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Magnetostatic  Interaction  Fields  for  a  Three- 
Dimensional  Array of Ferromagnetic  Cubes 

MANFRED E. SCHABES AND AMIKAM AHARONI, SENIOR MEMBER, IEEE 

Abstruct-An exact analytic formula for the magnetostatic interac- 
tion energy of a three-dimensional array of ferromagnetic cubes is pre- 
sented. The magnetization within each cube is assumed constant but 
varies in direction from cube to cube. From the expressions for the 
interaction energy, exact formulas for the effective magnetostatic in- 
teraction field are derived. This provides a useful tool for three-dimen- 
sional micromagnetic calculations. 

M k  
INTRODUCTION 

ICROMAGNETIC investigations require a precise 
.nowledge  of the magnetostatic field within a fer- 

romagnetic sample [ 11. The total micromagnetic interac- 
tion field encomprises also contributions from several 
other sources,  in  particular, the exchange interaction and 
the crystalline anisotropy. However, these will not be 
treated in this paper, the sole concern of which is to de- 
velop tools for  an appropriate treatment of the magneto- 
static interaction field in small three-dimensional ferro- 
magnetic samples. A few general remarks on the 
representation of continuum systems will set the goals and 
motivation of this work. 

Classical micromagnetic analysis has its origin in a 
continuum formulation of the magnetization field  and their 
associated interactions. This approach is usually quite suf- 
ficient to represent the magnetic properties on scales much 
larger than the  scales of the underlying atomic structure. 
One of the main routes for  a mathematical representation 
is  to derive partial differential equations for  the magneti- 
zation field. The resulting nonlinear coupled partial dif- 
ferential equations are usually called Brown’s equations 
[2]. The great difficulties associated with solving Brown’s 
equations for any realistic situation suggest another ap- 
proach. The continuum system is replaced by a set of dis- 
crete interacting subsystems, whose properties are well 
defined. Certainly, this introduces a discretization error 
to the calculation.  To control the discretization error 
properly, the interaction between the specified subsys- 
tems has to be handled with great care. Uniformly mag- 
netized cubes have no shape anisotropy [3], their mag- 
netostatic surface charges are easily calculated, and they 
are space filling. As will be demonstrated, cubical sub- 
elements arranged at the sides of a simple cubic lattice 
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allow for  the derivation of exact analytic formulas for the 
effective magnetostatic interaction field. Hence apart from 
the inevitable discretization error, no further approxima- 
tion is introduced to the calculation. From this point of 
view the exact analytic expressions, as presented in this 
paper,  are quite pleasing.  Moreover, the simple cubic ar- 
ray  of interacting uniformly magnetized cubes is the sim- 
plest possible space-filling discrete representation of a 
three-dimensional ferromagnetic continuum and therefore 
of fundamental importance. The work presented in this 
paper is a continuation of the studies of Brown and La- 
Bonte [4], [ 5 ] ,  who investigated one- and two-dimen- 
sional ferromagnetic systems. In [5] LaBonte derived the 
exact analytic interaction integrals for  a discretized two- 
dimensional domain wall. Recently, Della Torre investi- 
gated three-dimensional ferromagnetic particles [6]. He 
did not develop the corresponding three-dimensional 
magnetostatic interaction integrals, whose exact analytic 
form will be presented as  the main result of this paper. 

In the last part of the  article  a short discussion of the 
numerical properties of the exact analytic formulas is 
given. In particular, it is demonstrated that the adoption 
of simple dipole approximations may introduce large er- 
rors for small separation between the interacting cubes. 
Thus the expressions obtained in this paper are not  only 
of conceptual value, they ensure  the numerical correct- 
ness of the resulting magnetostatic field, which includes 
contributions from all neighbors of a given lattice site. 

