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Abstract

The lowest energy states in small cubic particles with uniaxial anisotropy are explored as a function of anisotropy
strength and particle size. The investigations result in a phase diagram which contains the boundaries between the
regions of one, two and three domains (flower, vortex and double vortex states). While the general features of the phase
diagram are derived from energy estimates based on domain theory, the details are obtained using numerical micromag-
netics. The two-domain and the three-domain phase can be subdivided into subphases. The comparison between
different configurations revealed that a twisted vortex configuration with an S-shaped domain wall replaces the
symmetric vortex with a straight wall at larger sizes. The three-domain phase contains two subphases which are
symmetric with respect to (1 0 0) and (1 1 0) mirror planes, respectively. The transition from two to three domains occurs
into the (1 1 0)-three-domain-state (diagonal state). This structure can be described as a configuration with two (quarter-)
circular domain walls in two opposing corners. However, this configuration is energetically favored only in a small region
within the phase diagram relative to the (1 0 0)-symmetry three-domain state with straight walls (sandwich state).
© 1998 Published by FElsevier Science B.V. All rights reserved.
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1. Introduction

The lowest-energy state of a magnetic particle
depends on its size, its shape, and the strength and
character of its anisotropy. In order to get an over-
view over a well-defined case we focus on a cubic

* Corresponding author. + 49-351-465-9531; fax: + 49-351-
465-9537; e-mail: w.rave@ifw-dresden.de.

particle in zero field. The magnetic anisotropy of
the particle is assumed to be uniaxial, with the easy
axis along one of the cubic axes. Employing re-
duced variables (see Section 2 for details) we are left
with two dimensionless parameters: the relative an-
isotropy Q = K,/K, with K, being the uniaxial
anisotropy constant and Ky = J2/(2u,), and the
reduced length 1 = L/\/m where L is the par-
ticle size and A is the exchange stiffness constant.
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In the following the easy axis of the uniaxial
anisotropy is taken to coincide with the z-axis of
the cube (see Fig. 1). This is exactly the case which
was first explored by Schabes and Bertram [1],
who calculated numerically the equilibrium config-
urations for small anisotropy and relatively small
particles. The question of the equilibrium config-
urations in the full range of relative anisotropies
and for larger particles — extending the size into the
multidomain range — was first addressed in Section
3.3.5 of Ref. [2], in search for a justification of
domain patterns in general.

First results as well as domain-theoretical esti-
mates were offered there. Here the full range of
equilibrium patterns is analyzed, reaching in the
anisotropy spectrum from Q =0, over very soft
(Q«1) and intermediate (0.1 <Q < 1) to hard
magnetic materials (Q > 1), and in size up to 100
times the exchange length ./ A/K,.

For small 4 (41 < 5) it is well known that a more
or less uniformly magnetized state prevails. This
also remains true for magnetic cubes where in spite
of the logarithmic divergence of the stray field at
the edges and corners, the angular variation of the
magnetization due to this divergence is confined to
a volume [ 3] extending about one exchange length
/ A/K4 from the corner, largely independent of Q.!
Being magnetized basically along the easy axis (we
will call this the ‘longitudinal’ orientation), the
single domain or flower state carries only little an-
isotropy energy. Also the exchange stiffness energy
is small because the magnetization pattern is fairly
uniform. The predominant energy term in the
single domain state is the stray field energy which
will be somewhat smaller than 3K, the demag-
netizing energy density of the uniformly magnet-
ized cube (which is the same as that of a sphere).

With increasing sample size, inhomogeneous
states become energetically favorable: for small and
intermediate Q this is the curling or vortex state [1].
This closed-flux configuration avoids most of the
stray field energy at the expense of a large exchange
stiffness energy. If the vortex axis is oriented per-
pendicular to the anisotropy axis, this ‘transverse’

L An extension of this work from 2D to 3D was demonstrated
by a recent analytical micromagnetic treatment [4].
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Fig. 1. Sketch of the cube and coordinates.

vortex state also saves some anisotropy energy, but
this is of minor importance for small Q. No con-
tinuous transition between the longitudinal single
domain state and the transverse vortex state is
conceivable. Instead, we observe a discontinuous
phase boundary which defines the single-domain
limit between both states. Because the exchange
stiffness energy density of the vortex state scales
with A/L?, the single domain limit scales for small

Q with the exchange length ./ A/K4 and is thereby
largely independent of K.

Of particular interest is the transition between
the vortex configuration for intermediate sizes, and
regular domain patterns to be expected for larger
particles and in bulk material. Here we identify this
multidomain limit — somewhat arbitrarily — with the
equilibrium transition between the vortex and
a three-domain state. For small Q both the vortex
state and the three-domain or double vortex states
will be largely stray-field-free. The only reason for
the formation of a flux-closed three-domain state is,
that it saves anisotropy energy at the expense of
exchange stiffness energy. Therefore the particle
size at the second phase transition will scale with

the classical wall width parameter /A/K,, thus
increasing in units of the exchange length
/ A/K4 with decreasing Q.

