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The midpoint rule time discretization technique is applied to Landau—Lifshitz—GiltidsG)
equation. The technique is unconditionally stable and second-order accurate. It has the important
property of preserving the conservation of magnetization amplitude of LLG dynamics. In addition,
for typical forms of the micromagnetic free energy, the midpoint rule preserves the main energy
balance properties of LLG dynamics. In fact, it preserves LLG Lyapunov structure and, in the case
of zero damping, the system free energy. All the above preservation properties are fulfilled
unconditionally, namely, regardless of the choice of the time step. The proposed technique is then
tested on the standard micromagnetic problem No. 4. In the numerical computations, the
magnetostatic field is computed by the fast Fourier transform method, and the nonlinear system of
equations connected to the implicit time-stepping algorithm is solved by special and reasonably fast
guasi-Newton technique. @005 American Institute of PhysidOI: 10.1063/1.1858784

Numerical integration of the Landau-Lifshitz—Gilbert field hos=H/Mg can be defined by the variational deriva-
(LLG) equation has been widely used in micromagnetics fotive of the micromagnetic free-energy functior@m), i.e.,
the analysis of dynamical magnetization processes. In mo$teff:—5G/ém.7 The effective field is typically constituted by
studies, the time discretization is obtained by using “off-the-the sum of four terms: the applied fielg(t), the exchange
shelf” algorithms such as Euler, linear multistémg., Ad-  field he,=2A/ (uoM?)V2m (A is the exchange constanthe
ams, Crank—Nicholson, ej¢c.and Runge—Kutta methods. anisotropy field han=[2K1/ (uoM3)]eaf€an m) (K, is the
These standard techniques usually corrupt intrinsic geometrisniaxial anisotropy constant angl, is the easy axis unit
cal properties of LLG time evolution and may lead to inac-vectoy, and the magnetostatic fielti,, which can be
curate results especially when long-term behaviors of microexpressed by the usual Coulomb convolution integral
magnetic systems have to be investigated. In this respect, lit,=-V, [V, /[1/(4a|r=r’|)]-m(t,r)dV,,. The magnetiza-
is important to develop numerical schemes that have mordgon m(t,r) is also assumed to satisfy the Neumann condition
appropriate geometrical propertiesee, e.g., Refs. 235 dm/dn=0 at the body surface.

In this paper, théimplicit) midpoint rule is used for the The first fundamental property of LLG dynamics is the
numerical time integration of the LLG equation. This methodtime preservation of magnetization magnitude,
leads to an unconditionally stable, second-order accurate
scheme, which has very important geometric preservation

properies’ which can be easily derived from E(L) by dot multiplyin

We start our discussion with a brief review of the LLG both sides of the gquation by Th(emsezond fundgr)rqer?tal
eq.L,:f tion ?r?d fItIT re_levant pr?_pe:ju?s. The equation can bBroperty can be derived, in the case of constant applied field,
written in the Toflowing hormalized torm: by scalar multiplying both sides of the equation By.«

om am —adm/dt) and using the fact thdt.4=—-58G/ dm. This leads
Y =-mXx (heﬁ - aE)' (1) immediately to the following energy balance equation:

Im(t,r)|=|m(to,r)| Or € Q, (2

dv, (3

wherem(t,r)=M /Mg (Jm|=1), M is the magnetization vec- aG(t) = ‘f a
tor field, My is the saturation magnetizatioa,is the dimen- @
sionless Gilbert damping constant, and the time is measuregich has very important implications. First, we notice that,
in units of (|y/My)~ (v is the gyromagnetic ratjoThe vector  for constant applied field, the LLG dynamics has a Lyapunov
field m(t,r) is nonzero forr e (), where(} is the region  strycture, namely, the free energy is always a decreasing
occupied by the magnetic body. The normalized effectiveynction of time. This property is very important because it
guarantees that the system tends toward minima of free en-
¥Electronic mail: mdaquino@unina.it ergy (i.e., metastable equilibrium pointsSecond, fora=0,
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the free energy is preserved, and the LLG equation takes thend the antisymmetry of the>33 blocks of the matrix\ one

