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Behavior of uMAG standard problem No. 2 in the small particle limit

M. J. Donahue, D. G. Porter,? and R. D. McMichael
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8910

J. Eicke
Institute for Magnetics Research, George Washington University, Washington, DC 20052

For a uniformly magnetized rectangular particle with dimensions in the Batil :0.1, the coercive

and switching fields in the (1,1,1) direction are determined toHéM  =0.057069478 and

H /M =0.057142805. Previous micromagnetic computations of coercive and switching fields that
did not approach these values for small particles are analyzed. It is shown that the disagreement was
primarily due to a disparity in the method of calculating demagnetization energy. Corrected
simulations are shown to agree with analytically determined values20@ American Institute of
Physics[S0021-89780)81708-9

I. INTRODUCTION sis is simplified by normalizing all field and magnetization

When solutions to the firsuMAG standard problem guantities to the saturation magnetization of the parfitle

g . 2
failed to show good agreemehg simpler standard problem and al energy densmes_ to the. que}nmﬁMS. .
was designed to examine the details of how different numeri- A unlformly magnetized eII|ps_0|d has a uniform demag-
cal techniques yield different solutions. The secAG netizing field,hy= = Dm.’ wherem is a cplumn vector of .thef
standard problem considers a rectangular particle with digomponents Of nor.mallzed'magn.etlzanon alopg the principal
mensionsL:d:t in the ratio5:1:0.1. Only exchange and axes of the ellipsoid, an is a diagonal matrix of demag-
magnetostatic energy terms are considered. The coerci\%etIZIng factors. . . L
field along the (1,1,1) direction is to be calculated as a func- The demagnetizing energy density of the ellipsoid is
tion of the ratio of particle size to exchange lendty e4=+m'Dm. (1)
=(2A/ uoM?2)*2 HereA is the exchange stiffness coefficient
in J/m andMy is the saturation magnetization in A/m. Pub- For rectangular particles, uniform magnetization does not re-
lished solution&* show much better agreement than the re-Sult in a uniform demagnetizing field. However, the demag-
sults from the first problem. It was expected that for a smalnetizing energy density has the same form(as For the
enough particle size, exchange energy would dominate, angfandard problem, the demagnetizing factors Brg o o)
the coercive field predicted by all calculations would con-=0.021829576, D(10y=0.11522396, and D(o,)
verge to the coercive field of a uniformly magnetized par-=0-86294646° The quantityDm is the average demagne-
ticle. As seen in Fig. 1, however, significant differences werdizing field over the volume of the particle. Because the mag-
observed for small simulated particles. In this article we proetization is uniform, the average field value is sufficient to
vide analytic values of the coercive and switching fields incompute the total demagnetization energy.
the small particle limit. Our previous calculaticndabeled Analysis of magnetization reversal considers the total
“OOMMF 1.0” in Fig. 1) are examined in detail to deter- energy density under the influence of an applied freld

mine and correct the sources of error when simulating small

particles. New solutions are computed by a corrected sdlver. e=;m'Dm— hgm. @
Il. SMALL PARTICLE THEORY
. . . . 0.065 : ; . : .

In this section we analyze the equations of our micro- A OOMME L0 ©
magnetic model in the small particle limit. The intent is to A Diazetal. &
examine whether the numerical methods used in our micro- 0.060 | ‘s8xy. COMME 11 3; v
magnetic simulations behave properly in this limit, not to . Thm*m%..,f”jjA-A.Zj;& Streibl et al. ©
predict the physical behavior of small magnetic particles. 0tV By T

. . . . =, 0.055
Many important influences on the physical behavior of small

magnetic particles are neglected by our model.
In our model, as the particle size decreases, the exchange 0.050

energy becomes dominant to the point that magnetization is

uniform throughout the particle. In this limit, exchange may 0.045

be treated as a constraint that the magnetization is uniform, 0

and an analysis of magnetic reversal need consider only en-

ergy terms due to demagnetizing and external fields. Analy-

FIG. 1. Coercive H.) and switching H,) fields of standard problem 2 as a
function of particle size as computed by several micromagnetic simulations.
3E|ectronic mail: donald.porter@nist.gov New results are labeled OOMMF 1.1.