Samples with dimensions between the two limits
are predicted to display continuous micromagnetic
patterns which differ from the classical domain
picture. In Section 3.3 of Ref. [2], arguments are
presented for the occurrence of similar continuous-
ly varying zones of this size below the surface of
strongly misoriented bulk crystals. The calculated
phase diagram of micromagnetic states in small
particles can therefore serve as a guide to the char-
acter of domain structures also in extended samples
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which certainly cannot be treated with rigorous
micromagnetic methods.

These and similar arguments are discussed in
a more systematic way in Section 2 using the frame-
work of domain theory to derive the general fea-
tures of the phase diagram of micromagnetic states
in cube-shaped particles. The quantitative explora-
tion uses the tools of numerical micromagnetics
which are introduced in Section 3. The following
sections on results start with a classification of the
possible magnetic configurations in cubes (Section
4.1) followed by a comparison of simple vortex
states close to the single domain limit in Section 4.2,
the twisted or asymmetrical vortex observed at
larger particle size (Section 4.3), and the three-
domain states at the multidomain limit (Section
4.4).

The lowest energy solutions lead to a phase dia-
gram of the primary configurations which is estab-
lished in Section 5. Finally the stability limit of the
vortex state is analyzed in Section 6. There also the
special case Q = 0 will be discussed, explaining why
the single domain limit is difficult to calculate for
small Q.

2. General energy estimates

Here the general features of the phase diagram
are derived by means of domain-theoretical energy
estimates. This is done separately for the two limit-
ing cases of very low and high anisotropy.

2.1. Low Q materials

The total micromagnetic energy for a fixed con-
figuration in a magnetically uniaxial cube-shaped
particle of size L can be expressed as

Etot = KuﬁkLS =+ KdeL3 =+ ASXL. (1)

Here the dimensionless coefficients ¢, ¢4 and &,
depend only on the chosen configuration. For
example, a cube magnetized uniformly along the
easy axis has &g = 3 and &, = ¢, = 0. In this way the
energy of one configuration can be extended to
particles of different size L or anisotropy K,. If
there are arguments that the same configuration

will also be approximately valid for different param-
eter sets, we can transfer the results of one calcu-
lation to related cases. Introducing reduced quant-
ities according to

ton = Ew/(KaL?), 4 =L/\/A/Ks, Q=K./Ky
2

leads to

ot = &0 + &4 + £,/4°. (3)

To derive the phase boundary between two fixed
configurations I and II for which the assumed ap-
proximate independence on 4 and Q is valid, Eq. (3)
is used for both:

toe = a0 + ea + &/2% s =0 + &g + &x/A%.(4)

The equal-energy thickness (phase boundary) is
given by

11 1
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For the single domain (I) — vortex (II) transition
which will occur at a small particle size A, the
demagnetizing energy ¢4 and the exchange energy
contributions ¢, are predominant as mentioned in
the introduction. Therefore &} — & will be domi-
nant in the denominator, and the phase boundary
of the single-domain-vortex transition will become
independent of Q for small Q.

At the second phase boundary (=multidomain
limit) from the vortex (I) to the three-domain state
(IT) which we anticipate at a large reduced size A,
the demagnetizing energies ¢y and & will be negli-
gible for both states, the more so the larger the
reduced size 4. The second term in the denominator
of Eq. (5) will be decisive even when Q approaches
zero, leading to a phase boundary A,,, which in-

creases with 1/\/6 for decreasing Q. For detailed
predictions the formation of domain walls has to be
taken into account. A simple Landau-Lifshitz-type
domain model avoids stray field energies com-

pletely and again predicts a I/Jé-dependence of
/Jpp2- Estimates based on a refined domain model

(p. 328 of Ref. [2]) yield A,pn =~ 25/\/5, or explicitly
Lowz, ~ 25/ A/K4/</Q = 25./A/K, for the multi-

domain limit. The same generalized domain theory
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predicts A,y ~7 or Ly, ~7./A/Ky for the
single-domain limit at small Q.

2.2. High Q materials

In the other extreme, Q> 1, exchange and anisot-
ropy energies will be concentrated in domain walls.
The vortex state is transformed in this limit into
a classical two-domain state [5], and the double-
vortex state is converted into a three-domain state.
In every micromagnetic model both the exchange
energy and the anisotropy energy will therefore
scale with the classical Bloch wall energy parameter

/ AK,, so that the total energy can be expressed as
Ew =/ AK i L? + KgegL® +
where 1, = Sk)u\/é and y, = ex/(i\/é) are effective

domain wall areas of a model. In reduced form
(using the definitions in Eq. (2)) the total energy
becomes

brot = £a + (1 + 1IN/ Q) (7)

Analogous to the previous case, the phase bound-
ary A,, between two different models is found from
the equilibrium condition at

1 I 1 I
4 Mk — M + 1x — Hx
Iy = /0. ®)

€d — &

AK L%, (6)

For large Q, i, and 5, will be about equal, as in
classical domain walls. Both phase boundaries, that
between the single-domain state and the two-do-
main state as well as that between the two-domain
and the three-domain state, therefore increase with

\/a in the chosen reduced units when Q increases.
Inserting the definition of the reduced length 4 from
Eq. (2) we see that in this parameter range the phase
boundaries scale with ./ AK,/Kg.

