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Behavior of mMAG standard problem No. 2 in the small particle limit
M. J. Donahue, D. G. Porter,a) and R. D. McMichael
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8910

J. Eicke
Institute for Magnetics Research, George Washington University, Washington, DC 20052

For a uniformly magnetized rectangular particle with dimensions in the ratio 5 : 1 :0.1, the coercive
and switching fields in the (1,1,1) direction are determined to beHc /Ms50.057069478 and
Hs /Ms50.057142805. Previous micromagnetic computations of coercive and switching fields that
did not approach these values for small particles are analyzed. It is shown that the disagreement was
primarily due to a disparity in the method of calculating demagnetization energy. Corrected
simulations are shown to agree with analytically determined values. ©2000 American Institute of
Physics.@S0021-8979~00!81708-9#

I. INTRODUCTION

When solutions to the firstmMAG standard problem
failed to show good agreement,1 a simpler standard problem
was designed to examine the details of how different numeri-
cal techniques yield different solutions. The secondmMAG
standard problem considers a rectangular particle with di-
mensionsL:d:t in the ratio 5 : 1 :0.1. Only exchange and
magnetostatic energy terms are considered. The coercive
field along the (1,1,1) direction is to be calculated as a func-
tion of the ratio of particle size to exchange lengthl ex

5(2A/m0Ms
2)1/2. HereA is the exchange stiffness coefficient

in J/m andMs is the saturation magnetization in A/m. Pub-
lished solutions2–4 show much better agreement than the re-
sults from the first problem. It was expected that for a small
enough particle size, exchange energy would dominate, and
the coercive field predicted by all calculations would con-
verge to the coercive field of a uniformly magnetized par-
ticle. As seen in Fig. 1, however, significant differences were
observed for small simulated particles. In this article we pro-
vide analytic values of the coercive and switching fields in
the small particle limit. Our previous calculations3 ~labeled
‘‘OOMMF 1.0’’ in Fig. 1 ! are examined in detail to deter-
mine and correct the sources of error when simulating small
particles. New solutions are computed by a corrected solver.5

II. SMALL PARTICLE THEORY

In this section we analyze the equations of our micro-
magnetic model in the small particle limit. The intent is to
examine whether the numerical methods used in our micro-
magnetic simulations behave properly in this limit, not to
predict the physical behavior of small magnetic particles.
Many important influences on the physical behavior of small
magnetic particles are neglected by our model.

In our model, as the particle size decreases, the exchange
energy becomes dominant to the point that magnetization is
uniform throughout the particle. In this limit, exchange may
be treated as a constraint that the magnetization is uniform,
and an analysis of magnetic reversal need consider only en-
ergy terms due to demagnetizing and external fields. Analy-

sis is simplified by normalizing all field and magnetization
quantities to the saturation magnetization of the particleMs ,
and all energy densities to the quantitym0Ms

2 .
A uniformly magnetized ellipsoid has a uniform demag-

netizing field,hd52Dm, wherem is a column vector of the
components of normalized magnetization along the principal
axes of the ellipsoid, andD is a diagonal matrix of demag-
netizing factors.

The demagnetizing energy density of the ellipsoid is

ed5 1
2 mTDm. ~1!

For rectangular particles, uniform magnetization does not re-
sult in a uniform demagnetizing field. However, the demag-
netizing energy density has the same form as~1!. For the
standard problem, the demagnetizing factors areD (1,0,0)

50.021829576, D (0,1,0)50.11522396, and D (0,0,1)

50.86294646.6 The quantityDm is the average demagne-
tizing field over the volume of the particle. Because the mag-
netization is uniform, the average field value is sufficient to
compute the total demagnetization energy.

Analysis of magnetization reversal considers the total
energy density under the influence of an applied fieldha ,

e5 1
2 mTDm2ha

Tm. ~2!

a!Electronic mail: donald.porter@nist.gov

FIG. 1. Coercive (Hc) and switching (Hs) fields of standard problem 2 as a
function of particle size as computed by several micromagnetic simulations.
New results are labeled OOMMF 1.1.
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The coercive field,Hc , is defined relative to a unit vector in
the direction of the applied field,û. After saturation by a
large field in the direction ofû, Hc is the largest value ofH
for which an applied field of2Hû yields a magnetization
with ûTm.0. The switching field,Hs , is the magnitude of
applied field at which a local minimum of~2! disappears. In
many circumstances,Hc and Hs are equal, becauseûTm
50 only during a switching event. When solving standard
problem 2 for uniformly magnetized particles, however,Hc

and Hs are not equal. The magnetization of the particle ro-
tates past the plane perpendicular to the applied field direc-
tion before the switching event. Lagrange multiplier analysis
yields expressions form andha in terms of Lagrange multi-
plier l. The stationary points of~2! correspond to the roots
of a rational function which is sixth order inl. At coercivity,
the constraint thatha

