,iti)];
ntl=ntl+l1i;

t1(:, (nt1+1) : (nt1+1i))=[t(3,iti);t(1,iti) ;mp3(i);t(4,iti)];
ntl=ntl+length(i);

t1(:, (nt1+1) : (nt1+1i))=[t(3,iti) ;mp3 (i) ;mpl(i);t(4,iti)];
ntl=ntl+li;

i=find (bm==0) ; % Side 3 is refined

li=length(i); iti=it(i);

t1(:, (nt1+1) : (nt1+1i))=[t(3,iti);t(1,iti) ;mp3(i);t(4,iti)];
ntl=nti1+1li;

t1(:, (nt1+1) : (nt1+1i))=[t(2,iti);t(3,iti);mp3(i);t(4,iti)];

The following code “aij.c” in C language should be built into a MATLAB

“mex” file that is used by the above function.

CopE 10.11. (Find A(i,j))

~
*

aij.c, aij.mex:
The calling syntax is:
b = aij(A,vi,vj)
where A should be a sparse matrix, vi and vj be integer

vertors. b is a row vector satisfying b_m=A(vi_m,vj_m).
This is a MEX-file for MATLAB.

* X X X X X X X ¥ ¥ X

*

*/

/* $Revision: 1.0 $ *x/
#include "mex.h"

/* Input Arguments */
#define A_IN prhs[0]

#define vi_IN  prhs[1]
#define vj_IN prhs[2]
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/* Output Arguments */
#define b_OUT  plhs[0]

void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray*prhs[] )

double *pr, *pi, *br, *bi, *vi, *vj;
mwIndex *ir, *jc;
mwSize ni, nj, 1, row, col, k;

/* Check for proper number of arguments */

if (arhs != 3) {

mexErrMsgTxt ("Three input arguments required.");
} else if (nlhs > 1) {

mexErrMsgTxt ("Too many output arguments.");

}
ni = mxGetN(vi_IN)*mxGetM(vi_IN);
nj = mxGetN(vj_IN)*mxGetM(vj_IN);

if (ni !'= nj)
mexErrMsgTxt ("The lengths of vi and vi must be equal");

pr = mxGetPr(A_IN);
pi = mxGetPi(A_IN);
ir = mxGetIr(A_IN);
jc = mxGetJc(A_IN);
vi = mxGetPr(vi_IN);
vj = mxGetPr(vj_IN);

if ('mxIsComplex(A_IN)){
/* Create a matrix for the return argument */
b_0UT = mxCreateDoubleMatrix(1l, ni, mxREAL);

/* Assign pointers to the various parameters */
br = mxGetPr(b_0UT) ;
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for (1=0; 1<ni; 1++){
row = *(vi+l) ;row——;
col = *(vj+l);
for (k=*(jct+col-1); k<*(jc+col); k++){
if (x(ir+k)==row)
*(br+l) = *(pr+k);

}

Yelseq

/* Create a matrix for the return argument */
b_0UT = mxCreateDoubleMatrix(1l, ni, mxCOMPLEX);

/* Assign pointers to the various parameters */
br = mxGetPr(b_0UT);
bi = mxGetPi(b_0UT) ;

for (1=0; 1<ni; 1++){
*(vi+l) ;row--;
col = x(vj+l);
for (k=*(jc+tcol-1); k<*(jc+col); k++){
if (*(ir+k)==row){
*(br+l) = *(pr+k);
*(bi+l) *(pi+k);

row

}

return;

Bibliographic notes. The “newest vertex bisection” algorithm is intro-
duced in Bénsch [7], Mitchell [41]. Further details of the algorithm can be
found in Schmidt and Siebert [48].
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10.5. Exercises

EXERCISE 10.1. Solve the following problem by the linear finite element
method.
“Au=zx, —-oo<z<o00,0<y<l,
u(z,0) =u(z,1) =0, —oo <z < 00,
u(z,y) is periodic in the z direction with period 1.

EXERCISE 10.2. Solve the L-shaped domain problem in Example 4.1 by
using the adaptive finite element algorithm base on the Dorfler marking strat-
egy and verify the quasi-optimality of the algorithm.