By evaluating the stray-field coefficients for the
simple domain structures (sketched in Fig. 14)
quantitative estimates for the phase boundaries
are obtained. The single domain limit for high an-
isotropy becomes: A,y = 25[ or Ly =
25/ A/K,0Q.

Similarly the multidomain limit can be derived
from domain theoretical calculations. In p. 164 of
Ref. [2], a transition between the simple two-do-

1000
' Multi-domain
range

100

Two domain
range

LIJATK,

107

A

Single domain range

l T T T
0.001 0.01 0.1 1 10

0 =K,/ Ky

Fig. 2. Sketch of the phase diagram as based on domain theory
alone, using the asymptotic behavior for large and small Q de-
rived in this section. The regions where the exact phase bound-
aries are anticipated are indicated by the gray shaded areas.

main state and a ‘diagonal’ three-domain state
(consisting of a main domain and two quarter-
circular domains, for a sketch see Fig. 14e) was
found at A, = 60.8\/@ A second transition to
a sandwich three-domain state (three domains sep-
arated by straight walls along a [1 0 0]-direction)
was found at A,,, = 76\/@

Altogether, a phase diagram as sketched in Fig.
2 is expected. The connections between the asymp-
totic lines at small and large Q cannot be calculated
reliably with domain-theoretical arguments and
need rigorous numerical micromagnetic calcu-
lations. Conversely, numerical methods cannot
reach the very large sizes at the multidomain limit
for large and for small Q, so that the final phase
diagram which will be presented in Fig. 15 must
lean on domain-theoretical arguments in these
parts.

3. Micromagnetic techniques

The numerical calculations in this paper have
been obtained by two independently developed
programs. It was therefore possible to compare the
results and check for hidden programming errors.
Both programs minimize the sum of exchange, an-
isotropy and stray-field energy discretized with
a periodic grid. Throughout the paper we only
present equilibrium states which were reached
when the effective field was at every mesh point in
the configuration smaller than a certain ¢ (typically
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chosen as 10~ 3 times the anisotropy field H,). The
first code is based on a 3D extension of methods
previously applied to two dimensions [3,6]. The
second program goes back to the 3D code of Ref.
[7]. It was later improved [8] incorporating ideas
developed in Refs. [9,10]. Cube-shaped particles
with the material parameters of the mineral magnet-
ite have been analyzed with this program line al-
ready in Refs. [7,8]. After establishing the equi-
valence of the results for our problems, the more
demanding tasks were performed with the first
algorithm which is therefore explained in more
detail.

Both codes calculate the stray-field energy using
cubic cells for which analytic expressions for the self
and interaction energies both of volume and sur-
face charges are available (p. 122f of Ref. [2] or
Refs. [8,9,11]). With these expressions the scalar
potential at every point of the discretization grid
can be expressed as a convolution of the chosen
charges with the fixed interaction expressions.
Once the potential is known, the stray field is ob-
tained by a gradient operation, and the stray field
energy results from multiplying potential and
charge at every point and summing over this prod-
uct. An effective field of which the stray field is an
important part is used in our modified steepest
descent and relaxation (MDSR) algorithm [10,12].
The total energy alone is used in this algorithm in
the interleaved energy minimization steps.

The convolution was performed in Fourier space
[6,13]. By using charges and the scalar potential
instead of magnetization and field vectors, only
Fourier transformations on these scalar quantities
are necessary, a forward transformation of the
charges, and a backward transformation of the
potential. If only the total energy is needed, this can
be calculated directly in Fourier space [8], leaving
only one necessary Fourier transformation.

In addition, the efficiency was increased by tak-
ing into account the fact that only real numbers
have to be transformed because both charges and
interaction coefficients are real. The transformation
of rows which consist of zeros only (this occurs
necessarily due to the zero-padding operation) are
omitted. This was possible because also higher-
dimensional FFTs were performed based on one-
dimensional FFT routines [14].

Because the interaction coefficients are even
functions (not depending on the sign of the coordi-
nate differences between two cells) the Fourier
transforms of the interaction functions are real and
less multiplications in frequency space are needed
than in the general complex case. Finally, FFT
operations which are necessary for different poten-
tial contributions can be combined due to the lin-
earity of the Fourier transform operation. For
example, the potential contributions in volume
cells due to volume charges are calculated in fre-
quency space. After an inverse FFT in the z-direc-
tion, the potential contribution due to xy-charge
sheets are added. The remaining inverse FFTs
along the x- and y-directions are then performed
together.

A further advantage of the employed FFT rou-
tines is the option to use with good efficiency not
only powers of two in each dimension for the num-
ber N of cells, but also other integers containing
factors of three or five. Thus, we could fill the gap
between N = 32 and N = 64 cells along one dimen-
sion with efficient calculations using N = 36, 40, 48,
50, 54, and 60 cells. We were able to use a maximum
of 128 (about 2 million) cells in our micromagnetic
calculations performed on Hewlett Packard 9000
workstations.