0021-8979/2000/87(9)/5520/3/$17.00 5520 © 2000 American Institute of Physics



J. Appl. Phys., Vol. 87, No. 9, 1 May 2000 Donahue et al. 5521

The coercive fieldH,, is defined relative to a unit vector in 1.1 -
the d|r.ect|c.>n of th.e appheq fle|d,.|. After saturation by a T

large field in the direction ofi, H. is the largest value dfi

for which an applied field of-Hu yields a magnetization 0.9 r o, 1

g

with uTm>0. The switching fieldH, is the magnitude of 0s | ]

applied field at which a local minimum @®) disappears. In
many circumstancesH. and Hq are equal, because'm
=0 only during a switching event. When solving standard
problem 2 for uniformly magnetized particles, howeudy,

eq/ eq (A=0)

07 : _

¢ H averaged, m any
A H sampled, m=(1,0,0)
0.6 + ¥ Hsampled, m=(0,1,0) T . i
O H sampled, m=(0,0,1)
(¢}

. . . H sampled, m=(1,1,1)
andHg are not equal. The magnetization of the particle ro- 0.5 T S S S
tates past the plane perpendicular to the applied field direc- 6 1 2 3 4 5 6 7 8 9 10
tion before the switching event. Lagrange multiplier analysis Cell size Aft

y|e|ds expressions fan andha in terms of Lagrange multi- FIG. 2. Computed demagnetization energy as a function of cell size for a

plier N. The stationary points of2) correspond to the roots uniformly magnetized 5: 1: 0.1 rectangular particle. Cell size is expressed
of a rational function which is sixth order ix. At coercivity, relative to particle thickness The energy is calculated using either sampled

the constraint thatm=0 corresponds to a rational function der}?g‘%’_‘etizmg fieldsopen symbols or averaged demagnetizing fields
that is third order in\. Solving the system of equations (Solid diamondz
yields a value foH.. At the switching fieldHg, one of the

stationary .points 0{2)'disappears. Solving for the' applied field at distancea from a charged edge drops off roughly
flel_d magnltu_de at_whlch one _of the roots of the sixth Orderproportional to tan}{t/(2a)]. Because this is concave up, a
rational function disappears yields a value Fog. The val-  fie|q sample taken at the center of a cell will underestimate
ues of H; and Hg in the small particle limit areH:/Ms  the average in-plane field strength, resulting in the low val-
=0.057069478 anéls/M;=0.057142805. ues for the energy at coarse discretization seen in Fig. 2. This
error can be reduced by refining the discretization. However,
because the sample grid is two dimensional, the field
samples always come from the center of the film, where the
Our previous solutiorfswere computed using a discreti- field is stronger than near the top or bottom surfaces. There-
zation of the particle into a two-dimensional grid of squarefore, for very small cell size\, the energy is overestimated.
cells. The magnetization was assumed to be uniform withiAnalogous considerations explain the discrepancies in the
each cell, represented by a single spin. A sequence of extem=(0,0,1) plot.
nal fields was applied to the spin assembly. For each applied ~Fortunately, these errors can be removed without requir-
field value, the evolution of the system of spins was com-ng three-dimensional discretization. Each sampled value of
puted by the Landau-Lifshitz equation until the maximumthe demagnetizing field if3) may be replaced with the av-
torque on all spins fell below a threshold value, indicating arerage value of the demagnetizing field over the entire cell.
equilibrium magnetization for the applied field had beenThe expressions necessary for the calculation of the demag-
reached. In the following sections, we examine several denetizing fields averaged over each cell are kniney are
tails of these computations for small particles, seeking th@onsiderably more complex than the expressions for the
reasons they do not approach the values predicted by Sec. fampled field values, but they may still be expressed as con-
volution integrals, so fast Fourier methods are available, and
the additional complexity contributes only to the initializa-
In Ref. 3(open circles in Fig. §i the normalized demag- tion phase of a simulation(Due to the large number of
netization energy density of the simulated particle is com+terms, rounding error can be significant, so the demagnetiza-