THE MICROMAGNETIC ARRAY 
La Bonte [5] gives a micromagnetic treatment of a two- 

dimensional ferromagnetic domain wall in a Permalloy 
film. His approach subdivides the sample into a set of 
closely packed aligned infinite prisms. It is natural to ex- 
tend this approach to three-dimensional systems by con- 
sidering a simple cubic array of ferromagnetic cubes [6]. 
The cubes are assumed to be sufficiently small so that the 
magnetization can be taken constant (of magnitude M,  ) 
within each cube but  may vary in direction from cube to 
cube. This assumption leads mathematically fom the clas- 
sical continuum approximation of the magnetization dis- 
tribution to an approximate discrete formalism. The pro- 
cess of dividing the sample into an array of cubes has to 
be understood as a purely mathematical discretization pre- 
scription, which converts the energy functional into an 
ordinary function of magnetic moments defined at the 
centers of a simple cubic lattice. Of course, this can only 
be done at the expense of neglecting magnetic fluctuations 
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on scales smaller than the  lattice constant of the simple 
cubic array. On the  one  hand,  the  size of the cubes deter- 
mines the resolution, with which magnetic modes can be 
calculated in this model. On the  other  hand,  the formu- 
lation will cease to be valid as soon as  the  lattice constant 
approaches atomic scales.  To  answer questions involving 
atomic scales,  one would have  to give a quantum me- 
chanical treatment.  However,  the  goal of this paper is to 
develop tools for describing small but nevertheless mac- 
roscopic ferromagnetic samples. Therefore, it is assumed 
that quantum mechanics is accounted for sufficiently in 
providing the  appropriate values of the material constants 
(e.g., saturation magnetization) characterizing the mag- 
netic properties of the  specimen.  We arrive at  the follow- 
ing formulation. 

In the discretized picture the magnetization of the sam- 
ple is described by the vector field M ( x n ,  y,, zn ) where 
x,, yn, and z ,  denote the coordinates of the  center of the 
nth cube of the  simple  cubic  array.  The triples { x,, y,, 
Z, are chosen to be elements of the  set 

(0, d, * * , ( N ,  - 1)d) X {O, d, . , (Ny  - 1)d) 

x ( 0 ,  d ,  - - , ( N ,  - 1 ) d )  (1) 

where d labels the lattice constant of the simple cubic ar- 
ray. N,, Ny,  and N, characterize the overall shape of the 
sample.  For simplicity, planar boundaries and a closely 
packed array of cubes are assumed. These assumptions 
imply that each  site of the simple cubic array is indeed 
occupied by a  cube. In principle, voids or irregular 
boundary shapes can easily be treated by the method pre- 
sented in  this  paper.  This is due to the fact that  the total 
magnetostatic interaction is taken as a sum of pair inter- 
action terms. 

THE  PAIR INTERACTION ENERGY 
The total magnetostatic energy is the sum of the con- 

tributions from the  painvise interaction of each cube with 
every other  cube of the  array.  For simplicity, consider 
first the magnetostatic interaction energy between one 
such pair.  The system of coordinates is chosen such that 
the center of the first cube is located at  the origin. The 
displacement vector of the second cube with respect to the 
origin is given by 

D = X , i +  Y , j + Z , k ,  (2) 

where X ,  Y,  and Z are integer multiples of the  lattice con- 
stant complying with the boundary conditions (1). i, j ,  k 
are  the  unit vectors in the x, y ,  and z direction, respec- 
tively. 

It is convenient to introduce the magnetostatic potential 
due to the magnetostatic surface charges of the first cube. 
Since a constant magnetization M ( x i ,  y j ,  zk ) within each 
cube is assumed,  the magnetostatic surface charge density 
on  a given face of a  cube is uniform. It is described by 

ol = M(xi,  Yj ,  zk) * nl(xi, Yj,  zk ) ,  I! = 1, ' . , 6 
( 3 )  

where nl(x i ,  y j ,  zk ) is the unit vector corresponding to the 
surface normal of the  cube  face  under consideration. In 
(3) the subscript I! takes values from one  to six according 
to the six faces of a given cube. Equation (3) and  the sub- 
sequent expressions are written in  the rationalized CGS 
system of units. 

The magnetostatic potential due  to  the  surface  charge 
density as given by (3) is obtained from 

0 
d2r'. (4) 

The integration in (4) is carried out  over  the  six  faces of 
the cube. For convenience, a  separate notation for  the  di- 
rection cosines of the magnetization M ( x i ,  y j ,  z k )  is in- 
troduced: 

%jk E M(xi,  yj,  zk) ' i Pijk E M(xixi, yj,  zk ) * j 

Yijk E M ( 4 ,  Yj,  zk ) * k.  ( 5 )  

The expression for  the magnetostatic potenital due  to  the 
first cube is 

v(x, Y ,  z )  

= M S a l  
-d /2  

1 

1 
t 

-d /2   -d /2  

r 1 

r 1 
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where M, labels the saturation magnetization of the fer- 
romagnetic cubes. a l ,  pl, and y1 are the direction cosines 
of the magnetization of the first cube. 