EXERCISE 10.3. Solve the Poisson equation on the unit disk with homoge-
neous Dirichlet boundary condition by using the full muligrid algorithm 10.2
with Gauss-Seidel smoother and verify Theorem 5.5 numerically.



[1]
2]

(10]

(11]
(12]

(13]

(14]
(15]
(16]

(17]

Bibliography

R. ApAMS, Sobolev Spaces, Academic Press, 1975.

C. AMROUCHE, C. BERNARDI, M. DAUGE, AND V. GIRAULT, Vector potentials in
three-diemnsional nonsmooth domains, Math. Meth. Appl. Sci., 21 (1998), pp. 823—
864.

D. ARNOLD, R. FALK, AND R. WINTHER, Preconditioning in h(div) and apploications,
Math. Comp., 66 (1997).

M. AVELLANEDA AND F.-H. LiN, Compactness methods in the theory of homogeniza-
tion, Comm. Pure Appl. Math., 40 (1987), pp. 803-847.

I. BABUSKA AND A. MILLER, A feedback finite element method with a posteriori er-
ror estimation: Part i. the finite element method and some basic properties of the a
posteriori error estimator, Comput. Meth. Appl. Mech. Engrg., 61 (1987), pp. 1-40.
1. BABUSKA AND C. RHEINBOLDT, Error estimates for adaptive finite element compu-
tations, SIAM J. Numer. Anal., 15 (1978), pp. 736-754.

E. BANSCH, Local mesh refinement in 2 and 3 dimensions, Impact of Computing in
Science and Engineering, 3 (1991), pp. 181-191.

R. BECK, R. HipTMAIR, R. HOPPE, AND B. WOHLMUTH, Residual based a posteriori
error estimators for eddy current computation, M2AN, 34 (2000), pp. 159-182.

A. BENSOUSSAN, J. LIONS, AND G. PAPANICOLAOU, Asymptotic Analysis for Periodic
Structures, North-Holland, Amsterdam, 1978.

M. BIRMAN AND M. SOLOMYAK, L2-theory of the mazwell operator in arbitary do-
mains, Russian Math. Surveys, 43 (1987), pp. 75-96.

D. BraAEss, Finite Elements, Cambridge University Press, Cambridge, 1997.

J. BRAMBLE, Multigrid Methods, no. 294 in Pitman Research Notes in Mathematical
Sciences, Longman, Essex, 1993.

J. BRAMBLE AND S. HILBERT, Estimation of linear functionals on sobolev spaces with
application to fourier transforms and spline inerpolation, SIAM J. Numer. Anal., 7
(1970), pp. 112-124.

A. BRANDT, Multi-level adaptive solutions to boundary-value problems, Math. Comp.,
31 (1977), pp. 333-390.

———, Multigrid Techniques: 1984 Guide, with applications to uid dynamics, Weiz-
mann Institute of Science, Rehovot, Israel, 1984.

F. BreEzzt AND M. FORTIN, Mized and Hybrid Finite Element Methods, Springer-
Verlag, New York, 1991.

A. BUFFA, M. COSTABEL, AND S. D., On traces for h(curl;Q) in Lipschitz domains,
J. Math. Anal. Appl., 276 (2002), pp. 845-867.

173



174

(18]

(19]
(20]
(21]

(22]

23]
[24]
[25]
[26]
[27]
28]
[29]
[30]
31]
32
33
[34]
[35]
136]
[37]

(38]

BIBLIOGRAPHY

J. M. CasconN, C. KREUZER, R. NOCHETTO, AND K. SIEBERT, Quasi-optimal con-
vergence rate for an adaptive finite element method, STAM J. Numer. Anal., 46 (2008),
pPpP- 2524-2550.

Z. CHEN AND T. Hou, A mized multiscale finite element method for elliptic problems
with oscillating coefficients, Math. Comp., 72 (2003), pp. 541-576.