The feature of a larger flexibility of the lattice
density is very important because finite element
calculations can generally only be considered valid
if they prove to be independent of the degree of
discretization. An extrapolation to infinite N is
necessary for reliable results, and as the computa-
tion time even in efficient algorithms increases at
least with N° (N because of the stray field, another
N? for the energy minimization), the possibility to
use smaller increments is of great practical import-
ance. Fig. 3 shows an example of the chosen pro-
cedure to calculate the equal energy point of two
configurations, the longitudinal flower and the
transverse symmetric vortex state in this case. The
energy of the flower state remains almost indepen-
dent of the reduced cube size A, while the vortex
energy decreases roughly with 1/4* as predicted by
Eq. (5). The intersection is calculated numerically
by interpolation for different lattices as shown in
(a). The resulting values for the single domain limit
are then plotted in (b) as a function of the number
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Fig. 3. Calculating a configurational phase boundary and extrapolating the result to an infinitely fine mesh. In (a) the energies of the
flower and the simplest vortex state (see Fig. 5) are plotted as a function of the reduced cube size A for different numbers of cells in one
dimension N. The intersection points are then plotted in (b) as a function of 1/N?, allowing an extrapolation towards an infinitely fine

mesh.

of cells N. Using 1/N? as the abscissa, an extra-
polation towards 1/N? =0 can be convincingly
achieved.

As in earlier two-dimensional studies [3,15] the
necessary degree of discretization was found to be
about two cells per exchange length for small Q.
For large Q the wall width parameter ./ A/K, be-
comes smaller than the exchange length ./ A/K4 so
that an even finer discretization is necessary. Usu-
ally, we started each calculation with a test function
for a certain configuration evaluated on a moderate
mesh, and minimized the total energy for this dis-
cretization. Then the number of cells was increased
and the old solution is interpolated on the new grid
to serve as the new starting function. Sometimes
solutions with a reduced symmetry or the proper
configuration of domain walls and other features
develop only at a higher discretization level due to
discretization grid pinning effects at insufficient dis-
cretization. The best way to obtain the data needed
in extrapolations was therefore to go back from the
finest mesh to coarser meshes. This time the inter-
polated fine-mesh solution is used as the starting
function for the coarsened meshes.

4. Classification and prototype solutions

Even though we constrain ourselves to the basi-
cally simple case of cubic particle shape and

uniaxial anisotropy with the axis parallel to a cube
edge, there exists a surprising variety of stable and
metastable micromagnetic configurations. Topo-
logical properties (such as the number and charac-
ter of magnetization vortices) allow to group the
possible configurations as will be discussed in the
following section. We focus on stable solutions,
discussing the even greater manifold of metastable
configurations primarily on a qualitative level.

4.1. Swirls, edge and corner configurations

The number of metastable solutions increases
especially at small Q where the pole-avoidance
principle assumes priority. A configuration with
a small stray-field energy corresponds to a unit
vector field which is divergence-free in the volume
and which lies approximately parallel to the surface
everywhere. This is not perfectly possible for
topological reasons. At least two surface vortices or
‘swirls’ [16] must exist somewhere on the surface.
In the center of these swirls or quasi-singularities
the magnetization either points into the body of the
cube, or away from it. If more than two swirls are
present, some of them must have a negative revol-
ution number (‘cross-vortices’) so that the weighted
sum of all swirls is again two as required by Poin-
caré’s theorem [17].

In a certain class of solutions for small Q and
intermediate size every edge will be almost uni-
formly magnetized in one of the two directions
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parallel to itself. For the twelve edges of a cube
there are thus 4096 possible configurations. In the
case of zero anisotropy each of these belongs to one
of 76 classes, the members of which are equivalent
with respect to cubic symmetry. By taking into
account uniaxial anisotropy the number of equiva-
lence classes increases to 186. However, if some of
the mentioned swirls are allowed to be located on
an edge, the number of essentially different solu-
tions becomes still larger.

Another aspect is the magnetization configura-
tion in the corners. Here two possible alternatives
exist depending on the orientation of the magneti-
zation on the adjacent edges [ 16]: either all three of
them are oriented towards or away from the corner
(tripod configuration) which forces the magnetic
moment directly in the corner to point along
a radial axis, or one edge is oriented differently
from the others (saddle corner; see the sketches in
Fig. 4). The tripod always represents a swirl with
a positive revolution number, the saddle configura-
tion is not singular in the topological sense.

In larger particles the number and arrangement
of domain walls turn out to play the dominant role
in classifying the different configurations. The point
and line structures (the corner types, surface swirls,
and the vortex cores connecting the swirls) only
lead to a subdivision of the main categories which
are given by the number of domains.

