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The midpoint rule time discretization technique is applied to Landau–Lifshitz–GilbertsLLGd
equation. The technique is unconditionally stable and second-order accurate. It has the important
property of preserving the conservation of magnetization amplitude of LLG dynamics. In addition,
for typical forms of the micromagnetic free energy, the midpoint rule preserves the main energy
balance properties of LLG dynamics. In fact, it preserves LLG Lyapunov structure and, in the case
of zero damping, the system free energy. All the above preservation properties are fulfilled
unconditionally, namely, regardless of the choice of the time step. The proposed technique is then
tested on the standard micromagnetic problem No. 4. In the numerical computations, the
magnetostatic field is computed by the fast Fourier transform method, and the nonlinear system of
equations connected to the implicit time-stepping algorithm is solved by special and reasonably fast
quasi-Newton technique. ©2005 American Institute of Physics. fDOI: 10.1063/1.1858784g

Numerical integration of the Landau–Lifshitz–Gilbert
sLLGd equation has been widely used in micromagnetics for
the analysis of dynamical magnetization processes. In most
studies, the time discretization is obtained by using “off-the-
shelf” algorithms such as Euler, linear multistepse.g., Ad-
ams, Crank–Nicholson, etc.d, and Runge–Kutta methods.1

These standard techniques usually corrupt intrinsic geometri-
cal properties of LLG time evolution and may lead to inac-
curate results especially when long-term behaviors of micro-
magnetic systems have to be investigated. In this respect, it
is important to develop numerical schemes that have more
appropriate geometrical propertiesssee, e.g., Refs. 2–5d.

In this paper, thesimplicitd midpoint rule is used for the
numerical time integration of the LLG equation. This method
leads to an unconditionally stable, second-order accurate
scheme, which has very important geometric preservation
properties.6

We start our discussion with a brief review of the LLG
equation and its relevant properties. The equation can be
written in the following normalized form:

]m

]t
= − m3Sheff − a

]m

]t
D , s1d

wheremst ,r d=M /Ms sumu=1d, M is the magnetization vec-
tor field, Ms is the saturation magnetization,a is the dimen-
sionless Gilbert damping constant, and the time is measured
in units ofsuguMsd−1 sg is the gyromagnetic ratiod. The vector
field mst ,r d is nonzero forr PV, where V is the region
occupied by the magnetic body. The normalized effective

field heff=Heff /Ms can be defined by the variational deriva-
tive of the micromagnetic free-energy functionalGsmd, i.e.,
heff=−dG/dm.7 The effective field is typically constituted by
the sum of four terms: the applied fieldhastd, the exchange
field hex=2A/ sm0Ms

2d¹2m sA is the exchange constantd, the
anisotropy field han=f2K1/ sm0Ms

2dgeansean·md sK1 is the
uniaxial anisotropy constant andean is the easy axis unit
vectord, and the magnetostatic fieldhm, which can be
expressed by the usual Coulomb convolution integral
hm=−¹reV¹r8f1/s4pur −r 8udg ·mst ,r 8ddVr8. The magnetiza-
tion mst ,r d is also assumed to satisfy the Neumann condition
]m /]n=0 at the body surface.

The first fundamental property of LLG dynamics is the
time preservation of magnetization magnitude,

umst,r du = umst0,r du ∀ r P V, s2d

which can be easily derived from Eq.s1d by dot multiplying
both sides of the equation bym. The second fundamental
property can be derived, in the case of constant applied field,
by scalar multiplying both sides of the equation bysheff

−a]m /]td and using the fact thatheff=−dG/dm. This leads
immediately to the following energy balance equation:

d

dt
Gstd = −E

V

aU ]m

]t
U2

dV, s3d

which has very important implications. First, we notice that,
for constant applied field, the LLG dynamics has a Lyapunov
structure, namely, the free energy is always a decreasing
function of time. This property is very important because it
guarantees that the system tends toward minima of free en-
ergy si.e., metastable equilibrium pointsd. Second, fora=0,adElectronic mail: mdaquino@unina.it
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the free energy is preserved, and the LLG equation takes the
Hamiltonian form ]m /]t=−m3sdG/dmd. Although the
LLG dynamics is always dissipative, it is interesting to con-
sider this special case since in most experimental situations
the dissipative effect are quite smallstypically a!1d. In
other terms, the LLG dynamics, on relatively short time
scale, is a perturbation of the conservative precessional dy-
namics.