Hamiltonian form dm/dt=—-mXx(8G/ém). Although the can readily derive the following equation:

LLG dynamics is always dissipative, it is interesting to con-

sider this special case since in most experimental situations G(mM™)-Gm") _  |m™-m"

the dissipative effect are quite smdtlypically a<1). In At - At

other terms, the LLG dynamics, on relatively short time

scale, is a perturbation of the conservative precessional dyNotice that the proof of this equation is crucially connected

namics. with the fact that the free enerdg(m) is given by the sum
We want now to investigate the preservation propertie®f a quadratic form and a linear form in. Equation(8) has

of midpoint rule when it is applied to the LLG equation. To very important consequences. First, independently from the

this end, let us assume that the magnetic body has been suime step, the discretized ener@(m") is decreasing. Sec-

divided in N cells or finite elements. We denote the magne-ond, for =0, the energy is exactly preserved regardless of

tization vector associated with thieth cell or node by the time step. These two properties confirm the unconditional

my(t) € R3, and the collection of all vectorm,(t) by the stability of the midpoint rule, but more importantly they in-

vector m(t) e R3\. Analogous notations are used floy and  dicate that, the midpoint rule will tend to correctly reproduce

he. Let us notice that the mathematical form of the effectivethe most important part in the LLG dynamics, i.e., the pre-

field is heg(m,t)=—Cm+h,(t), where( is a linear integro- cessional magnetization motion.

differential operator. Usual spatial discretization techniques The properties we have just discussed are strongly re-

(e.g., finite elements and finite differenagenerally preserve lated to the implicit nature of midpoint rule. As consequence

this structure of the effective field, and the discretized ver-of this implicit nature, we have to solve E() for the un-

2

(8)

sion of heg is typically given by known m™?! at each time step which amounts to solve a
G system of Bl nonlinear equations in theNBunknownsm™*?,
Neg(M,t) = = — == C -m + h,(t), (4) Th_e solution of this system of equr_mons can be obtamed by
am using Newton—RaphsoiiNR) algorithm for the equation

n n+1l) —
where G(m)=(1/2)m"-C-m-h]-m is the discretized free FA(m™)=0, where

energy andC is a 3N X 3N symmetric matrix. Using this y+m"
notation, the spatially semidiscretized LLG equation can be F"(y)=|1- aA(‘ — ) (y-m")
written as follows: = 2 =

y+m>, ©

d d _ nfL _—
Fn="AMm- [neﬁ(m,t) - ad—tm} , (5 At ( 2
where A(m)=diadA(m,), ..., A(my)] is a block-diagonal ~andf(m)=-A(m)-het(m,t"+At/2). The main difficulty in
matrix with blocks A(-) e R¥*3 such thatA(v)-w=vXw.  applying NR method is that the Jacobidlty) of F"(y) is a
Equation(5) can be numerically integrated by using the im- full matrix, due to the long-range character of magnetostatic
plicit midpoint rule which leads to the following implicit interactions. The inversion of the matric#%y) at each NR
time-stepping algorithm: iteration would lead to an exceedingly high computational
cost. In this respect, as it is usual in solving field problems
mn+1_ m" mn+1+ m" K i L. i '
= = :—A(_ = ) i with implicit time stepping, we have used a quasi-Newton
At - 2 method by considering a reasonable approximation of the
m™L 4 mn At m™L— mn ;]n(X)- We have considered the approximated sparse Jacobian
'|:neff(_ — 1"+ E) —a—— } : (6)  J'(y), obtained by neglecting id(y) all the terms related to
magnetostatic interactions. The inversion of the sparse ma-

which, for the generid-th cell, can be written as trix ﬁn(y) can be then achieved by using fast iterative solvers.