4.2. Simple vortices near the single-domain limit

The vortex structure can be recognized as the
configuration with the minimum number of swirls
on the surface, replacing the flower state above the
single domain limit. Examples for vortex solutions
slightly above the single-domain limit are presented
in Fig. 5. The Q-values were chosen as Q = 0.002,
0.3 and 4 representative for some soft magnetic
elements, and hexagonal Co and NdFeB single
crystal particles, respectively. The reduced sizes are
A =10, 15 and 40. For the case Q = 0.3 the 3D view
of the particle surface is supported by a cross sec-
tion at the central z-position. While for Q =4
a two-domain state essentially consisting of two
antiparallel flower states is found, a semi-hard ma-
terial (Co) already shows a magnetization compo-
nent parallel to the edges induced by the stray field.

Saddle
configuration

Tripod
configuration

Fig. 4. The two possible configurations in a corner: (a) Tripod,
for which all three edge magnetizations either converge towards
the corner or diverge from it. (b) Saddle, with one converging
and two diverging edge magnetizations, or vice versa.

For the soft element a fully developed curling pat-
tern is observed. The interior wall which can clearly
be discerned in the two-domain state for Q =4
widens to fill the particle, leading to a typical vortex
for Q = 0.002.

4.3. Vortices in larger particles

All stable vortices in larger particles have an axis
in a plane perpendicular to the anisotropy axis, and
in their core the magnetization lies by definition
parallel to the vortex axis which we choose as the
y-axis. For small sizes — near the single domain
limit — the magnetization on the y-edges is aligned
at least partially along the magnetization in the
vortex axis. This is due to the exchange interaction
which is most effective for small particles. When the
cube size increases the ‘lower opens’, i.e. the mag-
netization on these edges rotates away from the
parallel orientation. For high anisotropy it turns
towards a direction more or less parallel to the
anisotropy axis, becoming perpendicular to the
vortex core. For low anisotropy the magnetization
on the y-edges turns backward, thus reaching an
effectively demagnetized state. All these transitions
occur continuously with increasing particle size as
shown in Fig. 6. Thus, there exists no phase
transition between ‘parallel’ vortices and ‘antiparal-
lel’ vortices.

However, even though the y-edge magnetization
progressively rotates into its energetically most fa-
vorable orientation with increasing size, other
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Fig. 5. Small vortices close to the single domain-vortex transition. In addition, a cross section of the central xy-plane for the solution (b)

shows the straight wall in the interior.

alignments relative to the vortex core become pos-
sible in larger particles. Altogether seven different
possibilities exist for the relative orientation of
m, on the four y-edges and the vortex core. A para-
meter pair for which all seven configurations were
found to be at least metastable® is Q = 0.1 and

2 Stability or metastability could be proved rigorously by
showing that the matrix of second derivatives of the energy with
respect to the magnetization components is positively definite.
In practice, this is not feasible and we only determined that the
matrix of first derivatives (the ‘effective field” perpendicular to
the magnetization) was zero everywhere. The fact that there
really exist small energy barriers between the configurations
seems rather probable, however, because we reached the config-

A =40. We visualize the configurations by central
xz-cross sections (lying perpendicular to the vortex
axis, which is oriented along the y-direction) in
Fig. 7. Grayscale maps depict the m,-component.
In black regions the magnetization points out of
this plane, while in white regions it points into it.

urations using Ritz functions for the starting states where the
magnetization was changed appropriately on the y-edges. The
fact that the energy landscape in configuration space guided
these configurations to the desired states indicates the existence
of the local minima. A finer mesh or a more stringent relaxation
criterion did not change the results either.
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Intermediate grey levels indicate an in-plane mag-
netization. In addition the reduced total energies
are indicated. For this parameter set the demagnet-
ized state (g) has the lowest energy, while the state

1
0=1 :
0.5
5 0.5 ,0.001
s 0.1
> 0
=
o
> 1
IS T
‘05 - ] :Q__
@ .
_1 L} T L T
0 4 8 12 16 20
A

Fig. 6. The averaged edge magnetization component m, of vor-
tex states, demonstrating the continuous deviation from an
alignment of the edges parallel to the vortex core at small sizes.
For small Q and large size a demagnetized state with negative
edge magnetization is favored. For large Q and large size the
edges turn parallel to the easy axes, leading to a vanishing
y-component.
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with the smallest exchange energy (a) has the high-
est total energy.

There exists even another modification of the
vortex structure which was not foreseen by the
topological arguments presented so far. Character-
istic for this variant is a twist in the structure
connected with an S-shaped bending of the wall. It
turned out that for large sizes this modification can
save more demagnetizing energy than it costs ex-
change or wall energy. It thus becomes the lowest
energy state in a certain part of the phase diagram.
We termed this configuration the twisted vortex. Its
character is visualized in Fig. 8, where the faces and
the cross section of the central xy-plane are shown
for the parameters Q = 0.01 and 4 = 70. While for
moderate and large Q only a slight bending is
found, it becomes more distinct for small Q and
increasing size.