Ill. SIMULATION ANALYSIS

A. Demagnetization energy

puted as tion tensor should be computed using a technique such as
1 doubly compensated summatinAs seen in Fig. 2, the de-
ed:m 2 miThd,i , (3) magnetization energy computed using cell-averaged demag-
I

netizing fields does not depend on discretization and agrees
where the sum is over tH cells in the grid, and the values With the analytic result.
hq; are the demagnetizing field sampled at the center point
of each cell. B. Rounding errors in exchange energy calculation
Figure 2 displays the computed demagnetization energy In Ref. 3, the normalized exchange energy density is

as a function of cell size for several directions of uniform computed using an eight-neighbor cosine schéme:
magnetization. For each direction, the demagnetization en-

ergy is plotted normalized to the analytical value computed A .

from (1). It is clear that the formulation i6i3) suffers from Cexi = 55 > (1-mimy), (4)
- . 3uoMgA< kenn;

errors that are not eliminated by refinement of the two- s

dimensional grid. whereA is the exchange stiffness constaftis the cell size,
When the magnetization is in the plane of the fllthe  andk sums over the nearest and next-nearest neighbors on
nearly overlappingn=(1,0,0) andm=(0,1,0) curve§ the the square two-dimensional grid. When the angke
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between neighboring spins is small,—in'm~1—(1  parameters, then an energy well of this depth would be un-
— ¢2/2) and the#?/2 term is lost in rounding, i.e., in floating Stable at temperatur&>0.006(/l,)* K. For the largest
point arithmetic + #%/2=1. In this case the outer subtrac- particle considered hereq/l,=30, corresponding tol
tion from 1 does not contribute to the error, but only exposes=160 K.
what has already been lost. On the other hand, the simulation will report an equilib-
If one could regroup the expression-{1—62/2) as fium exists when the torquenx h| at all spins is less than a
(1_1)+ 62/2’ then rounding errors would be Significant]y SpeCified threshold value. This test is insufficient if the en-
reduced. This is accomplished by the alternative expressiofrdy surface is very flat, resulting in an overestimate of the
switching field. This problem can be controlled by making
A - the threshold small, which in the present study was set to
“3amzaz M kgn_ (m; —my). (5 105 (normalized units If we assume|dm/dt|~y|m
HolVls ' xh|Mg, with gyromagnetic ratioy=2.21x10° m/As and
Here the subtraction is done before other floating point op{Sa) Ms=8x 10> A/m, then ajmx h|=10"°, a 1% change
erations, and the dot product is computed between vectoi M requires about 56 ns.
which are nearly perpendicular, which is numerically better
behaved. IV. RESULTS
If the exchange coupling\/A? is large, due to either

large A or smallA, then the spins will be nearly aligned and Folver indicated above, new solutions faMAG standard

roundoff errors can become a significant fraction of the total roblem 2 wer mouted. Both th rcive and switchin
energy. This can cause a misalignment between the calcu{fl—o € ere computed. Lo € coercive and switching

lated effective field direction and the gradient of the energy, elds were determined for particles with width from 0.125 to

surface; if we require each simulation step to lower the total?’oafg?]esv\tlﬂﬁ ?ﬁ(ghﬂsi.ﬁ?gthg;giézﬂf Lﬁat‘éeF%I?tat_edaI: Fig.
energy, then such misalignment forces the simulation ste@i 9 P yp . P

size to be reduced. This unnecessary stiffening of the probF"Cl(/al\\/lN 't_h C\)/vgét?OO?.ii;m?;thfoeéggiggesl_ﬁngatlr},_;/;/; Sizm%?te
lem is evidenced by some simulations performed for this ¢ 'S st stk using a fi P