m* - mp (mk + mE) In particqlar, since the matricéﬂ(y) to be invgrted are non-
=- symmetric, we have opted for the generalized minimal re-
At 2 sidual (GMRES method®
m“+1+m“ LAt mE"l -my Up to this point, the considerations we have made about
X heftk( 2 U+ - aA—t (@) the properties and the implementation of midpoint rule were
rather independent from the spatial discretization technique
Let us study the relevant properties of the midpoint dis-used. In the following, in order to test the method, we have
cretized LLG equation. First, by dot multiplying both sides chosen to perform the spatial discretization by using the fi-
of Eq. (7) by mI*'+my, it can be easily verified thdin*| nite difference method. The magnetic body is subdivided into
=|my], i.e., at each cell the magnitude of the vector magnea collection of rectangular prisms with edges parallel to the
tization remains constant. Thus, the midpoint rule preservesoordinate axes. The magnetization is uniform within each
exactly the LLG property2). Next, let us assume constant cell. The exchange field is computed by means fexond-
applied field(i.e., thath+ does not depend of) and let us  order accurate in spacseven-point finite difference Laplac-
multiply both sides of EQ.(6) by [heg((m™1+mM")/2) ian. The magnetostatic field is written as a discrete convolu-
—a(m™!-m")/At]. By using the symmetry of the matri@  tion by using analytical formula proposed in Ref. 9. The

2 At

ntl_ . n n+1
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FIG. 1. Thin-film geometry fou-mag standard problem No. 4. 0 100 2°°X Inm] 300 400 500

discrete convolution is then computed by means of threeE!G. 3. Snapshot of magnetization vector field when the first zero crossing
dimensional fast Fourier transform using the zero-paddingg(ém occurs. The external field is applied at an angle of 190° offxthe
algorithm. '

We apply the above numerical technique to solve thezero crossing ofm,) occurs, is reported. Numerical simula-

p-mag standard problem No. ¢ee Ref. 1 This problem tions of the same problem were performed with a smaller cell

concermns th? study of magnetization re\_/ersal dyljamlcs n 8dge(2.5 nm), showing that the results do not depend on the
thin-film subject to a constant external field, applied almost

antiparallel to the initial magnetization. The geometry of themeS siz€

medium is sketched in Fia. 1. The material parameters ar Finally, we notice that the numerical implementation of

_ 11 _ 9.~ p_ fhe midpoint rule fulfills the preservation properties dis-
A=13X101J/m, Ms=8.0x10> A/m, and K,=0 J/nt. cussed above only within certain accuracy. This is a natural
The dimension of the cells are 3.125 m3.125 nm y Y-

X 3 nm. The total number of cells =6400. The external conse_quegcengf _the fact .that we solve the t!mg stepping
ST i R . i equationF"(m™*)=0 by an iterative procedure within a cer-
field is applied at an angle of 190° off theaxis, with x-y . ; . . .

A 2 tain numerical tolerance. It is then important to verify a pos-
components such thatuoMha,==35.5mT, uoMshay= teriori the accuracy in the preservation of magnetization
-6.3 mT, and magnitudgoM¢h,=36 mT. y P g

In the following, we report the comparison between themagnltude and energy balance properties. To this end, we

numerical solution obtained by using the proposed imple_have verified the uniformity of the magnetization vector field

mentation of the midpoint rule and the solutions submittedby computing, at each time step, the average and the qua-

by other researchers to themag websité. The time step of Elrat:\lc deviation Of_ thNe value$m|,2 with k=1, ... N: May
S ; . =(Z MmN, o =21 (Mg~ |my)?/N. We have verified
the midpoint algorithm is constant and has been chosen su 6 30
PO ; at|m,,— 1| ~10® and o2~ 107%. To check also the accu-
that (yM¢)™*At=2.5 ps. We observe that the time steps use )
racy of energy balance property preservation we have com-

in the algorithms developed by gther autHoase consider- puted the sequenc@ccording to a procedure proposed in
ably smaller(less than 0.2 psin Fig. 2 the plots ofm,) ({-) Ref. 10 &"=—{[G(M™Y)—-G(m"]/AtH/|(m™!-m")/At)2

r;ear;stﬁpatllalta\;erages ?fupctlon Otf tm;elg\re rﬁporttﬁd'f.mtand we have verified that the relative deviatief=|a"
ig. e plot of magnetization vector field, when the firs —aoflais always less than 10

04 T T— dAquno ot al. ; This work is partially supported by the Italian MIUR-
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