The transition between the twisted and the
lowest-energy symmetrical vortex was investigated
for Q =0.1 as a function of particle size. As
a measure for the twisting or asymmetry we took
the difference in the net flux in the z-direction on
the back and front xz-surfaces. From Fig. 9a fol-
lows that the twisted vortex becomes favorable
above A = 43.5 for the chosen Q value, where a first
order transition between the straight and the

® ® © ® ® ®

¢) €=0.0761 d) £=0.0754

v

. _
y |
0=0.1
g) £=0.0752 x =

Fig. 7. Vortices in larger particles for Q = 0.1 and 2 = 40. The magnetization component m, in the cross section of the central xz-plane is
represented in grayscale, indicating the relative orientation of the magnetization in the vortex core and the y-edges. In addition, the

reduced total energies of the configurations are indicated.
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Fig. 9. The transition between the twisted vortex and the symmetrical vortex of lowest energy for Q = 0.1. In (a) the energies of twisted
and simple vortex solutions are compared, showing a first order phase transition at 1 = 43.5 beyond which the twisted vortex solution
becomes absolutely stable. In (b) the stability of the twisted vortex is tested by plotting a measure of the asymmetry of the configuration
as a function of particle size. The twisted vortex turns out to be metastable in a large size range until it becomes unstable below about

A =22

twisted vortex occurs. With decreasing size the
twisted vortex remains metastable with decreasing
twisting amplitude as shown in Fig. 9b. It can be
followed down to about A = 22 where the config-
uration collapses into a straight transverse vortex.

4.4. Three-domain states at the multi-domain limit

While none of the possible magnetization struc-
tures with four surface swirls proved to be stable in
our tests, there are two distinct stable states with six
quasi-singularities on the surfaces of the cube. Two

basic classes of such states were identified as stable
solutions. In the first class each of the six cube faces
contains one swirl. This leads to a diagonal three-
domain state with quarter-circular walls. In the
other class two vortices are packed next to each
other on two opposing surfaces, balanced by two
cross vortices in the middle of two edges.

Both structures are presented in Figs. 10 and 11
with views of their side faces and central cross
sections of the xy-planes, respectively. The latter
aspect gives a clear view of the internal wall
and domain arrangement. Both structures can be
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Fig. 11. Cross sections through the central xy-plane of (a) the diagonal and (b) the sandwich three-domain structures shown in Fig. 10.

recognized as three-domain states which may also
be understood as [1 1 0]- and [1 0 0]-double vor-
tices, respectively.

As in the case of single-vortex configurations,
there are several modifications of the double-vortex
states which differ in the relative orientation of
vortex cores and vortex-parallel edges. Due to the
less demanding discretization requirements we
chose a size of 4 = 40 for this example (compared to
Fig. 10, this affects the magnetization angles only
marginally). The (10 0)-oriented double vortex
which represents a simple sandwich-type three-do-
main state shows lowest energies if the flux produc-
ed by the vortex cores is closed by an antiparal-
lel orientation of the magnetization vectors on the
parallel edges (see Fig. 12c and Fig. 12d for a com-
parison of the xz-cross sections of two different
solutions). For the (1 1 0)-double vortex configura-
tions the orientation of the magnetization in the

swirl centers turned out to be important. Pre-
viously, the structure of Fig. 12b was found as
a metastable state [8] resulting from a configura-
tional transition out of the single domain state
as the cube size was increased. Trying out several
modifications, we found that an energetically favor-
able structure (a) is formed when neighboring swirls
on the side surfaces have opposite polarity (one
pointing into the cube, one pointing out of it). The
reason is seen in the gray-scale maps of the m,- and
m,-components in the central xy-plane (Fig. 12a
and Fig. 12b). With this polarity of the swirls the
flux can be transported easily along the walls. For
the chosen size in Fig. 12 the diagonal state with
curved walls (a) is energetically favored compared
to the sandwich state (¢). The same relation was
found also for other Q-values, and it extends up to
the multidomain limit at which three-domain states
become absolutely stable (see phase diagram in
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Fig. 12. Cross sections for the magnetization components m,, m, and m, through modifications of the different three-domain states.
(a, b) shows the central xy-plane of the diagonal three-domain states with different orientation of the core magnetization. Configuration
(a) is slightly favored due to its simpler internal wall magnetization pattern. The sandwich state can be understood better by plotting the
magnetization components in the central xz-cross section. Parameters in all cases are Q = 0.1 and 4 = 40. Configuration (c) in which the

m,-component (middle row) is effectively closed is energetically

Section 5). This energy difference, however, is small,
and at cube sizes slightly above the phase boundary
the energy difference is offset by a gain in stray-field
energy, making the sandwich structure the lowest
energy minimum. An example for the energetic
transitions from two to three domains is shown for
the case Q =0.5 in Fig. 13. Here four different
structures become close in energy: the symmetrical
and the twisted vortex as well as the two types of
three-domain states. At this Q-value the twisted
vortex cannot compete. We find a phase boundary
at A =55.1 from the simple vortex to the [110]
three-domain state, and at A =624 another
transition to the sandwich state.

