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The mutual dependence of spin-dependent conduction and magnetization dynamics of ferromagnets
provides the key mechanisms in various spin-dependent phenomena. We compute the response of the
conduction electron spins in a spatial and time varying magnetization M�r; t� in the time-dependent
semiclassical transport theory. We show that the induced nonequilibrium conduction spin density in
turn generates four spin torques acting on the magnetization–with each torque playing a different role in
magnetization dynamics. By comparing with recent theoretical models, we find that one of these
torques which has not been previously identified is crucial to consistently interpreting experimental data
on domain wall motion.
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Recently, there has been emerging interests in the inter-
play between spin-dependent transport properties and the
magnetization dynamics of ferromagnets. The giant mag-
netoresistive effect in magnetic multilayers [1] is one of
the examples where the spin transport is controlled by
magnetization dynamics (or configurations). Spin angular
momentum transfer [2], or spin torque, manifests the
magnetization dynamics controlled by spin-polarized
conduction electrons. There are quite a few closely related
phenomena reported recently, e.g., enhancement of damp-
ing parameters due to spin pumping [3,4] and reaction
spin torques [5], dynamic RKKY interaction [6], spin
echo [7], adiabatic spin torques in a domain wall [8],
and current-induced global and local pressures on a do-
main wall [9]. These proposed or observed phenomena
motivated us to look for a theoretical framework which is
capable to address the above phenomena on an equal
footing. The essence of the above phenomena is to recog-
nize two types of electrons: spin-dependent transport is
provided by electrons at or near the Fermi level and the
magnetization dynamics can involve electrons below the
Fermi sea. While it is impossible to unambiguously sepa-
rate electrons of transport from electrons of magnetiza-
tion in a real ferromagnet, it has conventionally been
modeled in an ‘‘s-d’’ Hamiltonian,

Hsd � �Jexs � S (1)

where s and S are the (dimensionless) spins of itinerant
and localized electrons, and Jex is the exchange coupling
strength between them. In this Letter, we show that the
above simple s-d model in fact captures most of the
physics on the interplay between spin-polarized transport
of itinerant electrons and the magnetization dynamics of
local moments. We will first derive a linear response
function for the conduction electron spin in the presence
of a time and spatially varying local moment, and then by
using the same s-d model to calculate the spin torque on
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the magnetization dynamics. Among other things, we
have found four distinct spin torques on the magnetiza-
tion. Three of them are closely related to previously
derived torques by using different methods. One of the
derived torque is new; it describes the mistracking be-
tween the conduction electron spin and the spatially
varying local moment. We further show that our formu-
lation can be conveniently applied to study the magneti-
zation dynamics. An example of domain wall motion is
presented at the end of the Letter.

The dynamics of the conduction electron will be con-
sidered separately from that of local magnetization. We
treat the itinerant spin s as a full quantum mechanical
operator whose equation of motion is governed by a
transport equation, but we approximate S as a classical
magnetization vector whose dynamics is much slower
than that of itinerant spins, i.e., we replace S by a classical
magnetization S=S � �M�r; t�=Ms so that

Hsd �
SJex
Ms

s �M�r; t� (2)

where jM�r; t�j � Ms is the saturation magnetization. We
first determine the induced spin density for a given M�r; t�
and then derive the reaction of the induced spin density to
the magnetization.

In the present Letter, the nonequilibrium conduction
electrons are generated by applying either a DC electric
field or a time-dependent magnetic field. While the elec-
tric field directly generates the charge and spin currents in
conducting ferromagnets, the time-dependent magnetic
field is to drive the magnetization motion that induces a
nonequilibrium spin density via the ‘‘s-d’’ interaction.
The conduction electron spin operator satisfies the gener-
alized spin continuity equation,

@s
@t

�r � Ĵ �
1

i �h
	s; Hsd
 � �re�s� (3)
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where Ĵ is the spin current operator, and �re�s� represents
the spin relaxation due to scattering with impurities,
electrons, etc., By defining electron spin density
m�r; t� � <s> and spin current density J �r; t� � <Ĵ>
where <> represents the average over all occupied elec-
tronic states, e.g., <s> � Tr��s� where the trace is over
all electronic as well as spin states, and � is the density
operator, one obtains a semiclassical Bloch equation for
the conduction electron spin density m,

@m
@t

�r � J � �
1

�exMs
m�M�r; t� �<��s�> (4)

where the commutator in Eq. (3) has been explicitly
calculated by utilizing Eq. (2), and we have defined
�ex � �h=SJex.