We want now to investigate the preservation properties
of midpoint rule when it is applied to the LLG equation. To
this end, let us assume that the magnetic body has been sub-
divided in N cells or finite elements. We denote the magne-
tization vector associated with thek-th cell or node by
mkstdPR3, and the collection of all vectorsmkstd by the
vectormstdPR3N. Analogous notations are used forha and
heff. Let us notice that the mathematical form of the effective
field is heffsm ,td=−Cm+hastd, whereC is a linear integro-
differential operator. Usual spatial discretization techniques
se.g., finite elements and finite differenced generally preserve
this structure of the effective field, and the discretized ver-
sion of heff is typically given by

heffsm,td = −
]G

]m
= − C ·m + hastd, s4d

where Gsmd=s1/2dmT·C·m−ha
T·m is the discretized free

energy andC is a 3N33N symmetric matrix. Using this
notation, the spatially semidiscretized LLG equation can be
written as follows:

d

dt
m = − Lsmd ·Fheffsm,td − a

d

dt
mG , s5d

where Lsmd=diagfLsm1d , . . . ,LsmNdg is a block-diagonal
matrix with blocks Ls·dPR333 such thatLsvd ·w=vÃw.
Equations5d can be numerically integrated by using the im-
plicit midpoint rule which leads to the following implicit
time-stepping algorithm:

mn+1 − mn

Dt
= − LSmn+1 + mn

2
D ·

·FheffSmn+1 + mn

2
,tn +

Dt

2
D − a

mn+1 − mn

Dt
G , s6d

which, for the generick-th cell, can be written as

mk
n+1 − mk

n

Dt
= − Smk

n+1 + mk
n

2
D

3Fheff,kSmn+1 + mn

2
,tn +

Dt

2
D − a

mk
n+1 − mk

n

Dt
G . s7d

Let us study the relevant properties of the midpoint dis-
cretized LLG equation. First, by dot multiplying both sides
of Eq. s7d by mk

n+1+mk
n, it can be easily verified thatumk

n+1u
= umk

nu, i.e., at each cell the magnitude of the vector magne-
tization remains constant. Thus, the midpoint rule preserves
exactly the LLG propertys2d. Next, let us assume constant
applied fieldsi.e., thatheff does not depend ontd and let us
multiply both sides of Eq.s6d by fheffssmn+1+mnd /2d
−asmn+1−mnd /Dtg. By using the symmetry of the matrixC

and the antisymmetry of the 333 blocks of the matrixL one
can readily derive the following equation:

Gsmn+1d − Gsmnd
Dt

= − aUmn+1 − mn

Dt
U2

. s8d

Notice that the proof of this equation is crucially connected
with the fact that the free energyGsmd is given by the sum
of a quadratic form and a linear form inm. Equations8d has
very important consequences. First, independently from the
time step, the discretized energyGsmnd is decreasing. Sec-
ond, for a=0, the energy is exactly preserved regardless of
the time step. These two properties confirm the unconditional
stability of the midpoint rule, but more importantly they in-
dicate that, the midpoint rule will tend to correctly reproduce
the most important part in the LLG dynamics, i.e., the pre-
cessional magnetization motion.

The properties we have just discussed are strongly re-
lated to the implicit nature of midpoint rule. As consequence
of this implicit nature, we have to solve Eq.s6d for the un-
known mn+1 at each time step which amounts to solve a
system of 3N nonlinear equations in the 3N unknownsmn+1.
The solution of this system of equations can be obtained by
using Newton–RaphsonsNRd algorithm for the equation
Fnsmn+1d=0, where

Fnsyd = FI − aLSy + mn

2
DG · sy − mnd

− D t fnSy + mn

2
D , s9d

and fnsmd=−Lsmd ·heffsm ,tn+Dt /2d. The main difficulty in
applying NR method is that the JacobianJnsyd of Fnsyd is a
full matrix, due to the long-range character of magnetostatic
interactions. The inversion of the matricesJnsyd at each NR
iteration would lead to an exceedingly high computational
cost. In this respect, as it is usual in solving field problems
with implicit time stepping, we have used a quasi-Newton
method by considering a reasonable approximation of the
Jnsyd. We have considered the approximated sparse Jacobian

J̃nsyd, obtained by neglecting inJnsyd all the terms related to
magnetostatic interactions. The inversion of the sparse ma-

trix J̃nsyd can be then achieved by using fast iterative solvers.