Tm50 corresponds to a rational function
that is third order inl. Solving the system of equations
yields a value forHc . At the switching fieldHs , one of the
stationary points of~2! disappears. Solving for the applied
field magnitude at which one of the roots of the sixth order
rational function disappears yields a value forHs . The val-
ues of Hc and Hs in the small particle limit areHc /Ms

50.057069478 andHs /Ms50.057142805.

III. SIMULATION ANALYSIS

Our previous solutions3 were computed using a discreti-
zation of the particle into a two-dimensional grid of square
cells. The magnetization was assumed to be uniform within
each cell, represented by a single spin. A sequence of exter-
nal fields was applied to the spin assembly. For each applied
field value, the evolution of the system of spins was com-
puted by the Landau–Lifshitz equation until the maximum
torque on all spins fell below a threshold value, indicating an
equilibrium magnetization for the applied field had been
reached. In the following sections, we examine several de-
tails of these computations for small particles, seeking the
reasons they do not approach the values predicted by Sec. II.

A. Demagnetization energy

In Ref. 3~open circles in Fig. 1!, the normalized demag-
netization energy density of the simulated particle is com-
puted as

ed5
1

2N (
i

mi
Thd,i , ~3!

where the sum is over theN cells in the grid, and the values
hd,i are the demagnetizing field sampled at the center point
of each cell.

Figure 2 displays the computed demagnetization energy
as a function of cell size for several directions of uniform
magnetization. For each direction, the demagnetization en-
ergy is plotted normalized to the analytical value computed
from ~1!. It is clear that the formulation in~3! suffers from
errors that are not eliminated by refinement of the two-
dimensional grid.

When the magnetization is in the plane of the film@the
nearly overlappingm5(1,0,0) andm5(0,1,0) curves#, the

field at distancea from a charged edge drops off roughly
proportional to tan21@t/(2a)#. Because this is concave up, a
field sample taken at the center of a cell will underestimate
the average in-plane field strength, resulting in the low val-
ues for the energy at coarse discretization seen in Fig. 2. This
error can be reduced by refining the discretization. However,
because the sample grid is two dimensional, the field
samples always come from the center of the film, where the
field is stronger than near the top or bottom surfaces. There-
fore, for very small cell sizeD, the energy is overestimated.
Analogous considerations explain the discrepancies in the
m5(0,0,1) plot.

Fortunately, these errors can be removed without requir-
ing three-dimensional discretization. Each sampled value of
the demagnetizing field in~3! may be replaced with the av-
erage value of the demagnetizing field over the entire cell.
The expressions necessary for the calculation of the demag-
netizing fields averaged over each cell are known.6 They are
considerably more complex than the expressions for the
sampled field values, but they may still be expressed as con-
volution integrals, so fast Fourier methods are available, and
the additional complexity contributes only to the initializa-
tion phase of a simulation.~Due to the large number of
terms, rounding error can be significant, so the demagnetiza-
tion tensor should be computed using a technique such as
doubly compensated summation.7! As seen in Fig. 2, the de-
magnetization energy computed using cell-averaged demag-
netizing fields does not depend on discretization and agrees
with the analytic result.

B. Rounding errors in exchange energy calculation

In Ref. 3, the normalized exchange energy density is
computed using an eight-neighbor cosine scheme:8

eex,i5
A

3m0Ms
2D2 (

kPnni

~12mi
Tmk!, ~4!

whereA is the exchange stiffness constant,D is the cell size,
and k sums over the nearest and next-nearest neighbors on
the square two-dimensional grid. When the angleu

FIG. 2. Computed demagnetization energy as a function of cell size for a
uniformly magnetized 5 : 1 : 0.1 rectangular particle. Cell size is expressed
relative to particle thicknesst. The energy is calculated using either sampled
demagnetizing fields~open symbols! or averaged demagnetizing fields
~solid diamonds!.
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between neighboring spins is small, 12mi
Tmk'12(1

2u2/2) and theu2/2 term is lost in rounding, i.e., in floating
point arithmetic 12u2/251. In this case the outer subtrac-
tion from 1 does not contribute to the error, but only exposes
what has already been lost.