Next, we separate the induced spin density m into two
terms,

m �r;t��m0�r;t���m�r;t��n0
M�r;t�
Ms

��m�r;t� (5)

where n0 is the local equilibrium spin density whose
direction is parallel to the magnetization. The first term
in Eq. (5) represents the adiabatic spin density when the
conduction electron spin relaxes to its equilibrium value
at an instantaneous time t. Since the dynamics of the
magnetization is slow compared to that of conduction
electrons, it is reasonable to assume the spin of the
conduction electrons approximately follows the direction
of the local moment, which is known as the adiabatic
process. The second term represents the deviation from
this adiabatic process. Similarly, we write the spin current
density as

J �r; t� � J 0�r; t� � �J �r; t�

� ���BP=e�je �
M�r; t�
Ms

� �J �r; t� (6)

where e is the electron charge, je is the current density,
�B is the Bohr magneton, and P is the spin current
polarization of the ferromagnet. Note that the spin current
is a tensor that consists of two vectors: the charge current
and the spin polarization of the current. The first term in
Eq. (6) is the spin current whose spin polarization is
parallel to the local magnetization M�r; t�. To solve for
the nonequilibrium spin density in a closed form, we
assume the following simplifications. First, we use a
simple relaxation time approximation to model the re-
laxation term in Eq. (4), i.e., we write <��s�> �

�m�r; t�=�sf where �sf is the spin-flip relaxation time.
This approximation is necessary in order to obtain a
simple analytic expression. Second, we only consider
the linear response of �m to the electric current je and
to the time derivative of magnetization @M=@t. Since �m
is already the first order, @�m=@t will be the order of
je@M=@t or @2M=@t2 and thus it can be discarded. Within
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the semiclassical picture of the transport, the nonadia-
batic current density �J is related to the nonequilibrium
spin density �m via �J � �D0r�m where D0 is the
diffusion constant. By inserting Eqs. (5) and (6) into (4)
and utilizing the above simplification, we obtain the
closed form for the nonequilibrium spin density

D0r
2�m�

1

�exMs
�m�M�

�m
�sf

�
n0
Ms

�
@M
@t

�
�BP
eMs

�je � r�M: (7)

One immediately realizes that the nonequilibrium spin
density is created by two source terms on the right side of
Eq. (7): one is the time variation and the other is the
spatial variation of the magnetization. The solution of the
above differential equation depends on the detail struc-
ture of the magnetization vector. Here we assume that the
magnetization varies slowly in space, i.e., the domain
wall width W of the magnetization is much larger than
the transport length scale defined in the footnote [10]. In
this case, the spatial derivative, the first term in Eq. (7),
can be discarded [10]. Then Eq. (7) becomes a simple
vector algebraic equation and by using elementary vector
manipulations we readily obtain an explicit expression for
the nonequilibrium spin density

�m �
�ex

�1� �2�

�
�
�n0
Ms

@M
@t

�
n0
M2
s
M�

@M
@t

�
�BP�
eMs

�je

�r�M�
�BP

eM2
s
M� �je � r�M

�
(8)

where � � �ex=�sf. The above induced spin density in
turn exerts a spin torque on the magnetization. From
Eq. (2), the torque is T � ��SJex= �hMs�M�m �
��1=�exMs�M� �m. By using Eq. (8), we have

T �
1

1� �2

�
�
n0
Ms

@M
@t

�
�n0
M2
s
M�

@M
@t

�
�BP

eM3
s
M

� 	M� �je � r�M
 �
�BP�

eM2
s
M� �je � r�M

�
(9)

There are four terms; the first two are from magnetization
variation in time and the last two describe the magneti-
zation variation in space. Interestingly, the first two terms
are independent of the current. The last two terms repre-
sent the current-driven effect since they are proportional
to the current. Before we calculate the role of these spin
torques, we point out a significant difference of the spin
torques in spin valves or multilayers. The nonadiabatic
torque we propose here relies on the approximation that
the spin transport length scale, e.g., � defined in [10], is
much smaller than the domain wall width. In multilayers,
the magnetization abruptly changes at the interface and
the ‘‘equivalent’’ domain wall width is zero. Therefore,
the approximation of dropping the first term of left-
handside of Eq. (7) is not valid. In fact, the length scale
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of the spin torque in multilayers is solely determined by
the spin transport length scale.