Summarizing our search for the lowest energy
states, we found five ground-state configurations

favored over (d).
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g 0.6 4
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.§ 0.15 4 vortex
8 .
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A

Fig. 13. Energies near the multidomain limit which lies for
Q = 0.5 at 2 = 55.1. An additional transition from the diagonal
to the sandwich three-domain structure occurs at 4 = 62.4.
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Fig. 14. The energetically favored one, two and three-domain states: (a) flower state, (b, c) two-domain states for high and low
anisotropy, (d, e) three-domain states for high and low anisotropy. The sketches in the second row always show the central slice in the

z-direction indicating the walls and domains.

which are shown schematically in Fig. 14. In three
cases we show the same basic configuration in
a low-Q and in a high-Q variant. These variants
differ strongly in their outward appearance (top
row), but little in their internal, cross sectional
aspect (bottom row).

5. Phase diagram of cube-shaped magnetic particles

The phase diagram of Fig. 15 was obtained by
equating the energies of the different configura-
tions, and extrapolating the intersection points to
infinite discretization. In the two-domain phase re-
gion a boundary indicates the stability range of the
twisted vortex structure. In the same way the phase
boundary between the diagonal and the sandwich
three-domain states is indicated within the three-
domain phase region. Only configurations with
a reduced size smaller than A = 80 could be reliably
calculated numerically. To extend the phase
boundaries to larger sizes the data were extrapo-
lated according to the estimates presented in Sec-
tion 2. To allow for a more precise comparison with
other results we present two tables with values of
the phase boundary points (Table 1), and the asso-
ciated energies and magnetization values for a se-
lection of the phase boundary points (Table 2).

Previously published values for the first phase
boundary in uniaxial cube-shaped particles can be
found in [1] (with the correction reported in [18]
where a single domain limit of 4 = 6.8 for Q = 0.02
was found, in comparison to our result of 4 = 7.28.

These older results, and also those reported in [19]
for small Q are roughly compatible with our values,
taking into account that they were not extrapolated
to infinitely fine discretization (see Fig. 3). Previous
calculations for large values of Q are obviously

unreliable: a value of 12.4,/4/K, was obtained for

Q = 1.3 in [19], instead of 24.1./A/K, according
to our calculations. This discrepancy must be at-
tributed to insufficient discretization in the older
calculations which leads to a severe underestima-
tion of the exchange energy.

Also of interest is the comparison of results
for uniaxial spheres obtained by Aharoni and
Jakubovics. For the single-domain radius they
found R =10.65./4/K, for Q =0.338 (Co) [20]
which has to be compared with our results for

cubes of L =11.58,/A/K4. One may assume as
a guideline that the single-domain limit is roughly
independent of shape, depending primarily on vol-
ume. Under this assumption a single-domain

radius of R =7.19./A/K, for the cobalt sphere
would be expected based on our results which still
lies above the rigorous lower bound derived for fine
ferromagnetic particles [21]. The actually cal-
culated larger value [20] must be ascribed to the
fact that Aharoni and Jakubovics calculated rota-
tionally symmetric states only. The transverse vor-
tex which is clearly the energetically favored low-
magnetization state because it can save anisotropy
energy does not belong to this class.

The phase transition at Q = 0.1 from the single-
domain state to the symmetrical vortex state



W. Rave et al. | Journal of Magnetism and Magnetic Materials 190 (1998) 332—348 345

1000

100

L/VATK,

Reduced edge length A

I
0.001 0.01

I
0.1 1 10

0=Ky/Kq4

Fig. 15. Phase diagram of zero-field states of cubic-shaped particles with uniaxial anisotropy. The inserted icons represent the
m,-components in a xy-cross section, thus revealing the basic domain pattern of the various configurations.

Table 1
Extrapolated points of the first and second phase boundary

(0] 1073 1072 0.1 0.2 0.3 0.5 1.0 2.0 3.0
Apb1 6.66 7.04 8.47 9.76 11.03 13.82 20.88 31.72 40.03
Jpb2 - - 75.7 59.6 552 55.1 65.4 - -

was proposed as a benchmark problem for mi-
cromagnetic calculations [22]. The detailed ex-
trapolated values for the partial energies and the
average magnetization components along the three
axes for this phase boundary point can be found
in Table 2.

In a recent submission to Ref. [22] Hertel and
Kronmiiller discovered that a further configuration
interacts with the single-domain limit as calculated
in this paper. At slightly lower thicknesses a longi-
tudinal vortex is formed continuously out of the
flower state. For the chosen example of Q = 0.1 this
happens at A, = 8.2 according to our own calcu-
lations with which we reproduced and confirmed
the configuration found by Hertel and Kronmiiller.

This has to be compared to our previous single
domain limit at A = 8.47 (see Table 1). Obviously,
an initial gain in stray-field energy can already be
achieved when the symmetrical longitudinal flower
state starts to decay into a longitudinal vortex.
Only at a larger size (at A = 8.50 in the case of
0 = 0.1) the longitudinal vortex is replaced by the
transverse vortex that has a lower anisotropy en-
ergy in uniaxial particles.