Thus the magnetostatic interaction energy between two 
cubes is 

= s s  s s  z = Z + ( d / 2 )   y = Y + ( d / 2 )   { = + ( d / 2 )  q =  + ( d / 2 )  

z = Z - ( d / 2 )   y = Y - ( d / 2 )   { = - ( d / 2 )  q = - ( d / 2 )  

r 2 

= s s  s s  z = Z + ( d / 2 )   x = X + ( d / 2 )  I =  + ( d / 2 )  q = + ( d / 2 )  

z = Z - ( d / 2 )   x = X - ( d / 2 )  { = - ( d / 2 )  q =  - ( d / 2 )  

1 
2 (4 - J + ( Y  + f - q) + ( z  - r)2 

1 - 

2 

& - . ) : + ( Y - & q )  + ( z - l ) 2  

1 + I 

* dq  d{ dx dz. 

The use of the formulation of W12 as given by (7) has 
reduced the multitude of four-dimensional integrals that 
need to be evaluated to  a set of merely two.  The fact that 
we have to consider two types of integrals arises from the 
two possible topologies for  the magnetostatic interaction, 
namely, the interaction between two squares that are par- 
allel to each other and those that are perpendicular to each 
other.  The main task is to obtain analytic expressions for 
the A and B integrals as  a function of the displacement 
parameters X ,  Y ,  and Z. As will be shown, the final result 
can be represented entirely in terms of elementary func- 
tions. 

NONSINGULAR INTERACTION INTEGRALS 
In this section  the derivation for  the interaction inte- 

grals for the general nonsingular case (i.e., where the dis- 
placement parameters are nonzero) is outlined. The for- 
mulas for  the singular cases of one  or more of the 
displacement parameters vanishing may easily be ob- 
tained from the nonsingular expressions. 

For carrying out the integrations in (8) and (9) it is use- 
ful to note that 

n 

= q In (J t2  + q2 + z2 - Z )  

- q + 4 arctan (z) 
+ 4 arctan + zq q2 + z2 ) 

= s  s y = Y + ( d / 2 )   q = + ( d / 2 )  

y =   Y -   ( d / 2 )  q = - ( d / 2 )  

- [Zln (4x2 + ( y  - q>2 + 2 2  - Z >  

+ dX2 + ( y  - 7)’ + Z 2 ]  dq dy. ( 1 2 )  

F ,  can be written as 
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where 

= - ( x2  - Y 2 ) l n ( J X 2  + y2 + 2’ - 
L 

2 

+ - (x2 - z 2 )  In (Jx2 + y2 + z2 Y 
2 

- XYZ arctan 

+ d ,  2 )  

(13)  

Z )  

- Y )  

+ - (2X2 - Y2 - 2’)  J X 2  + Y2 + Z2. (14) 
1 
6 X + d , Y + - , Z - d  

2 

Both in (13) and (14) terms linear in 2 have been omitted 
since they wili add  up to zero in (1 1) for  the A integral. 

A strategy similar to the  one used to  obtain  the analytic 
expressions for  the A integrals yields with 

z2 + -1n (Jt2 + y2 + 2’ - Y )  2 

Y 
2 

+ - Jt2 + Y2 + z2 

- -1n (J t2  + y2  + 2’ - Y )  t 2  
2 

+ t Z  arctan 
yz )] d t .  (17) 

The integrals in (17) can be carried out analytically in 
terms of elementary functions to  give  the following result: 

X 
6 

+ - ( 3 Z 2  - X ’ )  In ( R  - 1) 

X Y R  
3 

+ - + XYZln ( R  - Z )  

+ e 2 arctan (g) 
23 XY + - arctan (Rz) 
6 
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where 

and 

x2z + -  
2 arctan (g) 

+ G ( X ,  y, 2) 

R = J X 2  + Y2 + Z 2  

G n ,  y, Z )  

= (g  + F) In ( Y 2  + 2 2 )  

+ - 2 3  arctan (g) 
+ Y 2 z  arctan (S) 

2 
3 

2 x z 2  x3 
- XYZ - - 

3 
+ - .  

18 

For  the purpose of calculating B (X, Y, Z ) terms in (1 8) 
that are  linear  in Z or independent of X  or Y may be omit- 
ted. This follows from the symmetry of (15) and (16). 
Therefore, none of the terms in G$ contributes to B (X, Y, 
Z ) and G$ can be omitted in (1 8). 