Z. CHEN AND F. J1a, An adaptive finite element method with reliable and efficient
error control for linear parabolic problems, Math. Comp., 73 (2004), pp. 1163-1197.
Z. CHEN, L. WANG, AND W. ZHENG, An adaptive multilevel method for time-harmonic
mazwell equations with singularities, SIAM J. Sci. Comput., 29 (2007), pp. 118-138.
Z. CHEN AND X. YUE, Numerical homogenization of well singularities in the flow
transport through heterogeneous porous media, Multiscale Modeling and Simulation, 1
(2003), pp. 260-303.

P. CiARLET, The Finite Element Method for Elliptic Problems, vol. 4 of Studies in
Mathematics and its Applications, North-Holland, New York, 1978.

P. CLEMENT, Approzimation by finite element functions using local regularization,
RARIO Numer. Anal., 2 (1975), pp. 77-84.

M. DAUGE, Elliptic Bounary Value Problems on Corner Domains, vol. 1341 of Lecture
Notes in Mathematics, Springer, Berlin, 1988.

J. DENY AND J.-L. LIONS, Les espaces du type de deppo levi, Ann. Inst. Fourier,
Grenoble, 5 (1955), pp. 305-370.

W. DORFLER, A convergent adaptive algorithm for possion’s equations, SIAM J. Nu-
mer. Anal., 33 (1996), pp. 1106-1124.

G. DuvAauT AND J.-L. LiONs, Les Inéquations en Mécanique et en Physique, Dunod,
1972.

Y. EFenDIEV, T. Hou, AND X. WU, The convergence of non-conforming multiscale
finite element methods, STAM J. Numer. Anal., 37 (2000), pp. 888-910.

K. ERIKSSON AND C. JOHNSON, Adaptive finite element methods for parabolic problems
i: A linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 43-77.

—, Adaptive finite element methods for parabolic problems iv: Nonlinear problems,
SIAM J. Numer. Anal., 32 (1995), pp. 1729-1749.

L. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, 1998.

D. GILBARG AND N. TRUDINGER, Elliptic Partial Differential Equations of Second
Order, Springer, Berlin, 2001.

V. GIRAULT AND A. RAVIART, P, Finite Element Methods for Navier-Stokes Equa-
tions. Theory and Algorithms, vol. 5 of Springer Series in Computational Mathematics,
Springer-Verlag, Berlin, 1986.

P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985.

R. HIPTMAIR, Finite elements in computational electromagnetism, Acta Numerica, 11
(2002), pp. 237-339.

T. Hou AND X. WU, A multiscale finite element method for elliptic problems in com-
posite materials and porous media, J. Comput. Phys., 134 (1997), pp. 169-189.

T. Hou, X. Wu, AND Z. CAl, Convergence of a multiscale finite element method for
elliptic problems with rapidly oscillating coefficients, Math. Comp., 68 (1999), pp. 913—
943.



[39]
[40]
[41]
[42]

(43]

BIBLIOGRAPHY 175

V. Jikov, S. KozLov, AND O. OLEINIK, Homogenization of Differential Operators
and Integral Functionals, Springer, Berlin, 1994.

O. LADYZHENSKAYA, V. SOLONNIKOV, AND N. URALTSEVA, Linear and Quasilinear
Equations of Parabolic Type, Americal Mathematical Society, Providence, 1968.

W. MITCHELL, Optimal multilevel iterative methods for adaptive grids, SIAM J. Sci.
Stat. Comput., 13 (1992), pp. 146-167.

P. MoNk, Finite Element Methods for Maxwell’s Equations, Clarendon Press, Oxford,
2003.

J. NEDELEC, Mized finite lements in R, Numer. Math., 35 (1980), pp. 315-341.

[44] ——, A new family of mized finite elements in R®, Numer. Math., 50 (1986), pp. 57—

(45]

81.

J. NECAS, Sur une méthode pour résoudre les équations aux dérivées partielles du type
elliptique, voisine de la variationnelle, Ann. Sc. Norm. Sup. Pisa Sér. 3, 16 (1962),
pp. 305-326.