If one could regroup the expression 12(12u2/2) as
(121)1u2/2, then rounding errors would be significantly
reduced. This is accomplished by the alternative expression

eex,i5
A

3m0Ms
2D2

mi
T (

kPnni

~mi2mk!. ~5!

Here the subtraction is done before other floating point op-
erations, and the dot product is computed between vectors
which are nearly perpendicular, which is numerically better
behaved.

If the exchange couplingA/D2 is large, due to either
largeA or smallD, then the spins will be nearly aligned and
roundoff errors can become a significant fraction of the total
energy. This can cause a misalignment between the calcu-
lated effective field direction and the gradient of the energy
surface; if we require each simulation step to lower the total
energy, then such misalignment forces the simulation step
size to be reduced. This unnecessary stiffening of the prob-
lem is evidenced by some simulations performed for this
paper, where using~5! in place of~4! reduced the computa-
tion time by several orders of magnitude.

C. Uncertainty in critical fields

Our simulations compute the sequence of equilibrium
states corresponding to a sequence of applied fields. Al-
though extrapolation methods have been proposed to deter-
mine critical switching fields from such data,9 we simply
report the mid-point of the field step at which we observe a
discontinuity asHs . Thus, we do not determineHs to a finer
resolution than the size of the field step which leads to the
discontinuity. In this paper, the~reduced! field step size
uDhau near the switching field was 0.0000276.

There are additional uncertainties, however. When the
applied field is stepped, the location of the local energy mini-
mum shifts, and it can happen that when the simulation is
subsequently allowed to relax, it falls to a minimum different
from the one being tracked, giving the mistaken impression
that the first minimum has disappeared. This is an important
effect in dynamic studies,10 but is an error in the quasi-static
situation being studied here and results in an underreporting
of the switching field. For this to occur, the starting point for
the relaxation procedure~i.e., the equilibrium position from
the previous field step! must have an energy higher than the
energy barrier surrounding the minimum of interest. The to-
tal energy of the system increases as the switching field is
approached, so the difference in energy between the relax-
ation starting point and the desired equilibrium point is not
more thanDha

Tm,uDhau. This means that if an energy mini-
mum is prematurely lost, it must be shallower thanuDhau
50.0000276. If we compare to a particle of equal volume at
finite temperature, obeyingt5t0exp(DE/kT) with attempt pe-
riod t051029 s, observation timet560 s, and NiFe material

parameters, then an energy well of this depth would be un-
stable at temperatureT.0.006(d/ l ex)

3 K. For the largest
particle considered here,d/ l ex530, corresponding toT
5160 K.

On the other hand, the simulation will report an equilib-
rium exists when the torqueum3hu at all spins is less than a
specified threshold value. This test is insufficient if the en-
ergy surface is very flat, resulting in an overestimate of the
switching field. This problem can be controlled by making
the threshold small, which in the present study was set to
1026 ~normalized units!. If we assume udm/dtu'gum
3huMs , with gyromagnetic ratiog52.213105 m/As and
~say! Ms583105 A/m, then atum3hu51026, a 1% change
in m requires about 56 ns.

IV. RESULTS

After making the corrections to our micromagnetic
solver indicated above, new solutions formMAG standard
problem 2 were computed. Both the coercive and switching
fields were determined for particles with width from 0.125 to
30 times the exchange length. The results are plotted in Fig.
1 along with the previously published results.2–4 For a par-
ticle with width 0.25 times the exchange length, we compute
Hc /Ms50.05707 andHs /Ms50.05713 using a field step of
uDhau50.0000276. We compute the same results for a par-
ticle of width 0.125 times the exchange length, indicating
that these values are a good estimate for the limit asD→0.
The theoretical values for both the coercive and the switch-
ing field for a uniformly magnetized particle from Sec. II are
also marked on the graph.~The two values are indistinguish-
able at the scale of the graph.! The new simulation results
agree with the theoretical solution in the small particle limit
while the previously published solutions did not.

In the improved micromagnetic solver, the demagnetiz-
ing energy is completely accurate up to the assumption that
the magnetization is uniform in each cell. It is still important
that discretization of the problem be fine enough to resolve
spatial variations of magnetization, but there is no need for
finer discretization beyond that to resolve spatial variations
in the demagnetizing field. The averaging of demagnetizing
fields over uniformly magnetized cells accounts for those
variations. This means that as the magnetization of the par-
ticle becomes more uniform, coarse discretizations can com-
pute accurate results.
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