SINGULAR INTERACTION INTEGRALS 
The calculation of the total magnetostatic interaction 

energy of the sample also includes integrals with one  or 
more of the displacement parameters vanishing. The en- 
ergy, however, cannot be singular,  and  indeed,  these  sin- 
gularities are of the type x In [x], which are removed in 
the limit x -+ 0. Passing to this limit is strictly correct 
only in the context of the micromagnetics approximation, 
which uses continuum instead of the actual atomic struc- 
ture. The justification of this approximation has already 
been thoroughly discussed in [ 11 and [4]. The following 
formulas list  the expressions for F2 and G2 for  the  case 
where at least one of the displacement parameters van- 
ishes: 

1 ) X = O , Y # O , Z # O :  

YZ2 R 3  
- -In (R - Y) - - (21) 

2  6 

2 ) X # O , Y = O , Z # O :  

+ - ( 2 X 2  - Z 2 )  R 
1 
6 (23 1 

G2(X,  0, 2 )  = - - - In ( R ) ;  (24) (Y2 T) 
YX2 

q x ,  Y, 0) = -In (R - Y) 
2 

G2(X, Y, 0) = -In 3 Y3 (R + X) 
16 

x3 Y3 
- - ln (R  - Y) - - 

6 96 

4) x =  0, Y =  0,z # 0: 

F2(0,  0 , Z )  = -- 1 ~ 1 ~  
6 

G2(0, 0, 2 )  = 0; 

5) x= 0, Y # 0,z = 0: 

F,(O, Y, 0) = -7 I y13 

6)  X # 0, Y = 0 , Z  = 0: 

F2(X, 0, 0) = - 
3 

x3 
G2(X, 0, 0) = - -1n (X2) ;  

12 (32) 

7 ) X = O , Y = O , Z = O :  

F,(O, 0, 0) = 0 (33 1 
G2(0, 0, 0) = 0. (34) 

THE MAGNETOSTATIC INTERACTION  ENERGY 
Equation (7) for  the  pair interaction energy is general- 

ized to obtain an expression for  the total magnetostatic 
interaction energy. Let Wvk, j t j , k ,  denote the interaction en- 
ergy between the cubes at site ( i ,  j ,  k )  and ( i  ’, j ’, k’ ), 
respectively. WGk,irjrkr is obtained from (7) by replacing 
all subscripts 1 by the triple ( i ,  j ,  k )  and all subscripts 2 
by the triple ( i ’ , j ’ ,  k ’ ) .  

Now the total (tot) magnetostatic interaction energy can 
be written as 

The prime on the summation indicates that only terms with 
zjk # i ‘ j  ‘ k ’  are included in the calculation of the total 
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energy. The omission of the self-energy is legitimate since 
the uniformly magnetized cubic elements  do not have 
shape anisotropy. Hence  the contribution of the self-terms 
is independent of the directional cosines a$, P i j k ,  yijk. 

THE  EFFECTIVE  MAGNETOSTATIC INTERACTION FIELD 
The effective interaction field is obtained from the en- 

ergy expression (35) by regarding the auk, &, etc.,  as 
independent variables. They play the role of generalized 
coordinates for  the energy function (35). The effective in- 
teraction fields, on the  other  hand,  are defined to be pro- 
portional to  the negative gradient of Wtot, the gradient 
being taken with respect to the magnetization vector at a 
given lattice  site.  The effective interaction field at  site ( i ,  
j ,  k )  is given by 

1 awtot H Z ( & j ,  k )  = -- - . 
Msd3 aYijk 

This definition of the effective interaction field is useful 
since at each site of the  lattice  there is one quadratic con- 
straint which involves only the magnetization vector of 
that particular site.  The constraints are  the condition that 
a$ + /3$ + -y $k = 1 for each lattice  site. To be  able to 
treat the a u k ,  &, and Y i j k  as independent variables during 
a variational calculation, Wtot has to be augmented by 

ijk hijk(a$k + f l i k  f Y t k  ) 

where the huk are Lagrange multipliers. A necessary con- 
dition for the equilibrium configuration is then obtained 
as  the requirement that  at each and every lattice  site  the 
magnetization be parallel to the effective interaction field. 