The standard Landau-Lifshitz-Gilbert (LLG) equation
consists of a precessional term due to an effective field
and a phenomenological damping term. In addition to
these two torques, the above torque T is now added to
the LLG equation,

@M
@t

� � M�Heff �
!
Ms

M�
@M
@t

� T; (10)

where  is the gyromagnetic ratio, Heff is the effective
magnetic field, ! is the Gilbert damping parameter. We
immediately realize that the first term in Eq. (9) is simply
to renormalize the gyromagnetic ratio while the second
term is to renormalize the damping parameter. Thus if we
introduce an effective gyromagnetic ratio  0 and the
damping parameter !0,

 0 �  �1� "��1;  0!0 �  �!� �"�

where we have defined " � �n0=Ms�=�1� �2�, the LLG
equation remains in the same form. We point out that the
modification of the gyromagnetic ratio and the damping
parameter through the present mechanism is rather small
in transition metal ferromagnets. For a typical ferromag-
net (Ni, Co, Fe and their alloys), Jex � 1 eV, S � 2,
�sf � 10�12 s, n0=Ms � 10�2, � � 10�2 and thus " is
about 10�2 and �" is of the order of 10�4–much smaller
than the typical damping parameter of the order of 10�2.
Therefore, we conclude that the temporal spin torque
driven by the exchange interaction only slightly modifies
the damping parameter and can not be identified as a
leading mechanism for magnetization damping.

At this point, we should compare other theories on the
spin torque to this Letter. Tserkovnyak et al. [3,7] pro-
posed an adiabatic spin pumping mechanism to explain
the enhancement of Gilbert damping parameters. Ho et al
suggested a radiation field induced by precessional mo-
tion of magnets [5]. Most recently, a similar s-d model in
the presence of the time-dependent magnetization has
been considered [11]. The present approach reduces to
these theories in the simple limit considered for these
two terms. In fact, the idea of this temporal spin torque
had been suggested earlier: when the magnetization varies
in time, the spin of the conduction electrons tends to
follow the direction of the magnetization with a time
delay given by spin relaxation time. This latter phenome-
non was named as ‘‘breathing Fermi surface’’ [12].We are
now able to consider this physics of the enhanced damp-
ing on the equal footing as the current-induced spin
torques. We also point out that Waintal and Viret [9]
have recently proposed a nonadiabatic torque based on a
possible Larmor precession of the conduction electron
spin around the axis of the local magnetization vector.

Our main focus here is the spin torque due to the
spatially nonuniform magnetization vector, the last two
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terms in Eq. (9). Since the temporal spin torques can be
completely absorbed by the redefinition of the gyromag-
netic ratio and damping constant, we shall now ignore
them and concentrate on the role of spin torque generated
by the nonuniform magnetization. We thus write the full
equation for the magnetization dynamics below

@M
@t
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!
Ms

M�
@M
@t

�
bJ
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s
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�

�
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@M
@x

�
�
cJ
Ms

M�
@M
@x

(11)

where we assume the direction of current x-direction
(je � jeex), bJ � Pje�B=eMs�1� �2�, and cJ �
Pje�B�=eMs�1� �2�. Note that bJ and cJ have the units
of velocity. The ‘‘bJ’’ term has been already proposed by
Bazaliy et al. [13] when they consider a ballistic motion of
conduction electrons in the half-metal materials.
Recently Tatara and Kohno also derived a similar expres-
sion [8]. We have seen that this term describes the adia-
batic process of the nonequilibrium conduction electrons.
The ‘‘cJ’’ term is completely new; it is related to the
spatial mistracking of spins between conduction electrons
and local magnetization. While this term is known in the
physics of domain wall resistance [14–16], it also gives
rise a nonadiabatic spin torque, the last term in Eq. (11).
At first sight, one might think that this ‘‘cJ’’ term may be
discarded since it is much smaller than the ‘‘bJ’’ term
(cJ=bJ � � � 10�2). We will show below that the termi-
nal velocity of a domain wall is independent of the
strength of ‘‘bJ’’, rather it is controlled by this small
‘‘cJ’’ term. Thus, experimental analysis on the domain
wall motion must include this new ‘‘cJ’’ term.