For low Q the phase boundary for the ‘single-
domain limit’ in Fig. 15 thus must be replaced by
a double boundary: (i) a continuous, second-order
transition between the flower state and a longitudi-
nal vortex state, (ii) a discontinuous switching
transition between the longitudinal and a transverse
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Energies and magnetization values of selected points on the phase boundaries. The upper part belongs to the single-domain limit, the
lower part to the multidomain limit. The abbreviations are f for flower state, sv for symmetrical vortex, tv for twisted vortex and dv for
the [1 1 0]-double vortex (diagonal state). Again all values are extrapolated to an infinitely fine mesh
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vortex. The splitting of this phase boundary occurs T "

at @ = 0.12. For stronger anisotropy an onset of P4 .

curling appears only at sizes beyond the single- / :l--??- ON

domain limit.

An important consequence of this finding is that
the flower state cannot remain metastable beyond
the single-domain limit in low-Q cube-shaped par-
ticles, because it will spontaneously decay into the
longitudinal vortex state. The nature of the con-
tinuous flower—vortex transition for the transverse
orientation will be discussed in the following
section.

6. Stability limit of the vortex state in small
particles

For small Q the single-domain limit comes very
close to the size at which the (transverse) vortex
state collapses into a transverse flower state, a state
with a high average magnetization perpendicular to
the easy axis. This collapse at the stability threshold
between the vortex state and the flower state rep-
resents a second order phase transition for which
the symmetry is reduced from mirror (flower state)

0.8

0.6

0.4+

vorticity2

Fig. 16. The suppression of the vortex state at small particle size
is studied for different Q-values by plotting the integral vorticity
as a function of size. For small Q it vanishes at a critical size,
marking a second-order phase transition to a transverse flower
state. This transition is not reached for larger Q (shown here for
the example of Q = 1) where the already weak vortex becomes
unstable with respect to a conversion to a standard, longitudinal
flower state.
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to chiral symmetry (vortex state). It can be
monitored by measuring the integral vorticity of the
vortex which we define as the line integral of the
circumferential magnetization on a plane ortho-
gonal to the vortex axis (Fig. 16).

The energy of the transverse flower state is larger
than the energy of the longitudinal flower state by
an amount of the order of the anisotropy parameter
Q. This makes the determination of the intersection
point of the energy curves more difficult for smaller
anisotropy. In the limit Q =0 no conventional,
first-order single-domain limit is expected to exist
at all. It coincides with the phase transition of the
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Fig. 17. The second order phase transition from the vortex to
the flower state for Q = 0 for two different orientations.

transverse vortex state to the transverse flower
state, the latter being energetically equivalent to the
longitudinal flower state for zero Q. For all other
values the single domain limit is given by a first
order phase transition at which both longitudinal
and transverse states are stable, separated by
a threshold. The vanishing of the threshold leading
to a continuous transition between the energy
curves of flower and vortex states in the case Q =0
is shown in Fig. 17. The equivalence of the stability
limit with the phase boundary in this special case
can be used to derive the single-domain limit for the
case Q = 0 as well. Extrapolating the square of the
integral vorticity to zero we derived A,,; = 6.49.

Additionally, we looked at flower and vortex
states with [1 1 1]-orientation in order to find out
whether a reorientation of the axis could save ex-
change energy at small sizes and for low Q. As can
also be seen in Fig. 17 the [1 1 1]-flower state is
even for zero anisotropy for all sizes energetically
less favorable than its [100] counterpart. The
[111]-vortex gets around 7.8 length units very
close to its [100] version, but even there the
[111] vortex is not favored. If [1 1 1]-oriented
states play no role as stable solutions even for zero
anisotropy, this is not expected to be different for
finite uniaxial anisotropy with an [0 0 1] easy axis
in contrast to the negative cubic anisotropy case
studied in [8]. [11 1]-oriented states can be ob-
tained as metastable solutions. Visualizations of
these states which confirm that they were correctly
reached are shown in Fig. 18.

Fig. 18. The metastable flower (a) and vortex (b) states oriented along the [1 1 1]-direction for Q =0 and A = 7.5 seen from the

[1 1 1]-direction.
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7. Conclusions and outlook

We systematically collected the magnetic equilib-
rium states of lowest energy in cube-shaped mag-
netic particles. Subtle phenomena for which more
complicated computations become necessary are
the twisted vortex pattern and the precise geometry
of the most favorable three-domain states which we
established for the first time. Summarizing the re-
sults of the micromagnetic calculations one notes
that most of the main features of the phase diagram
can already be obtained with a good understanding
of domains, while on the other hand only by com-
parison with the exact calculations a feeling for the
limits of domain theory is gained. In addition, the
stability limit of vortices for small sizes was cal-
culated and the nature of the single domain limit
for the case of vanishing anisotropy was clarified.

The extension of this work to different aspect
ratios, the calculation of the magnetization curve
and switching fields, as well as the search for more
metastable states are possible and may be ad-
dressed in future work. For geophysics the invest-
igation of octahedral particles with negative
anisotropy constant would be of interest.
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