In terms of A ,  B integrals and directional cosines of the 
magnetization, the effective interaction field can be writ- 

DISCUSSION 
It  is interesting to ask how the exact treatment of the 

interaction energy between uniformly magnetized cubes 
compares to  a treatment where each cube is replaced by a 
dipole of strength M,d3 at the  center of each  cube.  For 
simplicity, consider two cubes,  one  at  the  origin,  the other 
one displaced in the z direction by n lattice constants ( X  
= Y = 0 , Z  = nd ). Each of the cubes be uniformly mag- 
netized along the z direction ( (Y = /3 = 0, y = 1 ). For- 
mula (7) yields for  the interaction energy in this  case 

W,, = M:A (nd, 0 ,   0 ) .  (40) 

Replacing the  cubes by dipoles of strengths M, d pointing 
in the z direction at  the  center of the cubes yields 

The ratio between (41) and (40) is 

-2d3 r =  
n3A(nd, 0,  0) ' 

The resulting values of r for  the first nearest neighbors are 
given in  Table I. 

Note that the  dipole approximation for n = 1 overesti- 
mates the interaction energy by more than 17  percent. 
Thus the  dipole approximation may introduce significant 
errors in the calculation of the magnetostatic interaction 
field due  to nearest neighbors. 

To ensure  the correctness of the  analytic  results, elab- 
orate tests have been performed.  The symbol manipula- 
tion package (SMP) [7] has been used to differentiate the 
formulas of the integrals to recover the  integrands.  SMP 
was also employed initially to  obtain parts of the more 
tedious integrals. Furthermore, numerical evaluations of 
the various integrals were carried out  to  test  the numerical 
usefulness of the analytic expressions and to  guarantee  the 
accuracy of the final results. 

The numerical values of the integrals A and B depend 
critically on the precision to which F2 and G2 are  ob-, 
tained. The values of the A and B integrals are many or- 
ders of magnitude smaller than the contributing terms F2 
and G2. This is due to a very delicate cancelation of the 
F2 terms involved to yield the values of the A integrals, 
and  of the G2 terms which contribute to the  value of the 
B integrals. For  a numerical evaluation of the A and B 
integrals, the F2 and G2 functions have  to  be calculated to 
sufficient accuracy. Unless the  displacement parameters 
involve very high integer multiples of the  lattice  constant, 
ordinary VAX double precision turns out to be quite suf- 
ficient. It is also straightforward to expand the F2 and G2 
functions in Taylor  series  about  the displacement param- 
eters.  This may be useful in  cases  where  the  available 
word length of the computational hardware is rather small, 
or where a very wide range of displacement parameters is 
involved. 

We checked the numerical reliability of the results by 
comparing the values of the A and B integrals as obtained 
from the analytic formulas with those obtained from a 
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TABLE I 
COMPARISON OF THE INTERACTION  ENERGY BETWEEN Two CUBES AS 

CALCULATED FROM THE EXACT  FORMULAS AND FROM THE DIPOLE 
APPROXIMATION,  RESPECTIVELY 

obtained are suitable for use in micromagnetic variational 
procedures. Research in this direction is currently in prog- 
ress. 

n  r 

1 1.1788 
2 1.0243 
3 1.0052 
4 1.0017 

Gauss-quadrature procedure over  a four-dimensional hy- 
percube [8]. The agreement is  quite satisfactory within 
the accuracy of the numerical integration procedure. The 
integration over  the  last  free variable yielding F2 and G2, 
respectively, is the most critical step of the  entire calcu- 
lation. For reasons indicated earlier  a small error in the 
calculation of F2 or G2 results in large  errors of the A and 
B integrals. The resolution of the four-dimensional nu- 
merical integration was limited to  a relative error of low5. 
To exclude the possibility of small distortions of the final 
result, which would go undetected due  to  the limited ac- 
curacy of the  four dimensional Gauss-quadrature integra- 
tion,  a one-dimensional @-point Gauss-Kronrod [9] in- 
tegration of the integrands of F2 and G2, respectively, was 
performed. Excellent agreement (relative  error C lo-’ ) 
with the results obtained from the analytic formulas was 
achieved. 

CONCLUSION 
A method for calculating effective magnetostatic inter- 

action fields from exact analytic formulas has been pre- 
sented. The use of the  exact expressions seems important, 
in particular, for  the calculation of the contribution to  the 
interaction fields arising from the nearest neighbors of a 
given site in the interacting array of cubes.  The formulas 
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