To make a concrete prediction on the domain wall
dynamics from Eq. (11), we consider a Néel-wall in a
magnetic nanowire whose magnetization vector only de-
pends on the position along the wire, i.e., M � M�x; t�.
The effective field entering Eq. (11) is modeled by

H eff �
HKMx

Ms
ex�

2A

M2
s
r2M� 4'Mzez�Hextex (12)

where HK is the anisotropy field, A is the exchange
constant, and 4'Mz is the demagnetization field. In the
presence of the spin torque, we follow the Walker’s pre-
scription of the domain wall motion by introducing a trial
function M�);’� where �);+� are polar angles in the
following form [17],

’�’�t�; lntan
'�)
2

�
1

W�t�

�
x�

Z t

0
v���d�

�
(13)

The first equation assumes that the projection of the
magnetization vector in the domain wall on the yz plane
is independent of the position. The second equation in
Eq. (13) postulates that the domain wall shape remains a
standard Néel-wall form except that the wall width W�t�
varies with time and the wall moves at velocity v�t�. By
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placing Eqs. (12) and (13) into Eq. (11), and by assuming
the domain wall width changes slowly as in the Walker’s
theory, we can find two coupled differential equations for
determining the domain wall distortion parameters ’�t�
and W�t�. Interestingly, the expression for the velocity of
the domain wall at the initial application of the current is
[18]

v�0� � �
1

1� !2 	! HextW�0� � bJ � !cJ
 (14)

while the terminal velocity of the domain wall is

vT � v�1� � �
1

!
	 HextW�1� � cJ
 (15)

where W�1� is the terminal wall width that is slightly
smaller than the initial Néel-wall width W�0�. Eqs. (14)
and (15) reveal the different roles played by the adiabatic
(bJ term) and nonadiabatic (cJ term) spin torques: the
adiabatic torque is most important at the initial motion of
the wall while the nonadiabatic cJ controls the terminal
velocity of the domain wall. The adiabatic torque causes
the domain wall distortion. The distorted domain wall is
able to completely absorb the adiabatic spin angular
momentum so that the net effect of the adiabatic torque
on the domain wall velocity becomes null, i.e., the do-
main wall stops. In contrast, the nonadiabatic spin torque
behaves as a nonuniform magnetic field cJ@M=@x that
can sustain a steady state wall motion. Although the
magnitude of the nonadiabatic torque cJ is about 2 orders
of magnitude smaller than adiabatic torque bJ, the termi-
nal velocity is inversely proportional to the damping
parameter which makes the velocity comparable to bJ.

Finally, we emphasize that the present study has re-
solved an outstanding mystery between the recent experi-
mental observation [20] and the theoretical prediction
based on the adiabatic spin torque. It has been recognized
that a critical current density of the order of 109 �
1010 A=cm2 is required to move a perfect domain wall
[8,19] if we only use the adiabatic spin torque bJ.
Experimentally, a velocity about 3 m/s was observed in
a NiFe nanowire when a current density 1:2� 108 A=cm2

was applied. This velocity had been assumed to relate
with bJ [20] in spite of the apparent qualitative and
quantitative disagreement between theory and experi-
ment. Here, we have pointed out that bJ is simply an
initial velocity of the domain wall and the measured
velocity was the terminal velocity. For the experimental
current density of 1:2� 108 A=cm2, the adiabatic spin
torque alone is unable to sustain a constant velocity. By
including a small nonadiabatic torque cJ, we find the
domain wall velocity is now cJ=! in the absence of the
magnetic field, see Eq. (15). Although the numerical
127204-4
values of both the exchange constant Jex and the damping
parameter ! are not precisely known in ferromagnets, we
estimate that the wall velocity should be 6� 60 �m=s� for
the above current density if we use the parameters in-
dicated before (taking ! � 0:01� 0:1 for permalloy).
While the experimental velocity is smaller than our
estimated value, it is reasonable since we did not include
any defects which would reduce the velocity significantly.
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