; . ) ﬁAha|=0.0000276. We compute the same results for a par-
Egrr:etirr,nve\/hbe; igfgg)o'%g?; z‘;dgnrite:éjeced the computa ticle of width 0.125 times the exchange length, indicating

that these values are a good estimate for the limiA as0.
C. Uncertainty in critical fields The theoretical values for both the coercive and the switch-

Our simulations compute the sequence of equilibriuming field for a uniformly magnetized particle from Sec. Il are

states corresponding to a sequence of applied fields. ARISC marked on the grapfiThe two values are indistinguish-
though extrapolation methods have been proposed to detefP!€ at the scale of the graptthe new simulation results
mine critical switching fields from such datawe simply agree with the theoretical solution in the small particle limit
report the mid-point of the field step at which we observe aWh'le the prewously qul'Shed SO!UtIOI’]S did not. )
discontinuity aHg. Thus, we do not determind, to a finer In the |mproved micromagnetic solver, the demag”e“z'
resolution than the size of the field step which leads to thd"9 €Nergy is completely accurate up to the assumption that
discontinuity. In this paper, théreduced field step size the magnetization is uniform in each cell. It is still important
|Ah,| near the switching field was 0.0000276 that discretization of the problem be fine enough to resolve
2 ' ' épatial variations of magnetization, but there is no need for
finer discretization beyond that to resolve spatial variations
é'n the demagnetizing field. The averaging of demagnetizing

subsequently allowed to relax, it falls to a minimum different fI€ldS_over uhr_uformly merl]gnenzer(]j cells accounts f(f)rhthose
from the one being tracked, giving the mistaken impressioﬁ’,a”at'ons' This means.t at as the mellgnetllzaulon of the par-
that the first minimum has disappeared. This is an importanrﬂCIe becomes more uniform, coarse discretizations can com-

effect in dynamic studie¥ but is an error in the quasi-static PUte accurate results.

situation being studied here and results in an underreporting

of the switching field. For this to occur, the starting point for *R. D. McMichael and M. J. Donahue;URL: http:/ivww.ctcms.nist.gov/
the relaxation proceduré.e., the equilibrium position from 2‘I’_/‘”LErdm’SS‘_j1’pgb/'f\lfeP°”fmT’l i 1 Asol P

the previous field stepmust have an energy higher than the Sélg?fgég"az’ -+ Alejos, L. Torres, and J. 1. Iniguez, J. Appl. PIg5.
energy barrier surrounding the minimum of interest. The to-3r. D. McMichael, M. J. Donahue, D. G. Porter, and J. Eicke, J. Appl.

tal energy of the system increases as the switching field is Phys.85 5816(1999.

B i *B. Streibl, T. Schrefl, and J. Fidler, J. Appl. Ph 5819(1999.
approached, so the difference in energy between the reIaxS-M ] Dorahue and b G, PorteﬁuRL:ht"t’;//maﬁnist.gof”ooaw'

ation startingT point and thg desired equi!ibrium point ig r_10t 6A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Reg. 9551
more thamAh,m<|Ah,|. This means that if an energy mini-  (1993.
mum is prematurely lost, it must be shallower tha| ’N. J. Higham, inAccuracy and Stability of Numerical AlgorithriSIAM,

_ : Philadelphia, 1996 pp. 96—97.
0.0000276. If we compare to a particle of equal volume ats\, ' ponahue and R. D. McMichael, Physica2B3 272 (1997)

finite temperature, obeyirtg=t,expAE/KT) with attempt pe- 95 Hypert and W. Rave, Phys. Status Solid2B1, 815 (1999.
riod to= 10 ° s, observation timé=60 s, and NiFe material °D. G. Porter, IEEE Trans. Magi84, 1663(1998.

eex,i

After making the corrections to our micromagnetic

There are additional uncertainties, however. When th
applied field is stepped, the location of the local energy mini
mum shifts, and it can happen that when the simulation i