[46] ——, Equations auz Dérivées Partielles, Presses de 1'Université de Montréal, 1965.

(47]

(48]

(49]

(50]

M. Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Method
Appl. Mech. Engrg., 167 (1998), pp. 223-237.

A. SceMIDT AND K. SIEBERT, Albert: An adaptive hierarchical finite ele-
ment toolbox. IAM, University of Freiburg, http://www.mathematik.uni-freiburg.de
/IAM /Research/projectsdz/albert, 2000.

V. THOMEE, Galerkin Finite Element Methods for Parabolic Problems, no. 25,
Springer-Verlag, New York, 1997.

R. VERFURTH, A posteriori error estimates for the stokes equations, Numer. Math.,
55 (1989), pp. 309-325.

[61] ——, A Review of A Posteriori Error Estimation and adaptive Mesh Refinement

[52]

[53]

Techniques, Teubner, 1996.

H. Wu AND Z. CHEN, Uniform convergence of multigrid v-cycle on adaptively refined
meshes for second order elliptic problems, Science on China, (Series A), 49 (2006),
pp- 1405-1429.

J. Xu, lterative methods by space decomposition and subspace correction, SIAM Rev,
34 (1992), pp. 581-613.






Index

A posteriori error estimate

lower bound, 43

upper bound, 42
adaptive finite element algorithm, 45
affine family, 22
affine-interpolation equivalent, 31
Aubin-Nitsche trick, 35

backward Euler method, 89
barycentric coordinates, 16
boundary corrector, 133

Bramble-Hilbert lemma, 28

Céa Lemma, 14
Clément interpolation operator, 40
code
H! error, 155
Assemble the Poission equation, 151
FMG, 160
Gauss-Seidel smoother, 162
L-shaped domain problem — uniform
meshes, 154
L-shaped domain problem — adaptive
meshes, 157
Newest vertex bisection algorithm,
164
Seven-point Gauss quadrature rule,
156
V-cycle, 161
V-cycle iterator, 161
conforming, 20
Crank-Nicolson method, 92

domain, 4

177

element stiffness matrix, 21

finite element, 15
Mini element, 78
Argyris element, 17
Crouzeix-Raviart element, 20
linear element, 16, 20
multiscale, 135
Nédélec edge element, 115
over-sampling multiscale, 140
Raviart-Thomas element, 73
finite element methods, 15
mixed, 67
parabolic problems, 81
fractional Sobolev space, 6

Galerkin method, 13, 15
Galerkin orthogonality, 14
Gaussian quadrature formula, 24, 156

hanging nodes, 163
homogenized coefficient, 133
homogenized equation, 133

inf-sup condition, 10
interpolant
global, 32
local, 18
interpolation error bounds, 31, 32
inverse estimates, 32, 33

Lax-Milgram lemma, 9
Lax-Milgram lemma (generalized), 10
lifting, 8



178 INDEX

Lipschitz boundary, 5 test space, 15
trial space, 15
mesh, 18 triangulation, 18
quasi-uniform, 32
regular, 31 weak partial derivative, 1
mollifier, 3
Multigrid methods

adaptive, 64

weak solution, 9

convergence, 56, 61

full multigrid, 62, 160
implementation, 159
prolongation matrix, 159
smoothers, 54

V-cycle iterator, 55, 159
work estimate, 63

newest vertex bisection algorithm, 163
nodal basis, 16
nonconforming, 20

partition of unity, 12
Petrov-Galerkin method, 15
Poincaré inequality, 6

Rayleigh-Ritz method, 14
reference finite element, 22
Ritz projection, 87
Ritz-Galerkin method, 15

semidiscrete problem, 85
Sobolev imbedding, 5
Sobolev spaces, 2

space

stiffness matrix, 14



	contents
	1 Variational Formulation of Elliptic eq
	2 FEM for elliptic eq
	3 Convergence theory of FEM
	4 Adaptive Methods
	5 Multigrid Methods
	6 Mixed FEM
	7 Parabolic eq
	8 Maxwell eq
	9 Multiscale
	10 Implementations
	Bibliography