In particular, since the matricesJ̃nsyd to be inverted are non-
symmetric, we have opted for the generalized minimal re-
sidual sGMRESd method.8

Up to this point, the considerations we have made about
the properties and the implementation of midpoint rule were
rather independent from the spatial discretization technique
used. In the following, in order to test the method, we have
chosen to perform the spatial discretization by using the fi-
nite difference method. The magnetic body is subdivided into
a collection of rectangular prisms with edges parallel to the
coordinate axes. The magnetization is uniform within each
cell. The exchange field is computed by means of assecond-
order accurate in spaced seven-point finite difference Laplac-
ian. The magnetostatic field is written as a discrete convolu-
tion by using analytical formula proposed in Ref. 9. The
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discrete convolution is then computed by means of three-
dimensional fast Fourier transform using the zero-padding
algorithm.

We apply the above numerical technique to solve the
m-mag standard problem No. 4ssee Ref. 1d. This problem
concerns the study of magnetization reversal dynamics in a
thin-film subject to a constant external field, applied almost
antiparallel to the initial magnetization. The geometry of the
medium is sketched in Fig. 1. The material parameters are
A=1.3310−11 J/m, Ms=8.03105 A/m, and K1=0 J/m3.
The dimension of the cells are 3.125 nm33.125 nm
33 nm. The total number of cells isN=6400. The external
field is applied at an angle of 190° off thex axis, with x-y
components such thatm0Mshax=−35.5 mT, m0Mshay=
−6.3 mT, and magnitudem0Msha=36 mT.

In the following, we report the comparison between the
numerical solution obtained by using the proposed imple-
mentation of the midpoint rule and the solutions submitted
by other researchers to them-mag website.1 The time step of
the midpoint algorithm is constant and has been chosen such
that sgMsd−1Dt=2.5 ps. We observe that the time steps used
in the algorithms developed by other authors1 are consider-
ably smallersless than 0.2 psd. In Fig. 2 the plots ofkmyl sk·l
means spatial averaged as a function of time are reported. In
Fig. 3 the plot of magnetization vector field, when the first

zero crossing ofkmxl occurs, is reported. Numerical simula-
tions of the same problem were performed with a smaller cell
edges2.5 nmd, showing that the results do not depend on the
mesh size.

Finally, we notice that the numerical implementation of
the midpoint rule fulfills the preservation properties dis-
cussed above only within certain accuracy. This is a natural
consequence of the fact that we solve the time-stepping
equationFnsmn+1d=0 by an iterative procedure within a cer-
tain numerical tolerance. It is then important to verify a pos-
teriori the accuracy in the preservation of magnetization
magnitude and energy balance properties. To this end, we
have verified the uniformity of the magnetization vector field
by computing, at each time step, the average and the qua-
dratic deviation of the valuesumku, with k=1, . . . ,N: mav

=sok=1
N umkud /N, sm

2 =ok=1
N smav− umkud2/N. We have verified

that umav−1u,10−16 andsm
2 ,10−30. To check also the accu-

racy of energy balance property preservation we have com-
puted the sequencesaccording to a procedure proposed in
Ref. 10d ân=−hfGsmn+1d−Gsmndg /Dtj / usmn+1−mnd /Dtu2
and we have verified that the relative deviationea

n = uân

−au /a is always less than 10−7.
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FIG. 1. Thin-film geometry form-mag standard problem No. 4.

FIG. 2. Plots ofkmyl=kMyl /Ms vs time. The external field is applied 190°
off the x axis.

FIG. 3. Snapshot of magnetization vector field when the first zero crossing
of kmxl occurs. The external field is applied at an angle of 190° off thex
axis.
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